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2.1 Control Systems: Definition and Examples

There are many important problems (notably in engineering and physical sci-

ences), envolving the study of various control systems, which cannot be treated

satisfactory by “classical” (i.e. linear) control theory. This is the case essen-

tially because the state space (of the control system under consideration) is

not a vector space, but is, in a natural way, a much more sofisticated “non-

linear” space, namely a manifold. Linearization often destroys the essence of

the problem and new and different methods are needed (especially for treating

global questions). It appears that differential-geometric methods, introduced

in the 1970s, provide a very useful language and, at the same time, a powerful

machinery for tackling most of these problems.

In what follows we shall restrict ourselves to the special, but very interest-

ing case, when the state space is a matrix Lie group.

Matrix Lie groups arise naturally as the models for the configuration space

of mechanical systems. For instance, the position and orientation of a rigid

body in Euclidean 3-space can be completely characterized by the special

Euclidean group SE (3). Control systems on matrix Lie groups thus find ap-

plication in modeling and motion control of mechanical systems such as robotic

manipulators, wheeled robots, underwater vehicles, and spacecraft.

Next to mechanical applications, matrix Lie groups also arise from physical

conservation principles such as conservation of energy. For instance, electrical

networks used for power conversion can be modeled as control systems evolv-

ing on the special orthogonal group SO (3), and so-called multilevel systems

used to model molecular bonds in the context of coherent control of quantum

dynamics can naturally be represented as control systems on the unitary group

U (n).
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Furthermore, matrix Lie groups arise in the study of the state transition

matrix of a time-varying linear control system (on some Euclidean space).

From a theoretical point of view, control systems on matrix Lie grups are

also an interesting subject of study since they form an important sub-class

of nonlinear control systems. Their structure leads to simplifications which

allows us to study the essence of various nonlinear control questions of more

general formulations.

Control systems on matrix Lie groups were first introduced in 1972 by

Roger Brockett who expressed notions such as (nonlinear) controllabil-

ity, observability, and realization theory for (right-invariant) control systems

evolving on matrix Lie groups. Velimir Jurdjevic and Héctor Sussmann

further investigated the controllability properties of control systems on ab-

stract Lie groups. One of the most important insights derived from this work

was the recognition that questions about these kind of control systems on

Lie groups can be reduced to questions about their associated Lie algebras.

Since Lie algebras are (finite-dimensional) vector spaces, whereas Lie groups

are manifolds, this reduction greatly simplifies the problem.

Constructive questions for control systems on matrix Lie groups such as

deriving optimal controls for certain lower-dimensional control systems on ma-

trix Lie groups were taken up by P.S. Krishnaprasad and Naomi Leonard

in the early 1990s.

The study of (invariant) control systems on abstract Lie groups has been

a subject of active research in mathematical control theory in the last three

decades or so. The study is motivated both by important applications (in en-

gineering and physical sciences) and by essential links with various branches

of mathematics outside control theory (e.g. Lie groups and Lie algebras, dif-
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ferential geometry, Lie semigroups, dynamical systems).

Control Systems

Roughly speaking, a control system (on a smooth manifold) is any sys-

tem of ordinary differential equations in which control functions appear as

parameters.

Note : A control system can be viewed as a (deterministic, smooth, finite dimen-

sional) dynamical system whose dynamical laws are not entirely fixed but depend

on parameters, called controls, that can vary and with which one can control the

behaviour of the system.

From a geometric viewpoint, each control determines a vector field, and

therefore a control system can be viewed as a family F = (Fu)u∈U of vector

fields. A trajectory of such a system is a (continuous) curve made up of finitely

many segments of integral curves of vector fields in the family.

Note : More generally, let F be an arbitrary family of vector fields (on the smooth

manifold M). For the sake of simplicity we shall assume that all the elements of F

are complete vector fields. Then each element X ∈ F generates a one-parameter

group of diffeomorphisms of M (exp tX)t∈R. Let G(F) denote the group of diffeo-

morphisms generated by
⋃

X∈F (exp tX)t∈R. (The elements of G(F) are precisely

the diffeomorphisms Φ of M of the form

Φ = (exp tkXk) ◦ (exp tk−1Xk−1) ◦ · · · ◦ (exp t1X1)

for some t1, . . . , tk ∈ R and X1, . . . , Xk ∈ F .) G(F) acts on M in the obvious way

and partitions M into its orbits :

M =
⋃
p∈M
O(p).
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(The G(F)-orbit through the point p ∈ M is O(p) = {Φ(p) |Φ ∈ G(F)}.) The

G(F)-orbits are referred to as the orbits of F and their structure is described in the

following fundamental result :

(Orbit Theorem) Every orbit O(p) of F is a connected, immersed submanifold of

M . Moreover, the tangent space to O(p) at q ∈ O(p) is

TqO(p) = span {Φ∗X(q) |Φ ∈ G(F), X ∈ F}.

This result has a remarkable significance in geometric control theory.

Let Lie (F) denote the Lie algebra of vector fields generated by the family F .

(Lie (F) can be described as

Lie (F) = span {adX1 ◦ adX2 ◦ · · · ◦ adXk−1(Xk) |X1, . . . , Xk ∈ F}

where adX : X(M) → X(M) is the mapping Y 7→ adX(Y ) : = [X,Y ].) For each

q ∈M , the evaluation of Lie q(F) at q is (the vector space)

Lie q(F) = {X(q) |X ∈ F} ⊆ TqM.

The following relation holds for every q ∈M :

Lie q(F) ⊆ TqO(p).

In many important cases (for instance, when M is a Lie group), this inclusion turns

out to be an equality.

We make the following definition.

2.1.1 Definition. A control system is (given by) a mapping

F : M × U → TM, (x, u) 7→ Fu(x)

where

• M is a smooth m-dimensional manifold, called the state space;
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• U is an arbitrary subset of (the Cartesian `-space) R`, called the control

set ;

• TM is the tangent bundle of M (a smooth 2m-dimensional manifold).

It is assumed that

• the mapping F is continuous;

• for each u ∈ U , the mapping

Fu = F (·, u) : M → TM

is smooth. (Fu is a smooth vector field on M .)

Such a control system is usually written (in classical notation) as follows

ẋ = F (x, u), x ∈M, u ∈ U ⊆ R`.

The variable x is the state and represents the “memory” of the system. The

variable u is the control (or the input) and represents the external influence

on the system. We define a control to be a U -valued mapping defined on

some (compact) interval:

u(·) : [a, b]→ U, t 7→ u(t) = (u1(t), . . . , u`(t)) ∈ U.

Generally, a control must satisfy certain regularity conditions, in which case

it is referrred to as an admissible control. For all geometric considerations it

is sufficient to consider only piecewise constant controls.

Note : (1) The control functions, when regarded as an `-tuple u = (u1, . . . , u`),

are constrained to take value in a fixed subset U of R`, called the control set. Gener-

ally, U is assumed to be a closed subset of R` (sometimes a compact or even compact
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convex subset) with nonempty interior. Whenever U = R`, we may refer to the con-

trol system as an unrestricted control system.

(2) Although convenient for geometric considerations, piecewise constant controls

are not particularly suitable for problems of optimal control. For such problems, the

class of admissible controls U needs to be enlarged to accomodate more general con-

trols (like piecewise continuous ones).

(3) Formally, a (nonlinear) control system is a 4-tuple

Σ = (M,U,U , F )

where the manifold M is the state space, U ⊆ R` is the control set, U is the class

of admissible controls, and the mapping F is the dynamics. It is the dynamics, or

the associated family of vector fields F = (Fu)u∈U , which provides a local in time

description (i.e. the state equation) of Σ :

ẋ = Fu(x), x ∈M, u = (u1, . . . , u`) ∈ U.

The case when Fu is of the form

Fu = X0 + u1X1 + · · ·+ u`X`, u = (u1, . . . , u`) ∈ U ⊆ R`

(i.e. each vector field Fu is an affine combination of some fixed vector fields

X0, X1, . . . , X` ) is of particular importance for applications. Such a control-

affine system is usually written as follows

ẋ = X0(x) + u1X1(x) + · · ·+ u`X`(x)

with piecewise constant control functions u1(·), u2(·), . . . , u`(·). The vector

field X0 is called the drift, and the remaining vector fields X1, . . . , X` are

called the controlled vector fields. If X0 = 0 and 0 ∈ intU , then we say that

the system is driftless (or homogeneous).
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The class of control-affine systems serves as a kinematic model for a wide

range of problems relevant to mechanics, geometry, and control.

2.1.2 Example. (The Liénard control system) A general nonlinear

oscillator with an external force u(·) is described by the (second-order differ-

ential) equation

z̈ + a(z)ż + b(z) = u(t)

(known as the Liénard equation). This equation can be expressed as an equiv-

alent first-order system (of diferential equations) in the phase plane by intro-

ducing the new variables x1 : = z and x2 : = ż. Then

ẋ1 = x2, ẋ2 = −a(x1)x2 − b(x1) + u.

If we set

X : =

 x2

−a(x1)x2 − b(x1)

 and Y : =

0

1


then we get (the state equation describing) a control-affine system (on E2 )

ẋ = X(x) + uY (x), x ∈ E2, u ∈ U ⊆ R.

The external force u(·) plays the role of a (scalar) control.

2.1.3 Example. (Mechanical system with damping controls) Consider

the problem of controlling a mechanical system

z̈ + uż + f(z) = 0

by a damping control function u(·). The equivalent first-order system is given

by

ẋ1 = x2, ẋ2 = −f(x1)− ux2.
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For the sake of simplicity, assume that f(z) = kz for same constant k. Then

the forgoing system can be rewritten as

ẋ = Ax+ uBx

= (A+ uB)x, x ∈ E2, u ∈ U ⊆ R

where

A =

 0 1

−k 0

 and B =

0 0

0 −1

 .
We have obtained (the state equation of) a control-affine system (on E2).

Note : A control-affine system of the form

ẋ = Ax+ u1B1x+ · · ·+ u`B`x

= (A+ u1B1 + · · ·+ u`B`)x, x ∈ Em, u = (u1, . . . , u`) ∈ U ⊆ R`

where A,Bi ∈ Rm×m, is called a bilinear system (on the Euclidean m-space Em).

2.1.4 Example. (Linear control systems) A linear control system

is a control-affine system on a Euclidean space M = Em with a linear drift

X0 and each controlled vector field Xi constant.

Denoting the constant values of X1, . . . , X` by b1, . . . , b`, and the drift

term by a linear vector field A, x 7→ Ax, the corresponding linear control

system is given by

ẋ = Ax+ u1b1 + · · ·+ u`b`

= Ax+Bu, x ∈ Em, u = (u1, . . . u`) ∈ U ⊆ R`

where B =
[
b1 . . . b`

]
∈ Rm×`. The case ` = 1 is called the single-input

case. Single-input linear control systems are intricately connected with mth-

order ODEs with constant coefficients.



28 M2.1 - Transformation Geometry

Exercise 5 Verify that the mth-order ODE

z(m) + a1z
(m−1) + · · ·+ amz = u(t)

can be converted into its single-input linear control system

ẋ =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−am −am−1 −am−2 · · · −a1


x+



0

0
...

0

1


u, x =


x1

...

xm

 ∈ Em.

Note : It is somewhat remarkable that “almost all” single-input linear control

systems are higher-order ODEs in disguise. More precisly, if

ẋ = Ax+ bu, x ∈ Em, u ∈ R

is a single-input linear control system such that rank
[
b Ab · · · Am−1b

]
= m,

than there exists a linear transformation (change of coordinates) x̃ = Tx such that

Ã = TAT−1 =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

...

0 0 0 · · · 1

−am −am−1 −am−2 · · · −a1



b̃ = Tb =



0

0
...

0

1


.

Abstract Lie groups (in particular, matrix Lie groups) form an important

class of smooth (in fact, analytic) manifolds. Henceforth, in this chapter, we

shall consider only control-affine systems on matrix Lie groups.
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2.2 Invariant Control Systems on Matrix Lie Groups

Invariant vector felds

Let G ≤ GL (n,R) be an m-dimensional matrix Lie group with identity e =

In ∈ G. Let g ⊆ gl(n,R) = Rn×n denote the Lie algebra of G (i.e. the

tangent space TeG at the identity).

Note : Given an arbitrary element (matrix) A ∈ Rn×n, the Cauchy problem (i.e.

ODE + initial condition), on the general linear group GL (n,R),

ġ = gA, g(0) = g0 (g ∈ GL (n,R))

has a (unique) solution of the form g(t) = g0 exp (tA) (see Exercise 163).

A similar problem, on the matrix Lie group G, fails to be well-defined, unless

A ∈ g. (This is the case because exp (tA) ∈ G for all t ⇐⇒ A ∈ g.)

Recall that

TgG = {γ̇(0) | γ(t) ∈ G, γ(0) = g}.

Exercise 6 Show that (for g ∈ G)

TgG = g TeG = {gA |A ∈ g}.

(The left translation Lg moves the tangent space at the identity to the tangent space

at g.)

Thus for any element A ∈ g, the correspondence

g ∈ G 7→ gA ∈ TgG

defines a (smooth) vector field on (the matrix Lie group) G.

A vector field X on G is left-invariant if X(g) = gA for some fixed

(matrix) A ∈ g.
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Note : (1) Recall that a vector field X on an abstract Lie group G is left-

invariant if (and only if) for every g ∈ G

(Lg)∗X(e) = X(g).

The left translation Lg : GL (n,R) → GL (n,R) is a linear transformation, hence

(Lg)∗ = Lg : Rn×n → Rn×n (TeGL (n,R) = Rn×n; see also Exercise 202). When

G ≤ GL (n,R), it follows that (for g ∈ G)

X(g) = (Lg)∗X(e)

= Lg(A)

= gA

where A = X(e) ∈ g.

(2) The set XL(G) of all left-invariant vector fields on G has the structure of a

vector space (in fact, a Lie algebra). The correspondence

X ∈ XL(G) 7→ X(e) ∈ TeG = g

is an isomorphism (of Lie algebras) and so we can identify any left-invariant vector

field on the matrix Lie group G with its value at the identity.

(3) Similarly, a vector field Y on G is right-invariant if Y (g) = Bg for some fixed

B ∈ g. Again, the space (Lie algebra) XR(G) of all right-invariant vector fields on

G is isomorphic to the Lie algebra g of G (and thus to XL(G)).

Henceforth we shall not distinguish – notationwise – between an element

(matrix) A ∈ g and its corresponding left-invariant vector field g 7→ gA.

It follows that the ODE, on the matrix Lie group G,

ġ = gA (g ∈ G)

is well-defined and has solutions g(t) = g(0) exp (tA). Equivalently, in geomet-

ric language, the integral curve of the left-invariant vector field A = XL(G) =
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g through g0 ∈ G is

t 7→ g0 exp (tA).

Note : We can write

(exp tA)(g) = g exp (tA).

Caution : The left-hand side represents the flow – in “exponential notation” – of the

vector field A, g 7→ gA, whereas the right-hand side represents the product (matrix

multiplication) of g with the matrix exponential of A ∈ g.

It follows that any left-invariant vector field on G is complete.

Note : More generally, let FlX be the flow corresponding to the left-invariant

vector field X on the abstract Lie group G, and let γe : t 7→ FlX(t, e) denote the

integral curve through the group identity e ∈ G. Then the curve

γg : Jg → G, t 7→ g γe(t) (= Lg(γe(t)))

is the integral curve of X through g, which furthermore satisfies (for each g ∈ G

and each t ∈ R)

FlX(t, g) = g FlX(t, e).

This equality has several implications :

(i) The integral curve γe is defined for all t ∈ R. One can easily verify that

the set {γe(t) | t ∈ R} is an Abelian subgroup of G. Now, if the curve γe is

defined for a particular value of t, then γe must be defined for t + ε (where

ε is independent of t) since γe(t+ ε) = γe(t)γe(ε). Therefore γe is defined for

all t ∈ R.

(ii) X is a complete vector field, because FlX(t, g) = g γe(t), and therefore t 7→

FlX(t, g) is defined for all t ∈ R.

(iii) If X were right-invariant, then its flow FlX would satisfy FlX(t, g) = FlX(t, e) g.

It therefore follows that implications (i) and (ii) are also true for the right-

invariant vector fields.
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(iv) In particular, if a left-invariant vector field and a right-invariant vector field

are equal to each other at the identity, then their integral curves through the

identity are the same.

We further observe the following important fact : the left translation Lh

maps an integral curve into an integral curve. Indeed, if t 7→ g(0) exp (tA) is

an integral curve of A ∈ XL(G) = g, then

h(t) = hg(t)

= hg(0) exp (tA)

= h(0) exp (tA).

Hence its left-translation is also an integral curve of A. (This explains the

title “left-invariant” for vector fields of the form g 7→ gA.)

The Lie bracket of left-invariant vector fields is also a left-invariant vector

field (see also Proposition 4.4.9). More precisely, the following result holds.

2.2.1 Proposition. Let A, g 7→ gA and B, g 7→ gB be left-invariant

vector fields on the matrix Lie group G. Then (for g ∈ G)

[A,B](g) = g(AB −BA).

Proof : We shall give a “direct” proof based on the following characteriza-

tion of the Lie bracket of two (arbitrary) vector fields :

[X,Y ](p) =
d

dt
γ(
√
t)

∣∣∣∣
t=0

where the curve t 7→ γ(t) is defined by

γ(t) = (exp −tY ) ◦ (exp −tX) ◦ (exp tY ) ◦ (exp tX) (p).
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The flows (in “exponential notation”) of A,B ∈ XL(G) = g are given by

(exp tA)(g) = g exp (tA) and (exp tB) = g exp (tB).

Then (by computing the low-order terms of the curve γ)

γ(t) = (exp −tB) ◦ (exp −tA) ◦ (exp tB) ◦ (exp tA) (g)

= g exp (tA) exp (tB) exp (−tA) exp (−tB)

= g

(
I + tA+

t2

2
A2 + · · ·

)(
I + tB +

t2

2
B2 + · · ·

)
(
I − tA+

t2

2
A2 + · · ·

)(
I − tB +

t2

2
B2 + · · ·

)
= g

(
I + t(A+B) +

t2

2
(A2 + 2AB +B2) + · · ·

)
(
I − t(A+B) +

t2

2
(A2 + 2AB +B2) + · · ·

)
= g

(
I + t2(AB −BA) + · · ·

)
hence

γ(
√
t) = g (I + t(AB −BA) + · · · ) .

Thus

[A,B](g) =
d

dt
γ(
√
t)

∣∣∣∣
t=0

= g(AB −BA).

2

Note : For right-invariant vector fields A, g 7→ Ag and B, g 7→ Bg the following

“less convenient” formula holds (for g ∈ G)

[A,B](g) = (BA−AB)g.

Let A ⊆ Rn×n be an arbitrary family of matrices. Each element A ∈ A

may be viewed as a left-invariant vector field on GL (n,R). By the Orbit
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Theorem, the orbit O(e) of A through the identity is a connected, immersed

submanifold of GL (n,R). Moreover,

O(e) = {(exp tkAk) ◦ · · · ◦ (exp t1A1) (e) | ti ∈ R, Ai ∈ A, k ∈ Z+}

= {exp (t1A1) · · · exp (tkAk) | ti ∈ R, Ai ∈ A, k ∈ Z+}.

Consequently, the orbit O(e) is a subgroup of GL (n,R). This subgroup is in

fact a Lie subgroup of GL (n,R). We also have

TeO(e) = Lie (A)

TgO(e) = gLie (A)

O(g) = {g exp (t1A1) · · · exp (tkAk) | ti ∈ R, Ai ∈ A, k ∈ Z+}

= gO(e).

In particular, by restricting to Lie subalgebras A = Lie (A) ⊆ Rn×n, we get

the following result : to any Lie subalgebra A ⊆ Rn×n there corresponds a

connected Lie subgroup G of GL (n,R) such that TeG = A. (Here G =

O(e).) The converse is also true. (This can be proved by using arguments

based, again, on the Orbit Theorem.) Hence we get the following classical

result (due to Sophus Lie): there exists a one-to-one correspondence between

Lie subalgebras A ⊆ Rn×n and connected Lie subgroups G of GL (n,R) such

that TeG = A.

Note : A remarkable and very deep result, due to Igor Ado, states that every

finite-dimensional Lie algebra is (isomorphic to) a Lie algebra of matrices. This is in

contrast to the situation for Lie groups, where most but not all Lie groups are matrix

Lie groups.

Invariant control systems
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Let G ≤ GL (n,R) be an m-dimensional matrix Lie group with its Lie algebra

g. A control-affine system (on G ) determined by left-invariant vector fields is

said to be left-invariant. We make the following definition.

2.2.2 Definition. A left-invariant control system on the matrix Lie

group G is (given by) a collection Γ of elements in g of the form

Γ =
{
Au = A0 + u1A1 + · · ·+ u`A` |u = (u1, . . . , u`) ∈ U ⊆ R`

}
for some fixed A0, A1, . . . , A` ∈ g = XL(G).

Note : Γ ⊆ g is in fact a collection of matrices (in Rn×n).

In classical notation, a left-invariant control system on G is written as

ġ = g (A0 + u1A1 + · · ·+ u`A`)

= gAu(t), g ∈ G, u = (u1, . . . , u`) ∈ U ⊆ R`

where g(·) is a curve in the matrix Lie group G and Au(·) is a curve in the

associated Lie algebra g = XL(G).

Note : We may assume that ` ≤ m and also that A1, . . . , A` are linearly indepen-

dent elements (matrices) of g which can be completed such that {A1, . . . , A`, A`+1, . . . , Am}

is a basis for g.

A trajectory of a left-invariant control system (given by) Γ on G is a

continuous curve t 7→ g(t) in G, defined on an interval [0, T ] ⊂ R so that

there exists a partition 0 = t0 < t1 < · · · < tN = T and elements (left-

invariant vector fields) X1, . . . , XN ∈ Γ such that the restriction of g(·) to

each open interval (ti−1, ti) is smooth and (for t ∈ (ti−1, ti))

ġ(t) = Xi(g(t)), i = 1, 2, . . . , N.
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Note : Because the elements of Γ are parametrized by controls, it follows that

each left-invariant vector field Xi is equal to Aui
for some ui. Hence g(·) is the

integral curve of the time-varying vector field (t, g) 7→ A(g, u(t)) : = gAu(t), with u(·)

equal to the piecewise constant control, which takes constant value ui in each interval

[ti−1, ti], and t 7→ g(t) can be visualized as a “broken” continuous curve consisting of

pieces of integral curves of vector fields corresponding to different choices of control

values.

Similarly, a right-invariant control system on G can be written as

ġ = (A0 + u1A1 + · · ·+ u`A`) g

= Au(t)g, g ∈ G, u = (u1, . . . , u`) ∈ U ⊆ R`

where g(·) is a curve in the matrix Lie group G and t 7→ Au(t) : = A0 +

u1(t)A1 + · · ·+ u`(t)A` is a curve in the associated Lie algebra g = XR(G).

We focus on left-invariant control systems on matrix Lie graoups, but

analogue results can be derived for right-invariant control systems. In fact,

given a right-invariant control system written as

ġ = Au(t)g, g ∈ G, u = (u1, . . . , u`) ∈ U ⊆ R`

we can always convert it into a left-invariant control system by considering

t 7→ g−1(t) as our state trajectory.

Exercise 7 Show that if the curve t 7→ g(t) in G satisfies the condition

ġ = Au(t)g

then the curve t 7→ h(t) : = g−1(t) satisfies

ḣ = −hAu(t).
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Thus, there is no loss of generality in specializing to left-invariant control

systems.

Consider the general affine group

GA (n,R) =

g =

1 0

c A

 | c ∈ Rn, X ∈ GL (n,R)

 .

Embedding En into En+1 as the hyperplane

{1} × En = {(1, p) | p ∈ En} ⊂ En+1

we obtain the affine transformation on En defined by an element g ∈ GA (n,R)

:

x =

1

x

 7→ gx =

1 0

c A

1

x

 =

 1

Ax+ c

 = Ax+ c.

That is, the group GA (n,R) acts on (the Euclidean space) En as follows :

(g, x) 7→ gx : = Ax+ c.

The Lie algebra of GA (n,R) is

ga(n,R) =

Ā =

0 0

a A

 | a ∈ Rn, A ∈ Rn×n
 .

Every element (matrix) Ā ∈ ga(n,R) induces a vector field on Rn :

x 7→ Ax+ a.

Now let G ≤ GA (n,R) be a connected matrix subgroup of GA (n,R) (that

acts transitively on Rn); for instance, GA+ (n,R) or SE (n).

A right-invariant control system on the matrix Lie group G written as

ġ =
(
Ā+ u1B̄1 + · · ·+ u`B̄`

)
g, g ∈ G
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with

Ā =

0 0

a A

 , B̄i =

0 0

bi Bi

 ∈ ga(n,R), i = 1, 2, . . . , `

induces the following affine control system on En :

ẋ = Ax+ a+ u1(B1x+ b1) + · · ·+ u`(B`x+ b`), x ∈ En.

Particular cases of such control systems (on En ) are

• the bilinear control systems

ẋ = Ax+ u1B1x+ · · ·+ u`B`x

= (A+ u1B1 + · · ·+ u`B`)x, x ∈ En

(obtained for a = b1 = · · · = b` = 0 )

• the linear control systems

ẋ = Ax+ u1b1 + · · ·+ u`b`

= Ax+Bu, x ∈ En

(obtained for a = 0, B1 = · · · = B` = 0 ).

Note : An abstract Lie group G is said to act (from the left) on the (analytic)

manifold M if there exists an (analytic) mapping θ : G × M → M, (g, x) 7→

θ(g, x) = gx that satisfies (for g1, g2 ∈ G and x ∈M )

(g2g1)x = g2(g1x) and ex = x.

For each g ∈ G, consider the (analytic) diffeomorphism θg : M →M, x 7→ θg(x) =

gx (the inverse of θg is θg−1). The mapping g 7→ θg is called the (left) action of G

on M . Any action is a homomorphism from the group G to the group of (analytic)
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diffeomorhisms of M . For any element A ∈ g, θexp(tA) is a one-parameter group of

diffeomorphisms of M with the generator θ∗(A) – an (analytic) vector field on M :

θ∗(A)(x) : =
d

dt
θexp(tA)(x)

∣∣∣∣
t=0

, x ∈M, A ∈ g.

Such vector fields θ∗(A), A ∈ g are called subordinated to the action θ . They form a

(finite-dimensional) Lie algebra θ∗(g). A collection of vector fields F on M is called

subordinated to the action θ if F ⊆ θ∗(g). If F = θ∗(Γ) for some right-invariant

control system (determined by) Γ ⊆ g, then F is called induced by Γ.

A Lie group G is said to act transitively on (the manifold) M if for any x ∈M

the orbit {θg(x) | g ∈ G} coincides with the whole M . A manifold that admits a

transitive action of a Lie group is called a homogeneous space (of this Lie group).

Homogeneous spaces are exactly manifolds that can be represented as quotients of

Lie groups.

Given a right-invariant control system on a Lie group that acts on (the manifold)

M , one can construct the control system (on M ) induced by Γ. In particular, for G

either GA+ (n,R) or SE (n) (or, more generally, any connected matrix subgroup of

the general affine group GA (n,R) that acts transitively on En), one obtain bilinear

and affine control systems on En.

Control systems on homogeneous spaces subordinated to a group action (in partic-

ular, bilinear and affine control systems) were among the most important motivations

for the study of (righ-)invariant control systems on (matrix) Lie groups.

2.3 Examples

We will give some interesting examples of invariant control systems on matrix

Lie groups.

The Brockett system
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The so-called Brockett system is a simple (nonlinear) control system on E3

defined (after a change of variables) as

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1.

Exercise 8 Verify that the Brockett system is a driftless, control-affine system on

E3.

Note : In the literature, the Brockett system is also referred to as the Brockett

integrator (or the nonholonomic integrator or even the Heisenberg system); it usually

appears in the following form

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1 − x1u2.

Since its appearance in the early 80’s, the Brockett integrator has attracted the in-

terest of several researchers. It is the simplest control system with nonholonomic

constraint as well as the first example of a (globally) controllable nonlinear system

which is not (smoothly) stabilizable. Despite its simplicity, the Brockett integrator

presents challenging problems, many of them not yet solved. It arises in numerous

applications and moreover has an educational relevance (it is a useful example to

approach and understand difficult mathematical and control theoretic issues).

The Brockett system can be expressed as a driftless, left-invariant control

system on the Heisenberg group (consisting of unipotent 3× 3 matrices)

H (1) =

g =


1 x2 x3

0 1 x1

0 0 1

 |x1, x2, x3 ∈ R

 ≤ GL (3,R).
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Consider the associated Lie algebra (consisting of all 3 × 3 strictly upper

triangular matrices)

h (1) =

A =


0 a2 a3

0 0 a1

0 0 0

 | a1, a2, a3 ∈ R

 .

Define a basis {A1, A2, A3} for this Lie algebra, where

A1 : =


0 0 0

0 0 1

0 0 0

 , A2 : =


0 1 0

0 0 0

0 0 0

 , A3 : =


0 0 1

0 0 0

0 0 0



with the following table for the Lie bracket (commutator) :

[·, ·] A1 A2 A3

A1 0 −A3 0

A2 A3 0 0

A3 0 0 0

(This means, for instance, that [A1, A2] = −[A2, A1] = −A3.)

A simple computation shows that the Brockett’s system can be written as

ġ = g (u1A1 + u2A2) , g ∈ H(1), u = (u1, u2) ∈ E2.
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Indeed,

ġ =


0 ẋ2 ẋ3

0 0 ẋ1

0 0 0



=


0 u2 u1x2

0 0 u1

0 0 0



=


1 x2 x3

0 1 x1

0 0 1




0 u2 0

0 0 u1

0 0 0


= g(u1A1 + u2A2).

Unicycle

Let us consider a simplified model of a unicycle, where we just model the

wheel which is assumed to roll without slipping on a plane with the wheel axis

always parallel to the plane. The configuration space is

R2 × S1 =
{

(x1, x2, θ) |x1, x2 ∈ R, θ ∈ S1
}

where (x1, x2) describes the position of the unicycle on the plane (relative

to an orthonormal inertial frame (r1, r2)) and θ describes the orientation of

the unicycle (specifically, the angle between the tangent to the wheel and the

r1-axis). Further we assume that we have control over the forward velocity as

well as the steering velocity, which describes the angular velocity of the wheel.

So, with u1 = θ̇ (steering speed) and u2 = v (rolling speed) as controls, the

control system (i.e. the motion of the unicycle) can be described by (the scalar
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state equations)

ẋ1 = u2 cos θ

ẋ2 = u2 sin θ

θ̇ = u1.

This control-affine system (on the manifold R2 × S1 ) can be viewed as a

driftless, left-invariant control system on the special Euclidean group SE (2).

Indeed, let

SE (2) =

g =


1 0 0

x1 cos θ − sin θ

x2 sin θ cos θ

 |x1, x2 ∈ R, θ ∈ [0, 2π)

 .

Then its Lie algebra

se (2) =

A =


0 0 0

a2 0 −a1

a3 a1 0

 | a1, a2, a3 ∈ R


is generated by the elements (matrices)

A1 : =


0 0 0

0 0 −1

0 1 0

 , A2 : =


0 0 0

1 0 0

0 0 0

 , A3 : =


0 0 0

0 0 0

1 0 0


with the following table for the Lie bracket (commutator) :

[·, ·] A1 A2 A3

A1 0 A3 −A2

A2 −A3 0 0

A3 A2 0 0
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Again, a simple computation shows that the unicycle control system can be

written as

ġ = g (u1A1 + u2A2) , g ∈ SE (2), u = (u1, u2) ∈ R2.

Spacecraft

Let us consider a spacecraft free to move in the Euclidean 3-space E3.

In the attitude control problem we restrict our attention to the orientation

of the spacecraft (satellite) with respect to a reference frame (r1, r2, r3). Let

b = (b1, b2, b3) be an orthonormal frame fixed on the body and assume that

the origins of the two frames coincide. We assume that the actuators of the

satellite (i.e. thrusters or momentum wheels) are fixed to the body such that

resulting angular velocity vectors are alingned with the body frame b. Further

we make the idealizing assumption that we have direct control over the angular

velocities (resulting from the actuators).

We define g(t) ∈ SO (3) such that

ri = g(t)bi, i = 1, 2, 3

(i.e. g(t) determines the attitude of the spacecraft at time t). Hence the

configuration space is the special orthogonal group SO (3). Its associated Lie

algebra

so (3) =
{
A ∈ R3×3 |AT +A = 0

}
(consisting of all 3×3 skew-symmetric matrices) is customarily identified with

the Lie algebra R3, via the canonical mapping

x = (x1, x2, x3) 7→ x̂ : =


0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
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Define

Ai : = êi, i = 1, 2, 3

where e1, e2, e3 are the standard vectors in R3. That is,

A1 =


0 0 0

0 0 −1

0 1 0

 , A2 =


0 0 1

0 0 0

−1 0 0

 , A3 =


0 −1 0

1 0 0

0 0 0

 .

Exercise 9 Compute the corresponding table for the Lie bracket (commutator).

Then {A1, A2, A3} is a (standard) basis for so (3) and g(t) satisfies :

ġ = gω̂

= g (ω1A1 + ω2A2 + ω3A3)

where

ω =


ω1

ω2

ω3

 ∈ R3×1

is the angular velocity of the spacecraft in the body-fixed coordinates. If we

let

ui : = ωi, i = 1, 2, 3

(i.e. if we interpret the components of the angular velocity as controls), then

the kinematics of the spacecraft can be described by (the state equation) :

ġ = g (u1A1 + u2A2 + u3A3) , g ∈ SO (3), u = (u1, u2, u3) ∈ R3.

This is a driftless, left-invariant control system on the special orthogonal group

SO (3).



46 M2.1 - Transformation Geometry

An interesting particular case is when only two components of the angular

velocity can be controlled (due, for instance, to a failure). Without loss of

generality we may assume that u3 = 0 and then g(t) satisfies

ġ = g (u1A1 + u2A2) , g ∈ SO (3), u = (u1, u2) ∈ R2.

Note : Any control configuration can be represented by choosing the appropriate

basis for so (3). For example, suppose there are only two independent control inputs

defined by

u1 : = ω1 + ω2 and u2 : = ω2 + ω3.

Then the (left-invariant) control system is described by

ġ = g (u1A
′
1 + u2A

′
2) , g ∈ SO (3), u = (u1, u2) ∈ R2

where

A′1 : = A1 +A2, A′2 : = A2 +A3, A′3 : = A3.

Underwater vehicle

Consider an autonomous underwater vehicle (AUV) and let b = (b1, b2, b3)

be an orthonormal frame fixed on the vehicle. The configuration of the vehicle

is modeled as the position and orientation of the body-fixed frame b with re-

spect to an inertial frame (r1, r2, r3). We assume that the individual actuators

are configured such that the resulting angular and translational velocities are

aligned with the body frame b. We define

g(t) =

 1 0

x(t) R(t)

 ∈ SE (3)

such that 1

ri

 = g(t)

1

bi

 , i = 1, 2, 3.
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Note : This is essentially the same condition as

ri = x(t) +R(t)bi, i = 1, 2, 3.

Thus g(t) describes the position and orientation of the AUV at time t.

Let

Ai : =

0 0

0 êi

 , Ai+3 : =

0 0

ei 0

 , i = 1, 2, 3.

Then {A1, A2, A3, A4, A5, A6} defines a basis for the Lie algebra se (3) asso-

ciated with (the configuration space) SE (3).

Exercise 10 Compute the corresponding table for the Lie bracket (commutator).

Now let

ω =


ω1

ω2

ω3

 , v =


v1

v2

v3

 ∈ R3×1

define the angular velocity and the translational velocity of the vehicle (in the

body-fixed coordinates), respectively. Then g(t) satisfies

ġ = g (ω1A1 + ω2A2 + ω3A3 + v1A4 + v2A5 + v3A6) .

If we let

ui : = ωi, ui+3 : = vi, i = 1, 2, 3

(i.e. if we interpret the components of the angular and translational velocities

as controls), then the kinematics of the AUV can be described by (the state

equation):

ġ = g (u1A2 + u2A2 + · · ·+ u6A6) , g ∈ SE (3), u = (u1, . . . , u6) ∈ R6.
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This is a driftless, left-invariant control system on the special Euclidean group

SE (3).

As in the spacecraft attitude control problem, we are interested in the case

when fewer than m (= 6) control components are available (i.e. ` < 6 ). For

example, suppose that we can control angular velocity about b1, b2, b3 and

translational velocity along b1. Then g(t) satisfies

ġ = g (u1A1 + u2A2 + u3A3 + u4A4) , g ∈ SE (3), u = (u1, u2, u3, u4) ∈ R4.

Note : The AUV is controllable with as few as two controls.

Kinematic car

Let us consider a simple kinematic model for a front-wheel drive car of

length l. The front-wheel pair and the rear-wheel pair are each modelled as

a single wheel located at the midpoint of each axle. We assume that only the

front wheels are allowed to turn. The car, like the unicycle, is a nonholonomic

system if we assume that the wheels do not slip.

Note : Holonomic systems are mechanical systems that are subject to constraints

that limit their possible configurations. The word holonomic is comprised of the

Greek words holos and nomos meaning “integral” (or “whole”) and “law”, respec-

tively, and refers to the fact that such constraints, given as constraints on the velocity,

may be integrated and reexpressed as constraints on the configuration variables. Ex-

amples of holonomic constraints are length constraints for simple pendula and rigidity

constraints for rigid body motion.

Nonholonomic mechanics describes the motion of systems constrained by nonin-

tegrable constraints (i.e. constraints on the system velocities that do not arise from

constraints on the configurations alone). Classic examples are rolling and skating

motion.
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Nonholonomic mechanics fits uneasily into the classical mechanics, since it is not

variational in nature : it is neither Lagrangian nor Hamiltonian in the strict sense

of the word. It is important however, for the theory of optimal control. (There is a

close link between nonholonomic constraints and controllability of nonlinear systems.

Nonholonomic constraints are given by nonintegrable distributions – that is, taking

the Lie bracket of two vector fields in such a distribution may give rise to a vector

field not contained in this distribution. It is precisely this property that one wants in

nonlinear control systems so that we can drive the system to as large a part of the

state space as possible.)

The configuration space is

R2 × S1 × S1 =
{

(x, y, θ, ϕ) |x1, x2 ∈ R, θ, ϕ ∈ S1
}

where (x, y) describes the car’s position on a plane (relative to an inertial

frame (r1, r2)). On the other hand, (b1, b2) is an orthonormal frame fixed

on the car. θ denotes the orientation of the car (i.e. the angle between the

b1-axis of the car and the r1-axis), and ϕ denotes the steering angle (i.e. the

angle betweeen the b1-axis of the car and the front wheels). Assuming that

we can control u1 = ϕ̇ (steering speed) and u2 = v (rolling speed), then the

kinematic state equations are :

ẋ = u2 cos θ

ẏ = u2 sin θ

ϕ̇ = u1

θ̇ = u2
1

l
tanϕ.

Note : This control affine system (on the manifold R2 × S1 × S1 ) can be viewed

as a nonlinear control system on the matrix Lie group SE (2) × SO (2). Indeed,
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the configuration of the car is more naturally described by the matrix Lie group

SE (2) × SO (2). SE (2) describes the position and orientation of the car (as in the

unicycle case) and SO (2) = S1 describes the angular position of the front wheel. Let

g(t) =



1 0 0 0 0

x(t) cos θ − sin θ 0 0

y(t) sin θ cos θ 0 0

0 0 0 cosϕ − sinϕ

0 0 0 sinϕ cosϕ


∈ SE (2)× SO (2)

describe the configuration of the car at time t. Define

A1 : =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 −1

0 0 0 1 0


, A2 : =



0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


, A3 : =



0 0 0 0 0

0 0 −1 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0


.

Then {A1, A2, A3, [A3, A2]} is a basis for the associated Lie algebra se (2) × so (2),

and g(t) satisfies

ġ = g (u1A1 + u2A2 + tan (ũ1)u2A3)

where ũ1 : =
∫ t

0
u1(τ) dτ . This is a “left-invariant” control system on SE (2)×SO (2),

nonlinear in the controls u1, u2.

An alternative way of describing the kinematics of the car is to convert the

state equations into chained form.

Exercise 11 Verify that, by making the change of variables

v1 = u2 cos θ, v2 = u1, α = sin θ
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the kinematic state equations of the car become

ẋ = v1

ϕ̇ = v2

α̇ = v1
1

l
tanϕ

ẏ = v1
α√

1− α2
·

If we take (for the sake of simplicity) l = 1 and make the following approxi-

mations

tanϕ ≈ ϕ, α√
1− α2

≈ α

the equations take the form :

ẋ = v1

ϕ̇ = v2

α̇ = v1ϕ

ẏ = v1α.

This system (of equations) is in chained form and we shall write it as follows

(for x1 : = x, x2 : = ϕ, x3 : = α, x4 : = y) :

ẋ1 = v1

ẋ2 = v2

ẋ3 = v1x2

ẋ4 = v1x3.

This chained form control system can be expressed as a driftless, left-

invariant control system on a matrix Lie group G4 of unipotent 4×4 matrices
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(see Exercise 127). Indeed, let

G4 =


g =


1 x2 x3 x4

0 1 x1
x21
2

0 0 1 x1

0 0 0 1

 |x1, x2, x3, x4 ∈ R


.

Then its (nilpotent) Lie algebra g4 is generated by the elements (matrices)

B1 : =


0 0 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 , B2 : =


0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 .

Exercise 12 Check that {B1, B2, B3, B4} = {B1, B2, [B2, B1], [[B2, B1], B1]} is a

basis for g4.

A simple computation shows that the kinematic car control system (under

simplifying conditions) can be written as

ġ = g (v1B1 + v2B2) , g ∈ G4, v = (v1, v2) ∈ R2.

Note : Other more general chained form control systems can equivalently be de-

scribed as driftless, left-invariant control systems on some matrix Lie groups of unipo-

tent matrices. For example, consider the (two-input) chained form system

ẋ1 = u1

ẋ2 = u2

ẋ3 = u1x2

ẋ4 = u1x3

...

ẋk = u1xk−1.
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It can be shown that the kinematic state equations of a car with k − 3 trailers can

be converted into this form. Such a control system can be expressed as a driftless,

left-invariant control system on a matrix Lie group (of unipotent k×k matrices) Gk.

2.4 Controllability

Let G be an m-dimensional matrix Lie group with associated Lie algebra

g = TeG = XL(G). Consider a left-invariant control system on G written as

ġ = g (A0 + u1A1 + · · ·+ u`A`) , g ∈ G, u = (u1, . . . , u`) ∈ R`

where A0, A1, . . . , A` ∈ g and ` ≤ m. A1, . . . , A` are assumed to be linearly

independent. (For simplicity, the control set U coincides with R`.) Hence-

forth, in this chapter, any such (left-invariant) control system on G will be

identified with the corresponding collection

Γ =
{
A0 + u1A1 + · · ·+ u`A` |u = (u1, . . . , u`) ∈ R`

}
of elements (matrices) in g.

Note : Γ ⊆ g is an affine subspace (i.e. translation of a vector subspace) in g.

Reachable sets and orbits

Let Γ be a left-invariant control system on G and let Traj (Γ) denote the

set of all trajectories of Γ.

For any T ≥ 0 and any point g ∈ G, the time T reachable set from

g is the set

A(g, T ) : = {g(T ) | g(·) ∈ Traj (Γ), g(0) = g} .



54 M2.1 - Transformation Geometry

That is, A(g, T ) is the set of all points (in G) that can be reached from (the

initial point) g in exactly T units of time. We also define

A(g,≤ T ) : =
⋃

0≤t≤T
A(g, t).

The reachable (or attainable) set from g is the set A(g) of all terminal

points g(T ), T ≥ 0 of all trajectories g(·) starting at (the initial point) g.

That is,

A(g) : =
⋃
T≥0

A(g, T ).

2.4.1 Definition. The left-invariant control system Γ is called (completely)

controllable if, for any g ∈ G,

A(g) = G.

In other words, Γ is (completely) controllable if, given any pair of points

g0, g1 ∈ G, the point g1 can be reached from g0 (along a trajectory of Γ) for

a nonnegative time T : g1 ∈ A(g0, T ).

Note : (1) The weaker property of accessibility is essential for the description of

reachable sets : Γ is called accessible at a point g ∈ G if the reachable set A(g) has

nonempty interior (in G).

(2) There are various controllability concepts, all of which involve reachable sets

being “very large” in some sense (e.g. complete controllability, controllability from a

point, local controllability, or small-time local controllability). In general, controlla-

bility theory is the study of the structure of reachable sets. One major concern is to

determine “reasonable” (and, if possible, “effectively computable”) conditions for the

various controllability (and accesibility) conditions.

(3) All these considerations and concepts can be extended to the more general case

of control-affine systems on manifolds. In particular, they are valid for linear control
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systems. For the linear control system (with unrestricted controls)

ẋ = Ax+Bu, x ∈ Em,

the reachable set from the origin is

A(0, T ) =

{∫ T

0

exp((T − τ)A)Bu(τ) dτ |u(·) ∈ U

}
.

This reachable set is a linear subspace of Em. The control system is controllable from

the origin if (for every T > 0) A(0, T ) = Em. This immediately implies that also

(for any T > 0 and x ∈ Em )

A(x, T ) = Em.

Given A ∈ g = XL(G), its integral curve through g ∈ G is t 7→ g exp (tA).

One can use this simple fact to obtain a (very useful) description of an endpoint

of a trajectory.

2.4.2 Lemma. Let g(·) ∈ Traj (Γ) with g(0) = g0. Then there exist

t1, . . . , tk > 0 and X1, . . . , Xk ∈ Γ such that

g(T ) = g0 exp (t1X1) · · · exp (tkXk), t1 + · · ·+ tk = T.

Proof : Let g(·) : [0, T ] → G be a trajectory of Γ with initial point g0.

Then there exist a partition 0 = τ0 < τ1 < · · · < τk = T and elements

X1, . . . , Xk ∈ Γ such that

t ∈ (τi−1, τi) ⇒ ġ = g(t)Xi (i = 1, 2, . . . k).

For i = 1 :

t ∈ (0, τ1) ⇒ ġ = g(t)X1, g(0) = g0.

It follows that

g(t) = g0 exp (tX1)
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and also (by continuity)

g(τ1) = g0 exp (τ1X1).

For i = 2 :

t ∈ (τ1, τ2) ⇒ ġ = g(t)X2, g(τ1) = g exp (τ1X1).

It follows that

g(t) = g0 exp (τ1X1) exp ((t− τ1)X2)

g(τ2) = g0 exp (τ1X1) exp ((τ2 − τ1)X2), t1 = τ1, t2 = τ2 − τ1

and so on. Finally, we get (for i = k) :

g(T ) = g(τk) = g0 exp (t1X1) · · · exp (tkXk)

where tk = τk − τk−1, . . . , t2 = τ2 − τ1, t1 = τ1 (t1 + · · ·+ tk = T ).

2

Now we can derive a description, as well as some elementary properties, of

reachable sets.

2.4.3 Proposition. Let Γ be a left-invariant control system on G and

let g ∈ G be an arbitrary point. Then

(RS1) A(g) = {g exp(t1X1) · · · exp(tkXk) |Xi ∈ Γ, ti ≥ 0, k ∈ N}.

(RS2) A(g) = gA(e).

(RS3) A(e) is a subsemigroup of G.

(RS4) A(g) is a path-connected subset of G.
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Proof : (RS1) and (RS2) follow immediately from Lemma 5.4.2.

(RS3) Since

A(e) = {exp(t1X1) · · · exp(tkXk) |Xi ∈ Γ, ti ≥ 0, k ∈ N}

it follows that for any g1, g2 ∈ A(e), g1g2 ∈ A(e).

(RS4) Any point in A(e) is connected with the initial point g by a path

g(·) ∈ Traj (Γ).

2

2.4.4 Corollary. The left-invariant control system Γ ⊆ g is controllable

if and only if A(e) = G.

Proof : By definition, Γ is controllable if (and only if) A(g) = G for every

g ∈ G. Since A(g) = gA(e), it follows that controllability is equivalent to the

condition A(e) = G.

2

The orbit through the point g ∈ G is denoted by O(g) and is defined as

the set

O(g) : = {g(T ) | g(·) ∈ Traj (Γ), g(0) = g, T ∈ R} .

This set is defined analogously to the reachable set A(g) but the terminal

time T may take both positive and negative values. The structure of orbits

is simpler than that of reachable sets. Clearly (for g ∈ G),

A(g) ⊆ O(g).

2.4.5 Proposition. Let Γ be a left-invariant control system on G and

let g ∈ G be an arbitrary point. Then

(O1) O(g) = {g exp(t1X1) · · · exp(tkXk) |Xi ∈ Γ, ti ∈ R, k ∈ N}.
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(O2) O(g) = gO(e).

(O3) O(e) is the connected Lie subgroup of G with the Lie algebra

Lie (Γ).

Proof : (O1) and (O2) follow immediately from (RS1), (RS2) and the def-

inition of an orbit.

(O3) The orbit O(e) is a subgroup of G. Indeed, if g1, g2 ∈ O(e), then

g1g
−1
2 ∈ O(e). For the Lie subalgebra Lie (Γ) ⊆ g, by the Orbit Theorem, the

orbit O(e) ⊆ G is a connected, immersed submanifold such that TeO(e) =

Lie (Γ). Then O(e) is a connected Lie subgroup of G with the Lie algebra

Lie (Γ) (see the Lie correspondence).

2

Since all essential properties of reachable sets (including controllability) are

expressed in terms of the reachable set from the identity A(e), in the sequel

we restrict ourselves to this set and denote it by A. Likewise, we denote the

orbit (through the identity) O(e) simply by O.

Basic controllability conditions

Let Γ ⊆ g be a left-invariant control system on the matrix Lie group G.

We can see that a necessary condition for Γ to be controllable is that G be

connected. Henceforth, all matrix Lie groups are assumed to be connected,

unless otherwise stated.

We denote by Lie (Γ) the Lie algebra generated by Γ ⊆ g (i.e. the smallest

subalgebra of g containing Γ). It follows that Lie (Γ) is the smallest vector

subspace S of g that also satisfies (for any X ∈ g )

[X,S] ⊆ S.
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Lie (Γ) can also be described in terms of the following notation : for each

X ∈ g, let adX : g → g denote the mapping adX(Y ) : = [X,Y ] for Y ∈ g

( ad : X 7→ adX is the adjoint representation of the Lie algebra g). Then

Lie (Γ) is equal to the smallest vector subspace S of g for which adX1 ◦

adX2 ◦ · · · ◦ adXk−1(Xk) ∈ S for any finite set of elements X1, . . . , Xk ∈ Γ.

That is,

Lie (Γ) = span {adX1 ◦ adX2 ◦ · · · ◦ adXk−1(Xk) |X1, . . . , Xk ∈ Γ} .

2.4.6 Proposition. If Γ ⊆ g is controllable, then Lie (Γ) = g.

Proof : If A = G, then O = G and hence (by Proposition 5.4.5)

Lie (Γ) = g.

2

The condition that Γ generates g as a Lie algebra (i.e. Lie (Γ) = g) is

referred to as the Lie algebra rank condition (LARC). A left-invariant control

system Γ satisfying (LARC) is said to have full rank.

Note : If a point h ∈ G is reachable (or accessible) from a point g ∈ G, then

there exist elements X1, . . . , Xk ∈ Γ and t1, . . . , tk ∈ R (with ti > 0 ) such that

h = g exp(t1X1) · · · exp(tkXk).

The following stronger concept turns out to be important in the study of topological

properties of reachable sets (and hence of controllability). A point h ∈ G is said to

be normally accessible from a point g ∈ G if there exists elements X1, . . . , Xk ∈ Γ

and t1, . . . , tk ∈ R (with ti > 0 ) such that the mapping

Ψ : Rk → G, (s1, . . . , sk) 7→ g exp(s1X1) · · · exp(skXk)

satisfies the following conditions :
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(i) Ψ((t1, . . . , tk)) = h.

(ii) The rank of Ψ at t = (t1, . . . , tk) is equal to m (the dimension of G).

(The rank of Ψ at t ∈ Rk is the rank of the differential DΨ(t).) We say that the

point h is normally accessible from the point g by X1, . . . , Xk. It can be proved

that if Γ ⊆ g has full rank, then in any neighborhood N of the identity e ∈ G there

are points normally accessible from e.

Exercise 13 Show that if Γ ⊆ g has full rank (i.e. Lie (Γ) = g), then

(a) for any neighborhood N of e, the set int (A) ∩N is nonempty.

(b) the reachable set A has nonempty interior (i.e. Γ is accessible at the

identity).

In general, the Lie algebra rank condition (LARC) is not sufficient for

controllability, but is equivalent to accessibility.

2.4.7 Proposition. The left-invariant control system Γ ⊆ g is accessible

at the identity (and thus at any point g ∈ G) if and only if Lie (Γ) = g.

Proof : (⇐ ) If Lie (Γ) = g, then (by Exercise 252) int (A) is nonempty

(in G); that is, Γ is accessible at the identity. Since the left translation Lg

is a homeomorphism, by Proposition 5.4.3, it follows that

int (A(g)) = int (gA) 6= ∅.

Thus Γ is accessible at g ∈ G.

(⇒ ) Let Lie (Γ) 6= g. Then

dimO = dim Lie (Γ) < dim g = dimG.

Thus int (O) = ∅ and so

int (A) = ∅.
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2

2.4.8 Theorem. (Group Test) The left-invariant control system Γ ⊆ g

is controllable if and only if

(i) The reachable set A is a subgroup of G.

(ii) Lie (Γ) = g.

Proof : ( ⇒ ) Condition (i) is obvious, and condition (ii) follows from

the Lie algebra rank condition (LARC).

( ⇐ ) If A ⊆ G is a subgroup, then for any g ∈ A, its inverse g−1 also

belongs to A. For any exponential exp(tX) ∈ A, its inverse

(exp (tX))−1 = exp (−tX) ∈ A.

Thus the reachable set A coincides with the orbit O. But O ⊆ G is a

connected Lie subgroup with Lie algebra Lie (Γ) = g. Then (by the Lie

correspondence) O = G and hence

A = O = G.

2

Note : A control system (on manifold M) is called locally controllable at a point

p ∈ M if p ∈ int (A(p)). For such general control systems, the local controllability

property is weaker than the global controllability property. However, for left-invariant

control systems on matrix Lie groups, these two notions coincide. Hence the following

result holds :

(Local Controllability Test) The left-invariant control system Γ ⊆ g is

controllable if and only if the group identity e is contained in the interior of A.

This particular result can be used to derive another interesting test :
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(Closure Test) The left-invariant control system Γ ⊆ g is controllable if and

only if the (topological) closure of the reachable set A is the entire group G :

cl (A) = G.

This means that in the study of controllability one can replace the reachable set

A by its closure cl (A). This fact has far-reaching consequences.

Other controllability criteria

Let Γ ⊆ g be a driftless (or homogeneous) left-invariant control system

on G; that is,

Γ =
{
u1A1 + u2A2 + · · ·+ u`A` |u = (u1, . . . , u`) ∈ R`

}
= span {A1, . . . , A`} ⊆ g

where A1, . . . , A` are assumed to be linearly independent. (Again, for the

sake of simplicity, the system is assumed to be unconstained : U = R`.)

Note : If Γ ⊆ g is driftless, then together with any element X, it contains also

the negative −X :

X ∈ Γ ⇒ −X ∈ Γ.

(This fact can also be expressed by saying that the “symmetry condition” : Γ = −Γ

is satisfied.)

Exercise 14 Show that if Γ ⊆ g is a driftless left-invariant control system on G,

then its reachable set A is a subgroup of G and coincides with the orbit O.

Thus deciding controllability for a driftless left-invariant control system

Γ ⊆ g reduces to verifying the algebraic condition of coincidence of the (con-

nected) matrix Lie groups O and G.

Exercise 15 Show that a driftless left-invariant control system Γ ⊆ g is control-

lable if and only if Lie (Γ) = g.
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2.4.9 Theorem. Consider a driftless left-invariant control system

Γ =
{
u1A1 + · · ·+ u`A` |u = (u1, . . . , u`) ∈ R`

}
⊂ g

on a (not necessarily connected) matrix Lie group G. Then :

(i) The reachable set A coincides with the orbit O (i.e. the connected

matrix Lie subgroup of G with associated Lie algebra Lie (Γ)).

(ii) Any point of A can be reached from the identity e ∈ G in an

arbitrary time :

A(e, T ) = A = O for any T > 0.

(iii) If G is connected, then Γ is controllable if and only if

Lie ({A1, . . . , A`}) = g.

Proof : (i) and (iii) follow immediately from Exercise 253 and Exercise

254, respectively.

To prove (ii), choose any T > 0. Let a point g ∈ G be reachable from e

in some time T1 > 0 :

g = exp(t1X1) · · · exp(tkXk), t1 + · · ·+ tk = T1

where t1, . . . , tk > 0 and X1, . . . , Xk ∈ Γ. The elements (vector fields)

X̂i : = αXi, i = 1, 2, . . . , k

belong to Γ for α = T1
T . Thus g can be reached from the identity e in time

T :

g = exp(s1X̂1) · · · exp(skX̂k), s1 + · · ·+ sk = T

where si = 1
α ti, i = 1, 2, . . . , k. 2
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Note : For compact (connected) matrix Lie groups, the following result holds :

The left-invariant control system Γ ⊆ g is controllable if and only if Lie (Γ) = g.

(Moreover, if Γ is controllable, then there exists T > 0 such that, for every two

points g0, g1 ∈ G, there is a control u(·) that steers g0 into g1 in no more than T

units of time.)

Exercise 16 Let A0, A1 be any two linearly independent 3×3 real skew-symmetric

matrices (i.e. two linearly independent elements of the Lie algebra so (3)). Show that

the left-invariant control system

Γ = A0 + span {A1} ⊆ so (3)

(or, in classical notation,

ġ = g (A0 + uA1) , g ∈ SO (3), u ∈ R )

is controllable.

Exercise 17 Investigate for controllability each of the following driftless left-invariant

control systems on a specific (connected) matrix Lie group G :

(a) The Brockett system on G = H (1).

(b) The unicycle on G = SE (2).

(c) The spacecraft on G = SO (3).

(d) The autonomous underwater vehicle (AUV) on G = SE (3).

(e) The kinematic car on G = G4.

2.5 Linear Control Systems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2.6 Serret-Frenet Control Systems

The arc length parametrization of a (geometric) curve describing the path of

(the center of mass of) a rigid body in Euclidean 3-space can be used to express

the state equation of the “motion” of this (left-invariant) control system (on

the special Euclidean group SE (3)).

Consider a unit-speed curve x(·) in E3.

Note : The map t 7→ x(t) ∈ E3 is assumed to be smooth. For the sake of con-

venience, we use the variable t (instead of s ) for the arc length parameter of the

curve.

The Serret-Frenet frame (T,N,B) along the curve x(·) is described by

the (unipotent orthogonal) matrix

R(t) : =
[
T (t) N(t) B(t)

]
∈ SO (3)

that relates this frame to the natural frame (e1, e2, e3) in E3 (we have omitted

any notational distinctions between tangent vectors and parallel vector fields)

and that further satisfies the following differential equation (in matrices) :

Ṙ = R


0 −κ 0

κ 0 −τ

0 τ 0


where κ(·) and τ(·) represent the curvature and torsion function, respectively.

Note : R(·) is the attitude matrix of the frame field (T,N,B) and the differential

equation satisfied by R(·) represents the Serret-Frenet formulas. Clearly,

R(t)e1 = T, R(t)e2 = N, R(t)e3 = B.
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The curve x(·) (i.e.

t 7→ x(t) =


x1(t)

x2(t)

x3(t)

 ∈ R3×1 )

and the rotation matrix R(t) ∈ SO (3) can be expressed as (the curve)

g(t) =

 1 0

x(t) R(t)

 ∈ SE (3)

in the (matrix Lie) group of proper rigid motions on the Euclidean 3-space

E3. Since

ẋ = T = R(t)e1,

we get

ġ = g


0 0 0 0

1 0 −κ 0

0 κ 0 −τ

0 0 τ 0


= g (X0 + κX1 + τX2) , g ∈ SE (3)

where

X0 =


0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0

 , X1 =


0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0

 , X2 =


0 0 0 0

0 0 0 0

0 0 0 −1

0 0 1 0

 .

Note : Recall that the matrices A1, A2, . . . , A6 defined by

Ai : =

0 0

0 êi

 , Ai+3 : =

0 0

ei 0

 , i = 1, 2, 3
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form a basis for the Lie algebra se (3) associated with the special Euclidean group

SE (3). We can see that

X0 =

 0 0

e1 0

 = A4, X1 =

0 0

0 ê3

 = A3, X2 =

0 0

0 ê1

 = A1.

2.6.1 Definition. The left-invariant control system on the special Eu-

clidean group SE (3), written as

ġ = g (X0 + κX1 + τX2) , g ∈ SE (3)

with the curvature and torsion functions playing the role of controls, is called

the Serret-Frenet control system (on SE (3)).

For τ(·) = 0, we obtain a left-invariant control system (on SE (2) ), described

by (the state equation)

ġ = g


0 0 0

1 0 −κ

0 κ 0


= g

(
X ′0 + κX ′1

)
, g ∈ SE (2), κ ≥ 0.

Consider now the special case where the torsion function τ(·) is constant.

This assumption reduces the number of controls to a single control (u : = κ )

and introduces a drift term in the rotational part of the equation (correspond-

ing to the constant torsion).

Under this assumption, the differential equation satisfied by the rotation

matrix R(·) can be written

Ṙ = R (A+ uB) , R ∈ SO (3), u ≥ 0
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where

A =


0 0 0

0 0 −τ

0 τ 0

 , B =


0 −1 0

1 0 0

0 0 0

 .
Note : We have

A = τ ê1, B = ê2

where {ê1, ê2, ê3} is the standard basis for the Lie algebra so (3).

We call the forgoing (left-invariant) control system the stiff Serret-Frenet

control system (on SO (3)).

Note : Writing h(t) for the matrix R(t)−1, turns this left-invariant control system

into a right-invariant control system

ḣ = − (A+ uB)h, h ∈ SO (3), u ≥ 0.

The matrix Lie group SO (3) is compact and connected, and hence the

stiff Serret-Frenet control system is controllable if and only if the set Γ =

{A+ uB |u ≥ 0} generates so (3) as a Lie algebra; that is,

Lie ({A,B}) = so (3).

Exercise 18 Show that if the fixed torsion τ is nonzero in the expression for A,

then the Lie algebra generated by A and B equals the Lie algebra so (3).

Consider the (left-invariant) Serret-Frenet control system on SE (2)

ġ = g (X + uY ) , g ∈ SE (2), u ∈ R

where

X =


0 0 0

1 0 0

0 0 0

 and Y =


0 0 0

0 0 −1

0 1 0

 .
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Exercise 19 Calculate the Lie algebra generated by {X,Y }.

Note : For a left-invariant control system on a connected (but not compact) matrix

Lie group, the Lie algebra rank condition (LARC) is only a necessary condition. The

Serret-Frenet control system on (the noncompact) matrix Lie group SE (2) is, in fact,

controllable.

Consider now the matrix Lie group SE (n). Recall that an arbitrary el-

ement g ∈ SE (n) can be expressed as a matrix

1 0

c R

 ∈ GL (n + 1,R)

with c ∈ Rn×1 and R ∈ SO (n). We may denote such an element by

(c,R) ∈ Rn × SO (n).

Note : The group product in Rn × SO (n) is defined by

(c1, R1) · (c2, R2) : = (c1 +R1c2, R1R2).

We say that (the group) SE (n) is the semidirect product of (the vector space) Rn

and (the group) SO (n) and write SE (n) = Rn n SO (n).

Likewise, the Lie algebra se (n) of the special Euclidean group SE (n) is the

semidirect sum Rn h so (n); that is, the vector space se (n) is the direct sum of the

vector spaces Rn and so (n), and the Lie bracket is as follows :

[(a,A), (b, B)] : = (Ab−Ba, [A,B]) .

Exercise 20 Verify that the commutator of the matrices

M1 =

 0 0

a1 A1

 and M2 =

 0 0

a2 A2


is

[M1,M2] =

 0 0

A1a2 −A2a1 A1A2 −A2A1

 .
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(Observe that for a ∈ Rn×1 and A ∈ so (n), the matrix

0 0

a A

 is an element of

se (n).)

Let

π : SE (n)→ SO (n), (c,R) 7→ R

denote the projection (on the second factor). Projection π is a Lie homomor-

phism, and hence the derivative

dπ = π∗ : se (n)→ so (n)

is a Lie algebra homomorphism (see Theorem 3.4.17).

2.6.2 Theorem. A left-invariant control system Γ ⊆ se (n) on the special

Euclidean group SE (n) is controllable if and only if

Lie (Γ) = se (n).

Proof : ( ⇒ ) : The Lie algebra rank condition Lie (Γ) = se (n) is

necessary for controllability (see Proposition 5.4.6).

(⇐ ) : Assume that Lie (Γ) = se (n). Then the left-invariant control system

ΓSO (n) : = π∗(Γ) ⊂ so (n) on SO (n) is controllable since SO (n) is compact

and connected (see the note after Theorem 5.4.9). That is,

π (A) = SO (n).

It follows (see Corollary 5.4.4) that it is sufficient to show that the group

identity e = (0, I) ∈ SE (n) = Rn n SO (n) is contained in the interior of A.

Let (x, g) ∈ int (A) 6= ∅. There exists y ∈ Rn such that (y, g−1) ∈ A.

Then (x, g) · (y, g−1) = (x+ gy, I), and this product is in the interior of (A).
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Denote x+ gy by v. Let Ω be a neighborhood of I in SO (n) such that

(v,Ω) ⊂ int (A). For any h ∈ Ω and r ∈ N, the element

(v, h)r = (v + hv + · · ·+ hr−1v, hr)

is contained in int (A). If hr = I, and if v = hw −w for some w ∈ Rn, then

v + hv + · · ·+ hr−1v = 0 and (0, I) ∈ int (A).

To finish the proof, we need to show that for any v ∈ Rn and any neigh-

borhood Ω of I in SO (n), there exists an element h ∈ Ω such that

• v = hw − w for some w ∈ Rn

• hs = I for some s ∈ N.

(We outline a proof. Let P denote a plane in Rn (n ≥ 2) that contains a

given point v ∈ Rn. Then for any neighborhood Ω of I in SO (2, P ), there

exists a rotation R ∈ Ω such that R− I is nonsingular and Rs = I for some

s ∈ N. Then R can be extended to Rn by defining it equal to the identity

on the orthogonal complement P⊥ of P in Rn. Hence

v ∈ im (R− I) and Rs = I.)

2

Note : A more general result holds : Let K be a compact connected Lie group

which acts linearly on a (real) vector space V , and suppose that V admits no nonzero

fixed points (with respect to K). Then a left-invariant control system Γ ⊆ g on the

Lie group G = V nK is controllable if and only if Lie (Γ) = g.

Besides the case G = Rn n SO (n), another interesting case (in applications) is

G = R2n n U (2n).

Theorem 5.5.2 has far-reaching implications (in the theory of curves), as

the following examples illustrate.
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2.6.3 Example. The Serret-Frenet system associated with a curve x(·) in

E3 is given by

ẋ = R(t)e1 and Ṙ = R


0 −κ 0

κ 0 −τ

0 τ 0

 .
If both the curvature κ and the torsion τ are constant, then

ω =


τ

0

κ


is the axis of rotation for

A =


0 −κ 0

κ 0 −τ

0 τ 0

 .
Then exp (tA) is the rotation about ω through the angle t

√
τ2 + κ2, and

x(·) is a helix (along ω).

2.6.4 Example. Suppose now that we consider curves whose curvature

κ = constant ( 6= 0) and whose torsion can take only two distinct values : τ1

and τ2. Such curves are concatenations of helices along

ω1 =


τ1

0

κ

 and ω2 =


τ2

0

κ

 .
The corresponding family of left-invariant vector fields on the special Euclidean

group SE (3) = R3 n SO (3) is

Γ = {(e1, A), (e1, B)} ⊂ se (3) = R3 h so (3)
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with

A =


0 −κ 0

κ 0 −τ1

0 τ1 0

 and B =


0 −κ 0

κ 0 −τ2

0 τ − 2 0

 .
It follows that Lie (Γ) = R3 h so (3) because of the following calculations :

(e1, A)− (e1, B) = (τ1 − τ2)(0, A1)

and

[(e1, A), (e1, B)] = (τ1 − τ2)(0, A2)

where we denote

A1 : = E23, A2 : = E13, and A3 : = E12.

(see Proposition 3.4.9). Then [(0, A1), (0, A2)] = (0, A3), and therefore

(0, so (3)) ⊂ Lie (Γ). Hence (e1, 0) ∈ Lie (Γ), and then [(e1, 0), (0, so (3))] =

(R3, 0) ⊂ Lie (Γ). Thus

Lie (Γ) = R3 h so (3) = se (3).

According to Theorem 5.5.2, any initial point x0 ∈ E3 and any initial frame

at x0 can be connected to any terminal point x1 ∈ E3 and any terminal frame

at x1 along the integral curves of the left-invariant family Γ = {XA, XB} in

SE (3) = R3nSO (3) (with XA and XB equal to the left-invariant vector fields

that coincide with (e1, A) and (e1, B) at the group identity, respectively).

Problems and Further Results

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


