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4.1 The Brachistochrone Problem

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Two very interesting classic problems will be considered next. If the cur-

vature function κ(·) (of a curve in the Euclidean plane E2) is regarded as a

control function, many classic variational problems in geometry become opti-

mal control problems (OCPs).

4.2 The Elastic Problem

Consider the following problem : Given points x0, x1 ∈ E2 and unit tangent

vectors v0, v1 ∈ T0E2 = R2, find a (differentiable) curve γ : [0, T ] → E2 such

that :

• γ is parametrized by arc length.

• γ has curvature κ(·) (almost everywhere).

• γ satisfies the boundary conditions :

γ(0) = x0, γ̇ = v0, γ(T ) = x1, γ̇(T ) = v1.

• γ minimizes the (cost) functional

J =
1

2

∫ T

0
κ2(t) dt.

This (variational) problem, known as the elastic problem, goes back to

Leonhard Euler (1707-1783), and the solution curves are called the elas-

tica.

Note : The elastic problem has a rich classical heritage inspired by the following

physical situation : a thin elastic rod, when subjected to bending only, assumes the
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shape of an elastica in its equilibrium position. In this context, Euler made the initial

study of the (planar) elastica in 1744. Much of the development in the theory of the

elastic rods is based on a discovery of Gustav R. Kirchhoff (1824-1887) (known

as the kinetic analogue of the elastic problem) that the equations for the equilibrium

configurations of an elastic rod are the same as the equations for the (Lagrange’s)

spinning top.

The geometric significance of minimizing 1
2

∫
κ2 dt (or, more generally, any func-

tional of κ ) was recognized by Wilhelm Blaschke (1885-1962) under the name

of Radon’s problem (after the name of the mathematician Johann Radon (1887-

1956)).

Investigations of motion of the rigid body (the kinetic analogue of the elastic

problem) in non-Euclidean spaces were done by William K. Clifford (1845-1879)

as early as 1874.

Euler’s elastic problem admits a natural formulation (as a OCP) on the

matrix Lie group SE (2) (of proper rigid motions on E2). Recall that SE (2)

is the semidirect product of R2 with SO (2) which can also be regarded as

the subgroup of GL (3,R) consisting of 3× 3 matrices of the form
1 0 0

x1 α −β

x2 β α


with (x1, x2) ∈ R2 and α2 + β2 = 1. This group can also be viewed as

the set of all pairs (x, b), with x a point in E2 and b a positively-oriented

(orthonormal) frame at x. Also recall that the Lie algebra se (2) of SE (2)

consists of 3× 3 matrices of the form
0 0 0

a1 0 −a3

a2 a3 0
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with (a1, a2, a3) ∈ R3. Let

A1 =


0 0 0

1 0 0

0 0 0

 , A2 =


0 0 0

0 0 0

1 0 0

 , A3 =


0 0 0

0 0 −1

0 1 0


denote the standard basis (so that any element in the Lie algebra is writen

a1A1 + a2A2 + a3A3). Corresponding to each element A in the Lie algebra,

~A denotes the left-invariant vector field ~A : g 7→ gA. We shall consider the

following (left-invariant) control system on SE (2) :

ġ = ~A1(g) + u(t) ~A3(g)

with

g(t) =

 1 0

x(t) R(t)

 , x(t) =

x1(t)

x2(t)

 , and R(t) ∈ SO (2).

Note : This control system is the classic Serret-Frenet control system, associated

with a curve x(·) parametrized by its arc length. The state equation of the system

can also be written as

ẋ = R(t)e1, Ṙ = R(t)

 0 −u(t)

u(t) 0

 .
Observe that the rotation matrix R(t), when parametrized by the angle θ, yields the

following differential system in E3 :

ẋ1 = cos θ, ẋ2 = sin θ, θ̇ = u.

It follows that ẍ(t) = Ṙ(t)e1 = u(t)R(t)e2 and therefore

‖ẍ(t)‖ = |u(t)|

and the control u(·) is equal to the geodesic curvature.
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Our OCP is the following :

ġ = g (A1 + uA3) , g ∈ SE (2), u ∈ R

g(0) = (x0, R(0)) , g(t1) = (x1, R(t1)) (x0, x1, R(0), R(t1) fixed)

1

2

∫ t1

0
u2(t) dt → min.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We shall determine the extremals for Euler’s elastic problem. Denote by

H1, H2, H3 the Hamiltonians of the left-invariant vector fields ~A1, ~A2, ~A3. re-

spectively. (Because [ ~A1, ~A2] = 0, [ ~A1, ~A3] = ~A2, and [ ~A2, ~A3] = − ~A1, it

follows that the Poisson brackets of H1, H2, and H3 satisfy the same rela-

tions.) It follows that the regular extremals are the integral curves of the

Hamiltonian vector field ~H, defined by

H : =
1

2
H2

3 +H1

and that along each extremal curve ξ(·) the corresponding control u(·) is

equal to H3(ξ(·)).

For abnormal extremals,

H3(ξ(t)) = 0 and {H3, H1} (ξ(t)) = 0.

Because {H3, H1} = −H2, it follows that H2(ξ(t)) = 0.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Dubins’ Problem

In 1957 L.E. Dubins considered (and solved) the problem of finding the

(parametrized) curves of minimal length that would connect two given config-
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urations (x0, v0) and (x1, v1) (in the tangent bundle of E2) and would satisfy

the additional constraint that |κ(t)| ≤ k0 (almost everywhere).

Note : Dubins proved that optimal arcs are concatenations of circular arcs (with

constant curvature k0 ) and straight line segments. Moreover, he proved that optimal

arcs consists of at most three pieces and that the line segment – if there is any – has

to be in the middle. This reduces finding the optimal arcs to a finite problem. There

are at most six candidates for optimal arcs. So all one has to do is to determine these

arcs and compare their lengths.

One of the well-known interpretations of this problem is to think of a car

moving with constant speed in the plane subject to the constraint that it

cannot make arbitrarily sharp turns (see also the unicycle).

Indeed, consider a car moving in the plane. The car can move forward

with a fixed linear velocity and simultaneously rotate with a bounded angular

velocity. Given unitial and terminal positions, and orientation of the car in

the plane, the problem is to drive the car from the initial configuration to the

terminal one in minimal time.

Admissible paths of the car are (geometric) curves with bounded curvature.

Suppose that curves are parametrized by arc length; then our problem can be

stated geometrically : Given two points in the plane and two unit velocity

vectors attached respectively at these points, one has to find a (parametrized)

curve in the plane that starts at the first point with the first velocity vector and

comes to the second point with second velocity vector, has curvature bounded

by a given constant, and has the minimal length among all such curves.

Note : If curvature is unbounded, then the problem, in general, has no solution.

Indeed, the infimum of lengths of all curves that satisfy the boundary conditions

without bound on curvature is the distance between the initial and terminal points :
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the segment of the straight line through these points can be approximated by smooth

curves with the required boundary conditions. But this infimum is not attained when

the boundary velocity vectors do not lie on the line through the boundary points and

are not collinear one to another.

After rescaling, we obtain a time-optimal control problem (T-OCP) :
ẋ1

ẋ2

θ̇

 =


cos θ

sin θ

u

 , (x, θ) = (x1, x2, θ) ∈ E2 × S1, |u| ≤ 1

x(0) = x0, θ(0) = θ0, x(t1) = x1, θ(t1) = θ1 (x0, θ0, x1, θ1 fixed)

t1 =

∫ t1

0
1 dt → min.

Note : The problem of Dubins also admits a natural formulation (as a T-OCP) on

the special Euclidean group SE (2), associated with the Serret-Frenet control system.

Existence of solutions is guaranted by the Filippov’s Theorem.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

We apply Pontryagin’s Maximum Priciple (PMP). We have (x1, x2, θ) ∈

M = E2×S1 and let (ξ1, ξ2, µ) be the corresponding coordinates of the adjoint

vector. Then

λ = (x, θ, ξ, µ) ∈ T ∗M

and the control-dependent Hamiltonian is

Hu(λ) = ξ1 cos θ + ξ2 sin θ + µu.

The Hamiltonian system of PMP yields

ξ̇ = 0

µ̇ = ξ1 sin θ − ξ2 cos θ
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and the maximality condition reads

µ(t)u(t) = max
|u|≤1

µ(t)u.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note : T-OCPs constitute one of the basic concerns of optimal control theory.

Minimal-time problems go back to the beginnings of the calculus of variations. Johan

Bernoulli’s solution of the brachistochrone problemin 1697 was based on Fermat’s

principle of least time, which postulates that “light traverses any medium in the

least possible time”. Since then such problems have remained important sources of

inspiration.

4.4 Other Problems

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An OCP on SO (3)

Let SO (3) be the rotation group. (Recall that SO (3) is a compact and

connected matrix Lie group, of dimension 3, whose associated Lie algebra

so (3) consists of all 3×3 skew-symmetric matrices). A driftless, left-invariant

control system on SO (3) can be written in the following form :

ġ = g (u1A1 + u2A2 + u3A3) , g ∈ SO (3)

where

A1 =


0 0 0

0 0 −1

0 1 0

 , A2 =


0 0 1

0 0 0

−1 0 0

 , A3 =


0 −1 0

1 0 0

0 0 0
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form the standard basis of so (3) (see Exercise 162). The Lie algebra struc-

ture of so (3) is given by the following table for the Lie bracket (commutator)

:

[·, ·] A1 A2 A3

A1 0 A3 −A2

A2 −A3 0 A1

A3 A2 −A1 0

Note : The minus Lie-Poison structure on so (3)∗ is given by

Π =


0 −P3 P2

P3 0 −P1

−P2 P1 0

 .

Exercise 25 Show that there are only four different driftless, left-invariant control

systems on SO (3), and these are :

(1) ġ = g (u1A1 + u2A2).

(2) ġ = g (u1A1 + u3A3).

(3) ġ = g (u2A2 + u3A3)

(4) ġ = g (u1A1 + u2A2 + u3A3).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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