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2 M2.1 - Transformation Geometry

1.1 Lie Groups: Definition and Examples

Lie groups form an important class of smooth (in fact, analytic) manifolds.
(Their prototype is any finite-dimensional group of linear transformations on
a vector space.) The key idea of a Lie group is that it is a group in the usual
sense, but with the additional property that it is also a smooth manifold, and
in such a way that the group operations are smooth. A good example is the
circle St = {z € C||z| = 1}.

Lie groups (and their Lie algebras) play a central role in geometry, topol-
ogy, and analysis, as well as in modern theoretical physics. The precise defi-

nition is given below.

1.1.1 DEFINITION. A (real) Lie group is a smooth manifold which is also

a group such that the operations

GXG_>G7 (glvg2)'_>gl.92 and G_>G7 gHgil

are smooth mapings.

1.1.2 EXAMPLE.  The vector space R™, when equipped with its natural
smooth structure (i.e. viewed as the Euclidean space E™), is an m-dimensional

(Abelian) Lie group.

1.1.3 ExaMPLE.  The general linear group GL(n,R) is evidently a Lie
group. It is an open subset of (the vector space) R™*™ (and hence a smooth
submanifold of E" ) and the group operations are given by rational functions

of the coordinates.

NOTE : Let V be an n-dimensional vector space (over R). Then the group GL (V)

of all linear transformations on V is an n?-manifold. Any choice of a basis in V
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induces a linear isomorphism from GL (V) onto GL (n,R) C R"* (an hence a global
chart on GL (V). The coordinates of any product (composition) ST of elements in
GL (V) are polynomial expressions of the coordinates of S and T, and the coordinates
of S~1 are rational functions of the coordinates of S. It therefore follows that both
group operations (S,7) — ST and S + S~! are smooth (in fact, real analytic)

mappings from GL (V) x GL (V) and GL (V), respectively, onto GL (V).

1.1.4 ExaMPLE.  The special linear group SL(n,R) and the orthogonal
group O (n) are clearly Lie groups. Both subgroups SL(n,R) and O (n)
are smooth submanifolds of (the Lie group) GL (n,R), hence smoothness of
the group operations on GL (n,R) implies smoothness of their restrictions to

SL (n,R) and O (n).

1.1.5 EXaMPLE.  The complezx general linear group GL (n,C) C R2” s a
(real) Lie group. In particular, C* = GL (1,C) is a Lie group. The unit circle
S! € C* is a subgroup and a (smoothly embedded) submanifold, hence also

a Lie group.

1.1.6 ExaMPLE. If G; and G2 are Lie groups, then G x G2 is a Lie
group under the usual Cartesian group operations and the smooth product

structure. In particular, the m-dimensional torus
T =S!'x...- xSt
is a Lie group.

1.1.7 EXAMPLE. Let H denote the division algebra of quaternions. The
nonzero quaternions H* form a multiplicative group and a (smooth) manifold

diffeomorphic to R*\ {0}. It is clear that the group operations are smooth,
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so H* is a Lie group. The 3-sphere S C H* consists of the unit length
quaternions, hence it is closed under multiplication and passing to inverses.

This gives a Lie group structure on S>.

Usually, the identity element of a Lie group will be denoted by e. (For

matrix groups, however, the customary symbol for the identity is I.)

NOTE : In most of the literature, Lie groups are defined to be real analytic. That
is, G is a manifold with a C¥ (real analytic) atlas and the group operations are
real analytic. In fact, no generality is lost by this more restrictive definition. Smooth
Lie groups always support an analytic group structure, and something even stronger
is true. HILBERT’S FIFTH PROBLEM was to show that if G is only assumed to be
a topological manifold with continuous group operations, then it is, in fact, a real
analytic Lie group. This was finally proven by the combined work of A. GLEASON,

D. MONTGOMERY, and L. ZIPPIN (1957).

1.2 Invariant Vector Fields

One of the most important features of a Lie group is the existence of an
associated Lie algebra that encodes many of the properties of the group. The
crucial property of a Lie group that enables this to occur is the existence of
the left and right translations on the group.

Let G be a Lie group. For any g € GG, the mappings

Ly:G—G, xzw gz and Ry:G—G, xw—xg

are called the left and right translation (by g), respectively. For each g € G,
both L, and R, are smooth mappings on G.

Exercise 1 Verify that (for every ¢1,92,9,h € G)
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(a) Lg, 0 Lg, = Lg, g,

(b) Ry, o Ry, = Rg,g, .

(¢) Le = R. =idg (e € G denotes the identity element).

(d) (Lg)~' =L, and (Ry)~' = R,-1. (Hence L, and R, are diffeomor-

phisms.)
(e) Lg o Rh = Rh ] Lg.

NOTE : Given any admissible chart on G, one can construct an entire atlas on the
Lie group G by use of left (or right) translations. Suppose, for example, that (U, ¢)
is an admissible chart with e € U. Define a chart (U, ¢,) with g € U, by letting

Uy := Ly(U) = {Ly(e) |2 € U}

and defining
¢g::¢OL9’1 :Ug—>¢(U), x'_>¢(gil )

The collection of charts {(Ug, ¢4)}gec forms a (smooth) atlas provided one can show

that the transition mappings
¢g2 © ¢;11 = (;50 nglgl ° (bil : ¢91 (Ugl n ng) - ¢92(U91 N ng)

is smooth. But this follows from the smoothness of group multiplication and passing

to inverse.

By the chain rule,
(Lgfl)*,gh o (Lg), ), = (Lg-10 LQ)*,h = idg.
Thus the tangent mapping (Lg)«p is invertible and so, in particular,
(Lg), = (Lg), . : T.G = T,G
is a linear isomorphism. Likewise, (Ry). is invertible.

1.2.1 DEFINITION. A vector field X on G is called
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e left-invariant if for every g € G

It follows that a vector field (on G) that is either left- or right-invariant is

determined by its value at the identity.

NOTE : Recall that smooth vector fields act as derivations on the space of smooth
functions. (If X is a smooth vector field and f is a smooth function on M, then
X f denotes the (smooth) function z — X(z)f.) For any smooth vector fields X
and Y, their Lie bracket [X,Y] defined by

(X, Yf =Y(X[f) - X(Y])

is also a smooth vector field. The (vector) space X(M) of all smooth vector space
on M has the structure of a (real) Lie algebra, with the product given by the Lie

bracket.

The set of all left-invariant (respectively, right-invariant) vector fields on a
Lie group G is denoted X1(G) (respectively, Xr(G)). Clearly, both X1 (G)
and Xp(G) are (real) vector spaces (under the pointwise vector addition and

scalar multiplication).

NOTE : We defined the push forward &, : T,M — TN induced by the
(smooth) mapping ® : M — N (the so-called tangent mapping of ® at p € M).
This is a linear mapping between the vector spaces T, M and Ty, N, and the ques-
tion arises of whether it is similarly possible to define an induced mapping between

the (vector) spaces of smooth vector fields X(M) and X(N). Given a vector field
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X € X(M) and a smooth mapping ® : M — N, a natural choice for an induced
vector field ®,X € X(N) might appear to be

2, X(®(p)) = Pup(X(p))
but this may fail to be well-defined for two reasons :

e If there are points pi,ps € M such that ®(p;) = ®(p2) (i.e. the mapping

® is not one-to-one), then the “definition” above will be ambiguous when
. X(p1) # 2. X (p2).

e If ® is not onto, then the defining equation does not specify the induced vector

field outside the range of ®.

Observe that if ® is a diffeomorphism from M to N, then neither of these objec-
tions apply and an induced vector field ®,X can be defined via the above equation.
However, it is possible that in certain cases the idea will work, even if ® is not a dif-
feomeorphism, and this motivates the following definition : vector fields X € X(M)
and Y € X(N) are said to be ®-related provided @,.X(p) =Y (®(p)) for all p € M.
We then write ®,X =Y. It is not difficult to see that if ®,X; =Y; and ¢,X, = Y5,
then [X7, X5] is ®-related to [Y7,Ys] with

. [X1, Xo] = [, X7, P X5

1.2.2 PROPOSITION.  Let X and Y be any left-invariant (respectively, right-
invariant) vector fields. Then [X,Y] is a left-invariant (respectively, right-

invariant) vector field.

Proor : Let X,Y € X(G) and g € G. Then (and only then) (Ly), X = X
and (Lg).Y =Y. Hence

(Lg)«[X, Y] = [(Lg) X, (Ly):Y] = [X, Y]

and so [X,Y] € X(G). The case of right-invariant vector fields is similar. O
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Therefore, both X1,(G) and Xg(G) are Lie subalgebras of the (infinite
dimensional) Lie algebra X(G) of all smooth vector fields on G.
For each A € T.G, we define a (smooth) vector field X4 on G by letting

Then

which shows that X 4 is left-invariant. Consider the mappings
G X(G) = T.G, X = X(e)

and

CQiTEG%:fL(G), A'—)XA.

Exercise 2 Verify that (; and (, are linear mappings that satisfy
C1 oG =idr, (@) and  (20(1 =idx, (@)-
(It is clear that (o is the inverse of (;, and hence for a left-invariant vector field X

(Lg):X(e) = X(g9)  and  (Lg-1).Xa(g) = A)

Therefore, X1,(G) and T.G are isomorphic (as vector spaces). It follows

that the dimension of the vector space X (G) is equal to dim7.G = dim G.
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NOTE : Since, by assumption, G is a (finite-dimensional) manifold it follows that
X1 (G) is a finite-dimensional, nontrivial subalgebra of the Lie algebra of all (smoth)

vector fields on G.

For any A, B € T.G, we define their Lie product (bracket) [A, B] by
[A, B] L= [XA, XB](e)

where [X4, Xp] is the Lie bracket of vector fields. This makes T.G into a

Lie algebra. We say that this defines a Lie product in T.G via left extension.

NOTE : By construction,
[Xa, XB] = X4,

for all A,B € T.G.

1.2.3 DEFINITION.  The vector space T.G with this Lie algebra structure

is called the Lie algebra of G and is denoted by g.

Exercise 3 Let ¢ : G — H be a smooth homomorphism between the Lie groups

G and H. Show that the induced mapping
dp=¢sc:T.G=9g—T.H=5H
is a homomorphism between the Lie algebras of the groups.

A similar construction to the above can be carried out with the Lie algebra
Xgr(G) of right-invariant vector fields on G. In this case, for each A € T.G,

the corresponding right-invariant vector field is defined by
YA(Q) P (Rg)*,eA-
We have (for A, B € T.G)

[Ya,YBl(e) = —[Xa, XB](e).
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Therefore, the Lie product [-,-]® in g defined by right extension of elements
of g :
[A, B]f : = [Ya, Y5](e)

is the negative of the one defined by left extension; that is,

[A, B]® = —[4, B].

NOTE : There is a natural isomorphism between the (Lie algebras) Xr(G) and
Xgr(G). Tt is equal to the tangent mapping of ® : G — G, x> z~!. In particular,
we have (for A€ g="T.G)

O, Xy =-Yy.

Orbits of invariant vector fields

1.4 Matrix Groups as Lie Groups

We have seen that the matrix groups GL (n,k), SL(n,k), and O (n) are all
Lie groups. These examples are typical of what happens for any matrix group

that is a Lie subgroup of GL (n,R). The following important result holds.

1.4.1 THEOREM. Let G < GL(n,R) be a matriz group. Then G is a Lie
subgroup of GL (n,R).
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NOTE : In fact, a more general result also holds (but we will not give a proof) :

Every closed subgroup of a Lie group is a Lie subgroup.

Our aim in this section is to prove THEOREM 4.5.1.
Let G < GL(n,R) be a matrix group, and let g = T7G denote its Lie

algebra.
1.4.2 PROPOSITION. Let
g:={AeR"" | exp(tA) € G for all t}.

Then g is a Lie subalgebra of R™ "™,

PROOF : By definition, g is closed under (real) scalar multiplication. If

U,V €g and r > 1, then the following are in G :
1 1 1 1 "
exp (U> exp <V) , <exp <U> exp <V>> ,
r r r r
1 1 1 1
exp (U) exp (V) exp (—U> exp <—V> ,
r r r r
2
1 1 1 1 "
(exp <U) exp (V> exp <—U> exp (—V)) .
r r r r
For t € R, by the LIE-TROTTER PRODUCT FORMULA we have
_ 1 1 "
exp(tU +tV) = lim <exp (tU) exp <tV>>
r—00 r r
and by the COMMUTATOR FORMULA

exp(t[U,V]) = exp([tU,V])

2
1 1 1 1 "
= lim (exp <tU) exp (V) exp (tU) exp <V)> .
r—00 r r r r

As these are both limits of elements of the closed subgroup G < GL (n,R),
they are also in G. This shows that g is a Lie subalgebra of gl (n,R) = R™*".

|
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1.4.3 COROLLARY. ¢ is a Lie subalgebra of g.
PROOF : Let U € g. Then the curve
v:R—=G, t—exp(tU)

has v(0) = I and 4(0) = U, hence U € g. O

NOTE : Eventually we will see that g = g.
We will require a technical result.
1.4.4 LEMMA.  Let (A;)r>1 and (\)r>1 be sequences in exp '(G) and
R, respectively. If |Ay]| = 0 and M\ A, — A € R™™ as r — oo, then A € g.
PROOF : Let t € R. For each r, choose an integer m, € Z so that [t\, —
m,| < 1. Then
lmeAr —tAll < |[(my — tA) AL + |[ENAr — tA]|

= |my — tA||Ar]| + [[EA Ay — A

IN

[A (] + [¢[[[Ar A — All = O

as r — oo, showing that m, A, — tA. Since exp(m,A,) = exp(4,)" € G
and G is closed in GL (n,R), we have

exp(tA) = hﬁm exp(m,4,) € G.

Thus every scalar multiple tA is in exp~!(G), showing that A € g. a

PROOF OF THEOREM 4.5.1 : Choose a complementary R-subspace tv to

g in R™ " that is, any vector subspace such that

“g’+m — Rnxn

dimg+dimr = dimR™" = n?
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(The second of these conditions is equivalent to gNw = 0.) This gives a a

direct sum decomposition of R™ " so every element X € R™ "™ has a unique

decomposition of the form

X=U+V (Ueg, Vemw).

Consider the mapping
P :R"™" - GL(n,R), U+ V — exp(U)exp(V).

® is a smooth mapping which maps O to I. Observe that the factor exp(U)
is in G. Consider the derivative (at O)

D®(0) : R™™ — RM<™,
To determine D®(O) - (A+ B), where A € g and B € b, we differentiate the
curve t — ®(t(A+ B)) at t = 0. Assuming that A and B small enough, for
small ¢ € R, there is a unique matrix C(¢) (depending on t) for which

O(t(A+ B)) = exp(C(t)).
Then (by using the estimate in PROPOSITION 3.5.6)

t2
IC(t) —tA =B — [A, Bl|| < 65[¢° (| Al| + I1BI)*.

From this we obtain

t2
IC(t) —tA—tB| < |4, Bl + 65]t (4]l + |1B])®

2
- % <||[A,B]|| +130[¢| (|| Al + HBII)?’)
and so
DOO) (A+B) = Lo+ n)
dt t=0
d
= S ep(C() L

= A+ B.
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Hence D®(O) is the identity mapping on R™ " and by the INVERSE MAP-
PING THEOREM, there exists an open neighborhood (and we may take this to

be an open ball) Brnxn(O,d) of O such that the restriction
Dy 1= Pl : B(O,6) = (B(0,0))

is a smooth diffeomeorphism.

Now we must show that ® maps some open subset (which we may assume
to be an open ball) of Bgrnxn(0,d) N'g onto an open neighborhood of I in
G. Suppose not. Then there is a sequence of elements (Uy)y>1 in G with
U.- =1 as v — oo but U, € ®(g). For large enough r, U, € ®(B(0,9)),
hence there are unique elements A, € g and B, € o with ®(A, + B,) =U,.
Notice that B, # O since otherwise U, € ®(g). As ®; is a diffeomorphism,
A, + B, — O and this implies that A, — O and B, — O. By definition of
P,

exp(B,) = exp(A,) U, € G.

Hence B, € exp !(G). Consider the elements B, = ”B—erBT of unit norm.
Each B, is in the unit sphere in R™*", which is compact hence there is a
convergent subsequence of (B,),>1. By renumbering this subsequence, we
can assume that B, — B, where ||B|| = 1. Applying LEMMA 4.5.4 to the
sequences (By),>1 and (HB%”>7”>1’ we find that B € g. But each B, (and
hence B, ) is in tv, so B must be too. Thus B € § N tv, which contradicts
the fact that B # O.

So there must be an open ball
85(0,51) = BRan(O, 51) ﬂa

which is mapped by ® onto an open neighborhood of I in G. So the re-

striction of ® to this open ball is a local diffeomorphism at O. The inverse
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mapping gives a local chart for G at I (and moreover B3(O,d1) is then a
smooth submanifold of R™*™). We can use left translation to move this local
chart to a new chart at any other point U € G (by considering Ly o ®).

So we have shown that G < GL(n,R) is a smooth submanifold. The
matrix product (A, B) — AB is clearly a smooth (in fact, analytic) function
of the entries of A and B, and (in light of Cramer’s rule) A — A1 is a
smooth (in fact, analytic) function of the entries of A. Hence G is a Lie
subgroup, proving THEOREM 4.5.1.

O

This is a fundamental result that can be usefully reformulated as follows
: A subgroup of GL (n,R) is a closed Lie subgroup if and only if it is a ma-
triz subgroup. (More generally, a subgroup of a Lie group G is a closed Lie
subgroup if and only if is a closed subgroup.)

NOTE : Recall that the dimension of a matrix group G (as a manifold) is dim g.
By COROLLARY 4.5.3, g C g and so dimg < dim g. By definition of g = T;G, these

dimensions are in fact equal, giving

g=9
Combining with PROPOSITION 3.3.3, this gives the following result : For a matriz
group G < GL(n,R), the exponential mapping

exp:g— R"™"

has image in G. Moreover, exps is a local diffeomorphism at the origin (mapping

some open neighborhood of 0 onto an open neighborhood of I in G).

It is a remarkable fact that most of the important examples of Lie groups
are (or can easily be represented as) matrix groups. However, not all Lie
groups are matrixz groups. For the sake of completeness, we shall describe the

simplest example of a Lie group which is not a matrix group.
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Consider the matrix group (of unipotent 3 x 3 matrices)
1 =z t
H(1)=qv@,9t)={0 1 y| |z,y,teR ) <GL(3,R)
0 0 1
commonly referred to as the Heisenberg group. H(1) is a 3-dimensional Lie
group.

NOTE : More generally, the Heisenberg group H (n) is defined by

1 27 ¢t
Hn)=<¢v(,y,t)=10 I, vy |(ﬂc,y)€R2",t€R < GL(n+2,R).
0o 0 1

This (matrix) group is isomorphic to either one of the following groups :

o R2"*! equipped with the group multiplication
(z,y,t) % (xlvylvtl) — (x+x/,y+y',t+t' +$°y')'
o R2"*! equipped with the group multiplication

(@065 0) = (240 ot 0 4 O @)

where Q((z,y),(2',y')) = z ey’ — 2’ ey is the standard symplectic form on
R27,

The Lie algebra b (n) of H(n) is given by

0 =7 ¢
h(n): F(x’y7t): 0 O, Yy |(Z‘,y)ER2n7tER
0 0 0

(The Lie algebra b (1), which occurs throughout quantum physics, is essentially the
same as the Lie algebra of operators on differentiable functions f: R — R spanned
by the three operators 1,p,q defined by

d

1(@)i=f@), pf@)i= 1), af@):=af()



C.C. Remsing 17

The non-trivial commutator involving these three operators is given by the canonical

commutation relation [p,ql =pq—qp=1.)

Jo—1.0—1

Exercise 4 Determine the (group) commutator in H (1) (i.e. the product yy'v 1y
for ,+" € H(1)) and hence deduce that the centre Z(H (1)) of H (1) is

Z(H (1)) = {7(0,0,t) |t € R}.

Clearly, there is an isomorphism (of Lie groups) between R and Z(H(1)),
under which the subgroup Z of integers corresponds to the subgroup Z of
Z(H(1)). Thus

Z ={~(0,0,t)|t € Z}.

The subgroup Z is discrete and also normal.

NoTE : (1) By a discrete group I' is meant a group with a countable number of
elements and the discrete topology (every point is an open set). A discrete group is
a 0-dimensional Lie group. Closed 0-dimensional Lie subgroups of a Lie group are
usually called discrete subgroups. The following remarkable result holds : If T is a
discrete subgroup of a Lie group G, then the space of right (or left) cosets G/T is a
smooth manifold (and the natural projection G — G/T' is a smooth mapping).

(2) A subgroup N of G is normal if for any n € N and g € G we have gng~! € N.
A kernel of a homomorphism is normal. Conversely, if N is normal, we can define
the quotient group G/N whose elements are equivalence classes [g] of elements in
G, and two elements g, h are equivalent if and only if g = hn for some n € N. The
multiplication is given by [g]|[h] = [gh] and the fact that N is normal says that this

is well-defined. Thus normal subgroups are exactly kernels of homomorphisms.

Hence we can form the quotient group

H(1)/2
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which is in fact a ( 3-dimensional) Lie group. (Its Lie algebra is h(1).)
The following result (which we will not prove) tells that the Lie group

H(1)/Z cannot be realized as a matriz group.

1.4.5 PROPOSITION.  There are no continuous homomorphisms ¢ : H(1)/2Z —

GL (n,C) with trivial kernel.

1.5 Hamiltonian Vector Fields



