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‘Beauty is truth, truth beauty’ – that is all

Ye know on earth, and all ye need to know.

John Keats

Imagination is more important than knowledge.

Albert Einstein

Do not just pay attention to the words;

Instead pay attention to meaning behind the words.

But, do not just pay attention to meanings behind the words;

Instead pay attention to your deep experience of those meanings.

Tenzin Gyatso, The 14th Dalai Lama



Where there is matter, there is geometry.

Johannes Kepler

Geometry is the art of good reasoning from poorly drawn figures.

Anonymous

What is a geometry ? The question [. . . ] is metamathematical rather than

mathematical, and consequently mathematicians of unquestioned competence

may (and, indeed, do) differ in the answer they give to it. Even among those

mathematicians called geometers there is no generally accepted definition of

the term. It has been observed that the abstract, postulational method that

has permeated nearly all parts of modern mathematics makes it difficult, if not

meaningless, to mark with precision the boundary of that mathematical domain

which should be called geometry. To some, geometry is not so much a subject

as it is a point of view – a way of loking at a subject – so that geometry is the

mathematics that a geometer does ! To others, geometry is a language that

provides a very useful and suggestive means of discussing almost every part of

mathematics (just as, in former days, French was the language of diplomacy);

and there are, doubtless, some mathematicians who find such a query without

any real significance and who, consequently, will disdain to vouchsafe any an-

swer at all to it.

Leonard Blumenthal
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Geometry is a uniquely favorable

environment for young students

to learn the spirit of pure math-

ematics and exercise their intu-

ition.

John D. Smith

Any objective definition of geom-

etry would probably include the

whole of mathematics.

J.H.C. Whitehead

Meaning is important in math-

ematics and geometry is an im-

portant source of that meaning.

David Hilbert

What is Geometry ?

The Greek word for geometry, γεωµετρια, which means measurement of the

earth, was used by the historian Herodotus (c.484-c.425 b.c.), who wrote

that in ancient Egypt people used geometry to restore their land after the in-

undation of the Nile. Thus the theoretical use of figures for practical purposes

goes back to pre-Greek antiquity. Tradition holds that Thales of Milet

(c.639-c.546 b.c.) knew some properties of congruent triangles and used

them for indirect measurement, and that Pythagoras (572-492 b.c.) and

his school had the idea of systematizing this knowledge by means of proofs.

Thus the Greeks made two vital contributions to geometry : they made ge-

ometry abstract and deductive. Starting from unquestionable premisses (or
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axioms), and basic laws of thought, they would reason and prove their way

towards previously unguessed knowledge. This whole process was codified by

Euclid (c.300 b.c.) in his book, the Elements, the most successful scien-

tific textbook ever written. In this work, we can see the entire mathematical

knowledge of the time presented as a logical system.

Geometry – in today’s usage – means the branch of mathematics

dealing with spatial figures. Within mathematics, it plays a significant

role. Geometry consists of a variety of intelectual structures, closely related

to each other and to the original experiences of space and motion. A brief

historical account of the subsequent development of this “science of space”

from its Greek roots through modern times is given now.

In ancient Greece, however, all of mathematics was regarded as geometry.

Algebra was introduced in Europe from the Middle East toward the end of

the Middle Ages and was further developed during the Renaissance. In the

17th and 18th centuries, with the development of analysis, geometry achieved

parity with algebra and analysis.

As René Descartes (1596-1650) pointed out, however, figures and num-

bers are closely related. Geometric figures can be treated algebraically (or ana-

lytically) by means of coordinates; converselly, algebraic facts can be expressed

geometrically. Analytic geometry was developed in the 18th century, espe-

cially by Leonhard Euler (1707-1783), who for the first time established

a complete algebraic theory of curves of the second order. Previously, these

curves had been studied by Apollonius of Perga (262-c.200 b.c.) as

conic sections.

The idea of Descartes was fundamental to the development of analysis in

the 18th century. Toward the end of that century, analysis was again applied

to geometry. Gaspard Monge (1746-1818) can be regarded as a foreruner

of differential geometry. Carl Gauss (1777-1855) founded the theory of

surfaces by introducing concepts of the geometry of surfaces. The influence

that differential-geometric investigations of curves and surfaces have exerted
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upon branches of mathematics, physics, and engineering has been profound.

However, we cannot say that the analytic method is always the best manner

of dealing with geometric problems. The method of treating figures directly

without using coordinates is called synthetic geometry. In this vein, a

new field called projective geometry was created by Gérard Desargues

(1593-1662) and Blaise Pascal (1623-1662) in the 17th century. It was

further developed in the 19th century.

On the other hand, the axiom of parallels in Euclid’s Elements has been

an object of criticism since ancient times. In the 19th century, by denying

the a priori validity of Euclidean geometry, János Bolyai (1802-1860) and

Nikolai Lobachevsky (1793-1856) formulated non-Euclidean geome-

try.

In analytic geometry, physical spaces and planes, as we know them, are

represented as 3-dimensional or 2-dimensional Euclidean spaces. It is easy to

generalize these spaces to n-dimensional Euclidean space. The geometry of this

new space is called the n-dimensional Euclidean geometry. We obtain n-

dimensional projective and non-Euclidean geometries similarly. Felix

Klein (1849-1925) proposed systematizing all these geometries in group-

theoretic terms : he called a “space” a set S on which a group G operates

and a “geometry” the study of properties of S invariant under the operations

of G. Klein’s idea not only synthetized the geometries known at that time,

but also became a guiding principle for the development of new geometries.

Bernhard Riemann (1826-1866) initiated another direction of geomet-

ric research when he investigated n-dimensional manifolds and, in particular,

Riemannian manifolds and their geometries. Some aspects of Riemannian

geometry fall outside of geometry in the sense of Klein. It was a starting

point for the broad field of modern differential geometry, that is, the ge-

ometry of differentiable manifolds of various types. It became necessary to

establish a theory that reconciled the ideas of Klein and Riemann; Elie

Cartan (1869-1951) succeeded in this by introducing the notion of connec-
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tion.

The reexamination of the system of axioms of Euclid’s Elements led to

David Hilbert’s (1862-1943) foundations of geometry and to axiomatic

tendency of present day mathematics. The study of algebraic curves, which

started with the study of conic sections, developed into algebraic geome-

try. Another branch of geometry is topology, which has developed since the

end of the 19th century. Its influence on the whole of mathematics today is

considerable.

Geometry has now permeated all branches of mathematics, and it is some-

times difficult to distinguish it from algebra or analysis. Therefore, geome-

try is not just a subdivision or a subject within mathematics, but a

means of turning visual images into formal tools for the understand-

ing of other mathematical phenomena. The importance of geometric

intuition, however, has not diminished from antiquity until today.
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For accessible, informative materials about Geometry (and Mathematics, in gen-

eral) – its past, its present and also its future – the following sources are highly

recommended :

Expository papers

M. Atiyah – What is geometry ?, The Mathematical Gazette 66(1982), 179-

184.

S-S. Chern – From triangles to manifolds, Amer. Math. Monthly 86(1979),

339-349.

S-S. Chern – What is geometry ?, Amer. Math. Monthly 97(1990), 679-686.

R.S. Millman – Kleinian transformation geometry, Amer. Math. Monthly

84(1977), 338-349.

Books

M.J. Greenberg – Euclidean and Non-Euclidean Geometries. Development

and History, Freeman, 1980.

T.Q. Sibley – The Geometric Viewpoint. A Survey of Geometries, Addison-

Wesley, 1998.

H. Weyl – Symmetry, Princeton University Press, 1952.

I.M. Yaglom – Felix Klein and Sophus Lie. Evolution of the Ideea of Symme-

try in the 19th Century, Birkhäuser, 1988.

Web sites

The MacTutor History of Mathematics archive [http: //www-history.mcs.st-

and.ac.uk]

The Mathematical Atlas [http: //www.math-atlas.org or //www.math.niu.edu/

˜rusin/known-math/index/mathmap.html]
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Chapter 1

Geometric Transformations

Topics :

1. The Euclidean Plane E2

2. Transformations

3. Properties of Transformations
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1.1 The Euclidean Plane E2

Consider the Euclidean plane (or two-dimensional space) E2 as studied in

high school geometry.

Note : It is customary to assign different meanings to the terms set and space.

Intuitively, a space is expected to possess a kind of arrangement or order that is

not required of a set. The necessity of a structure in order for a set to qualify as a

space may be rooted in the feeling that a notion of “proximity” (in some sense not

necessarily quantitative) is inherent in our concept of a space. Thus a space differs

from the mere set of its elements by possessing a structure which in some way (however

vague) gives expression to that notion. A direct quantitative measure of proximity is

introduced on an abstract set S by associating with each ordered pair (x, y) of its

elements (called “points”) a non-negative real number, denoted by d(x, y), and called

the “distance” from x to y.

On this “geometric space” one introduces Cartesian coordinates which are

used to define a one-to-one correspondence

P 7→ (xP , yP )

between E2 and the set R2 of all ordered pairs of real numbers. This mapping

preserves distances between points of E2 and their images in R2. It is the

existence of such a coordinate system which makes the identification of E2

and R2 possible. Thus we can say that

R2 may be identified with E2 plus a coordinate system.

Note : The geometers before the 17th century did not think of the Euclidean plane

E2 as a “space” of ordered pairs of real numbers. In fact it was defined axiomatically

beginning with undefined objects such as points and lines together with a list of their

properties – the axioms – from which the theorems of geometry where then deduced.

The identification of E2 and R2 (or, more generally, of En and Rn ) came

about after the invention of analytic geometry by P. Fermat (1601-1665) and R.
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Descartes (1596-1650) and was eagerly seized upon since it is very tricky and dif-

ficult to give a suitable definition of Euclidean space (of any dimension) in the spirit

of Euclid. This difficulty was certainly recognized for a long time, and has inter-

ested many great mathematicians. It lead in part to the discovery of non-Euclidean

geometries (like spherical and hyperbolic geometries) and thus to manifolds.

We make the following definition.

1.1.1 Definition. The Euclidean plane E 2 is the set R2 together with

the Euclidean distance between points P = (xP , yP ) and Q = (xQ, yQ) given

by

d(P,Q) = PQ : =
√

(xQ − xP )2 + (yQ − yP )2.

Since the Euclidean distance d : E2×E2 → R is the only distance function to

be considered in this course, we shall called it, simply, the distance.

Numbers will be denoted by lowercase Roman letters.

Note : The set R2 has the structure of a vector space (over R). This means that

the set R2 is endowed with a rule for addition

(x1, y1) + (x2, y2) : = (x1 + x2, y1 + y2)

and a rule for scalar multiplication

r(x, y) : = (rx, ry)

such that these operations satisfy the eight axioms below (for all (x1, y1), (x2, y2), (x3, y3) ∈
R2 and all r, s ∈ R ) :

(VS1) ((x1, y1) + (x2, y2)) + (x3, y3) = (x1, y1) + ((x2, y2) + (x3, y3)) ;

(VS2) (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1) ;

(VS3) (x1, y1) + (0, 0) = (x1, y1) ;

(VS4) (x1, y1) + (−x1,−y1) = (0, 0) ;

(VS5) r((x1, y1) + (x2, y2)) = r(x1, y1) + r(x2, y2) ;
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(VS6) (r + s)(x1, y1) = r(x1, y1) + s(x1, y1) ;

(VS7) r(s(x1, y1)) = rs(x1, y1) ;

(VS8) 1(x1, y1) = (x1, y1).

Hence, the Euclidean plane E2 is a (real, 2-dimensional) vector space.

A point P of E2 is an ordered pair (x, y) of real numbers.

Points will be denoted by uppercase Roman letters.

Exercise 1 Verify that (for P,Q,R ∈ E2 ) :

(M1) PQ ≥ 0, and PQ = 0 ⇐⇒ P = Q ;

(M2) PQ = QP ;

(M3) PQ+QR ≥ PR.

Relation (M3) is known as the triangle inequality.

Note : A set S equipped with a function d : S×S→ R, (P,Q) 7→ PQ satisfying

conditions (M1)-(M3) is called a metric space (with metric d). Hence the Euclidean

plane E2 is not only a vector space. It is also a metric space.

It is important to realize that in order to do geometry we need a structure which

provides lines. In Euclidean geometry, a (straight) line may be defined as either a

curve with zero acceleration (i.e. such that the tangent vector to the curve is constant

along the curve) or a curve which represents the shortest path between points.

In our (Cartesian) model of Euclidean plane it is convenient to define a line by

specifying its (Cartesian) equation.

A line L in E2 is a set of points satisfying an equation ax+ by + c = 0 ,

where a, b, c are real numbers with not both a = 0 and b = 0 (i.e. a2 + b2 6=
0).

Note : The triplets (a, b, c) and (ra, rb, rc), r 6= 0 determine the same line. A

point P = (xP , yP ) lies on the line with equation ax + by + c = 0 if (and only if)

the coordinates of the point satisfy the equation of the line : axp + byp + c = 0. If

this is the case, we also say that the given line passes through the point P .
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Lines will be denoted by uppercase calligraphic letters.

Exercise 2 PROVE or DISPROVE : Through any two different points P1 = (x1, y1)

and P2 = (x2, y2), there passes a unique line.

Notation and terminology (review)

We introduce some basic geometric notation and terminology. This should

be read now to emphasize the basic notation and used later as a reference.

• By the triangle inequality, AB + BC ≥ AC. A − B − C is read “point B is

between points A and C ”, and means A,B,C are three distinct points such

that AB +BC = AC.

•
←→
AB is the unique line determined by two distinct points A and B.

• AB is a line segment and consists of A,B and all points between A and B.

• AB→ is a ray from A through B and consists of all points in AB together

with all points P such that A−B − P .

• ∠ABC is an angle and is the union of noncollinear rays BA→ and BC→.

m(∠ABC) is the degree measure of ∠ABC and is a number between 0 and

180.

• 4ABC is a triangle and is the union of noncollinear segments AB, BC, and

CA.

• “∼= ” is read “is congruent to” and has various meanings depending on context.

– AB ∼= CD ⇐⇒ AB = CD ;

– ∠ABC ∼= ∠DEF ⇐⇒ m(∠ABC) = m(∠DEF ) ;

– 4ABC ∼= 4DEF ⇐⇒ AB ∼= DE , BC ∼= EF , AC ∼= DF , ∠A ∼=
∠D , ∠B ∼= ∠E , ∠C ∼= ∠F . Not all six corresponding parts must be

checked to show triangles congruent. The familiar congruence theorems

for triangles 4ABC and 4DEF are :

∗ (SAS) : If AB ∼= DE , ∠A ∼= ∠D , and AC ∼= DF , then 4ABC ∼=
4DEF ;
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∗ (ASA) : If ∠A ∼= ∠D , AB ∼= DE, and ∠B ∼= ∠E, then 4ABC ∼=
4DEF ;

∗ (SAA) :If AB ∼= DE , ∠B ∼= ∠E, and ∠C ∼= ∠F , then 4ABC ∼=
4DEF ;

∗ (SSS) :If AB ∼= DE , BC ∼= EF , and CA ∼= FD, then 4ABC ∼=
4DEF .

• The Exterior Angle Theorem states that given 4ABC and B − C −D, then

m(∠ACD)

= m(∠A)+m(∠B). So for 4ABC we have m(∠A)+m(∠B)+m(∠C) = 180.

• Given 4ABC and 4DEF such that ∠A ∼= ∠D , ∠B ∼= ∠E, and ∠C ∼=
∠F , then 4ABC ∼ 4DEF , where “∼ ” is read “is similar to”. If two of

these angle congruences hold, then the third congruence necessarily holds and

the triangles are similar ; this result is known as the Angle–Angle Similarity

Theorem. Two triangles are also similar if and only if their corresponding sides

are proportional.

• At times, we shall need to talk about directed angles and directed angle measure,

say from AB→ to AC→, with counterclockwise orientation chosen as positive,

and clockwise orientation chosen as negative. In general, for real numbers r

and s, we agree that r◦ = s◦ ⇐⇒ r = s+ 360k for some integer k.

• Given line L, the points of the plane are partitioned into three sets, namely

the line itself and the two halfplanes of the line.

• Lines L1 and L2 are parallel if either L1 = L2 or else L1 and L2 have no

points in common.

• The locus of all points equidistant from two points A and B is the perpendic-

ular bisector of A and B, which is the line through the midpoint of AB and

perpendicular to AB.

Exercise 3 Show that the lines

(L) ax+ by + c = 0 and (M) dx+ ey + f = 0

are parallel if and only if ae−bd = 0, and are perpendicular if and only if ad+be = 0.
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Exercise 4 PROVE or DISPROVE : Through any point P off a line L, there passes

a unique line parallel to the given line L.

Exercise 5 Show that three points P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3)

are collinear if and only if ∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣ = 0.

1.2 Transformations

One of the most important concepts in geometry is that of a transformation.

Note : Transformations are a special class of functions. Consider two sets S and

T. A function (or mapping) α from S to T is a rule that associates with each element

s of S a unique element t = α(s) of T; the element α(s) is called the image of s

under α, and s is a preimage of α(s). The set S is called the domain (or source) of

α, and the set T is the codomain (or target) of α. The set of all α(s) with s ∈ S

is called the image (or range) of α and is denoted by α(S). If any two different

elements of the domain have different images under α (that is, if α(s1) = α(s2)

implies that s1 = s2), then α is one-to-one (or injective). If all elements of the

codomain are images under α (that is, if α(S) = T), then α is onto (or surjective).

If a function is injective and surjective, it is said to be bijective.

Exercise 6 If there exists a one-to-one mapping f : A → A which is not onto,

what can be said about the set A ?

When both the domain and codomain of a mapping are “geometrical” the

mapping may be referred to as a transformation. We shall find it convenient

to use the word transformation ONLY IN THE SPECIAL SENSE of a bijective

mapping of a set (space) onto itself. We make the following definition.

1.2.1 Definition. A transformation on the plane is a bijective mapping

of E 2 onto itself.
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Transformations will be denoted by lowercase Greek letters.

For a given transformation α, this means that for every point P there is a

unique point Q such that α(P ) = Q and, conversely, for every point S there

is a unique point R such that α(R) = S.

Note : Not every mapping on E2 is a transformation. Suppose a mapping α is

given by (x, y) 7→ (α1(x, y), α2(x, y)). Then α is a bijection (i.e. a transformation)

if and only if, given the equations (of α)

x′ = α1(x, y)

y′ = α2(x, y),

one can solve uniquely for (the “old” coordinates) x and y in terms of (the “new”

coordinates) x′ and y′ : x = β1(x′, y′) and y = β2(x′, y′).

1.2.2 Examples. The following mappings on E 2 are transformations:

1. (x, y) 7→ (x, y) (identity);

2. (x, y) 7→ (−x, y) (reflection);

3. (x, y) 7→ (x− 1, y + 2) (translation);

4. (x, y) 7→ (−y, x) (rotation);

5. (x, y) 7→ (2x, 2y) (dilation);

6. (x, y) 7→ (x+ y, y) (shear);

7. (x, y) 7→ (−x+ y
2 , x+ 2) (affinity);

8. (x, y) 7→ (x, x2 + y) (generalized shear);

9. (x, y) 7→ (x, y3);

10. (x, y) 7→ (x+ |y|, y).

1.2.3 Examples. The following mappings on E 2 are not transformations:
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1. (x, y) 7→ (x, 0);

2. (x, y) 7→ (xy, xy);

3. (x, y) 7→ (x2, y);

4. (x, y) 7→
(
−x+ y

2 , 2x− y
)
;

5. (x, y) 7→ (ex cos y, ex sin y).

1.2.4 Example. Consider the mapping

β : E2 → E2 , (x, y) 7→ (x′, y′) = (x2 − y2, 2xy).

Let us first use polar coordinates r, t so that

x = r cos t , y = r sin t , 0 ≤ t ≤ 2π.

By using some trigonometric identities, we can express β((x, y)) as

β((r cos t, r sin t)) = (r2 cos 2t, r2 sin 2t) , 0 ≤ t ≤ 2π.

From this it follows that under β the image curve of the circle of radius r and

center at the origin counterclockwise once is the circle of radius r2 and center

at the origin counterclockwise twice. Thus the effect of β is to wrap the plane

E2 smoothly around itself, leaving the origin fixed, since β((0, 0)) = (0, 0), and

therefore β is surjective but not injective.

Exercise 7 Verify that the mapping

(x, y) 7→
(
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

)
is a transformation.

Collineations

1.2.5 Definition. A transformation α with the property that if L is a

line, then α(L) is also a line is called a collineation.
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Note : We take the view that a line is a set of points and so α(L) is the set of

all points α(P ) with point P on line L; that is,

α(L) = {α(P ) |P ∈ L} ⊂ E2.

Clearly, α(P ) ∈ α(L) ⇐⇒ P ∈ L.

1.2.6 Example. The mapping

α : E 2 → E 2, (x, y) 7→ (x, y3)

is a transformation as (u, 3
√
v) is the unique point sent to (u, v) for given

numbers u and v (given the equations u = x and v = y3, one can solve

uniquely for x and y in terms of u and v). However, α is not a collineation,

since the line with equation y = x is not sent to a line, but rather to the cubic

curve with equation y = x3.

1.2.7 Example. The mapping

β : E 2 → E 2, (x, y) 7→
(
−x+

y

2
, x+ 2

)
is a collineation. Indeed, from (the equations of β)

x′ = −x+
y

2
y′ = x+ 2

we get (uniquely)

x = y′ − 2

y = 2x′ + 2y′ − 4.

Hence β is a transformation.

Now consider the line L with equation ax+by+c = 0, and let P ′ = (x′, y′)

denote the image of the (arbitrary) point P = (x, y) under (the transforma-

tion) β. Recall that

P ′ = (x′, y′) ∈ β(L) ⇐⇒ P = (x, y) ∈ L.
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Then

a(y′ − 2) + b(2x′ + 2y′ − 4) + c = 0

or, equivalently,

(2b)x′ + (a+ 2b)y′ + c− 4b− 2a = 0.

(Observe that (2b)2 + (a + 2b)2 6= 0 since a2 + b2 6= 0.) So the line L with

equation ax+ by + c = 0 goes to the line with equation (2b)x+ (a+ 2b)y +

c− 4b− 2a = 0. Hence β is a collineation.

Exercise 8 PROVE or DISPROVE : Collineations preserve parallelness among lines

(i.e. the images of two parallel lines under a given collineation are also parallel lines).

1.3 Properties of Transformations

Various sets of transformations correspond to important geometric properties.

We will look at properties of sets of transformations that make them alge-

braically interesting. Let G be a set of transformations.

Sets of transformations will be denoted by uppercase Gothic letters.

1.3.1 Definition. The transformation defined by

ι : E 2 → E 2, P 7→ P

is called the identity transformation.

Note : No other transformation is allowed to use the Greek letter iota. The identity

transformation may seem of little importance by itself, but its presence simplifies

investigations about transformations, just as the number 0 simplifies addition of

numbers.

If ι is in the set G, then G is said to have the identity property.

Recall that α is a transformation if (and only if) for every point P there

is a unique point Q such that α(P ) = Q and, conversely, for every point S
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there is a point R such that α(R) = S. From this definition we see that the

mapping α−1 : E 2 → E 2, defined by

α−1(A) = B ⇐⇒ α(B) = A

is a transformation, called the inverse of α.

Note : We read “α−1 ” as “alpha inverse”. If (the transformation) α is given by

(x, y) 7→ (x′, y′) = (α1(x, y), α2(x, y))

with x = β1(x′, y′) and y = β2(x′, y′), then (the transformation)

β : (x, y) 7→ (β1(x, y), β2(x, y))

is the inverse of a; that is, β = α−1.

If α−1 is also in G for every transformation α in our set G of transfor-

mations, then G is said to have the inverse property.

Whenever two transformations are brought together they might form new

transformations. In fact, one transformation might form new transformations

by itself, as we can see by considering α = β below.

1.3.2 Definition. Given two transformations α and β, the mapping

βα : E 2 → E 2 , P 7→ β(α(P ))

is called the product of the transformation β by the transformation α.

Note : Transformation α is applied first and then transformation β is applied.

We read “βα ” as “the product beta-alpha”.

1.3.3 Proposition. The product of two transformations is itself a trans-

formation.

Proof : Let α and β be two transformations. Since for every point C

there is a point B such that α(B) = C and for every point B there is a

point A such that α(A) = B, then for every point C there is a point A
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such that βα(A) = β(α(A)) = β(B) = C. So βα is an onto mapping. Also,

βα is one-to-one, as the following argument shows. Suppose βα(P ) = βα(Q).

Then β(α(P )) = β(α(Q)) by the definition of βα. So α(P ) = α(Q) since

β is one-to-one. Then P = Q as α is one-to-one. Therefore, βα is both

one-to-one and onto. 2

If our set G has the property that the product βα is in G whenever α

and β are in G, then G is said to have the closure property. Since both

α−1α(P ) = P and αα−1(P ) = P for every point P , we see that

α−1α = αα−1 = ι.

Hence if G is a nonempty set of transformations having both the inverse prop-

erty and the closure property, then G must necessarily have the identity prop-

erty.

Our set G of transformations is said to have the associativity property,

as any elements α, β, γ in G satisfy the associativity law :

γ(βα) = (γβ)α.

Indeed, for every point P ,

(γ(βα))(P ) = γ(βα(P )) = γ(β(α(P ))) = (γβ)(α(P )) = ((γβ)α)(P ).

Groups of transformations

The important sets of transformations are those that simultaneously satisfy

the closure property, the associativity property, the identity property, and the

inverse property. Such a set is called a group (of transformations).

Note : We mention all four properties because it is these four properties that are

used for the definition of an abstract group in algebra. However, when we want to

check that a nonempty set G of transformations forms a group, we need check only

the closure property and the inverse property.
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1.3.4 Proposition. The set of all transformations forms a group.

Proof : The closure property and the inverse property hold for the set of

all transformations. 2

Exercise 9 Let α be a collineation. Show that, given a line L, there exists a line

M such that α(M) = L.

1.3.5 Proposition. The set of all collineations forms a group.

Proof : We suppose α and β are collineations. Suppose L is a line. Then

α(L) is a line since α is a collineation, and β(α(L)) is then a line since β

is a collineation. Hence, βα(L) is a line, and βα is a collineation. So the

set of collineations satisfies the closure property. There is a line M such that

α(M) = L. So

α−1(L) = α−1(α(M)) = α−1α(M) = ι(M) =M.

Hence, α−1 is a collineation, and the set of all collineations satisfies the inverse

property. The set is not empty as the identity is a collineation. Therefore, the

set of all collineations forms a group. 2

If every element of transformation group G′ is an element of transformation

group G, then G′ is a subgroup of G. All of our groups will be subgroups

of the group of all collineations. These transformation groups will be a very

important part of our study of geometry.

Note : The word group now has a technical meaning and should never be used as

a general collective noun in place of the word set.

Transformations α and β may or may not satisfy the commutativity law :

αβ = βα. If the commutativity law is always satisfied by the elements from a

group, then that group is said to be commutative (or Abelian). The term

Abelian is after the Norwegian mathematician N.H. Abel (1801-1829).

Orders and generators
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Given a transformation α, the product αα . . . α (n times) is denoted by

αn. As expected, we define α0 to be ι. Also, we write

(
α−1

)n
= α−n, n ∈ Z.

If group G has exactly n elements, then G is said to be finite and have

order n; otherwise, G is said to be infinite. Analogously, if there is a smallest

positive integer n such that αn = ι, then transformation α is said to have

order n; otherwise α is said to have infinite order.

1.3.6 Example. Let ρ be a rotation of 360
n degrees about the origin with

n a positive integer and let

τ : E2 → E2, (x, y) 7→ (x+ 1, y).

Then

• ρ has order n,

• the set {ρ, ρ2, . . . , ρn} forms a group,

• τ has infinite order,

• the set {τk : k ∈ Z} forms an infinite group.

If every element of a group containing α is a power of α, then we say that

the group is cyclic with generator α and denote the group as 〈α〉.

1.3.7 Example. If ρ is a rotation of 36◦, then 〈ρ〉 is a cyclic group of

order 10. Note that this same group is generated by β where β = ρ3. In

fact, we have

〈ρ〉 = 〈ρ3〉 = 〈ρ7〉 = 〈ρ9〉.

So a cyclic group may have more than one generator.
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Note : Since the powers of a transformation always commute (i.e. αmαn =

αm+n = αnαm for integers m and n ), we see that a cyclic group is always Abelian.

If G = 〈α, β, γ, . . . , 〉 , then every element of group G can be written

as a product of powers of α, β, γ, . . . and G is said to be generated by

{α, β, γ, . . . }.

Involutions and multiplication tables

Among the particular transformations that will command our attention

are the involutions.

1.3.8 Definition. A transformation α is an involution if α2 = ι but

α 6= ι.

Note : The identity transformation is not an involution by definition.

1.3.9 Example. The following transformations are involutions :

1. (x, y) 7→ (y, x) ;

2. (x, y) 7→ (−x+ 2a,−y + 2b) ;

3. (x, y) 7→
(
1
2(x+

√
3 y), 1

2(
√

3x− y)
)
.

1.3.10 Proposition. A nonidentity transformation α is an involution if

and only if α = α−1.

Proof : (⇒) Assume the nonidentity transformation α is an involution.

Then α2 = ι. By multiplying both sides by α−1, we get

α−1(αα) = α−1ι ⇐⇒ (α−1α)α = α−1 ⇐⇒ ια = α−1 ⇐⇒ α = α−1 .

(⇐) Conversely, assume the nonidentity transformation α is such that α =

α−1. Then by multiplying both sides by α, we get

α2 = αα = αα−1 = ι.

2
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Exercise 10 Determine whether the transformation

(x, y) 7→
(
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

)
is an involution.

A multiplication table for a finite group is often called a Cayley table

for the group. This is in honour of the English mathematician A. Cayley

(1821-1895). In a Cayley table, the product βα is found in the row headed

“β” and the column headed “α”.

1.3.11 Example. Consider the group C4 that is generated by a rotation

ρ of 90◦ about the origin. The Cayley table for C4 is given below :

C4 ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι

ρ2 ρ2 ρ3 ι ρ

ρ3 ρ3 ι ρ ρ2

Clearly, C4 is a group of order 4 (it is easy to check the closure property and

the inverse property). Group C4 is cyclic and is generated by ρ. Since

(ρ3)2 = ρ6 = ρ2 , (ρ3)3 = ρ9 = ρ , and (ρ3)4 = ρ12 = ι ,

then C4 is also generated by ρ3. So

C4 = 〈ρ〉 = 〈ρ3〉 .

Note, also, that group C4 contains the one involution ρ2.

1.3.12 Example. Consider the group V4 = {ι, σO, σh, σv}, where

ι((x, y)) = (x, y) , σO((x, y)) = (−x,−y) ,

σh((x, y)) = (x,−y) , σv((x, y)) = (−x, y).

The Cayley table for V4 can be computed algebraically without any geomet-

ric interpretation.
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V4 ι σh σv σO

ι ι σh σv σO

σh σh ι σO σv

σv σv σO ι σh

σO σO σv σh ι

Group V4 is Abelian but not cyclic. Every element of V4 except the identity

is an involution.

1.4 Exercises

Exercise 11 Let P,Q, and R be three distinct points. Prove that

PQ+QR = PR ⇐⇒ Q = (1− t)P + tR for some 0 < t < 1.

(The line segment PR consists of P,R and all points between P and R. Hence

PR = {(1− t)P + tR | 0 ≤ t ≤ 1}.)

Exercise 12 Which of the following mappings defined on the Euclidean plane E 2

are transformations ?

(a) (x, y) 7→ (x3, y3).

(b) (x, y) 7→ (cosx, sin y).

(c) (x, y) 7→ (x3 − x, y).

(d) (x, y) 7→ (2x, 3y).

(e) (x, y) 7→ (−x, x+ 3).

(f) (x, y) 7→ (3y, x+ 2).

(g) (x, y) 7→ ( 3
√
x, ey).

(h) (x, y) 7→ (−x,−y).

(i) (x, y) 7→ (x+ 2, y − 3).

Exercise 13 Which of the transformations in the exercise above are collineations ?

For each collineation, find the image of the line with equation ax+ by + c = 0.
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Exercise 14 Find the image of the line with equation y = 5x+7 under collineation

α if α((x, y)) is :

(a) (−x, y).

(b) (x,−y).

(c) (−x,−y).

(d) (2y − x, x− 2) .

Exercise 15 TRUE or FALSE ? Suppose α is a transformation on the plane.

(a) If α(P ) = α(Q), then P = Q.

(b) For any point P there is a unique point Q such that α(P ) = Q.

(c) For any point P there is a point Q such that α(P ) = Q.

(d) For any point P there is a unique point Q such that α(Q) = P .

(e) For any point P there is a point Q such that α(Q) = P .

(f) A collineation is necessarily a transformation.

(g) A transformation is necessarily a collineation.

(h) A collineation is a mapping that is one-to-one.

(i) A collineation is a mapping that is onto.

(j) A transformation is onto but not necessarily one-to-one.

Exercise 16 Give three examples of transformations on the plane that are not

collineations.

Exercise 17 Find the preimage of the line with equation y = 3x + 2 under the

collineation

α : E 2 → E 2 , (x, y) 7→ (3y, x− y).

Exercise 18 If 
x′ = ax+ by + h

y′ = cx+ dy + k

are the equations for mapping α : E2 → E2, then what are the necessary and sufficient

conditions on the coefficients for α to be a transformation ? Is such a transformation

always a collineation ?
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Exercise 19 Let P = {P1, . . . , Pn} be a finite set of points (in the plane), and let

C be its centre of gravity, namely

C : =
1

n
(P1 + · · ·+ Pn) .

Consider a transformation α : E2 → E2 of the form

(x, y) 7→ (ax+ by + h, cx+ dy + k) with ad− bc 6= 0

and let P ′i = α(Pi), i = 1, 2, . . . n and C ′ = α(C). Show that

C ′ =
1

n
(P ′1 + · · ·+ P ′n) .

Exercise 20 Sketch the image of the unit square under the following transforma-

tions :

(a) (x, y) 7→ (x, x+ y).

(b) (x, y) 7→ (y, x).

(c) (x, y) 7→ (x, x2 + y).

(d) (x, y) 7→ (−x+ y
2 , x+ 2).

Exercise 21 Prove that if α, β, and γ are elements in a group, then

(a) βα = γα implies β = γ ;

(b) βα = βγ implies α = γ ;

(c) βα = α implies β = ι ;

(d) βα = β implies α = ι ;

(e) βα = ι implies β = α−1 and α = β−1.

Exercise 22 TRUE or FALSE ?

(a) If α and β are transformations, then α = β if and only if α(P ) = β(P )

for every point P .

(b) Transformation ι is in every group of transformations.

(c) If αβ = ι, then α = β−1 and β = α−1 for transformations α and β.

(d) “αβ ” is read “the product beta-alpha”.

(e) If α and β are both in group G, then αβ = βα.
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(f) (αβ)−1 = α−1β−1 for transformations α and β.

Exercise 23 PROVE or DISPROVE : There is an infinite cyclic group of rotations.

Exercise 24 TRUE or FALSE ?

(a) 〈ι〉 is a cyclic group of order 1.

(b) 〈γ〉 = 〈γ−1〉 for any transformation γ.

(c) An Abelian group is always cyclic, but a cyclic group is not always

Abelian.

(d) If 〈α〉 = 〈β〉, then α = β or α = β−1.

Exercise 25 Find all a and b such that the transformation

(x, y) 7→
(
ay,

x

b

)
is an involution.

Discussion : The Euclidean plane can be approached in many ways.

One can take the view that plane geometry is about points, lines, circles, and proceed

from “self-evident” properties of these figures (axioms) to deduce the less obvious

properties as theorems. This was the classical approach to geometry, also known as

synthetic. It was based on the conviction that geometry describes actual space and,

in particular, that the theory of lines and circles describes what one can do with ruler

and compass. To develop this theory, Euclid (c. 300 b.c.) stated certain plausible

properties of lines and circles as axioms and derived thorems from them by pure logic.

Actually he occasionally made use of unstated axioms; nevertheless his approach is

feasible and it was eventually made rigorous by David Hilbert (1862-1943).

Euclid’s approach has some undeniable advantages. Above all, it presents geom-

etry in a pure and self-contained manner, without use of “non-geometric” concepts.

One feels that the “real reason” for geometric theorems are revealed in such a system.

Visual intuition not only supplies the axioms, it also prompt the steps in a proof, so

that some extremely short and elegant proofs result.

Nevertheless, with the enormous growth of mathematics over the last two cen-

turies, Euclid’s approach has become isolated and inefficient. It is isolated because

Euclidean geometry is no longer the geometry of space and the basis for most of
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mathematics. Nowadays, numbers and sets are regarded as more fundamental than

points and lines. They form a much broader basis, not only for geometry, but for

mathematics as a whole. Moreover, geometry can be built more efficiently on this

basis because the powerful techniques of algebra and analysis can be brought into

play.

The construction of geometry from numbers and sets is implicit in the coordinate

geometry of René Descartes (1596-1650), though Descartes, in fact, took the

classical view that points, lines, and curves had a prior existence, and he regarded

coordinates and equations as merely a convenient way to study them. Perhaps the

first to grasp the deeper value of the coordinate approach was Bernhard Riemann

(1826-1866), who wrote the following : “It is well known that geometry assumes as

given not only the concept of space, but also the basic principles of construction in

space. It gives only nominal definitions of these things; their determination being in

the form of axioms. As a result, the relationships between these assumptions are left

in the dark; one does not see whether, or to what extent, connections between them

are necessary, or even whether they are a priori possible.”

Riemann went on to outline a very general approach to geometry in which

“points” in an “n-dimesional space” are n-tuples of numbers, and all geometric re-

lations are determined by a metric on this space, a differentiable function giving the

“distance” between two “points”. This analytic approach allows a vast range of spaces

to be considerd simultaneously, and Riemann found that their geometric properties

were largely controlled by a property of the metric he called its curvature.

The concept of curvature illuminates the axioms of Euclidean geometry by show-

ing them to hold only in the presence of zero curvature. In particular, the Euclidean

plane is a two-dimensional space of zero curvature (though not the only one). It also

becomes obvious what the natural alternatives to Euclidean geometry are – those

of constant positive and negative curvature – and one can pinpoint precisely where

change of curvature causes a change in axioms.

Riemann set up analytic machinery to study spaces whose curvature varies from

point to point. However, simpler machinery suffices for spaces of constant curvature.

The reason is that the geometry of these spaces is reflected in isometries (distance-

preserving transformations) and isometries turn out to be easily understood. This

approach is due to Felix Klein (1849-1925). The concept of isometry actually

fills a gap in Euclid’s approach to geometry, where the idea of “moving” one figure
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until it coincides with another is used without being formally recognized. Thus, when

geometry is based on coordinates and isometries, it is possible to enjoy the benefits

of both the analytic and synthetic approaches.

A point is that which has no parts.

Euclid

A “point” is much more subtle object than naive intuition suggests.

John Stillwell
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2.1 Translations

Let E 2 be the Euclidean plane.

2.1.1 Definition. A translation (or parallel displacement) is a map-

ping

τ : E 2 → E 2 , (x, y) 7→ (x+ h, y + k).

We use to say that such a translation τ has equations
x′ = x+ h

y′ = y + k.

Given any two of (x, y), (x′, y′), and (h, k), the third is then uniquely deter-

mined by this last set of equations. Hence, a translation is a transformation.

Note : We shall use the Greek letter tau only for translations.

2.1.2 Proposition. Given points P and Q, there is a unique translation

τP,Q taking P to Q.

Proof : Let P = (xP , yP ) and Q = (xQ, yQ). Then there are unique

numbers h and k such that

xQ = xP + h and yQ = yP + k.

So the unique translation τP,Q that takes P to Q has equations
x′ = x+ xQ − xP

y′ = y + yQ − yP .

2

By the proposition above, if τP,Q(R) = S, then τP,Q = τR,S for points

P,Q,R, S.
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Note : The identity is a special case of a translation as

ι = τP,P for each point P.

2.1.3 Corollary. If τP,Q(R) = R for point R, then P = Q.

2.1.4 Proposition. Suppose A,B,C are noncollinear points. Then τA,B =

τC,D if and only if 2CABD is a parallelogram.

Proof : The translation τA,B has equations
x′ = x+ xB − xA

y′ = y + yB − yA.

Then the following are equivalent :

(1) τA,B = τC,D.

(2) D = τA,B(C).

(3) D = (xD, yD) = (xC + xB − xA, yC + yB − yA).

(4) 1
2 (A+D) = 1

2 (B + C) ·

(5) 2CABD is a parallelogram.

2

Exercise 26 Prove the equivalence (3) ⇐⇒ (4).

Exercise 27 What happens (in Proposition 2.1.4) if we drop the requirement

that the points A,B,C are noncollinear ?

It follows that a translation moves each point the same distance in the same

direction. For nonidentity translation τA,B, the distance is given by AB and

the direction by (the directed line segment)
−→
AB.
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Note : The translation τA,B can be identified with the (geometric) vector

v =

[
xB − xA
yB − yA

]

where A = (xA, yA) and B = (xB , yB). A vector is really the same thing as a

translation, although one uses different phraseologies for vectors and translations.

It may be helpful to make this idea more precise. What is a vector ? The school

textbooks usually define a vector as a “quantity having magnitude and direction”,

such as the velocity vector of an object moving through space (in our case, the Eu-

clidean plane). It is helpful to represent a vector as an “arrow” attached to a point of

the space. But one is not supposed to think of the vector as being firmly rooted just

at one point. For instance, one wants to add vectors, and the recipe for doing this

is to pick up one vector and move it around without changing its length or direction

until its tail lies on the head of the other one.

It is better, then, to think of a vector as a instruction to move rather than as an

arrow pointing from one fixed point to another. The instruction makes sense wherever

you are, even if it may be rather difficult to carry out, whereas the arrow is not much

use unless you are already at its origin. The “instruction” idea makes vector addition

simple : to add two vectors, you just carry out one instruction after the other. Not

every instruction to move is a vector. For an instruction to be a vector, it must specify

movement through the same distance and in the same direction for every point.

This idea of an “instruction” is expressed mathematically as a function (or map-

ping). A vector is a mapping v (on the plane) which associates to each point A a new

point v(A), having the property that for any two points A and B , the midpoint of

Av(B) is equal to the midpoint of Bv(A). Thus, if v is a vector and A and B are

any two points, then 2ABv(B)v(A) is a parallelogram. Given two points P and

Q, there is exactly one vector v such that v(P ) = Q. This unique vector is denoted

by
−→
PQ; if P = (xP , yP ) and Q = (xQ, yQ), it is convenient to represent v =

−→
PQ by

the 2× 1 matrix [
xQ − xP
yQ − yP

]
.
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We have yet to show that a translation is a collineation. Suppose line L
has equation ax+ by+ c = 0 and nonidentity translation τP,Q has equations

x′ = x+ h

y′ = y + k.

So

τP,Q = τO,R , where R = (h, k) and
←→
PQ ‖

←→
OR .

Under the equations for τP,Q, we see that

ax+ by + c = 0 ⇐⇒ ax′ + by′ + (c− ah− bk) = 0.

We calculate that τP,Q(L) is the line M with equation

ax+ by + (c− ah− bk) = 0.

We have shown more than the fact that a translation is a collineation. By

comparing the equations for lines L and M, we see that L and M are

parallel. Thus, a translation always sends a line to a parallel line. We make

the following definition.

2.1.5 Definition. A collineation α is a dilatation if L ‖ α(L) for every

line L.

Note : While any collineation sends a pair of parallel lines to a pair of parallel

lines, a dilatation sends each given line to a line parallel to the given line. For example,

we shall see that a rotation of 90◦ is a collineation but not a dilatation.

Let α be a transformation and S a set of points.

2.1.6 Definition. Transformation α fixes set S if α (S) = S.

Note : In particular, the set S can be a point or a line.
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2.1.7 Proposition. A translation is a dilatation. If P 6= Q, then τP,Q

fixes no points and fixes exactly those lines that are parallel to
←→
PQ.

Proof : Our calculation above has shown that a translation is a dilatation.

Clearly, if P 6= Q, then τP,Q fixes no points. As above, let L be the line

with equation

ax+ by + c = 0

and M the line with equation

ax+ by + (c− ah− bk) = 0.

These two lines are the same if and only if ah + bk = 0. Since
←→
OR has

equation kx− hy = 0, then

ah+ bk = 0 ⇐⇒ L ‖
←→
OR .

Thus

τP,Q(L) = L ⇐⇒ L ‖
←→
PQ .

2

2.1.8 Proposition. The translations form a commutative group T, called

the translation group.

Proof : Translations are collineations.

Let S = (a, b), T = (c, d), and R = (a+ c, b+ d). Then

τO,T τO,S((x, y)) = τO,T ((x+ a, y + b)) = (x+ a+ c, y + b+ d) = τO,R((x, y)).

Since

τO,T τO,S = τO,R

then a product of two translations is a translation.

Also, by taking R = O, we see that the inverse of the translation τO,S is

the translation τO,S′ , where S′ = (−a,−b).



30 Groups and Geometry

Further, since a+ c = c+ a and b+ d = d+ b, it follows that

τO,T τO,S = τO,SτO,T .

So the translations form a commutative group (of transformations). 2

2.1.9 Proposition. The dilatations form a group D, called the dilata-

tion group.

Proof : Dilatations are collineations.

By the symmetry of parallelness for lines (i.e., L ‖ L′ ⇒ L′ ‖ L ), the

inverse of a dilatation is a dilatation.

By the transitivity of parallelness for lines (i.e., L ‖ L′ and L′ ‖ L′′ ⇒
L ‖ L′′ ), the product of two dilatations is a dilatation.

So the dilatations form a group (of transformations). 2

2.2 Halfturns

A halfturn turns out to be an involutory rotation; that is, a rotation of 180 ◦.

So, a halfturn is just a special case of a rotation. Although we have not formally

introduced rotations yet, we look at this special case now because halfturns

are nicely related to translations and have such easy equations. Informally,

we observe that if point A is rotated 180 ◦ about point P to point A′, then

P is the midpoint of A and A′. Hence, we need only the midpoint formulas

to obtain the desired equations. From equations
x+ x′

2
= a

y + y′

2
= b

we can make our definition as follows.

2.2.1 Definition. If P = (a, b), then the halfturn σP about point P

is the mapping

σP : E 2 → E 2 , (x, y) 7→ (−x+ 2a,−y + 2b).
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Such a halfturn σP has equations
x′ = −x+ 2a

y′ = −y + 2b.

Note : For the halfturn about the origin we have

σO((x, y)) = (−x,−y).

Under transformation σO does (x, y) go to (−x,−y) by going directly through O, by

rotating counterclockwise about O, by rotating clockwise about O, or by taking some

“fanciful path” ? Either the answer is “None of the above” or, perhaps, it would be

better to ask whether the question makes sense. Recall that transformations are just

one-to-one correspondences among points. There is actually no physical motion being

described. (That is done in the study called differential geometry.) We might say we

are describing the end position of physical motion. Since our thinking is often aided

by language indicating physical motion, we continue such usage as the customary “P

goes to Q ” in place of the more formal “P coresponds to Q ”.

What properties of a halfturn follow immediately from the definition of

σP ? First, for any point A, the midpoint of A and σP (A) is P . From this

simple fact alone, it follows that σP is an involutory transformation. Also

from this simple fact, it follows that σP fixes exactly the one point P . It

even follows that σP fixes line L if and only if P is on L.

2.2.2 Proposition. A halfturn is an involutory dilatation. The midpoint

of points A and σP (A) is P . Halfturn σP fixes point A if and only if

A = P . Halfturn σP fixes line L if and only if P is on L.

Proof : We shall show that σP is a collineation.

Suppose that line L has equation ax+ by + c = 0. Let P = (h, k). Then

σP has equations 
x′ = −x+ 2h

y′ = −y + 2k.
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Then

ax+ by + c = 0 ⇐⇒ ax′ + by′ + c− 2(ah+ bk + c) = 0.

So σP (L) is the line M with equation

ax+ by + c− 2(ah+ bk + c) = 0.

Therefore, not only σP is a collineation, but a dilatation as L ‖ M.

Finally, L and M are the same if and only if ah + bk + c = 0, which

holds if and only if (h, k) is on L. 2

Since a halfturn is an involution, then σPσP = ι. What can be said about

the product of two halfturns in general ?

Let P = (a, b) and Q = (c, d). Then

σQσP ((x, y)) = σQ((−x+ 2a,−y + 2b))

= (−(−x+ 2a) + 2c,−(−y + 2b) + 2d)

= (x+ 2(c− a), y + 2(d− b)).

Since σQσP has equations 
x′ = x+ 2(c− a)

y′ = y + 2(d− b)

then σQσP is a translation. This proves the important result that the product

of two halfturns is a translation.

2.2.3 Proposition. If Q is the midpoint of points P and R, then

σQσP = τP,R = σRσQ.

Proof : We have

σQσP (P ) = σQ(P ) = R and σRσQ(P ) = σR(R) = R.

Since there is a unique translation taking P to R, then each of σQσP and

σPσR must be τP,R. 2
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Note : A product of two halfturns is a translation and, conversely, a translation

is a product of two halfturns. Also, notice that σQσP moves each point twice the

directed distance from P to Q.

We now consider a product of three halfturns. By thinking about the

equations, it should almost be obvious that σRσQσP is itself a halfturn. We

shall prove that and a little more.

2.2.4 Proposition. A product of three halfturns is a halfturn. In partic-

ular, if points P,Q,R are not collinear, then σRσQσP = σS where 2PQRS

is a parallelogram.

Proof : Suppose P = (a, b), Q = (c, d), and R = (e, f). Let S =

(a − c + e, b − d + f). In case P,Q,R are not collinear, then 2PQRS is

a parallelogram. (This is easy to check as opposite sides of the quadrilateral

are congruent and parallel.) We calculated σQσP ((x, y)) above. Whether

P,Q,R are collinear or not, we obtain

σRσQσP ((x, y)) = (−x+ 2(a− c+ e),−y + 2(b− d+ f))

= σS((x, y)).

2

2.2.5 Example. Given any three of the not necessarily distinct points

A,B,C,D, then the fourth is uniquely determined by the equation τA,B =

σDσC .

Proof : We can solve the equation τA,B = σDσC for any one of A,B,C,D

in terms of the other three. Knowing C,D and one of A or B, we let the

other be defined by the equation σDσC(A) = B or the equivalent equation

σCσD(B) = A. In either case, product σDσC is the unique translation tak-

ing A to B, and so σDσC = τA,B. When we know both A and B, we let

M be the midpoint of A and B. So τA,B = σMσA. Knowing A,B,D, we

have C is the unique solution for Y in the equation σDσMσA = σY as then



34 Groups and Geometry

τA,B = σMσA = σDσY . Knowing A,B,C, we have D is the unique solution

for Z in the equation σMσAσC = σZ as then τA,B = σMσAσZσC . 2

Note : In general, halfturns do not commute. Indeed, if σQσP = τP,R, then

τ−1
P,R = σPσQ. So

σQσP = σPσQ ⇐⇒ P = Q.

2.2.6 Proposition. σRσQσP = σPσQσR for any points P,Q,R.

Proof : For any points P,Q,R, there is a point S such that

σRσQσP = σS = σ−1S = (σRσQσP )−1 = σ−1P σ−1Q σ−1R = σPσQσR.

2

Note : The halfturns do not form a group by themselves.

2.2.7 Proposition. The union of the translations and the halfturns forms

a group H.

Proof : The product of two halfturns is a translation. Since a translation

is a product of two halfturns, then the product in either order of a translation

and a halfturn is a halfturn.

Recall that the inverse of a translation is a translation, and that a halfturn

is an involutory transformation.

So the union of the translations and the halfturns forms a group. 2

Note : A product of an even number of halfturns is a product of translations and,

hence, is a translation.

A product of an odd number of halfturns is a halfturn followed by a trans-

lation and, hence, is a halfturn.

2.3 Exercises

Exercise 28 If τ is the product of halfturns about O and O′, what is the product

of halfturns about O′ and O ?
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Exercise 29 Prove that

τA,BσP τ
−1
A,B = σQ , where Q = τA,B(P ).

Exercise 30 TRUE or FALSE ?

(a) A product of two involutions is an involution or ι.

(b) D⊂H⊂T.

(c) If δ is a dilatation and lines L and M are parallel, then δ(L) and δ(M)

are parallel to L.

(d) Given points A,B,C, there is a D such that τA,B = τD,C .

(e) Given points A,B,C, there is a D such that τA,B = σDσC .

(f) If τA,B(C) = D, then τA,B = τC,D.

(g) If σQσP = τP,R, then σPσQ = τR,P .

(h) σAσBσC = σBσCσA for points A,B,C.

(i) A translation has equations x′ = x− a and y′ = y − b.

(j) σQσP = τ2
P,Q for any points P and Q.

Exercise 31 
x′ = −x+ 3

y′ = −y − 8

are the equations for which transformation ?

What are the equations for τ−1
S,T if S = (a, c) and T = (g, h) ?

Exercise 32 PROVE or DISPROVE : σP τA,BσP = τC,D, where C = σP (A) and

D = σP (B).

Exercise 33 If Pi = (ai, bi), i = 1, 2, 3, 4, 5, then what are the equations for the

product

τP4,P5τP3,P4τP2,P3τP1,P2τO,P1 ?

Exercise 34 What is the image of the line with equation y = 5x + 7 under σP ,

when P = (−3, 2) ?
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Exercise 35 If α is a translation, show that ασP is the halfturn about the mid-

point of points P and α(P ). What is σPα ?

Exercise 36 Draw line L with equation y = 5x+7 and point P with coordinates

(2, 3). Then draw σP (L).

Exercise 37 Show that τP,Q has infinite order if P 6= Q.

Exercise 38 Suppose that 〈τP,Q〉 is a subgroup of 〈τR,S〉. Show there is a positive

integer n such that PQ = nRS.

Exercise 39 PROVE or DISPROVE : 〈τP,Q〉 = 〈τR,S〉 implies τP,Q = τR,S or

τP,Q = τS,R.

Exercise 40 Consider the points A = (−1,−1), B = (0, 0), C = (1, 0), D = (1, 1),

and E = (0, 1). Find points X,Y, Z such that :

(a) σAσEσD = σX .

(b) σDτA,C = σY .

(c) τB,CτA,BτE,A(A) = Z.

Discussion : In the Euclidean plane E2, for each line L and point

P 6∈ L there is a unique line L′ through P which does not meet L. The line L′

is called the parallel to L through P . Parallels provide us with a global notion of

direction in the Euclidean plane. Each member of a family of parallel lines has the

same direction, measured by the angle a member of the family makes with the x-axis,

and parallels are a constant distance appart. A translation slides each member of a

family of parallels along itself a constant distance. Consequently, translations always

commute.

The situation changes in other spaces (with “non-euclidean” geometries). For

example, in the sphere S2 (viewed as a surface of positive constant curvature in

Euclidean 3-dimensional space) the “lines” are great circles (i.e. intersections of the

sphere with planes through the origin), and hence any two of them intersect. Thus,

there are no parallels, no global notion of direction (which way is north at the north

pole ?), and no translations. Each rotation slides just one line (great circle) along
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itself, together with the curves at constant distance from this line. These “equidistant

curves”, however, are not lines.

Another example is the hyperbolic plane H2 (viewed as a surface of negative

constant curvature in Euclidean 3-dimensional space, the pseudosphere). In this

case, there are many lines L′ through a point P 6∈ L which do not meet L. (This

is typical of the way hyperbolic geometry departs from Euclidean – in the opposite

way from spherical geometry.) Translations exist, but each translation slides just one

line along itself, together with the curves at constant distance from this line. These

“equidistant curves” are also no lines, and translations with different invariant lines

do not commute.

The most suggestive and notable achievement of the last [19th] century is the

discovery of non-Euclidean geometry.

David Hilbert



Chapter 3

Reflections and Rotations

Topics :

1. Equations for a Reflection

2. Properties of a Reflection

3. Rotations

�
�
�
�
�
�

A
A
A
A
A
A

Copyright c© Claudiu C. Remsing, 2014.

All rights reserved.

38



C.C. Remsing 39

3.1 Equations for a Reflection

A reflection will be defined as a transformation leaving invariant every point

of a fixed line L and no other points. (An optical reflection along L in a

mirror having both sides silvered, would yield the same result.) We make the

following definition.

3.1.1 Definition. Reflection σL in line L is the mapping

σL : E 2 → E 2 , P 7→


P , if point P is on L

Q , if point P is off L and L is the

perpendicular bisector of PQ.

The line L is usually referred to as the mirror of the reflection.

Note : We do not use the word reflection to denote the image of a point or of a

set of points. A reflection is a transformation and never a set of points. Point σL(P )

is the image of point P under the reflection σL.

3.1.2 Proposition. Reflection σL is an involutory transformation that

interchanges the halfplanes of L. Reflection σL fixes point P if and only if

P is on L. Reflection σL fixes line M pointwise if and only if M = L.

Reflection σL fixes line M if and only if M = L or M⊥ L.

Proof : It follows immediately from the definition that

σL 6= ι but σ2L = ι

as the perpendicular bisector of PQ is the perpendicular bisector of QP .

Hence, σL is onto as σL(P ) is the point mapped onto the given point P

since σL(σL(P )) = P for any point P . Also, σL is one-to-one as

σL(A) = σL(B) implies A = σL(σL(A)) = σL(σL(B)) = B .
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Therefore, σL is an involutory transformation. Then, from the definition of

σL, it follows that σL interchanges the halfplanes of L.

Note : In fact, any involutory mapping (on E2 ) is a transformation (and hence

an involution).

Clearly, σL fixes point P if and only if P is on L. Not only does σL fix

line L, but σL fixes every point on L.

Note : In general, transformation α is said to fix pointwise set S of points if

α(P ) = P for every point P in S; that is, if α leaves invariant (unchanged) every

point in S. Observe the difference between fixing a set and fixing a set pointwise.

Every line perpendicular to L is fixed by σL, but none of these lines is fixed pointwise

as each contains only one fixed point.

Suppose line M is distinct from L and is fixed by σL. Let Q = σL(P )

for some point P that is on M but off L. Then P and Q are both on M
since M is fixed, and L is the perpendicular bisector of PQ. Hence, L and

M are perpendicular. 2

Exercise 41 Show that if the nonidentity mapping α : A→A is involutory (i.e.

α2 is the identity mapping), then it is invertible.

Note : We have used the Greek letter sigma for both halfturns and reflections; the

Greek letter rho is left free for use later with rotations. The Greek σ corresponds

to the Roman s which begins the German word Spiegelung, meaning reflection. A

halfturn is a sort of “reflection in a point”. The similar notation for halfturns and

reflections emphasizes the important property they do share, namely that of being

involutions :

σL = σ−1L , σP = σ−1P .

What are the equations for a reflection ?



C.C. Remsing 41

3.1.3 Proposition. If line L has equation ax+by+c = 0, then reflection

σL has equations : 
x′ = x− 2a(ax+ by + c)

a2 + b2

y′ = y − 2b(ax+ by + c)

a2 + b2
·

Proof : Let P = (x, y) and σL(P ) = (x′, y′) = Q. For the moment, sup-

pose that P is off L. Now, the line through points P and Q is perpendicular

to line L. This geometric fact is expressed algebraically by the equation

b(x′ − x) = a(y′ − y).

Also, (
x+ x′

2
,
y + y′

2

)
is the midpoint of PQ and is on L.

This geometric fact is expressed algebraically by the equation

a

(
x+ x′

2

)
+ b

(
y + y′

2

)
+ c = 0 .

Rewriting these two equations as
bx′ − ay′ = bx− ay

ax′ + by′ = −2c− ax− by

we see we have two linear equations in two unknowns x′ and y′. Solving these

equations for x′ and y′ (by using Cramer’s rule, for instance), we get
x′ =

a2x+ b2x− 2a2x− 2aby − 2ac

a2 + b2

y′ =
a2y + b2y − 2b2y − 2abx− 2bc

a2 + b2
·

With these equations in the form
x′ = x− 2a(ax+ by + c)

a2 + b2

y′ = y − 2b(ax+ by + c)

a2 + b2
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it is easy to check that the equations also hold when P is on L. This proves

the result. 2

Note : Suppose we had defined a reflection as a transformation having equations

given by Proposition 3.1.3. Not only would this have seemed artificial, since these

equations are not something you would think of examining in the first place, but just

imagine trying to prove Proposition 3.1.2 from these equations. Although this is

conceptually easy, the actual computation involves a considerable amount of algebra.

3.2 Properties of a Reflection

We have already mentioned those properties of a reflection that follow imme-

diately from the definition. Another important property is that a reflection

preserves distance, which means the distance from σL(P ) to σL(Q) is equal

to the distance from P to Q, for all points P and Q. The following definition

is fundamental.

3.2.1 Definition. A transformation α is an isometry (or congruent

transformation) if P ′Q′ = PQ for all points P and Q, where P ′ = α(P )

and Q′ = α(Q).

In other words, an isometry is a distance-preserving transformation.

Note : (1) In fact, any distance-preserving mapping is an isometry. Such a

mapping is one-to-one – because points at nonzero distance cannot have images at

zero distance – but it is not clear that such a mapping is onto.

(2) The name isometry comes from the Greek isos (equal) and metron (measure).

An isometry is also called a rigid motion.

The set of all isometries form a group. This group is denoted by Isom.

3.2.2 Proposition. Reflection σL is an isometry.

Proof : We shall consider several cases. Suppose P and Q are two points,

P ′ = σL(P ) and Q′ = σL(Q). We must show P ′Q′ = PQ.
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(a) If
←→
PQ= L or if

←→
PQ⊥ L, then the desired result follows immediately

from the definition of σL.

(b) Also, if
←→
PQ is parallel to L but distinct from L, the result follows

easily as 2PQQ′P ′ is a rectangle and so opposite sides PQ and P ′Q′ are

congruent.

(c) Further, if one of P or Q, say P , is on L and Q is off L, then

P ′Q′ = PQ follows from the fact that P ′ = P and that L is the locus of all

points equidistant from Q and Q′.

(d) Finally, suppose P and Q are both off L and that
←→
PQ intersects

L at point R, but is not perpendicular to L. So RP = RP ′ and RQ = RQ′.

The desired result, P ′Q′ = PQ, then follows provided R,P ′, Q′ are shown to

be collinear. 2

Exercise 42 Prove the preceding statement.

Exercise 43 Are translations and halfturns isometries ? Why ? (Hence the group

of translations T and the group H are subgroups of Isom.)

Now that we know a reflection is an isometry, a long sequence of other

properties dependent only on distance will follow.

3.2.3 Proposition. An isometry is a collineation that preserves between-

ness, midpoints, segments, rays, triangles, angles, angle measure, and perpen-

dicularity.

Proof : Since these properties are shared by all isometries, we shall consider

a general isometry α.

(a) Suppose A,B,C are any three points and let A′ = α(A), B′ =

α(B), C ′ = α(C). Since α preserves distance, if AB + BC = AC then

A′B′ + B′C ′ = A′C ′ as A′B′ = AB, B′C ′ = BC, and A′C ′ = AC. Hence,

A−B − C implies A′ −B′ − C ′; in other words, if B is between A and C,

then B′ is between A′ and C ′. We describe this by saying that α preserves

betweenness.
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(b) The special case AB = BC in the argument above implies A′B′ =

B′C ′. In other words, if B is the midpoint of A and C, then B′ is the

midpoint of A′ and C ′. Thus we say α preserves midpoints.

(c) More generally, since AB is the union of A,B, and all points between

A and B, then α(AB) is the union of A′, B′, and all points between A′ and

B′. So α(AB) = A′B′ and we say α preserves segments.

(d) Likewise, since α is onto by definition and AB→ is the union of AB

and all points C such that A− B − C, then α(AB→) is the union of A′B′

and all points C ′ such that A′ −B′ − C ′. So α(AB→) = A′B′→ and we say

α preserves rays.

(e) Since
←→
AB is the union AB→ and BA→ , then α(

←→
AB) is the union of

A′B′→ and B′A′→ , which is
←→
A′B′. So α is a transformation that preserves

lines ; in other words, α is a collineation.

(f) If A,B,C, are not collinear, then AB + BC > AC and so A′B′ +

B′C ′ > A′C ′ and A′, B′, C ′ are not collinear. Then, since 4ABC is a union

of the three segments AB,BC,CA, then we conclude that α(4ABC) is just

4A′B′C ′. So an isometry preserves triangles.

(g) It follows that α preserves angles as α(∠ABC) = ∠A′B′C ′.

(h) Not only does α preserve angles, but α also preserves angle measure.

That is, m(∠ABC) = m(∠A′B′C ′) since 4ABC ∼= 4A′B′C ′ by SSS.

(i) Finally, if
−→
BA⊥

−→
BC then

−→
B′A′⊥

−→
B′C ′ since m(∠ABC) = 90 implies

m(∠A′B′C ′) = 90. So α preserves perpendicularity. 2

3.3 Rotations

We shall now formally define rotations in the most elementary manner.

3.3.1 Definition. A rotation about point C through directed angle

of r ◦ is the transformation ρC,r that fixes C and otherwise sends a point P

to the point P ′, where CP ′ = CP and r is the directed angle measure of the

directed angle from
−→
CP to

−→
CP ′.
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We agree that ρC,0 is the identity ι. Rotation ρC,r is said to have centre

C and directed angle r ◦.

3.3.2 Proposition. A rotation is an isometry.

Proof : Suppose ρC,r sends points P and Q to P ′ and Q′, respectively.

If C,P,Q are collinear, then PQ = P ′Q′ by the definition. If C,P,Q are

not collinear, then 4PCQ ∼= 4P ′C ′Q′ by SAS and PQ = P ′Q′. So ρC,r is

a transformation that preserves distance. 2

3.3.3 Proposition. A nonidentity rotation fixes exactly one point, its cen-

tre. A rotation with centre C fixes every circle with centre C.

Proof : For distinct points C and P , circle CP is defined to be the circle

with centre C and radius CP . So CP is a radius of the circle CP , and point

P is on the circle. The result also follows immediately from the definition of

a rotation. 2

Exercise 44 Show that (for point C and real numbers r and s )

ρC,sρC,r = ρC,r+s and ρ−1
C,r = ρC,−r.

3.3.4 Corollary. The rotations with centre C form a commutative group.

Note : (1) The involutory rotations are the halfturns, and (for any point C)

ρC,180 = σC .

(2) Observe that, for example, ρC,30 = ρC,390 = ρC,−330. In general, for real num-

bers r and s, we have

r ◦ = s ◦ ⇐⇒ r = s+ 360 k , k ∈ Z.

For distinct intersecting lines L and M, there are two directed angles from L to

M. Clearly, these will have directed angle measures that differ by a multiple of 180.

If r and s are the directed angle measures of the two directed angles from L to M,

then (2r) ◦ = (2s) ◦, since numbers r and s differ by a multiple of 180. So, if we are

talking about the rotation through twice a directed angle from line L to line M, then

it makes no difference which of the two directed angles we choose.
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3.4 Exercises

Exercise 45 Given point P off line L, construct ρP,60(L).

Exercise 46 TRUE or FALSE ?

(a) If isometry α interchanges distinct points P and Q, then α fixes the

midpoint of P and Q.

(b) σL = σ−1
P if point P is on line L.

(c) Reflection σL fixes the halfplanes of L but does not fix the halfplanes

pointwise.

(d) Reflection σL fixes line M if and only if L ⊥ M.

(e) For line L and point P , σL = σ−1
L 6= ι and σP = σ−1

P 6= ι.

(f) ρ−1
C,r = ρC,−r = σC for any point C.

Exercise 47 What are the images of (0, 0), (1,−3), (−2, 1), and (2, 4) under the

reflection in the line with equation y = 2x− 5 ?

Exercise 48 Describe the product of the reflection in
←→
OO′ and the halfturn about

O.

Exercise 49 PROVE or DISPROVE :

(a) σLσM = σMσL ⇐⇒ L ⊥M.

(b) σPσL = σLσP ⇐⇒ P ∈ L.

Exercise 50 PROVE or DISPROVE : If ρ is a rotation, then the cyclic group 〈ρ〉
is finite.

Discussion : An axiomatic system provides an explicit foundation

for a mathematical subject. Axiomatic systems include several parts : the logical

language, rules of proof, undefined terms, axioms, definitions, theorems and proofs of

theorems, and models.

Consider Euclid’s definition of a point as “that which has no part”. This defi-

nition is more a philosophical statement about the nature of a point than a way to
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prove statements. Euclid’s definition of a straight line, “a line which lies evenly with

the points on itself”, is unclear as well as not useful. In essence, points and lines were

so basic to Euclid’s work that there is no good way to define them. Mathematicians

realized centuries ago the need for undefined terms to establish an unambiguous be-

ginning. (Otherwise, each term would have to be defined with other terms, leading

either to a cycle of terms or an infinite sequence of terms. Neither of these options is

acceptable for carefully reasoned mathematics.) Of course, we then define all other

terms from these initial, undefined terms. However, undefined terms are, by their

nature, unrestricted. How can we be sure that two people mean the same thing when

they use undefined terms ? In short, we can’t. The axioms of a mathematical system

become the “key” : they tell us how the undefined terms behave. (Axioms describe

how to use terms and how they relate to one another, rather than telling us what the

terms “really mean”.) Indeed, mathematicians permit any interpretation of undefined

terms, as long as all the axioms hold in that interpretation.

Unlike the Greek understanding of axioms as “self-evident truths”, we do not

claim the truth of axioms. However, this does not mean that we consider axioms

to be false. Rather, we are free to chose axioms to formulate the fundamental rela-

tionships we want to investigate. From a logical point of view, the choice of axioms

is arbitrary; in actuality, though, mathematicians carefully pick axioms to focus on

particular features. Axiomatic systems allow us to formulate and logically explore ab-

stract relationships, freed from the specificity and imprecision of real situations. There

are two basic types of axiomatic systems. One completely chracterizes a particular

mathematical system (for example, Hilbert’s axioms characterize Euclidean plane

geometry completely). The second focuses on the commmon features of a family of

structures (e.g. groups, vector spaces, or metric spaces); such axiomatic systems unite

a wide variety of examples within one powerful theoretical framework.

Mathematical definitions are built from undefined terms and previously defined

terms.

In an axiomatic system, a theorem is a statement whose proof depends only on

previously proven theorems, the axioms, the definitions, and the rules of logic. (This

condition ensures that the entire edifice of theorems rests securely on the explicit

axioms of the system.) Proofs of theorems in a axiomatic system cannot depend on

diagrams, even though diagrams have been part of geometry since the ancient Greeks

drew figures in the sand.
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Axiomatic systems are a workable compromise between the austere formal lan-

guages of mathematical logic and Euclid’s work with its many implicit assumptions.

Mathematicians need both the careful reasoning of proofs and the intuitive understand-

ing of content. Axiomatic systems provide more than a way to give careful proofs.

They enable us to understand the relationship of particular concepts, to explore the

consequences of assumptions, to contrast different systems, and to unify seemingly

disparate situations under one framework. In short, axiomatic systems are one im-

portant way in which mathematicians obtain insight.

Mathematical models provide an explicit link between intuitions and undefined

terms. The usual (Cartesian) model of Euclidean plane geometry is the set R2, where

a point is interpreted as an ordered pair of (real) numbers and a line is interpreted

as the locus of points that satisfy an appropriate (first degree) algebraic equation

ax+ by + c = 0. (In making a model, we are free to interpret the undefined terms in

any way we want, provided that all the axioms hold under our interpretation. Note

that the axioms are not by themselves true; a context is needed to give meaning to

the axioms in order for them to be true or false.) Models do much more than provide

concrete examples of axiomatic systems : they lead to important understandings

about axiomatic systems. The most important property of an axiomatic system is

consistency, which says that we cannot prove two statements that contradict each

other. An axiomatic system is consistent if and only if it has a model.

I am coming more and more to the conviction that the necessity of our

geometry cannot be demonstrated, at least neither by, nor for, the human

intellect. [...] geometry should be ranked, not with arithmetic, which is purely

aprioristic, but with mechanics.

Carl Friedrich Gauss
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4.1 Isometries as Product of Reflections

A product of reflections is clearly an isometry. The converse is also true; that

is, every isometry is a product of reflections. We prove now this fact in seven

(small) steps. (Actually, we shall do better than that by showing the product

has at most three factors, not necessarily distinct.)

Looking at the fixed points of isometries turns out to be very rewarding in

general.

4.1.1 Proposition. If an isometry fixes two distinct points on a line, then

the isometry fixes that line pointwise.

Proof : Knowing point P is on the line through distinct points A and

B and knowing the nonzero distance AP , we do not know which of the two

possible points is P . However, if we also know the distance BP , then P is

uniquely determined. It follows that an isometry fixing both A and B must

also fix the point P , since an isometry is a collineation that preserves distance.

In other words, an isometry fixing distinct points A and B must fix every

point on the line through A and B.

2

4.1.2 Proposition. If an isometry fixes three noncollinear points, then the

isometry must be the identity.

Proof : Suppose that an isometry fixes each of three noncollinear points

A,B,C. Then the isometry must fix every point on 4ABC as the isometry

fixes every point on any one of the lines
←→
AB,

←→
BC,

←→
CA. Every point Q in the

plane lies on a line that intersects 4ABC in two distinct points. Hence the

point Q is on a line containing two fixed points and, therefore, must also be

fixed. So an isometry that fixes three noncollinear points must fix every point

Q in the plane. 2
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4.1.3 Proposition. If α and β are isometries such that

α(P ) = β(P ) , α(Q) = β(Q) , and α(R) = β(R)

for three noncollinear points P,Q,R, then α = β.

Proof : Multiplying each of the given equations by β−1 on the left, we

see that β−1α fixes each of the noncollinear points P,Q,R. Then β−1α = ι

by Proposition 4.1.2. Multiplying this last equation by β on the left, we

have α = β. 2

4.1.4 Proposition. An isometry that fixes two points is a reflection or the

identity.

Proof : Suppose isometry α fixes distinct points P and Q on line L. We

know two possibilities for α, namely ι and σL. We shall show these are the

only two possibilities by supposing α 6= ι and proving α = σL. If α 6= ι,

then there is a point R not fixed by α. So R is off L, and P,Q,R are three

noncollinear points. Let R′ = α(R). So PR = PR′ and QR = QR′, as α is

an isometry. Therefore, L is the perpendicular bisector of RR′ as each of P

and Q is in the locus of all points equidistant from R and R′. Hence,

α(R) = R′ = σL(R) as well as α(P ) = P = σL(P ) and α(Q) = Q = σL(Q) .

By Proposition 4.1.3 we have α = σL. 2

4.1.5 Proposition. An isometry that fixes exactly one point is a product

of two reflections.

Proof : Suppose isometry α fixes exactly one point C. Let P be a point

different from C, let α(P ) = P ′, and let L be the perpendicular bisector of

PP ′. Since CP = CP ′ as α is an isometry, then C is on L. So σL(C) = C

and σL(P ′) = P . Then

σLα(C) = σL(C) = C and σLα(P ) = σL(P ′) = P .
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By Proposition 4.1.4

σLα = ι or σLα = σM , where M =
←→
CP .

However, σLα 6= ι as otherwise α is σL and fixes more points than C. Thus

σLα = σM for some line M. Multiplying this equation by σL on the left, we

have α = σLσM. 2

4.1.6 Proposition. An isometry that fixes a point is a product of at most

two reflections.

Proof : Since ι = σLσL for any line L, the result follows as a corollary of

Proposition 4.1.5. 2

We are now prepared to prove the main result.

4.1.7 Theorem. Every isometry is a product of at most three reflections.

(We count the number of factors even though the factors themselves may not

be distinct.)

Proof : The identity is a product of two reflections. Suppose nonidentity

isometry α sends point P to different point Q. Let L be the perpendicular

bisector of PQ. Then σLα fixes point P . We have just seen that σLα must

be a product β of at most two reflections. Hence α = σLβ and α is a product

of at most three reflections. 2

Congruence

Suppose 4PQR ∼= 4ABC. We know there is at most one isometry α

such that

α(P ) = A, α(Q) = B, and α(R) = C.

The question is whether there exists at least one such isometry α. It is pos-

sible to construct effectively such an isometry (as a product of at most three

reflections).
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4.1.8 Proposition. If 4PQR ∼= 4ABC, then there is a unique isometry

α such that

α(P ) = A , α(Q) = B , and α(R) = C.

Proof : Suppose 4PQR ∼= 4ABC. So AB = PQ, AC = PR, and

BC = QR. If P 6= A, then let α1 = σL, where L is the perpendicular

bisector of PA. If P = A, then let α1 = ι. In either case, then α1(P ) = A.

Let α1(Q) = Q1 and α1(R) = R1. If Q1 6= B, then let α2 = σM, where

M is the perpendicular bisector of Q1B. In this case, point A is on M
as AB = PQ = AQ1. If Q1 = B, then let α2 = ι. In either case, we

have α2(A) = A and α2(Q1) = B. Let α2(R1) = R2. If R2 6= C, then

let α3 = σN , where N is the perpendicular bisector of R2C. In this case,

N =
←→
AB as AC = PR = AR1 = AR2 and BC = QR = Q1R1 = BR2. If

R2 = C, then let α3 = ι. In any case, we have α3(A) = A, α3(B) = B, and

α3(R2) = C. Let α = α3α2α1. Then

α(P ) = α3α2α1(P ) = α3α2(A) = α3(A) = A

α(Q) = α3α2α1(Q) = α3α2(Q1) = α3(B) = B

α(R) = α3α2α1(R) = α3α2(R1) = α3(R2) = C

as desired. 2

4.1.9 Corollary. Two segments, two angles, or two triangles are, respec-

tively, congruent if and only if there is an isometry taking one to other.

Note : In elementary plane geometry there are three different relations indicated

by the same words “is congruent to”, one for segments, one for angles, and a third

for triangles. All three can be combined under a generalized definition that applies

to arbitrary sets of points as follows. If S1 and S2 are sets of points, then S1 and

S2 are said to be congruent if there is an isometry α such that

α (S1) = S2.

Exercise 51 Give a reasonable definition for 2ABCD ∼= 2PQRS.
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4.2 The Product of Two Reflections

Every isometry is a product of at most three reflections (see Theorem 4.1.7).

So each isometry is of the form

σL , σMσL , or σNσMσL.

We shall examine now the case σMσL. Since a reflection is an involution, we

know that σLσL = ι for any line L.

Thus we are concerned with the product of two reflections in distinct lines

L and M. There are two cases : either L and M are parallel lines or else

L and M intersect at a unique point.

Case 1 : L and M are (distinct) parallel lines

4.2.1 Proposition. If lines L and M are parallel, then σMσL is the

translation through twice the directed distance from L to M.

Proof : Let L and M be distinct parallel lines. Suppose
←→
LM is a common

perpendicular to L and M with L on L and M on M. The directed

distance from L to M is the directed distance from L to M . (We are

going to use Proposition 4.1.3.) With K a point on L distinct from L,

let L′ = σM(L) and K ′ = τL,L′(K). Then (by Proposition 2.1.2 and

Proposition 2.1.4) we have τK,K′ = τL,L′ and 2LKK ′L′ is a rectangle

with M the common perpendicular bisector of LL′ and of KK ′. So

σM(K) = K ′.

Now, let J = σL(M). Then, since L is the midpoint of JM and M is the

midpoint of LL′, we have

τJ,M = τL,L′

where τL,L′ is the translation through twice the directed distance from L to
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M. Hence

σMσL(J) = σM(M) = M = τL,L′(J)

σMσL(K) = σM(K) = K ′ = τL,L′(K)

σMσL(L) = σM(L) = L′ = τL,L′(L).

Since an isometry is determined by any three noncollinear points (see Propo-

sition 4.1.2), the equations above give the desired result

σMσL = τL,L′ = τ2L,M .

2

4.2.2 Proposition. If line A is perpendicular to line L at L and to line

M at M , then

σMσL = τ2L,M = σMσL.

Proof : In the proof above we have τL,L′ = σMσL (Proposition 2.2.3).2

Is every translation a product of two reflections (in parallel lines) ? The

answer is “Yes”. The following result holds.

4.2.3 Theorem. Every translation is a product of two reflections in par-

allel lines, and, conversely, a product of two reflections in parallel lines is a

translation.

Proof : Given nonidentity translation τL,N , then τL,N = σMσL, where M

is the midpoint of LN . With L the perpendicular to
←→
LM at L and M the

perpendicular to
←→
LM at M , we have

σMσL = σMσL

by Proposition 4.2.2. So

τL,N = σMσL with L ‖ M.

2
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4.2.4 Proposition. If lines L,M, N are perpendicular to line A, then

there are unique lines P and Q such that

σMσL = σNσP = σQσN .

Further, the lines P and Q are perpendicular to A.

Proof : The equations

σMσL = σNσP = σQσN

have unique solutions for lines P and Q, given lines L,M,N are parallel. To

show this, let line A be perpendicular to lines L,M,N at points L,M,N ,

respectively. Let P and Q be the unique points on A such that

σMσL = σNσP = σQσN .

Let line P be perpendicular to A at P , and let line Q be perpendicular to

A at Q. Then

σMσL = σMσL = σNσP = σNσP and σMσL = σMσL = σQσN = σQσN .

The uniqueness of these lines P and Q that satisfy the equations follows

from the cancellation laws. (For example, σNσP = σNσP ′ implies σP = σP ′ ,

which implies P = P ′ .) 2

Note : In the proposition above, P is just the unique line such that directed

distance from P to N equals the directed distance from L to M and that Q is

just the unique line such that the directed distance from N to Q equals the directed

distance from L to M.

4.2.5 Corollary. If P 6= Q, then τP,Q may be expressed as σBσA, where

either one of A or B is an arbitrarily chosen line perpendicular to
←→
PQ and

the other is then a uniquely determined line perpendicular to
←→
PQ.
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Observe that

σMσL = σNσP and σNσMσL = σP

are equivalent equations.

4.2.6 Corollary. If lines L,M, N are perpendicular to line A, then

σNσMσL is a reflection in a line perpendicular to A.

Case 2 : L and M are (distinct) intersecting lines

L and M are lines intersecting at a point C. We shall follow much the

same path as we did for parallel lines.

4.2.7 Proposition. If lines L and M intersect at point C and the di-

rected angle measure of a directed angle from L to M is r
2 , then σMσL =

ρC,r.

Proof : We first show that σMσL is a rotation about C by using the fact

that three noncollinear points determine an isometry. Suppose r
2 is the di-

rected angle measure of one of the two directed angles from L to M. We may

as well suppose −90 < r
2 ≤ 90. (Note that the notation suggests correctly

that we are going to encounter twice the directed angle from L to M in our

conclusion.) Let L be a point on L different from C. Let point M be the

intersection of line M and circle CL such that the directed angle measure

from
−→
CL to

−→
CM is r

2 . We have L =
←→
CL and M =

←→
CM . Let L′ = ρC,r(L).

Then L′ is on circle CL, and M is the perpendicular bisector of LL′. So

L′ = σM(L). Let J = σL(M). Then L is the perpendicular bisector of JM .

So J is on circle CL, and the directed angle measure from
←→
CJ to

←→
CM is r.

Hence, M = ρC,r(J). Therefore,

σMσL(C) = σM(C) = C = ρC,r(C)

σMσL(J) = σM(M) = M = ρC,r(J)

σMσL(L) = σM(L) = L′ = ρC,r(L).
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Since points C, J, L are not collinear, we conclude

σMσL = ρC,r.

So σMσL is the rotation about C through twice a directed angle from L to

M. 2

The following result (analogue of Theorem 4.2.3) holds.

4.2.8 Theorem. Every rotation is a product of two reflections in intersect-

ing lines, and, conversely, a product of two reflections in intersecting lines is

a rotation.

Proof : Suppose ρC,r is given. Let L be any line through C, and let M
be the line through C such that a directed angle from L to M has directed

angle measure r
2 . Then ρC,r = σMσL, and this completes the proof. 2

4.2.9 Proposition. If lines L,M, N are concurent at point C, then

there are unique lines P and Q such that

σMσL = σNσP = σQσN .

Further, the lines P and Q are concurent at C.

Proof : Given rays CL→, CM→, and CN→, there are unique rays CP→

and CQ→ such that the directed angle from CL→ to CM→, the directed

angle from CP→ to CN→, and the directed angle from CN→ to CQ→, all

have the same directed angle measure. With N =
←→
CN , P =

←→
CP , and Q =

←→
CQ,

we have solutions P and Q to the equations

σMσL = σNσP = σQσN .

when L,M, N are given lines concurent at C. The uniqueness of such lines

P and Q follows from the cancellation laws. 2

4.2.10 Corollary. Rotation ρC,r may be expressed as σBσA, where ei-

ther one of A or B is an arbitrarily chosen line through C and the other is

then a uniquely determined line through C.
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4.2.11 Corollary. Halfturn σP is the product (in either order) of the

two reflections in any two lines perpendicular at P .

4.2.12 Corollary. If lines L,M, N are concurent at point C, then

σNσMσL is a reflection in a line through C.

4.2.13 Theorem. A product of two reflections is a translation or a rota-

tion; only the identity is both a translation and a rotation.

Proof : Clearly,

σLσL = τP,P = ρP,0 = ι

for any line L and any point P . Also, a rotation has a fixed point while a

nonidentity translation does not. From these observations and the fact that

lines L and M must be parallel or intersect, we have the result. 2

4.3 Fixed Points and Involutions

We have not considered products of three reflections, except in the very special

cases where the reflections are in lines that are parallel or in lines that are

concurent. Therefore, it would be fairly surprising if we could at this stage

classify all the isometries that have fixed points and classify all the isometries

that are involutions. Such is the case, however.

4.3.1 Proposition. An isometry that fixes exactly one point is a noniden-

tity rotation. An isometry that fixes a point is a rotation or a reflection.

Proof : An isometry with a fixed point is a product of at most two reflec-

tions (Proposition 4.1.6). Of course, the identity and a reflection have fixed

points. Otherwise, an isometry with a fixed point must be a translation or

a rotation (Theorem 4.2.13). Since a nonidentity translation has no fixed

points and a nonidentity rotation has exactly one fixed point, the desired result

follows. 2

The involutions come next.
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4.3.2 Proposition. The involutory isometries are the reflections and the

halfturns.

Proof : Suppose α is an involutory isometry. Since α is not the identity,

there are points P and Q such that α(P ) = Q 6= P . Since P = α2(P ) =

α(Q), then α interchanges distinct points P and Q. Hence (Proposition

3.2.3), α must fix the midpoint of PQ. Therefore, α must be a rotation or a

reflection by Proposition 4.3.1. Since the involutory rotations are halfturns

(see Exercise 44), we obtain the desired result. 2

Exercise 52 Do involutory isometries form a group ?

Although we know that halfturn σP fixes line L if and only if point P is

on line L (see Proposition 2.2.2), we have not considered the fixed lines of

an arbitrary rotation. We do so now.

4.3.3 Proposition. A nonidentity rotation that fixes a line is a halfturn.

Proof : Suppose nonidentity rotation ρC,r fixes line L. Let M be the line

through C that is perpendicular to L. Then (Corollary 4.2.10), there is

a line N through C and different from M such that ρC,r = σNσM. Since

L and M are perpendicular, then (Proposition 3.1.2) we have

L = ρC,r(L) = σNσM(L) = σN (L).

So σN fixes line L. Then N = L or N ⊥ L. Lines M and N cannot be

two intersecting lines and both perpendicular to L. Hence, N = L. So M
and N are perpendicular at C and ρC,r is the halfturn σC . 2

4.4 Exercises

Exercise 53 Given 4ABC ∼= 4DEF , where A = (0, 0), B = (5, 0), C = (0, 10), D =

(4, 2), E = (1,−2), and F = (12,−4), find equations of lines such that the product

of reflections in these lines takes 4ABC to 4DEF .
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Exercise 54 Suppose lines L,M, N have, respectively, equations x = 2, y = 3,

and y = 5. Find the equations for σMσL and σNσM.

Exercise 55 PROVE or DISPROVE : Every isometry is either a product of five

reflections or a product of six reflections.

Exercise 56 PROVE or DISPROVE : The images of a triangle under two distinct

isometries cannot be identical.

Exercise 57 TRUE or FALSE ?

(a) (σZσYσX · · ·σCσBσA)−1 = σAσBσC · · ·σXσYσZ for all lines A, B, C, . . . ,
X , Y, Z.

(b) If AB = CD, then AD = BC.

(c) A product of four reflections is an isometry.

(d) The set of all rotations generates a commutative group.

(e) The set of all reflections generates Isom.

(f) If A and B are two distinct points, PA = PB and QA = QB, then

P = Q.

(g) An isometry that fixes a point is an involution.

(h) If isometry α fixes points A,B, and C, then α = ι.

(i) If α and β are isometries and α2 = β2, then α = β or α = β−1.

Exercise 58 Prove the if σNσM fixes point P and M 6= N , then P is on both

M and N .

Exercise 59 PROVE or DISPROVE : If α is an involution, then βαβ−1 is an

involution for any transformation β.

Exercise 60 If M ‖ N , find points M and N such that

σNσM = σNσM .

Exercise 61 What are the equations for σNσM if line M has equation y =

−2x+ 3 and line N has equation y = −2x+ 8 ?
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Exercise 62 Show that σLρC,rσL = ρC,−r if point C is on line L.

Exercise 63 TRUE or FALSE ?

(a) If a directed angle from line L to line M is 240◦, then σMσL is a

rotation of 120◦.

(b) σMσL = τ2
L,M = σMσL if point L is on line L and point M is on line

M.

(c) An isometry has a unique fixed point if and only if the isometry is a

nonidentity rotation.

(d) An isometry that is its own inverse must be a halfturn, a reflection, or

the identity.

(e) If L′ = σM(L) and K ′ = τL,L′(K), then M is the perpendicular bisector

of KK ′.

(f) Given points L,M,N , there is a point P such that σMσL = σNσP .

(g) Given lines L,M,N , there is a line P such that σMσL = σNσP .

(h) If lines L and M intersect at point C and a directed angle from L to

M is r◦, then σMσL = ρC,2r.

(i) An isometry that fixes a point must be a rotation, a reflection, or the

identity.

(j) Isometry αβα−1 is an involution for any isometry α if and only if isom-

etry β is an involution.

Exercise 64 Given nonparallel lines
←→
AB and

←→
CD, show there is a rotation ρ such

that

ρ(
−→
AB) =

−→
CD.

Exercise 65 PROVE or DISPROVE : Every translation is a product of two nonin-

volutory rotations.

Exercise 66 PROVE or DISPROVE : If P 6= Q, then there is a unique translation

taking point P to point Q but there are an infinite number of rotations that take

P to Q.

Exercise 67 What lines are fixed by rotation ρC,r ?
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Exercise 68 If σNσM((x, y)) = (x+ 6, y− 3), find equations for lines M and N .

Exercise 69 If σCσBσA is a reflection, show that lines A, B, C are either con-

curent or parallel to each other.

Exercise 70 Show that σNσMσL = σLσMσN whenever lines L, M, N are con-

curent or have a common perpendicular.

Discussion : The regular polyhedra are five figures from the classical

geometry of E3 (the so-called “solid geometry” encountered in high school) : the

tetrahedron, cube, octohedron, dodecahedron, and icosahedron. The faces of the

tetrahedron, octahedron and icosahedron are equilateral triangles, those of the cube

are squares, and those of the dodecahedron are regular pentagons. It is easy to show

that these there are the only possible convex polyhedra whose faces are all regular

polygons of the same type, because at least three faces must meet at each vertex and,

hence, the polygons must have angles < 2π
3 .

Corresponding to each regular polyhedron P we get a regular tessellation of the

sphere S2 by placing P so that its center is at the origin O and projecting the edges

of P from O onto S2. Each regular polygonal face of P projects to a regular spherical

polygon on S2.

Each regular polyhedron P has a symmetry group which is a finite group of ro-

tations of S2. If we imagine a solid P occupying a P-shaped “hole” in E3, then

the rotations in the symmetry group are those which turn P to a position which fits

the hole. There are only three such symmetry groups, called the polyhedral groups,

because the octahedron and cube have the same group, as do the icosahedron and

dodecahedron.

In addition to the polyhedral groups, there are two infinite families of finite groups

of rotations of S2. The first consists of cyclic groups Cn, each generated by a rotation

through 2π
n . The second consists of dihedral groups Dn. Dn can be regarded as

the symmetry group of a degenerate polyhedron – the “dihedron” – with two regular

n-gonal faces.

The fact that there are only five regular polyhedra has the (not quite obvious)

consequence that the only finite groups of rotations of S2 are Cn, Dn, and the three

polyhedral groups. An even more remarkable consequence was proved by Felix Klein
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(1849-1925): Any finite group of linear fractional transformations is isomorphic to

one of Cn, Dn or the three polyhedral groups.

The psychological aspects of true geometric intuition will perhaps never be

cleared up. At one time it implied primarily the power of visualization in

three-dimensional space. Now that higher-dimensional spaces have mostly

driven out the more elementary problems, visualization can at best be partial

or symbolic. Some degree of tactile imagination seems also to be involved.

André Weil
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5.1 Even and Odd Isometries

A product of two reflections is a translation or a rotation. By considering the

fixed points of each, we see that neither a translation nor a rotation can be

equal to a reflection. Thus, for lines L,M, N

σNσM 6= σL .

When a given isometry is expressed as a product of reflections, the number of

reflections is not invariant. Although the product of two reflections cannot

be a reflection, we know that in some cases a product of three reflections is a

reflection. (We shall see this is possible only because both 3 and 1 are odd

integers.) We make the following definitions.

5.1.1 Definition. An isometry that is a product of an even number of

reflections is said to be even.

5.1.2 Definition. An isometry that is a product of an odd number of

reflections is said to be odd.

Note : It is intuitively clear that the product of an even number of reflections

preserves the sense of a clockwise oriented circle in the plane, whereas the product of

an odd number of reflections reverses it. We say that even isometries are orientation-

preserving and that odd isometries are orientation-reversing isometries.

We shall refer to the property of an isometry of being even or odd as the

parity. But is this concept “well-defined” ? Observe that, since an isometry

is a product of reflections, an isometry is even or odd. Of course, no integer

can be both even and odd, but is it not conceivable some product of ten

reflections could equal to some product of seven reflections ? We shall show

this is impossible.

Exercise 71 Show that if P is a point and A and B are lines, then there are lines

C and D with C passing through P such that σBσA = σDσC .
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Based on this simple fact, we can now prove the following

5.1.3 Proposition. A product of four reflections is a product of two re-

flections.

Proof : Suppose product σSσRσQσP is given. We want to show this

product is equal to a product of two reflections. Let P a point on line

P. There are lines Q′ and R′ such that σRσQ = σR′σQ′ with P on Q′.
Also, there are lines R′′ and M such that σSσR′ = σMσR′′ with P on

R′′. Since P, Q′, R′′ are concurent at P , then there is a line L such that

σR′′σQ′σP = σL. Therefore,

σSσRσQσP = σSσR′σQ′σP = σMσR′′σQ′σP = σMσL.

2

Note : Not only are there lines such that the given product of four reflections is

equal to σMσL, but our proof even tells us how to find such lines.

5.1.4 Proposition. An even isometry is a product of two reflections. An

odd isometry is a reflection or a product of three reflections. No isometry is

both even and odd.

Proof : Given a long product of reflections, we can use Proposition 5.1.3

repeatedly to replace the first four reflections by two reflections until we have

obtained a product with less than four reflections. By repeated application of

the result to an even isometry, we can reduce the even isometry to a product of

two reflections. Also, by repeated application of the result to an odd isometry,

we can reduce the odd isometry to a product of three reflections or to a

reflection. Therefore, to show an isometry cannot be both even and odd, we

need to show only that a product of two reflections cannot equal a reflection

or a product of three reflections. Assume there are lines P, Q, R, S, T such

that σRσQσP = σSσT . Then, we have shown above that there are lines L
and M such that

σMσL = σSσRσQσP = σSσSσT = σT .
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We have a contradiction since σMσL is a translation or a rotation and cannot

be equal to reflection σT . A product of two reflections is never equal to a

reflection or a product of three reflections. 2

5.1.5 Proposition. An even involutory isometry is a halfturn; an odd in-

volutory isometry is a reflection.

Proof : The even isometries are the translations and the rotations. Since

the involutory isometries are the halfturns and the reflections, the result fol-

lows. 2

5.1.6 Proposition. The even isometries form a group Isom+.

Proof : An isometry and its inverse have the same parity, since the inverse

of a product of reflections is the product of the reflections in reverse order.

So the set Isom+ of all even isometries has the inverse property. Further,

the set Isom+ has the closure property since the sum of two even integers

is even. So the even isometries form a group. 2

Note : Isom+
will always denote the group of even isometries. So Isom+

consists of the translations and the rotations.

Some “technical” results

Exercise 72 Suppose that α and β are two isometries. Prove that

(a) αβα−1 is an involution ⇐⇒ β is an involution.

(b) αβα−1 and β must have the same parity.

Note : In general, αβα−1 is called the conjugate of β by α.

5.1.7 Proposition. If P is a point, L is a line, and α is an isometry,

then

ασLα
−1 = σα(L) and ασPα

−1 = σα(P ).

Proof : Since σP is an even involutory isometry, so is ασPα
−1 (Exercise

72). By Proposition 5.1.5, ασPα
−1 must be a halfturn. Since halfturn
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ασPα
−1 fixes point α(P ), then ασPα

−1 must be the halfturn about α(P );

that is,

ασPα
−1 = σα(P ).

In similar fashion, since ασLα
−1 is an odd involutory isometry, then ασLα

−1

is a reflection. Hence, since ασLα
−1 clearly fixes every point α(P ) on line

α(L), then ασLα
−1 must be the reflection in the line α(L). That is,

ασLα
−1 = σα(L).

2

5.1.8 Proposition. If α is an isometry, then

ατA,Bα
−1 = τα(A),α(B) and αρC,rα

−1 = ρα(C),±r

where the positive sign applies when α is even and the negative sign applies

when α is odd.

Proof : If M is the midpoint of AB, then point α(M) is the midpoint of

α(A)α(B). Also,

τA,B = σMσA and τα(A),α(B) = σα(M)σα(A).

Now

ατA,Bα
−1 = ασMσAα

−1 =
(
ασMα

−1) (ασAα−1) = σα(M)σα(A)

= τα(A),α(B).

That is,

ατA,Bα
−1 = τα(A),α(B).

Finding the conjugate of a rotation is slightly more complicated.

We first examine the conjugate of ρC,r by σL. Let M be the line through C

that is perpendicular to L. Then there exists a line N through C such that

ρC,r = σNσM.
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Now σL(M) =M and σL(N ) intersect at σL(C), and a directed angle from

σL(M) to σL(N ) is the negative of a directed angle from M to N . (This

explains the negative sign on the far right in the following calculation.) We

have

σLρC,rσ
−1
L = σLσNσMσ

−1
L =

(
σLσNσ

−1
L
) (
σLσMσ

−1
L
)

= σσL(N )
σσL(M)

= ρσL(C),−r.

If α = σT σS , then

αρC,rα
−1 = σT

(
σSρC,rσ

−1
S
)
σ−1T = ρα(C),r.

If α = σT σSσR, then the sign in front of r is back to a negative sign again.2

Commuting isometries

By taking α = ρD,s in Proposition 5.1.8, we can show that nonidentity

rotation ρD,s does not commute with nonidentity rotation ρC,r unless D = C.

We leave this as an exercise.

Exercise 73 Prove that nonidentity rotations with different centres do not com-

mute.

We are also in a position to answer the question “When do reflections commute

?”

5.1.9 Proposition. σMσN = σNσM if and only if M = N or M⊥ N .

Proof : For lines M and N the following five statements are seen to be

equivalent:

(1) σMσN = σNσM.

(2) σNσMσN = σM.

(3) σσN (M) = σM.
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(4) σN (M) =M.

(5) M = N or M⊥ N .

Comparing (1) and (2), we have the answer to our question. 2

We now consider products of even isometries. We already know that

• The product of two translations is a translation (Proposition 2.1.8).

• The product of two rotations can be a translation in some cases; for

example, σBσA = τ2A,B (Proposition 2.2.3).

• ρC,sρC,r = ρC,r+s (Exercise 44).

5.1.10 Theorem. (The Angle-addition Theorem) A rotation of r◦

followed by a rotation of s◦ is a rotation of (r+ s)◦ unless (r+ s)◦ = 0 ◦, in

which case the product is a translation.

Proof : Let’s consider the product

ρB,sρA,r

of two nonidentity rotations with different centres. With C =
←→
AB, there is a

line A through A and a line B through B such that

ρA,r = σCσA and ρB,s = σBσC .

So

ρB,sρA,r = σBσCσCσA = σBσA.

When (r+s)◦ = 0◦, then the lines A and B are parallel and our product is a

translation. On the other hand, when (r+ s)◦ 6= 0◦, then the lines A and B
intersect at some point C and our product is a rotation. We can see (by The

Exterior Angle Theorem) that one directed angle from A to B is
(
r
2 + s

2

)◦
.

Hence, our product σBσA is a rotation about C through an angle of (r+s)◦.

That is,

ρB,sρA,r = ρC,r+s.

2
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Note : The Angle-addition Theorem can also be proved by using the equations

for the even isometries that will be developed later.

Now, what is the product of a translation and a nonidentity rotation ?

Exercise 74 Prove that

(a) A translation followed by a nonidentity rotation of r◦ is a rotation of r◦.

(b) A nonidentity rotation of r◦ followed by a translation is a rotation of r◦.

5.2 Classification of Plane Isometries

We have classified all the even isometries as translations or rotations. An

odd isometry is a reflection or a product of three reflections. Only those odd

isometries σCσBσA, where A, B, C are neither concurrent nor have a common

perpendicular remain to be considered.

Glide reflections

We begin with the special case where A and B are perpendicular to C.
Then σBσA is a translation and σC is, of course, a reflection. We make the

following definition.

5.2.1 Definition. If A and B are distinct lines perpendicular to line C,
then σCσBσA is called a glide reflection with axis C.

We might as well call line M the axis of σM as the reflection and the

glide reflection then share the property that the midpoint of any point and its

image under the isometry lies on the axis.

5.2.2 Proposition. A glide reflection fixes no points. A glide reflection

fixes exactly one line, its axis. The midpoint of any point and its image under

a glide reflection lies on the axis of the glide reflection.

Proof : Suppose P is any point. Let line L be the perpendicular from P
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to C. Then there is a line M perpendicular to C such that σBσA = σMσL.

If M is the intersection of M and C, then P and M are distinct points

such that

σCσBσA(P ) = σCσMσL(P ) = σCσM(P ) = σM (P ) 6= P.

Since σCσBσA(P ) = σM (P ) and M is the midpoint of distinct points P and

σM (P ), we have shown that glide reflection σCσBσA fixes no point but the

midpoint of any point P and its image σCσBσA(P ) lies on the axis of the

glide reflection. So a glide reflection interchanges the halfplanes of its axis.

Hence, any line fixed by the glide reflection must intersect the axis at least

twice. That is, the glide reflection can fix no line except its axis. The axis of

a glide reflection is the unique line fixed by the glide reflection. 2

5.2.3 Proposition. A glide reflection is the composite of a reflection in

some line A followed by a halfturn about some point off A. A glide reflection

is the composite of a halfturn about some point A followed by a reflection in

some line off A. Conversely, if point P is off line L, then σPσL and σLσP

are glide reflections with axis the perpendicular from P to L.

Proof : If γ is a glide reflection, then there are distinct lines A, B, C such

that γ = σCσBσA, where A and B are perpendicular to C, say at points A

and B, respectively. Now

σA = σAσC = σCσA and σB = σBσC = σCσB.

Hence

γ = σC(σBσA) = (σCσB)σA = σB(σCσA) = (σBσA)σC

= σBσA = σBσA.

The first line of these equations tells us that γ is the product of the glide

σBσA and the reflection σC in either order. More important, the second line

tells us that γ is a product σBσA with B off A and a product σBσA with

A off B.
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We want to show, conversely, that such a product is a glide reflection.

Suppose point P is off line L. Let P be the perpendicular from P to L and

let M be the perpendicular at P to P. Lines L and M are distinct since

P is off L. Furthermore,

σPσL = σPσMσL and σLσP = σLσPσM = σPσLσM.

Therefore, the products σPσL and σLσP are glide reflections by the definition

of a glide reflection. 2

5.2.4 Corollary. The set of all glide reflections has the inverse property.

Note : The set of all glide reflections does not have the closure property because

the product of two glide reflections (= odd isometries) must be an even isometry.

5.2.5 Proposition. Lines P, Q, R are neither concurrent nor have a

common perpendicular if and only if σRσQσP is a glide reflection.

Proof : (⇐ ) If σRσQσP is a glide reflection, then σRσQσP is not a

reflection and the lines P, Q, R cannot be either concurrent or parallel.

(⇒ ) Suppose P, Q, R are any lines that are neither concurrent nor

have a common perpendicular. We wish to prove that σRσQσP is a glide

reflection.

First, we consider the case lines P and Q intersect at some point Q.

Then Q is off R as the lines are not concurrent. Let P be the foot of the

perpendicular from Q to R, and let M be the line through P and Q. There

is a line L through Q such that σQσP = σMσL. Since P 6= Q, then L 6=M
and P is off L. Hence,

σRσQσP = σRσMσL = σPσL

with P off L. Therefore, σRσQσP is a glide reflection by Proposition

5.2.3.

There remains the case P ‖ Q. In this case, lines R and Q must intersect

as otherwise P, Q, R have a common perpendicular. Then, by what we just
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proved, there is some point P off some line L such that σPσQσR = σPσL.

Hence,

σRσQσP = (σPσQσR)−1 = (σPσL)−1 = σLσP

with point P off line L. Therefore, again we have σRσQσP is a glide

reflection. 2

An immediate corollary of this result is that a product of three reflections

is a reflection or a glide reflection. Thus, we have a classification of odd

isometries.

5.2.6 Proposition. An odd isometry is either a reflection or a glide re-

flection.

We finally have

5.2.7 Theorem. (The Classification Theorem for Plane Isometries)

Each nonidentity isometry is exactly one of the following : translation, rota-

tion, reflection or a glide reflection.

Exercise 75 Prove that

(a) A translation that fixes line C commutes with a glide reflection with axis

C.

(b) The square of a glide reflection is a nonidentity translation.

5.2.8 Proposition. If γ is a glide reflection with axis C and α is an

isometry, then αγα−1 is a glide reflection with axis α(C).

Proof : We have γ2 6= ι. So, a glide reflection is not an involution. Since

αγα−1 is an odd isometry that fixes line α(C) but is not an involution, then

αγα−1 has to be a glide reflection with axis α(C). 2
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5.3 Equations for Isometries

The equations for a general translation were incorporated in the definition

of a translation. Equations for a reflection were determined in Proposition

3.1.3. We now turn to rotations.

5.3.1 Proposition. Rotation ρO,r about the origin has equations
x′ = (cos r)x− (sin r)y

y′ = (sin r)x+ (cos r)y.

Proof : Let

ρO,r = σMσL

where L is the x-axis. Then one directed angle from L to M has directed

measure r
2 . From the definition of trigonometric functions we know that(

cos r2 , sin
r
2

)
is a point on M. So line M has equation(

sin
r

2

)
x−

(
cos

r

2

)
y = 0.

Hence σM has equations :

x′ = x−
2 sin r

2

(
(sin r

2)x− (cos r2)y
)

sin2 r
2 + cos2 r2

=
(

1− 2 sin2 r

2

)
x+

(
2 sin

r

2
cos

r

2

)
y

= (cos r)x+ (sin r)y ,

y′ = y +
2 cos r2

(
(sin r

2)x− (cos r2)y
)

sin2 r
2 + cos2 r2

=
(

2 sin
r

2
cos

r

2

)
x−

(
1− 2 cos2

r

2

)
y

= (sin r)x− (cos r)y.

Since σL has equations 
x′ = x

y′ = −y
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then the rotation ρO,r = σMσL has the equations
x′ = (cos r)x− (sin r)y

y′ = (sin r)x+ (cos r)y.

2

5.3.2 Proposition. The general equations for an even isometry are
x′ = ax− by + h

y′ = bx+ ay + k

with a2 + b2 = 1

and, conversely, such equations are those of an even isometry.

Proof : Let C = (u, v). Since

ρC,r = τO,CρO,rτC,O (by Proposition 5.1.8)

the equations for rotation ρC,r about the point C = (u, v) are easily obtained

by composing three sets of equations. The rotation has equations
x′ = (cos r)(x− u)− (sin r)(y − v) + u

y′ = (sin r)(x− u) + (cos r)(y − v) + v.

These equations for the rotation ρC,r have the form
x′ = (cos r)x− (sin r)y + h

y′ = (sin r)x+ (cos r)y + k

which, conversely, are the equations of a rotation unless r◦ = 0◦. Indeed,

given h, k, and r, there are unique solutions for u and v given by

h = u(1− cos r) + v sin r

k = u(− sin r) + v(1− cos r)
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unless r◦ = 0◦. In case r◦ = 0◦, the equations above are those of a general

translation.

Since the even isometries are the translations and the rotations, setting

a = cos r and b = sin r

we have the general equations for an even isometry :
x′ = ax− by + h

y′ = bx+ ay + k

with a2 + b2 = 1.

2

5.3.3 Proposition. The general equations for an isometry (on the plane)

are 
x′ = ax− by + h

y′ = ±(bx+ ay) + k

with a2 + b2 = 1

and, conversely, such equations are those of an isometry.

Proof : If α is an odd isometry and L any line, then α is the product of

even isometry σLα followed by σL. Taking L as the x-axis, we have any odd

isometry is the product of an even isometry followed by the reflection in the

x-axis. This observation, together with Proposition 5.3.2, gives the desired

result, where the positive sign applies when isometry is even and negative sign

applies when isometry is odd. 2

5.4 Exercises

Exercise 76 TRUE or FALSE ?

(a) An even isometry that fixes two points is the identity.

(b) The set of rotations generates Isom+.

(c) An odd isometry is a product of three reflections.
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(d) An even isometry is a product of four reflections.

(e) If ρα(C),r = ρC,r for isometry α, then α fixes C.

(f) ρB,rρA,−r is the translation that takes A to ρB,r(A).

Exercise 77 PROVE or DISPROVE : Given τA,B and nonidentity rotation ρC,r,

there is a rotation ρD,s such that τA,B = ρD,sρC,r.

Exercise 78 Show that if ρ1, ρ2, ρ2ρ1, and ρ−1
2 ρ1 are rotations, then the centres

of ρ1, ρ2ρ1, and ρ−1
2 ρ1 are collinear.

Exercise 79 Show that translation τ commutes with σC if and only if τ fixes C.
Also, that τ commutes with a glide reflection with axis C if and only if τ fixes C.

Exercise 80 TRUE or FALSE ?

(a) Every isometry is a product of two involutions.

(b) An isometry that does not fix a point is a glide reflection.

(c) If γ = σLσP , then γ is a glide reflection with axis the line through P

that is perpendicular to L.

(d) If γ is a glide reflection with axis C and P is a point on C, then there

are unique lines L and M such that γ = σMσP = σPσL.

(e) If σCσBσA fixes line L, then σCσBσA is a glide reflection with axis L.

(f) If σCσBσA fixes line L, then σCσBσA is a glide reflection with axis L.

Exercise 81 PROVE or DISPROVE : If point M is on the axis of glide reflection

γ, then there is a point P such that M is the midpoint of P and γ(P ).

Exercise 82 PROVE or DISPROVE : Every glide reflection is a product of three

reflections in the three lines containing the sides of some triangle.

Exercise 83 Which isometries are dilatations ?

Exercise 84 Prove that if τ is a translation, then there is a glide reflection γ such

that τ = γ2.
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Exercise 85 What are the equations for each of the rotations ρO,90, ρO,180, and

ρO,270 ?

Exercise 86 If 
x′ = ax+ by + h

y′ = bx− ay + k

with a2 + b2 = 1

are the equations for isometry α, show that α is a reflection if and only if ah+bk+h =

0 and ak − bh− k = 0.

Exercise 87 TRUE or FALSE ?

(a) x′ = −x+ 6 and y′ = −y − 7 are equations for a rotation.

(b) x′ = px− qy+ r and y′ = qx+py+ s are equations for an even isometry.

(c) x′ = −px−qy−r and y′ = qx−py−s are equations for an even isometry

if p2 + q2 = 1.

(d) x′ = −ax+by+h and y′ = bx+ay+k are equations for an odd isometry

if a2 + b2 = 1.

(e) x′ = ±ax− by + h and y′ = ±bx+ ay + k are equations for an isometry

if a2 + b2 = 1.

(f) If M is any line, then every odd isometry is the product of σM followed

by an even isometry.

(g) If M is any line, then every odd isometry is the product of an even

isometry followed by σM.

Exercise 88 If 
x′ = −

√
3

2 x−
1
2y + 1

y′ = 1
2x−

√
3

2 y −
1
2

are equations for ρP,r, then find P and r.

Exercise 89 If 
x′ = (cos r)x− (sin r)y + h

y′ = (sin r)x+ (cos r)y + k

are equations for nonidentity rotation ρC,r, then find C.
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Exercise 90 If 
x′ = ax+ by + h

y′ = bx− ay + k

with a2 + b2 = 1 .

are equations for σL, then find L.

Discussion : The idea of doing geometry in terms of numbers and

equations caught on after the publication of Descartes’ La Géométrie in 1637.

However, the idea that numbers and equations are geometric objects arose much

later. In fact, the idea had no solid foundation until 1858, when the set R of real

numbers was first given a clear definition, by Richard Dedekind (1831-1916).

Dedekind’s definition explains in particular the continuity of R which enables it to

serve as a model for the line.

Once one has this model for the line it is relatively straightforward to model the

plane by R2 and to verify Euclid’s axioms. This was first done in detail by David

Hilbert (1862-1943), thus subordinating geometry to the number concept after

2000 years of independence. It should be mentioned, however, that any construction

of R from the natural numbers 0, 1, 2, · · · involves infinite sets. Thus, a “point” is a

much subtle object than näıve intuition suggests.

The idea of interpreting points as numbers has been unexpectedly fruitful. Of

course, we expect R to behave like a line because R was constructed with that

purpose in mind, and it is no surprise that + and × have a geometric meaning on

the line ( + as a translation, × as a dilation). It may also not be a surprise that + has

a meaning in R2 (translation = vector addition) and so does multiplication by a real

number (dilation again). But it is surely an unexpected bonus when multiplication

by a complex number turns out to be geometrically meaningful.

After all, this multiplication is forced on us by algebra – by the demand that

i2 = −1 and that the field laws hold – yet when a + ib ∈ C is interpreted as

(a, b) ∈ R2, multiplication by a complex number is simply the product of a dilation

and a rotation. In particular, we have the miraculous fact that multiplication by

eir is rotation through r. And this is just the beginning of the interplay between

complex numbers and angles, leading to many applications of complex numbers, and

particularly complex functions, in geometry.
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In terms of the correspondence between vectors, points, and complex numbers we

can set up a “dictionary” between geometry and complex numbers, as follows :

Vector, ~v =

[
x

y

]
(or point, P = (x, y)) Complex number, z = x+ iy

Length of a vector, ‖~v‖ Modulus, |z|

Distance between two points, P1P2 Modulus of the difference, |z1 − z2|

Dot product, ~v1 • ~v2 Real part of product, Re (z̄1z2)

Collinear points, P1 − P2 − P3 Vanishing imaginary part,
z2 − z1

z3 − z1
∈ R

Oriented angle between ~ı =

[
1

0

]
and ~v Argument, arg (z) ∈ (−π, π]

Orientation, ~v 7→ ~v⊥ Multiplication by i, z 7→ iz

Translation, ~v 7→ ~v + ~a Addition, z 7→ z + w

Rotation, ~v 7→ ρr(~v) Multiplication by eir, z 7→ eirz

Reflection in x-axis, Complex conjugation, z 7→ z̄ .

Using this dictionary we could translate all that we have done so far into the

language of complex numbers.

The meaning of the word geometry changes with time and with the speaker.

Shiing-Shen Chern
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6.1 Symmetry and Groups

There is an abundant supply of objects (bodies, organisms, structures, etc.)

with symmetry in nature. Figures with symmetry appear throughout the

visual arts. There are also many scientific applications of symmetry (for in-

stance the classification of crystals and quasicrystals in chemistry). Theoreti-

cal physics makes heavy use of symmetry. But what is symmetry ?

When we say that a geometric figure (shape) is “symmetrical” we mean

that we can apply certain isometries, called symmetry operations, which leave

the whole figure unchanged while permuting its parts.

6.1.1 Example. The capital letters E and A have bilateral (or mirror)

symmetry, the mirror being horizontal for the former, vertical for the latter.

(Bilateral symmetry is the symmetry of left and right, which is so noticeable

in the structure of higher animals, especially the human body.)

6.1.2 Example. The capital letter N is left unchanged by a halfturn,

which may be regarded as the result of reflecting horizontally and then ver-

tically, or vice versa. (Alternatively, one may prefer to view the halturn as a

rotation about the “centre” through an angle of 180◦.) We can say that the

capital letter N has rotational symmetry.

6.1.3 Example. Another basic kind of symmetry is translational symme-

try. Several combinations of these so-called basic symmetries may occur (for

instance, bilateral and rotational symmetry, glide symmetry, translational and

rotational symmetry, two independent translational symmetries, etc.)

Exercise 91 Find simple geometric figures (patterns) exhibiting each of the fore-

going kinds of symmetry.

Note : In counting the symmetry operations of a figure, it is usual to include the

identity tranformation; any figure has this trivial symmetry.

We make the following definitions. Let S be a set of points (in E 2).
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6.1.4 Definition. Line L is a line of symmetry (or symmetry axis)

for S if

σL (S) = S.

6.1.5 Definition. Point P is a point of symmetry (or symmetry cen-

tre) for S if

σP (S) = S.

Exercise 92 Can a figure have

(a) exactly two lines of symmetry ?

(b) exactly two points of symmetry ?

Exercise 93 Why can’t a (capital) letter of the alphabet (written in most symmet-

ric form) have two points of symmetry ?

6.1.6 Definition. Isometry α is a symmetry for S if

α (S) = S.

6.1.7 Example. Find the symmetries of a rectangle R=2ABCD that is

not a square.

Solution : Without loss of generality, we may assume that

A = (h, k) , B = (−h, k) , C = (−h,−k) , and D = (h,−k) ; h, k > 0 , h 6= k.

Evidently, the x- and y-axes are lines of symmetry for the rectangle, and

the origin is a point of symmetry for the rectangle. Denoting the reflection

in the x-axis by σx and the reflection in the y-axis by σy, we have that

σx, σy, σO, and ι are symmetries for R. Note that ι is a symmetry for any

set of points. Since the image of the rectangle is known once it is known which

of A,B,C,D is the image of A, then these four transformations are the only

possible symmetries for R.
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Note : The (four) symmetries for a rectangle that is not a square form a group.

Traditionally, this group is denoted by V4 and is known as Klein’s four-group

(Vierergruppe in German).

6.1.8 Proposition. The set of all symmetries of a set of points forms a

group.

Proof : Let S be any set of points. The set of symmetries for S is not

empty as ι is a symmetry for S.

Suppose α and β are symmetries for S. Then

βα(S) = β(α(S)) = β(S) = S.

So the set of symmetries has the closure property.

If α is a symmetry for S, then α and α−1 are transformations and

α−1(S) = α−1(α(S)) = ι(S) = S.

So the set of symmetries also has the inverse property.

Hence, the set of all symmetries of the set S forms a group. 2

The group of all symmetries of the set (figure) S is denoted by Sym (S)

and is called the symmetry group of S.

What happens if the set of points is taken to be the set of all points, that

is the plane E 2 ? In this special case, the symmetries are exactly the same

thing as the isometries. So

Isom = Sym (E2).

In other words, the group Isom is the symmetry group of the Euclidean plane.

6.1.9 Corollary. The set of all isometries forms a group.
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Examples of symmetry groups

Symmetry groups can be complicated. However, the discrete ones can be

completely classified and listed (at least for Euclidean geometry).

6.1.10 Example. The symmetry group of the capital letter E (or A) is

the so-called dihedral group of order 2, generated by a single reflection and

denoted by D1.

Note : The Greek origin of the word dihedral is almost equivalent to the Latin

origin of bilateral .

Exercise 94 What is the symmetry group of

(a) a scalene triangle ?

(b) an isosceles triangle that is not equilateral ?

6.1.11 Example. The symmetry group of the capital letter N is likewise

of order 2, but in this case the generator is a halfturn and we speak of the

cyclic group C2.

Note : The two groups D1 and C2 are “abstractly identical” (or isomorphic).

Exercise 95 What is the symmetry group of

(a) a parallelogram that is not a rhombus ?

(b) a parallelogram that is neither a rectangle nor a rhombus ?

6.2 The Cyclic and Dihedral Groups

Let G be a group of isometries (i.e. a subgroup of Isom). Recall that G is

said to be finite if it consists of a finite number of elements (transformations);

otherwise, G is said to be infinite. The order of a (finite) group is the

number of elements it contains.
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The cyclic groups

Let α ∈G. If every element of G is a power of α, then we say that G is

cyclic with generator α and denoted by 〈α〉.

Note : The group 〈α〉 is the smallest subgroup of G containing the element

(transformation) α. Two possibilities may arise :

(a) All the powers αk are different. In this case the group 〈α〉 is infinite and

is referred to as an infinite cyclic group.

(b) Among the powers of α there are some that coincide. Then there is

a positive power of α which is equal to the identity transformation ι.

Denote by n the smallest positive exponent satisfying αn = ι. In this

case the group generated by α is

〈α〉 = {ι, α, α2, . . . , αn−1}.

Such a (finite) group is a cyclic group of order n.

Cyclic groups are Abelian (i.e. commutative).

Let n ≥ 1 be a positive integer and fix an arbitrary point C in the plane.

(Without any loss of generality, we may assume that C is the origin.)

6.2.1 Definition. The cyclic group Cn is the (finite) group generated

by the rotation ρ = ρC, 360
n

.

This group contains exactly n rotations (about the same centre C). The

angles of rotation are multiples of 360
n · We have

Cn = 〈ρ〉

= {ι, ρ, ρ2, . . . , ρn−1}

= {ι, ρC, 360
n
, ρC, 360·2

n
, . . . , ρ

C,
360·(n−1)

n

}.

6.2.2 Example. The cyclic group C1 is the trivial group {ι}.

6.2.3 Example. The cyclic group C2 has two elements : the identity

transformation ι and the halfturn σC . This is the symmetry group of the

capital letter N.
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6.2.4 Example. The swastika is symmetrical by rotation through any num-

ber of right angles; it admits four distinct symmetry operations : rotations

through 1, 2, 3, or 4 right angles. The last is the identity. The first and the

third are inverses of each other, since their product is the identity.

The symmetry group of the swastika is C4, the cyclic group of order 4,

generated by a rotation ρ of 90◦ (or quarterturn).

Exercise 96 Find a figure with symmetry group the cyclic group C3.

Note : For any positive integer n ≥ 2, there is polygon having symmetry group

Cn.

The dihedral groups

Again, let n ≥ 1 be a positive integer and C a fixed point. We are going

to extend the cycle groups Cn by incorporating appropriate reflections (i.e.

bilateral symmetries).

6.2.5 Definition. The dihedral group Dn is the (finite) group con-

taining the elements (rotations) of Cn together with reflections in the n lines

through C which devide the plane into 2n congruent angular regions.

This group has order 2n (i.e. it contains exactly 2n elements) : n rota-

tions (about C) and n reflections in lines (passing through C). The angles

between the axes of the reflections are multiples of 180
n ·

6.2.6 Example. The dihedral group D1 has two elements : the identity

transformation ι and the reflection σL in a line L passing through C (the

so-called symmetry axis). This is the symmetry group of the capital letter A.

6.2.7 Example. The capital letter H admits both reflections and rotations

as symmetry operations. It has a horizontal mirror (like E) and a vertical

mirror (like A), as well as a center of rotational symmetry (like N) where

the mirrors intersect. Thus it has four symmetry operations : the identity
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ι, the horizontal reflection σh, the vertical reflection σv, and the halfturn

σhσv = σvσh.

The symmetry group of the capital letter H is D2, the dihedral group

of order 4, generated by the two reflections σh and σv. Group D2 is the

familiar group V4 (Klein’s four-group).

Exercise 97 Compute the symmetry group of a rectangle that is not a square.

Note : Although C4 and D2 have both order 4, they are not isomorphic : they

have a different structure, different Cayley tables. To see this, it suffices to observe

that C4 contains two elements of order 4, whereas all the elements of D2 (except

the identity) are of order 2.

6.2.8 Example. Compute the symmetry group of a square.

Solution : We suppose the square is centered at the origin and that one

vertex lies on the positive x-axis. We see that the square is fixed by ρ and

σ, where

ρ = ρO,90 and σ = σh .

Observe that

ρ4 = σ2 = ι .

Since the symmetries of the square form a group, then the square must be fixed

by the four distinct rotations ρ, ρ2, ρ3, ρ4 and by the four distinct isometries

ρσ, ρ2σ, ρ3σ, ρ4σ. Let V1 and V2 be adjacent vertices of the square. Under

a symmetry, V1 must go to any one of the four vertices, but then V2 must go

to one of the two vertices adjacent to that one and the images of all remaining

vertices are then determined. So there are at most eight symmetries for the

square. We have listed eight distinct symmetries above. Therefore, there are

exactly eight symmetries and we have listed all of them. Isometries ρ and σ

generate the entire group.

The symmetry group of the square is

D4 = 〈ρ, σ〉 = {ι, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ}
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the dihedral group of order 8. Observe that

σρ = ρ3σ , σρ2 = ρ2σ , σρ3 = ρσ.

The Cayley table for D4 is given below.

D4 ι ρ ρ2 ρ3 σ ρσ ρ2σ ρ3σ

ι ι ρ ρ2 ρ3 σ ρσ ρ2σ ρ3σ

ρ ρ ρ2 ρ3 ι ρσ ρ2σ ρ3σ σ

ρ2 ρ2 ρ3 ι ρ ρ2σ ρ3σ σ ρσ

ρ3 ρ3 ι ρ ρ2 ρ3σ σ ρσ ρ2σ

σ σ ρ3σ ρ2σ ρσ ι ρ3 ρ2 ρ

ρσ ρσ σ ρ3σ ρ2σ ρ ι ρ3 ρ2

ρ2σ ρ2σ ρσ σ ρ3σ ρ2 ρ ι ρ3

ρ3σ ρ3σ ρ2σ ρσ σ ρ3 ρ2 ρ ι

6.2.9 Example. Let n ≥ 3 and consider a regular n-sided polygon cen-

tered at the origin. Suppose that one vertex lies on the positive x-axis.

The n-sided polygon is fixed by ρ and σ, where

ρ = ρO, 360
n

and σ = σh.

(σh is the reflection in the x-axis.)

Observe that

ρn = σ2 = ι.

Since the symmetries of the polygon form a group, then the polygon must be

fixed by the n distinct rotations

ρ, ρ2, . . . , ρn−1

and by the n distinct odd isometries

σ, ρσ, ρ2σ, . . . , ρn−1σ.
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The symmetry group of the n-sided polygon must have at least these 2n sym-

metries. Let V1 and V2 be adjacent vertices of the polygon. Under a symme-

try, V1 must go to any one of the n vertices, but then V2 must go to one of

the two vertices adjacent to that one and the images of all remaining vertices

are then determined. So there are at most 2n symmetries for the n-sided

polygon. Therefore, there are exactly 2n symmetries and we have listed all of

them. Isometries ρ and σ generate the entire group.

The symmetry group of the n-sided polygon is

Dn = 〈ρ, σ〉 = {ι, ρ, ρ2, . . . , ρn−1, σ, ρσ, ρ2σ, . . . , ρn−1σ},

the dihedral group of order 2n.

To compute the entire Cayley table, all that is needed are the equations

σρk = ρ−kσ and ρn = σ2 = ι.

Note : The groups D1 and D2 are, respectively, symmetry groups of an isosceles

triangle that is not equilateral and of a rectangle that is not a square. Hence, or any

positive integer n ≥ 1, there is polygon having symmetry group Dn.

6.3 Finite Symmetry Groups

We want to investigate the possible finite symmetry groups of figures (in the

Euclidean plane E2). So we are led to the study of finite subgroups G of the

group Isom of isometries (on E2).

The key observation which allows us to describe all finite symmetry groups

is the following result.

6.3.1 Proposition. Let G be a finite group of iometries. Then there is a

point C in the plane which is left fixed by every element of G.

Proof : Let P be any point in the plane, and let P be the set of points

which are images of P under the various elements (isometries) of G. So each

element P ′ ∈ P has the form P ′ = α(P ) for some α ∈G.
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Any element of the group G will permute P. (In other words, if P ′ ∈ P

and α ∈G, then α(P ′) ∈ P.)

We list the elements of P arbitrarily, writing

P = {P1, P2, . . . , Pn}.

The fixed point we are looking for is the centre of gravity of P, namely

C =
1

n
(P1 + P2 + · · ·+ Pn) .

Any element of G permutes the set {P1, P2, . . . , Pn}, hence it sends the centre

of gravity to itself. 2

Let G be a finite symmetry group (hence a finite subgroup of Isom).

Then there is a point C fixed by every element (isometry) of G, and we may

adjust coordinates so that this point is the origin. Also, it follows that G

cannot contain a nonidentity translation or a glide reflection.

So the group G contains only rotations (about the same point) or reflec-

tions.

Note : The group generated by a nonidentity translation is an infinite subgroup

of Isom. Hence any subgroup of Isom which contains either rotations about two

different points or a glide reflection is infinite. Indeed, if ρC,r and ρD,s are two

nonidentity rotations about different centres, then

ρ−1
C,rρ

−1
D,sρC,rρD,s

is a nonidentity translation. Also, the square of any glide reflection is a nonidentity

translation.

Leonardo da Vinci (1452-1519), who wanted to determine the possible

ways to attach chapels and niches to a central building without destroying the

symmetry of the necleus, realized that all designs (in the plane) with finitely

many symmetries have either rotational symmetries and bilateral symmetries

or just rotational symmetries. In other words, the following result holds.
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6.3.2 Theorem. (Leonardo’s Theorem) A finite symmetry group is ei-

ther a cyclic group Cn or a dihedral group Dn.

Proof : We shall consider the case G contains only rotations and the case

G contains at least one reflection separately.

Suppose that (the finite group of isometries) G contains only rotations.

One possibility is that G is the trivial group C1 = {ι}. Otherwise, we suppose

G contains a nonidentity rotation ρ = ρC,r. Then all the other elements in

G are rotations about the same centre C.

We note that

ρC,−s ∈G ⇐⇒ ρC,s ∈G

and that all the elements in G can be written in the form ρC,s, where 0 ≤
s < 360.

Let ρ = ρC,s, where s has the minimum positive value.

If ρC,t ∈ G with t > 0, then t − ks cannot be positive and less than s

for any integer k by the minimality of s. So

• t = ks for some integer k

• ρC,t = ρk.

In other words, the elements of G are precisely the powers of ρ. We conclude

that, in this case, G is a cyclic group Cn for some positive integer n.

Suppose now that (the finite group of isometries) G contains at least one

reflection. Since the identity transformation ι is an even isometry, since an

isometry and its inverse have the same parity, and since the product of two even

isometries is an even isometry, it follows that the subset of all even isometries

in G forms a finite subgroup G+ of G. By the foregoing argument, we see

that

G+ = Cn = {ι, ρ, ρ2, . . . , ρn−1}.

So the even isometries in G are the n rotations ι = ρn, ρ, ρ2, . . . , ρn−1.



C.C. Remsing 95

Suppose G has m reflections. If σ is a reflection in G, then the n odd

isometries

σ, ρσ, ρ2σ, . . . , ρn−1σ

are in G. So n ≤ m.

However, the m odd isometries multiplied (on the right) by σ give m

distinct even isometries. So m ≤ n.

Hence m = n and G contains the 2n elements generated by rotation ρ

and reflection σ. We conclude that, in this case, G is a dihedral group Dn

for some positive integer n. 2

Recall that an n-sided polygon (regular or not) has at most 2n symme-

tries. Since the symmetry group of a polygon must then be a finite group (of

isometries), Leonardo’s Theorem has the following immediate corollary.

6.3.3 Corollary. The symmetry group for a polygon is either a cyclic

group or a dihedral group.

6.4 Exercises

Exercise 98 What is the symmetry group of a rhombus that is not a square ?

Exercise 99 TRUE or FALSE ?

(a) If P is a point of symmetry for set S of points, then P is in S.

(b) If L and M are perpendicular lines, then L is a line of symmetry for

M.

(c) A regular pentagon has a point of symmetry.

(d) The symmetry group of a rectangle has four elements.

Exercise 100 Compute the symmetry group of an equilateral triangle.

Exercise 101 Determine the symmetry groups of each of the following figures.
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Exercise 102 What is the symmetry group of the graph of each of the following

equations?

(a) y = x2.

(b) y = x3.

(c) 3x2 + 4y2 = 12.

(d) xy = 1.

Exercise 103 Arrange the capital letters written in most symmetric form into

equivalent classes where two letters are in the same class if and only if the two letters

have the same symmetries when superimposed in standard orientation.

Exercise 104

(a) Prove that every cyclic group Cn is commutative.

(b) Verify that the dihedral groups D1 and D2 are commutative.

(c) Prove that the groups Dn, n ≥ 3 are not commutative.

Exercise 105 Find polygons having symmetry groups C3 and C4, respectively.

Discussion : Symmetry appeals to artist and scientist alike; it is

intimately associated with an innate human appeciation of pattern. Symmetry is

bound up in many of the deepest patterns of Nature, and nowadays it is fundamental

to our scientific understanding of the Universe. Conservation principles, such as

those for energy and momentum, express a symmetry that (we believe) is possessed

by the entire space-time continuum : the laws of physics are the same everywhere.

The quantum mechanics of fundamental particles is couched in the mathematical

language of symmetries. The symmetries of crystals not only classify their shapes, but

determine many of their properties. Many natural forms, from starfish to raindrops,

from viruses to galaxies, have striking symmetries.
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It took humanity roughly two and a half thousand years to attain a precise formu-

lation of the concept of symmetry, counting from the time when the Greek geometers

made the first serious mathematical discoveries about that concept, notably the proof

that there exist exactly five regular solids. (The five regular solids are the tetrahedron,

the cube, the octahedron, the dodecahedron, and the icosahedron.) Only after that

lengthy period of gestation was the concept of symmetry something that scientists

and mathematicians could use rather than just admire.

The understanding that symmetries are best viewed as transformations arose

when mathematicians realized that the set of symmetries of an object is not just an

arbitrary collection of transformations, but has a beautiful internal structure. The

fact that the symmetries of an object form a group is a significant one. However,

it’s such a simple and “obvious” fact that for ages nobody even noticed it; and even

when they did, it took mathematicians a while to appreciate just how significant this

simple observation really is. It leads to a natural and elegant “algebra” of symmetry,

known as Group Theory.

In 1952 the distinguished mathematician Hermann Weyl (1885-1955), who

was about to retire from the Institute for Advanced Studies at Princeton, gave a series

of public lectures on mathematics. His topic, and the title of the book that grew from

his talks, was Symmetry. It remains one of the classic popularizations of the subject.

Some of the Weyl’s greatest achievements had been in the deep mathematical setting

that underlies the study of symmetry, and his lectures were strongly influenced by

his mathematical tastes; but Weyl talked with authority about art and philosophy

as well as mathematics and science. You will find in the book discussions of the

cyclic groups, dihedral groups, as well as wallpaper groups. Most important, you will

find a fascinating treatment in words and pictures of how these purely mathematical

abstractions relate to the physical universe and works of art throughout the ages.

Symmetry is a vast subject, significant in art and nature. Mathematics lies

at its root, and it would be hard to find a better one on which to demonstrate

the working of the mathematical intellect.

Hermann Weyl
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7.1 Classification of Similarities

The image of a triangle as seen through a “magnifying glass” is similar to

the original triangle. For instance, the transformation (x, y) 7→ (2x, 2y) is

a “magnifying glass” for the Euclidean plane, multiplying all distances by 2.

(We shall call such a mapping a stretch.)

Some definitions

We make the following definition.

7.1.1 Definition. If C is a point and r > 0, then a stretch (or homo-

thety) of ratio r about C is the transformation that fixes C and otherwise

sends point P to point P ′, where P ′ is the unique point on CP→ such that

CP ′ = rCP (or, alternatively, where P ′ is the unique point on
←→
CP such that

CP ′ = rCP ).

We say that the point C is the centre and the (positive) factor r is the

magnification ratio of the stretch. A stretch is also called a homothetic

transformation.

Note : We allow the identity transformation to be a stretch (of ratio 1 and any

centre). Observe, however, that we allow magnification ratios r ≤ 1, which is in

slight conflict with the everyday meaning of the word “magnification”.

Exercise 106 Verify that the set of all stretches with a given centre C forms a

commutative group.

There is nothing to stop us from allowing a negative ratio in the definition

of a stretch. In this case, point P is taken to a point P ′ lying on
←→
CP but

on the other side of C from where P is located; that is, CP ′ = rCP . Thus

such a transformation is the product (in either order) of a stretch about C

and a halfturn about the centre. This motivates the following definition.
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7.1.2 Definition. A dilation about point C is a stretch about C or

else a stretch about C followed by a halfturn about C.

Other transformations can be obtained by composing a stretch with any

other transformation (e.g. an isometry). Two such special combinations will

be given a name.

7.1.3 Definition. A stretch reflection is a nonidentity stretch about

some point C followed by the reflection in some line through C.

7.1.4 Definition. A stretch rotation is a nonidentity stretch about some

point C followed by a nonidentity rotation about C.

Any of the above transformations are shape-preserving : they increase or

decrease all lengths in the same ratio but leave shapes unchanged. We make

the following definition.

7.1.5 Definition. If r > 0, then a similarity (or similitude) of ratio

r is a transformation α such that

P ′Q′ = rPQ for all points P and Q , where P ′ = α(P ) and Q′ = α(Q) .

Since a similarity is a transformation that multiplies all distances by some

positive number, then the image of a triangle under a similarity is a triangle.

Exercise 107 Show that collinear points are mapped onto collinear points by a

similarity transformation.

Thus a similarity is a collineation. The following proposition is easy to

prove (and we shall leave it as an exercise).

7.1.6 Proposition. The following results hold.

(a) An isometry is a similarity.

(b) A similarity with two fixed points is an isometry.



C.C. Remsing 101

(c) A similarity with three noncollinear fixed points is the identity.

(d) A similarity is a collineation that preserves betweenness, midpoints,

segments, rays, triangles, angles, angle measure, and perpendicular-

ity.

(e) The product of a similarity of ratio r and a similarity of ratio s

is a similarity of ratio rs.

(f) The similarities form a group Sim that contains the group of

Isom of all isometries.

Exercise 108 Prove the preceding proposition.

7.1.7 Proposition. If 4ABC ∼ 4A′B′C ′, then there is a unique simi-

larity α such that

α(A) = A′, α(B) = B′, and α(C) = C ′.

Proof : Suppose 4ABC ∼ 4A′B′C ′. Let δ be the stretch about A such

that δ(B) = E with AE = A′B′. With F = δ(C), then 4AEF ∼= 4A′B′C ′

by ASA. Since there is an isometry β such that β(A) = A′, β(E) = B′, and

β(F ) = C ′, then βδ is a similarity taking A,B,C to A′, B′, C ′, respectively.

If α is a similarity taking A,B,C to A′, B′, C ′, respectively, then α−1(βδ)

fixes three noncollinear points and must be the identity. Therefore, α = βδ.

2

Note : Generalizing from triangles to arbitrary sets of points, we say that (the

sets of points) S1 and S2 are similar provided there is a similarity α such that

α(S1) = S2.

What are the dilatations ?

Recall that a dilatation is a collineation α such that L ‖ α(L) for every

line L and that the group H generated by the halfturns is contained in the

group D of all dilatations.
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7.1.8 Proposition. A dilation is a dilatation and a similarity.

Proof : Let α be a dilation. First suppose α is a stretch of ratio r about

point C. Transformation α fixes the lines through C. Suppose P,Q,R are

three collinear points on a line off C and have images P ′, Q′, R′, respectively,

under α. Since

CP ′ = rCP , CQ′ = rCQ , and CR′ = rCR

it follows (from the theory of similar triangles) that
←→
P ′Q′ ‖

←→
PQ, that points

P ′, Q′, R′ are collinear, and that P ′Q′ = rPQ. Hence, a stretch is a dilatation

and a similarity. Since a halfturn is a dilatation and a similarity, then the

product of a stretch and a halfturn is both a dilatation and a similarity. 2

7.1.9 Proposition. If
←→
AB ‖

←→
A′B′, then there is a unique dilatation δ such

that

δ(A) = A′ and δ(B) = B′.

Proof : Suppose
←→
AB ‖

←→
A′B′ and there is a dilatation δ such that δ(A) =

A′ and δ(B) = B′. If point P is off
←→
AB, then δ(P ) is uniquely determined

as the intersection of the line through A′ that is parallel to
←→
AP and the line

through B′ that is parallel to
←→
BP . Then, if Q is on

←→
AB, point δ(Q) is

uniquely determined as the intersection of
←→
A′B′ and the line through δ(P )

that is parallel to
←→
PQ. Since the image of each point is uniquely determined

by the images of A and B, then there is at most one dilatation δ taking A

to A′ and B to B′. On the other hand, τA,A′ followed by the dilation about

A′ that takes τA,A′(B) to B′ is a dilatation taking A to A′ and B to B′.2

7.1.10 Proposition. If point A is not fixed by dilatation δ, then line
←→
AA′ is fixed by δ, where A′ = δ(A).

Proof : If dilatation δ does not fix point A and if A′ = δ(A), then δ(
←→
AA′)

must be the line through δ(A) that is parallel to
←→
AA′. 2

We can now answer the question “What are the dilatations ?”
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7.1.11 Proposition. A dilatation is a translation or a dilation.

Proof : A nonidentity dilatation α must have some nonfixed line L. So L
and α(L) are distinct parallel lines. Any two points A and B on line L are

such that neither α(A) nor α(B) is on L. Let A′ = α(A) and B′ = α(B).

Now
←→
AB and

←→
A′B′ are distinct parallel lines. If

←→
AA′ ‖

←→
BB′, then 2AA′B′B

is a parallelogram, τA,A′(B) = B′, and (Proposition 7.1.9) dilatation α

must be the translation τA,A′ . However, suppose
←→
AA′ 6‖

←→
BB′. Then the lines

←→
AA′ and

←→
BB′ are fixed (Proposition 7.1.10) and must intersect at some

fixed point C. Since
←→
AB is not fixed, then C is off both parallel lines

←→
AB and

←→
A′B′ with C,A′, A collinear and C,B′, B collinear. So CA′/CA = CB′/CB.

Then there is a dilation δ about C such that δ(A) = A′ and δ(B) = B′. (If

point C is between points A and A′, then δ is a stretch followed by σC ;

otherwise, δ is simply a stretch about C.) By the uniqueness of a dilatation

taking A to A′ and B to B′, the dilatation α must be the translation τA,A′

or else the dilation δ. 2

The classification theorem

7.1.12 Proposition. If α is a similarity and P is any point, then α =

βδ, where δ is a stretch about P and β is an isometry.

Proof : A similarity is just a stretch about some point P followed by an

isometry. Actually, the point P can be arbitrarily chosen as follows. If α is

a similarity of ratio r, let δ be the stretch of ratio r about P . Then δ−1 is

a stretch of ratio 1/r. So αδ−1 is an isometry and α = (αδ−1)δ. 2

This important result gives us a feeling for the nature of the similarities.

We need only one more result on similarities before the Classification The-

orem. However, the proof uses a lemma about directed distance.

We suppose the lines in the plane are directed (in an arbitrary fashion)

and AB denotes the directed distance from A to B on line
←→
AB. For any
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points A and B, we have

AB = −BA and so AA = 0 .

Note : For distinct points A,B,C on line L the number AC/CB is independent

of the choice of positive direction on line L, as changing the positive direction would

change the sign of both numerator and denominator and leave the value of the fraction

itself unchanged.

Exercise 109 Show that the function

f : R \ {1} → R \ {−1}, x 7→ x

1− x
is a bijection.

7.1.13 Lemma. Given the line
←→
AB, the function

f̂ :
←→
AB \{B} → R \ {−1}, X 7→ AX/XB

is a bijection.

Proof : There is a one-to-one correspondence between points X ∈
←→
AB and

real numbers x ∈ R given by (the equation)

AX = xAB.

Hence we can identify any point X ∈
←→
AB, different from B, with its intrinsic

coordinate x ∈ R \ {1}. Then

XB = XA+AB = (1− x)AB

and so

AX/XB =
x

1− x
= f(x).

It follows that the function

X 7→ AX/XB

is a bijection. 2
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7.1.14 Corollary. If point P ∈
←→
AB, different from B, then

AP/PB 6= −1.

7.1.15 Corollary. If t 6= −1, then there exists a unique point P ∈
←→
AB,

different from B, such that

AP/PB = t.

7.1.16 Corollary. Point P ∈
←→
AB is between A and B if and only if

AP/PB is positive.

7.1.17 Proposition. A similarity without a fixed point is an isometry.

Proof : The lemma above will now be used to prove that a similarity that

is not an isometry must have a fixed point. Suppose α is a similarity that is

not an isometry. We may suppose α is not a dilatation. (Why ?) So there is

a line L such that L′ 6‖ L where L′ = α(L). Let L intersect L′ at point A.

With A′ = α(A), then A′ is on L′. We suppose A′ 6= A. Let M be the line

through A′ that is parallel to L. With M′ = α(M), then M′ ‖ L′. Let M′

intersect M at point B. With B′ = α(B), then B′ is on M′ and distinct

from A′. We suppose B′ 6= B. So

L′ =
←→
AA′ , M′ =

←→
BB′ , and

←→
AA′ ‖

←→
BB′ .

Now
←→
AB 6‖

←→
A′B′ as otherwise A′B′ = AB and α is an isometry. So

←→
AB and

←→
A′B′ intersect at some point P off both parallel lines

←→
AA′ and

←→
BB′ with

P,A,B collinear and P,A′, B′ collinear. So AP/PB = A′P/PB′. If α has

ratio r and P ′ = α(P ), then

AP/PB = rAP/rPB = A′P ′/P ′B′.

Hence, A′P/PB′ = A′P ′/P ′B′. Point P is between A′ and B′ if and only

if P is between A and B since
←→
AA′ ‖

←→
BB′, but P is between A and B if

and only if P ′ is between A′ and B′. Hence, P is between A′ and B′ if
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and only if P ′ is between A′ and B′. Therefore, by Lemma 7.1.13 (and its

corollaries),

A′P/PB′ = A′P ′/P ′B′ and P = P ′.

So α(P ) = P , as desired. 2

7.1.18 Theorem. (The Classification Theorem for Plane Similarities)

Each nonidentity similarity is exactly one of the following : isometry, stretch,

stretch rotation or a stretch reflection.

Proof : In order to classify the similarities, suppose α is a similarity that

is not an isometry. Then α has some fixed point C. So α = βδ where δ is

a stretch about C and where β is an isometry. Since β(C) = αδ−1(C) = C,

then β must be one of the identity ι, a rotation ρ about C, or a reflection

σC with C on C. Hence, α is one of δ, ρδ, or σCδ. We have proved the major

part of the result. There remains only the task of verifying the “exactly” in

the statement of the classification theorem; this is left as an exercise. 2

Exercise 110 Finish the proof of the Classification Theorem (for similarities).

7.2 Equations for Similarities

The following technical result is easy to prove.

7.2.1 Proposition. Suppose α ∈ Sim. Then

(a) αγα−1 ∈ Isom if γ ∈ Isom.

(b) αδα−1 ∈D if δ ∈D.

(c) αηα−1 ∈H if η ∈H.

(d) ατα−1 ∈ T if τ ∈ T.

(e) ασPα
−1 = σα(P ).

(f) ασLα
−1 = σα(L).
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Exercise 111 Prove the preceding proposition.

In order to look at the dilatations a little more closely, a notation for the

dilation is introduced as follows. If a > 0, then δP,a is the stretch about P

of (magnification) ratio a and dilation δP,−a is defined by

δP,−a : = σP δP,a.

Multiplying both sides of this last equation by σP on the left, we have

σP δP,−a = δP,a. So

δP,−r = σP δP,r , r 6= 0.

The number r is called the dilation ratio of dilation δP,r. There are two

special cases where a dilation is also an isometry :

δP,1 = ι and δP,−1 = σP .

Clearly, the ratio of δP,r is the absolute value |r| of the dilation ratio r. For

example, δP,−3 has ratio +3 but dilation ratio −3.

7.2.2 Proposition. If P is a point, then

δP,−r = σP δP,r , δP,1 = ι , δP,−1 = σP , δP,sδP,r = δP,rs (r, s 6= 0).

If δP,r is a dilation and α is a similarity, then

αδP,rα
−1 = δα(P ),r.

Proof : From the special case

σP = δP,rσP δ
−1
P,r (see Proposition 7.2.1)

it follows

σP δP,r = δP,rσP

and then

δP,sδP,r = δP,rs (r, s 6= 0).
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Thus,

δ−1P,r = δP,1/r , r 6= 0.

If α is any similarity, then αδP,rα
−1 is a dilatation (Proposition 7.2.1)

fixing point α(P ) and has ratio |r|. Hence,

αδP,rα
−1 = δα(P ),s , where s = ±r.

The question is “Is r the dilation ratio of αδP,rα
−1 ?” With P ′ = α(P ) and

Q′ = α(Q) for Q 6= P , that the answer is “Yes” follows from the equivalence

of each of the following :

(1) r > 0.

(2) δP,r is a stretch.

(3) δP,r(Q) is on PQ→.

(4) αδP,r(Q) is on P ′Q′→.

(5) αδP,rα
−1(α(Q)) is on P ′Q′→.

(6) δP,s(Q
′) is on P ′Q′→.

(7) δP,s is a stretch.

(8) s > 0.

Since s = ±r and both r and s have both the same sign, then r = s, as

desired. 2

Note : If r 6= 1, then the nonidentity dilation δP,r is said to have centre P .

Further results

Further results on the dilatations are more easily obtained by using coor-

dinates.
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7.2.3 Proposition. If P = (u, v), then (the dilation) δP,r has equations
x′ = rx+ (1− r)u

y′ = ry + (1− r)v.

Proof : Let O = (0, 0) be the origin of the plane. We clearly have

δO,r((x, y)) = (rx, ry) , r > 0

and this same equation must hold for negative r since σO((x, y)) = (−x,−y).

So δO,r has equations 
x′ = rx

y′ = ry

in any case. Now, suppose P = (u, v) and δP,r((x, y)) = (x′, y′). Then, from

the equations

δP,r = τO,P δO,rτ
−1
O,P = τO,P δO,rτP,O

we have

δP,r((x, y)) = (r(x− u) + u, r(y − v) + v) = (x′, y′).

Indeed,

(x, y) 7→ (x− u, y − v) 7→ (r(x− u), r(y − v)) 7→ (r(x− u) + u, r(y − v) + v).

Hence δP,r has equations 
x′ = rx+ (1− r)u

y′ = ry + (1− r)v.

2

This simple result has some interesting corollaries.
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7.2.4 Corollary. Given δA,1/r and δB,r, then for some point C

δB,rδA,1/r = τA,C .

7.2.5 Corollary. Given δA,r and δB,s with rs 6= 1, then for some point

C

δB,sδA,r = δC,rs.

7.2.6 Corollary. Given τA,B and δA,r with r 6= 1, then for some point

C

τA,BδA,r = δB,rτA,B = δC,r.

Exercise 112 In each case, work out an explicit expression for the point C (in

terms of A,B, r, and s, as may be the case).

Note : Although the coordinate proofs for the corollaries above are easy to give

and the content of the equations themselves is easy to understand, the visualization

is very hard, if not, in some sense, virtually impossible.

7.2.7 Proposition. A similarity (of ratio r) has equations of the form
x′ = ax− by + h

y′ = ±(bx+ ay) + k

with r2 = a2 + b2 6= 0

and, conversely, equations of this form are those of a similarity.

Proof : A similarity is a stretch about the origin O followed by an isometry

(Proposition 7.1.12). From this fact and the equations for an isometry given

by Proposition 5.3.3, it follows that a similarity has equations of the form
x′ = (r cos q)x− (r sin q)y + h

y′ = ±((r sin q)x+ (r cos q)y) + k

and, conversely, equations of this form are those of a similarity. With

a = r cos q and b = r sin q
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we get the desired result. 2

7.2.8 Definition. A similarity α that is a stretch about some point P

followed by an even isometry is said to be direct.

7.2.9 Definition. A similarity α that is a stretch about some point P

followed by an odd isometry is said to be opposite.

From the equations for isometries and similarities it is evident that whether

a similarity is direct or opposite is independent of the point P above.

Note : In the equations in Proposition 7.2.7, the positive sign applies to direct

similarities and the negative sign applies to opposite similarities.

We have

7.2.10 Proposition. Every similarity is either direct or opposite, but not

both. The direct similarities form a group. The product of two opposite simi-

larities is direct. The product of a direct similarity and an opposite similarity

is an opposite similarity.

7.3 Exercises

Exercise 113 For what point P does a dilation about P have equations
x′ = −2x+ 3

y′ = −2y − 4 ?

Exercise 114 What are the fixed points and fixed lines of a stretch reflection ?

What are the fixed points and fixed lines of a stretch rotation ?

Exercise 115 TRUE or FALSE ?

(a) A similarity that is not an isometry has a fixed point, and a dilatation

that is not a translation has a fixed point.

(b) The group of all dilatations is generated by the dilations.
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(c) σP δP,r = δP,rσP for any point P and nonzero number r.

(d) δA,r(B) is on AB→ if A 6= B.

(e) There is a unique point Q on
←→
AB such that AQ/QB = 7.

(f) ατA,Bα
−1 = τα(A),α(B) for any similarity α and points A and B.

(g) A dilatation is a similarity.

Exercise 116 PROVE or DISPROVE : If α is a transformation and δ is a dilation,

then αδα−1 is a dilatation.

Exercise 117 PROVE or DISPROVE : If r > 0, then a mapping α such that

P ′Q′ = rPQ for all points P and Q with P ′ = α(P ) and Q′ = α(Q) is a similarity.

Exercise 118 Complete each of the following :

(a) If δP,3((x, y)) = (3x+ 7, 3y − 5), then P = . . .

(b) If x′ = 3x + 5y + 2 and y′ = tx − 3y are the equations of a similarity,

then t = . . .

(c) If σP δP,15 = δP,x, then x = . . .

(d) If δC,rτA,B = τP,QδC,r, then P = . . . and Q = . . .

(e) If δB,sδA,t = δT,tδB,s, then T = . . .

(f) If ρA,rδA,s = δA,sρA,x, then x = . . .

(g) If τ−1
A,B = τA,C , then C = . . .

Exercise 119 PROVE or DISPROVE : Nonidentity dilatations α and β commute

if and only if α and β are translations.

Exercise 120 If α((1, 2)) = (0, 0) and α((3, 4)) = (3, 4), then what is the ratio of

similarity α ?

Exercise 121 If α((0, 0)) = (1, 0), α((1, 0)) = (2, 2), and α((2, 2)) = (−1, 6) for

similarity α, then find α((−1, 6)).

Exercise 122 Show that an involutory similarity is a reflection or a halfturn.
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Exercise 123 PROVE or DISPROVE : There are exactly two dilatations taking

circle AB to circle CD.

Exercise 124 Show that a nonidentity dilation with centre P commutes with σL

if and only if P is on L.

Exercise 125 Show that

(a) nonidentity dilations δA,a and δB,b commute if and only if A = B.

(b) dilatations δA,a and τA,B never commute if A 6= B and a 6= 1.

Discussion : The Euclidean plane admits transformations (called

similarities) which multiply all distances by a constant factor r 6= 0. The typical

similarity is (the stretch) (x, y) 7→ (rx, ry). Figures related by a similarity are said to

be “of the same shape” or “similar”. In particular, all triangles with the same angles

are similar, as are all squares. The existence of squares of different sizes means, for

instance, that n2 unit squares fill a square of side n. This leads to the property of

Euclidean area that multiplying the lengths in a figure by r multiplies its area by r2.

The Euclidean plane is unique in having this simple dependence of area on length

because the sphere and the hyperbolic plane do not admit similarities (except with

r = 1). There the relationships between length and area are more complicated – in-

volving circular and hyperbolic functions, respectively – but the relationship between

angles and area is delightfully simple.

This is a benefit of having the triangle’s angle sum unequal to π. One then has

a nontrivial angular excess function for triangles 4 :

excess (4) = angle sum (4)− π,

which is proportional to area because it is additive. That is, if triangle 4 splits into

triangles 41 and 42, then

excess (4) = excess (41) + excess (42) .

Euclidean geometry misses out this property because it is too simple – its angular ex-

cess function is zero. It can be shown that any continuous, nonzero, additive function

must be proportional to area.
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The identification of angular excesses with area clearly shows why similar triangles

of different sizes cannot exist in the sphere and hyperbolic plane. Triangles with the

same angles have the same area, and hence one cannot be larger than the other.

A branch of mathematics is called geometry, because the name seems good

on emotional and traditional grounds to a sufficiently large number of

competent people.

O. Veblen and J.H.C. Whitehead
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8.1 Collineations

We now turn to transformations that were first introduced by Leonhard

Euler (1707-1783).

Affine transformations (as collineations)

8.1.1 Definition. An affine transformation (or affinity) is a collineation

that preserves parallelness among lines.

So, if L and M are parallel lines and α is an affine transformation, then

lines α(L) and α(M) are parallel. It is easy to prove the following result.

8.1.2 Proposition. A collineation is an affine transformation and, con-

versely, an affine transformation is a collineation.

Proof : An affine transformation is by definition a collineation. If β is any

collineation and L and M are distinct parallel lines, then β(L) and β(M)

cannot contain a common point β(P ), as point P would then have to be on

both L and M. Therefore, every collineation is an affine transformation. 2

Note : Affine transformations and collineations are exactly the same thing for the

Euclidean plane. The choice between the terms affine transformation and collineation

is sometimes arbitrary and sometimes indicates a choice of emphasis on parallelness of

lines or on collinearity of points. Loosely speaking, affine geometry is what remains

after surrendering the ability to measure length (isometries) and surrendering the

ability to measure angles (similarities), but maintaining the incidence structure of

lines and points (collineations).

8.1.3 Example. Similarities preserve parallelness and hence are affine trans-

formations. In particular, isometries are also affine transformations.

8.1.4 Example. The mapping

α : E2 → E2 , (x, y) 7→ (2x, y)

is an affine transformation that is not a similarity.
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Note : The word symmetry brings to mind such general ideas as balance, agree-

ment, order, and harmony. We have been exceedingly conservative in our use of

the word symmetry ; for us, symmetries are restricted to isometries. With a broader

mathematical usage of the term, we would certainly be saying that the similarities are

the symmetries of similarity geometry and that the collineations are the symmetries

of affine geometry. In the most broad usage, the group of all transformations on a

structure that preserves the essence of that structure constitutes the symmetries (also

called the automorphisms) of the structure.

A collineation preserves collinearity of points. We wish to show that,

conversely, a transformation such that the image of every three collinear points

are themselves collinear must be a collineation.

8.1.5 Proposition. A transformation such that the images of every three

collinear points are themselves collinear is an affine transformation.

Proof : We suppose α is a transformation that preserves collinearity and

aim to show α(L) is a line whenever L is a line. Let A and B be distinct

points on L, and let M be the line through α(A) and α(B). By the definition

of α, all the points of α(L) are on M. However, are all the points of M
on α(L) ? Suppose C ′ is a point on M distinct from α(A) and α(B), and

let C be the point such that α(C) = C ′. To show C must be on L, we

assume C is off L and then obtain a contradiction. Now the image of all the

points of
←→
AB,

←→
BC, and

←→
AC are on M since collinearity is preserved under α.

However, any point P in the plane is on a line containing two distinct points

of 4ABC. Since the images of these two points lie on M, then the image of

P lies on M. Therefore, the image of every point lies on M, contradicting

the fact that α is an onto mapping. Hence, C must lie on L, M = α(L),

and α is a collineation, as desired. 2

Are the affine transformations the same as those transformations for which

the images of any three noncollinear points are themselves noncollinear ? The

answer is “Yes”.
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8.1.6 Proposition. A transformation is an affine transformation if and

only if the images of any three noncollinear points are themselves noncollinear.

Proof : Suppose α is an affine transformation. Then α−1 is an affine trans-

formation and can’t take three noncollinear points to three collinear points.

Therefore, affine transformation α must take any three noncollinear points to

three noncollinear points.

Conversely, suppose β is a transformation such that the images of any

three noncollinear points are themselves noncollinear. Assume β is not an

affine transformation. Then β−1 is not an affine transformation. By the

contrapositive of the preceding result, then there are three collinear points

whose images under β−1 are not collinear. Hence, since β is the inverse

of β−1, then there are three noncollinear points whose images under β are

collinear, contradiction. Therefore, β is an affine transformation. 2

An affine transformation preserves betweenness

The result above does not state that the image of a triangle under an affine

transformation is necessarily a triangle, but states only that the images of the

vertices of a triangle are themselves vertices of a triangle. We do not know the

image of a segment is necessarily a segment. More fundamental, we do not

know that an affine transformation necessarily preserves betweenness. It will

take some effort to prove this. We begin by showing that midpoint is actually

an affine concept ; that is, an affine transformation carries the midpoint of two

given points to the midpoint of their images.

8.1.7 Proposition. If α is an affine transformation and M is the mid-

point of points A and B, then α(M) is the midpoint of α(A) and α(B).

Proof : Suppose A and B are distinct points and α is an affine transfor-

mation. Let P be any point off
←→
AB. Let Q be the intersection of the line

through A that is parallel to
←→
PB and the line through B that is parallel to

←→
PA. So 2APBQ is a parallelogram. Let A′ = α(A), B′ = α(B), P ′ = α(P ),
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and Q′ = α(Q). Since two parallel lines go to two parallel lines under α,

then 2A′P ′B′Q′ is a parallelogram. (We are not claiming that α(2APBQ) =

2A′P ′B′Q′ but only that A′, P ′, B′, Q′ are vertices in order of a parallelogram.)

Further, M , the intersection of
←→
AB and

←→
PQ , must go to M ′, the intersec-

tion of
←→
A′B′ and

←→
P ′Q′. However, since the diagonals of a parallelogram bisect

each other, then M is the midpoint of A and B while M ′ is the midpoint

of A′ and B′. Hence, α preserves midpoints. 2

8.1.8 Proposition. If α is an affine transformation, the n + 1 points

P0, P1, P2,

. . . , Pn divide the segment P0Pn into n congruent segments Pi−1Pi, and

P ′i = α(Pi), then the n+1 points P ′0, P
′
1, P

′
2, . . . , P

′
n divide the segment P ′0P

′
n

into n congruent segments P ′i−1P
′
i .

Proof : Suppose α is an affine transformation and the n+1 points P0, P1, P2, . . . ,

Pn divide the segment P0Pn into n congruent segments Pi−1Pi. Let P ′i =

α(Pi). Since P0P1 = P1P2, P1P2 = P2P3, . . . , then P1 is the midpoint

of P0 and P2, point P2 is the midpoint of P1 and P3, etc. Hence, P ′1 is

the midpoint of P ′0 and P ′2, point P ′2 is the midpoint of P ′1 and P ′3, etc.

So the images P ′0, P
′
1, P

′
2, . . . , P

′
n divide the segment P ′0P

′
n into n congruent

segments P ′i−1P
′
i . 2

It follows from this last result that P between A and B implies α(P )

between α(A) and α(B) provided that AP/PB is rational.

Note : It would have to be a very strange collineation that allowed between-

ness not to be preserved in general although preserving midpoints. Early geometers

avoided such a “monster transformation” simply by incorporating the preservation of

betweenness within the definition of an affine transformation. In 1880 Gaston Dar-

boux (1842-1917) showed that the “monster transformation” does not exist. Thus

the following result holds (but the proof wil be omitted).

8.1.9 Theorem. If α is an affine transformation and point P is between

points A and B, then point α(P ) is between α(A) and α(B).



120 Groups and Geometry

As an immediate consequence of Theorem 8.1.9, we know that an affine

transformation preserves all those geometric entities whose definition goes back

only to the definition of betweenness. Thus, an affine transformation preserves

segments, rays, triangles, quadrilaterals, halfplanes, interiors of triangles, etc.

In particular, the following result holds :

8.1.10 Proposition. If A′, B′, C ′ are the respective images of three non-

collinear points A,B,C under affine transformation α, then

α(AB) = A′B′ and α(4ABC) = 4A′B′C ′ .

8.1.11 Proposition. An affine transformation fixing two points on a line

fixes that line pointwise.

Proof : Suppose affine transformation α fixes two points A and B. As-

sume there is a point C on
←→
AB such that C ′ 6= C with C ′ = α(C). Without

loss of generality, we may assume C is on AB→. As an intermediate step, we

shall show C is between two fixed points A and D. Let B0 = B and define

Bi+1 so that Bi is the midpoint of A and Bi+1 for i = 0, 1, 2 . . . . Since A

and B0 are given as fixed by α, then each of B1, B2, B3, . . . in turn must be

fixed by α since α preserves midpoints. Let D = Bk where k is an integer

such that

ABk = 2kAB > AC .

Then C lies between fixed points A and D. So AD is then fixed and both C

and C ′ lie in AD. Now, let n be an integer large enough so that nCC ′ > AD.

Let P0 = A, Pn = D, and the n+ 1 points P0, P1, . . . , Pn divide the segment

AD into n congruent segments Pi−1Pi. Each of the points Pi is fixed by

α by Proposition 8.1.7. So each APi and PiD is fixed by α. However,

integer n was chosen large enough so that for some integer j point Pj is

between C and C ′. So C and C ′ are in different fixed segments APj and

PjD, contradiction. Therefore, α(C) = C for all points on
←→
AB, as desired.

2
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8.1.12 Corollary. An affine transformation fixing three noncollinear points

must be the identity. Given 4ABC and 4DEF , there is at most one affine

transformation α such that α(A) = D, α(B) = E, and α(C) = F .

Note : In the next section we shall see that there is also at least one affine trans-

formation α as described in the corollary above. Thus an affine transformation is

completely determined once the images of any three noncollinear points are known.

8.2 Affine Linear Transformations

We start by making an “ad hoc” definition.

8.2.1 Definition. An affine linear transformation is any mapping

α : E2 → E2 , (x, y) 7→ (ax+ by + h, cx+ dy + k) where ad− bc 6= 0 .

The number ad− bc is called the determinant of α.

An affine linear transformation is actually a transformation since a given

(x, y) obviously determines a unique (x′, y′) and, conversely, a given (x′, y′)

determines a unique (x, y) precisely because the determinant is nonzero. As

we might expect, affine linear transformations are related to affine transfor-

mations.

Exercise 126 If P = (p1, p2), Q = (q1, q2), and R = (r1, r2) are vertices of a

triangle, show that the area of 4PQR is

1

2
|(q1 − p1)(r2 − p2)− (q2 − p2)(r1 − p1)|.

(Hence the area of a triangle with vertices (0, 0), (a, b), (c, d) is half the absolute

value of ad− bc.)

8.2.2 Proposition. An affine linear transformation is an affine transfor-

mation and, conversely, an affine transformation is an affine linear transfor-

mation.
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Proof : Let α be an affine linear transformation and suppose line L has

equation px+ qy+ r = 0. Since p and q are not both zero, then ap+ cq and

bp+ dq are not both zero. So there is a line M with equation

(ap+ cq)x+ (bp+ dq)y + r + hp+ kq = 0.

Line M is introduced because each of the following implies the next, where

α((x, y)) = (x′, y′) :

(1) (x′, y′) is on line L.

(2) px′ + qy′ + r = 0.

(3) p(ax+ by + h) + q(cx+ dy + k) + r = 0.

(4) (ap+ cq)x+ (bp+ dq)y + r + hp+ kq = 0.

(5) (x, y) is on line M.

We have shown that α−1 is a transformation that takes any line L to some

line M. So α−1 is a collineation. Hence, α is itself a collineation.

Conversely, suppose α is an affine transformation. Let

α((0, 0)) = (p1, p2) = P, α((1, 0)) = (q1, q2) = Q, and α((0, 1)) = (r1, r2) = R .

Since (0, 0), (1, 0), (0, 1) are noncollinear, then P,Q,R are noncollinear. Hence

the mapping β with equations
x′ = (q1 − p1)x+ (r1 − p1)y + p1

y′ = (q2 − p2)x+ (r2 − p2)y + p2

is an affine linear transformation, since the absolute value of its determinant is

twice the area of 4PQR and therefore nonzero (see Exercise 126). Further,

β((0, 0)) = α((0, 0)), β((1, 0)) = α((1, 0)), and β((0, 1)) = α((0, 1)).

Therefore (Corollary 8.1.11), we have α = β. So α is an affine linear

transformation. 2
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Note : Chosing the term affine linear transformation over its equivalents collineation

and affine transformation can emphasize a coordinate viewpoint.

Given 4ABC and 4DEF , we know that there is at most one affine

transformation α such that α(A) = D, α(B) = E, and α(C) = F . We can

now show that there is at least one such transformation α.

8.2.3 Proposition. Given 4ABC and 4DEF , there is a unique affine

transformation α such that

α(A) = D, α(B) = E, and α(C) = F.

Proof : Given 4ABC and 4DEF , we know (Corollary 8.1.12) there

is at most one affine transformation α such that α(A) = D, α(B) = E and

α(C) = F . We now show there is at least one such affine transformation α.

From the preceding paragraph, we see how to find the equations for an affine

linear transformation β1 such that

β1((0, 0)) = A, β1((1, 0)) = B, and β1((0, 1)) = C.

Repeating the process, we see there is an affine linear transformation β2 such

that

β2((0, 0)) = D, β2((1, 0)) = E, and β2((0, 1)) = F.

The transformation β2β
−1
1 is the desired affine transformation α that takes

points A,B,C to points D,E, F , respectively. 2

Matrix representation

Let α : E2 → E2 be a transformation given by

(x, y) 7→ (ax+ by + h, cx+ dy + k).

(α is an affine linear transformation.)

Note : Recall that [
a b

c d

][
x

y

]
=

[
ax+ by

cx+ dy

]
.
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Hence the matrix

[
a b

c d

]
defines a mapping (x, y) 7→ (ax + by, cx + dy). Indeed,

we write the pair (x, y) as a column matrix

[
x

y

]
(in fact, we identify points with

geometric vectors) and so we get

(x, y) =

[
x

y

]
7→

[
a b

c d

][
x

y

]
=

[
ax+ by

cx+ dy

]
= (ax+ by, cx+ dy).

This mapping is linear (i.e. preserves the vector structure of E2) and is invertible if

(and only if) the matrix is invertible.

When the coefficients h and k vanish, α is linear and hence admits a

matrix representation [
x′

y′

]
=

[
a b

c d

][
x

y

]
.

We say that the (invertible) matrix A =

[
a b

c d

]
represents the (linear) trans-

formation α. In order to extend this representation to the general case, of

affine linear transformations, we need to accomodate translations.

Exercise 127

(a) Verify that 
1 0 0

h a b

k c d




1

x

y

 =


1

ax+ by + h

cx+ dy + k

 .

(b) Show that the matrix


1 0 0

h a b

k c d

 is invertible if and only if ad− bc 6= 0,

and then find its inverse.

If we “redefine” the concept of point – and write the pair (x, y) as a column

matrix


1

x

y

 (this identification is more than just a “clever” notation) – then
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we have

(x, y) =


1

x

y

 7→


1 0 0

h a b

k c d




1

x

y

 =


1

ax+ by + h

cx+ dy + k

 = (ax+by+h, cx+dy+k).

We see that the 3× 3 matrix

[α] =


1 0 0

h a b

k c d

 =

[
1 0

v A

]

(where v =

[
h

k

]
and A =

[
a b

c d

]
) represents the transformation

α : E2 → E2, (x, y) 7→ (ax+ by + h, cx+ dy + k).

Exercise 128 Use matrix representation to show that the set of all linear affine

transformations forms a group. (This group consists of all collineations, and is usually

denoted by Aff.)

8.2.4 Example. The identity transformation ι is represented by the ma-

trix


1 0 0

0 1 0

0 0 1

. Thus

[ι] =

[
1 0

0 I

]
.

8.2.5 Example. Consider the point P = (h, k) and let v =

[
h

k

]
. The

translation τ = τO,P is represented by the matrix


1 0 0

h 1 0

k 0 1

. Thus

[τ ] =

[
1 0

v I

]
.
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8.2.6 Example. Again, consider the point P = (h, k). The halfturn σ =

σP is represented by the matrix


1 0 0

2h −1 0

2k 0 −1

. Thus

[σ] =

[
1 0

2v −I

]
.

Exercise 129 Let P = (h, k) be a point. Determine the matrix which represents

the dilation δP,r (of ratio r 6= 0 ) and hence verify the relations :

(a) δP,−r = σP δP,r.

(b) δP,1 = ι.

(c) δP,−1 = σP .

(d) δP,sδP,r = δP,rs (r, s 6= 0).

Strains and shears

Some specific, basic affine transformations are introduced next.

8.2.7 Definition. For number k 6= 0, the affine transformation

εX ,k : (x, y) 7→ (x, ky)

is called a strain of ratio k about the x-axis.

8.2.8 Definition. For number k 6= 0, the affine transformation

εY,k : (x, y) 7→ (kx, y)

is called a strain of ratio k about the y-axis.

For fixed k, the product of the two affine transformations above is the

familiar dilation about the origin (x, y) 7→ (kx, ky). Thus

εX ,kεY,k = δO,k.
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Note : The concept of a strain of ratio k about a given line L can be defined

analogously. However, one can prove that any dilation is the product of two strains

about perpendicular lines.

8.2.9 Example. The strain with equations
x′ = 2x

y′ = y

fixes the y-axis pointwise and stretches out the plane away from and perpen-

dicular to the y-axis.

Note : As with similarity theory, the terminology here is not standardized. Each

of the following words has been used for a strain or for a strain with positive ratio :

enlargement, expansion, lengthening, stretch, compression.

8.2.10 Definition. For number k 6= 0, the affine transformation

ζX ,k : (x, y) 7→ (x+ ky, y)

is called a shear along the x-axis.

Here the x-axis is fixed pointwise and every point is moved “horizontally”

a directed distance proportional to its directed distance from the x-axis. We

shall see below that a shear has the property of preserving area.

8.2.11 Definition. An affine transformation that preserves area is said to

be equiaffine.

8.2.12 Proposition. An affine transformation is the product of a shear,

a strain, and a similarity.

Proof : We can see that the general affine linear transformation with equa-

tions 
x′ = ax+ by + h

y′ = cx+ dy + k

with ad− bc 6= 0
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can be factored into the similarity with equations
x′ = ax− cy + h

y′ = cx+ ay + k

following the strain with equations
x′ = x

y′ =
ad− bc
a2 + c2

y

following the shear with equations
x′ = x+

ab+ cd

a2 + c2
y

y′ = y.

Indeed, we have
1 0 0

h a b

k c d

 =


1 0 0

h a −c
k c a




1 0 0

0 1 0

0 0 ad−bc
a2+c2




1 0 0

0 1 ab+cd
a2+c2

0 0 1

 .
2

8.2.13 Proposition. An affine transformation is a product of strains.

Proof : First, we see that the shear ( ζX ,1 ) with equations
x′ = x+ y

y′ = y

can be factored into the similarity with equations
x′ = 5−

√
5

20 x+ 5−3
√
5

20 y

y′ = −5+3
√
5

20 x+ 5−
√
5

20 y
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following the strain with equations
x′ = 3+

√
5

2 x

y′ = y

following the similarity with equations
x′ = 2x+ (1 +

√
5)y

y′ = −(1 +
√

5)x+ 2y.

Indeed, we have
1 0 0

0 1 1

0 0 1

 =


1 0 0

0 5−
√
5

20
5−3
√
5

20

0 −5+3
√
5

20
5−
√
5

20




1 0 0

0 3+
√
5

2 0

0 0 1




1 0 0

0 2 1 +
√

5

0 −(1 +
√

5) 2

 .
Secondly, we see that the nonidentity shear ( ζX ,k, k 6= 0 ) with equations

x′ = x+ ky

y′ = y

can be factored into the strain of ratio k about the y-axis ( εY,k : (x, y) 7→
(kx, y) ) following the shear that just factored above following the strain of

ratio 1
k about the y-axis ( εY, 1

k
: (x, y) 7→ ( 1kx, y) ). The relation

ζX ,k = εY,kζX ,1εY, 1
k

holds since 
1 0 0

0 1 k

0 0 1

 =


1 0 0

0 k 0

0 0 1




1 0 0

0 1 1

0 0 1




1 0 0

0 1
k 0

0 0 1

 .
Putting these results together with Proposition 8.2.13, we see that an

affine transformation is a product of strains and similarities. Since a similarity
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is an isometry following a dilation about the origin (Proposition 7.1.12),

and since a dilation about the origin is a product of two strains, then an affine

transformation is a product of strains and isometries. However, isometries

are products of reflections, which are special cases of strains. Thus affine

transformations are products of strains.

2

Note : One can also prove that an affine transformation is the product of a strain

and a similarity.

8.2.14 Theorem. Suppose affine transformation α has equations{
x′ = ax+ by + h

y′ = cx+ dy + k
with ad− bc 6= 0.

Transformation α is equiaffine if and only if

|ad− bc| = 1 .

Transformation α is a similarity (of ratio r) if and only if

a2 + c2 = b2 + d2 = r2 and ab+ cd = 0.

Transformation α is an isometry if and only f

a2 + c2 = b2 + d2 = 1 and ab+ cd = 0.

Proof : Suppose {
x′ = ax+ by + h

y′ = cx+ dy + k

are equations for affine transformation α. So the determinant ad − bc of

α is nonzero. What are the necessary and sufficient conditions for α to be

equiaffine? In other words, when is area preserved by α ? Suppose P,Q,R

are noncollinear points with

P = (p1, p2), Q = (q1, q2), R = (r1, r2),
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P ′ = α(P ) = (p′1, p
′
2), Q′ = α(Q) = (q′1, q

′
2), R′ = α(R) = (r′1, r

′
2).

Recall that the area PQR of 4PQR is given by

PQR = ±1

2
|(q1 − p1)(r2 − p2)− (q2 − p2)(r1 − p1)|

and similarly the area P ′Q′R′ of 4P ′Q′R′ is given by

P ′Q′R′ = ±1

2
|(q′1 − p′1)(r′2 − p′2)− (q′2 − p′2)(r′1 − p′1)|.

Substitution shows that

P ′Q′R′ = ±(ad− bc)PQR .

Thus, under an affine transformation with determinant t, area is multiplied by

±t. This result answers our question about preserving area : area is preserved

by α when the determinant of α is ±1.

Continuing with the same notation for affine transformation α, we recall

that α is a similarity if and only if there is a positive number r such that

P ′Q′ = rPQ for all points P and Q .

With substitution, this equation becomes√
(a2 + c2)(q1 − p1)2 + (b2 + d2)(q2 − p2)2 + 2(ab+ cd)(q1 − p1)(q2 − p2) =

r
√

(q1 − p1)2 + (q2 − p2)2 .

This equation can hold for all p1, p2, q1, q2 if and only if

a2 + c2 = b2 + d2 = r2 and ab+ cd = 0 .

Since a similarity of ratio r is an isometry if and only if r = 1, we obtain the

last result. 2

Note : The matrix representing the given affine transformation α is

[α] =

[
1 0

v A

]
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where v is arbitrary and A is invertible (i.e. ad− bc 6= 0).

Transformation α is equiaffine if and only if detA = ±1.

Transformation α is a similarity (of ratio r) if and only if AAT = r2I.

Transformation α is an isometry if and only if AAT = I (such a matrix is called

orthogonal).

8.3 Exercises

Exercise 130

(a) For a given nonzero number k, find all fixed points and fixed lines for the

affine transformations αk and βk with respective equations
x′ = kx

y′ = y

and


x′ = x+ ky

y′ = y.

(b) If P = (−2,−1), Q = (1, 2), and R = (3,−6), what is the area of 4PQR
?

(c) What are the areas of the images of 4PQR under the collineations αk

and βk, respectively ?

Exercise 131 TRUE or FALSE ?

(a) An affine transformation is a collineation; a collineation is an affine linear

transformation; and an affine linear transformation is an affine transfor-

mation.

(b) An affine transformation is determined once the images of three given

points are known.

(c) Strains and shears are equiaffine.

(d) A shear is a product of strains and similarities.

(e) A collineation is a product of strains and similarities.

(f) A collineation is a product of strains and isometries.

(g) A dilatation is a product of strains; a strain is a product of dilations.
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Exercise 132 Given nonzero number k and line L, give a definition for the strain

of ratio k about line L. Using your definition, show that a dilation is a product of

two strains.

Exercise 133 If x′ = ax+ by + h and y′ = cx+ dy + k are the equations of (affine

linear) transformation α, find the equations of its inverse α−1. Hence determine the

matrices [α] and [α−1] representing α and α−1, respectively.

Exercise 134 PROVE or DISPROVE : If affine linear transformation α has determi-

nant t, then α−1 has determinant t−1.

Exercise 135 Suppose any affine transformation is the product of a strain and a

similarity. Then show that an affine transformation is a product of two strains about

perpendicular lines and an isometry. (To see that the perpendicular lines cannot be

chosen arbitrarily, see the next exercise.)

Exercise 136 Show the shear with equations x′ = x + y and y′ = y is not the

product of strains about the coordinate axes followed by an isometry.

Exercise 137 Show that the shears do not form a group.

Exercise 138 PROVE or DISPROVE : An equiaffine similarity is an isometry.

Exercise 139 PROVE or DISPROVE : An involutory affine transformation is a re-

flection or a halfturn.

Exercise 140 Give an example of an equiaffine transformation that is neither an

isometry nor a shear.

Discussion : Perhaps the most fundamental concept of the earlier

books of Euclid’s Elements is that of congruence. Intuitively, two plane geometrical

figures (i.e. arbitrary subsets of the plane) are congruent if they differ only in the

position they occupy in the plane; that is, if they can be made to coincide by the

application of some “rigid motion” in the plane. Somewhat more precisely, two figures

F1 and F2 are said to be congruent if there is a mapping α of the plane onto itself

that leaves invariant the distance between each pair of points (i.e. α(F1) = F2 and
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α(P )α(Q) = PQ for all P and Q). A mapping that preserves the distance between

any pair of points is called an isometry and is the mathematical analog of a rigid

motion; the study of congruent figures in the plane is, for this reason, often referred

to as plane Euclidean metric geometry. If we construct an orthogonal Cartesian

coordinate system in the plane, we can show that the isometries of the plane are

precisely the mappings (x, y)→ (x′, y′), where


x′ = ax− by + h

y′ = ± (bx+ ay) + k

with a2 + b2 = 1.

Observe that the product (composition) of any two isometries is again an isometry

and that each isometry has an inverse that is again an isometry. Now, any collection

of invertible mappings of a set S onto itself that is close under the formation of

compositions and inverses is called a group of transformations on S; the collection of

all isometries is therefore referred to as the group of plane isometries. From the point

of view of plane Euclidean metric geometry the only properties of a geometric figure

F that are of interest are those that are possessed by all figures congruent to F ; that

is, those properties that are invariant under the group of plane isometries. Since any

isometry carries lines onto lines, the property of being a line is one such property.

Similarly, the property of being a square or, more generally, a polygon of a particular

type is invariant under the group of plane isometries, as is the property of being a

conic of a particular type. The length of a line segment, the area of a polygon, and

the eccentricity of a conic are likewise all invariants and thus legitimate objects of

study in plane Euclidean geometry.

Of course, the point of view of plane Euclidean metric geometry is not the only

point of view. Indeed, in Book VI of the Elements itself, emphasis shifts from con-

gruent to similar figures. Roughly speaking, two geometric figures are similar if they

have the same shape, but not necessarily the same size. In order to formulate a more

precise definition, let us refer to a map α of the plane onto itself under which each

distance is multiplied by the same positive constant r (i.e. α(P )α(Q) = k PQ for

all P and Q) as a similarity transformation with similarity ratio r. It can be shown

that, relative to an orthogonal Cartesian coordinate system, each such map has the
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form 
x′ = ax− by + h

y′ = ± (bx+ ay) + k

where a2 + b2 = r2.

Two plane geometric figures F1 and F2 are then said to be similar if there exists

a similarity transformation that carries F1 onto F2. Again, the set of all similarity

transformations is easily seen to be a transformation group, and we might reasonably

define plane Euclidean similarity geometry as the study of those properties of geo-

metric figures that are invariant under this group; that is, those properties that, if

possessed by some figure, are necessarily possessed by all similar figures. Since any

isometry is also a similarity transformation (with r = 1 ), any such property is nec-

essarily an invariant of the group of plane isometries; but the converse is false since,

for example, the length of a line segment and area of a polygon are not preserved by

all similarity transformations.

At this point it is important to observe that in each of the two geometries dis-

cussed thus far, certain properties of geometric figures were of interest while others

were not. In plane Euclidean metric geometry we were interested in the shape and size

of a given figure, but not in its position or orientation in the plane, while similarity

geometry concerns itself with only the shape of the figure. Those properties that we

deem important depend entirely on the particular sort of investigation we choose to

carry out. Similarity transformations are, of course, capable of “distorting” geometric

figures more than isometries, but this additional distortion causes no concern as long

as we are interested only in properties that are not effected by such distortions. In

other sorts of studies the permisible degree of distortion may be even greater. For

example, in the mathematical analysis of perspective it was found that the “interest-

ing” properties of a geometric figure are those that are invariant under a class of maps

called plane projective transformations, each of which can be represented, relative to

an orthogonal Cartesian coordinate system, in the following form
x′ =

a1x+ a2y + a3

c1x+ c2y + c3

y′ =
b1x+ b2y + b3
c1x+ c2y + c3

where

∣∣∣∣∣∣∣∣
a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣∣∣ 6= 0.

The collection of all such maps can be shown to form a transformation group, and

we define plane projective geometry as the study of those properties of geometric
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figures that are invariant under this group. Two figures are said to be “projectively

equivalent” if there is a projective transformation that carries one onto the other.

Since any similarity transformation is also a projective transformation, any invariant

of the projective group is also an invariant of the similarity group. The converse,

however, is false since projective transformations are capable of greater distortions of

geometric figures than are similarities. For example, two conics are always projectively

equivalent, but they are similar only if they have the same eccentricity.

Needless to say, the approach we have taken here to these various geometrical

studies is of a relatively recent vintage. Indeed, it was Felix Klein (1849-1925)

– in his famous Erlanger Programm of 1872 – who first proposed that a “geome-

try” be defined quite generally as the study of those properties of a set S that are

invariant under some specified group of transformations of S. Plane Euclidean met-

ric, similarity, and projective geometries and their obvious generalizations to three

and higher dimensional spaces all fit quite nicely into Klein’s scheme, as did various

other offshoots of classical Euclidean geometry known at the time. Despite the fact

that, during this century, our conception of geometry has expanded still further and

now includes studies that cannot properly be considered “geometries” in the Kleinian

sense, the influence of the ideas expounded in the Erlangen Program has been great

indeed. Even in theoretical physics Klein’s emphasis on the study of invariants of

transformation groups has had a profound impact. The special theory of relativity,

for example, is perhaps best regarded as the invariant theory of the so-called Lorentz

group of transformations on Minkowski space.

Based on his appreciation of the importance of Bernhard Riemann’s work in

complex function theory, Klein was also able to anticipate the rise of a new branch

of geometry that would concern itself with those properties of a geometric figure that

remain invariant when the figure is bent, stretched, shrunk or deformed in any way

that does not create new points or fuse existing points. Such a deformation is ac-

complished by any bijective mapping that, roughly speaking, “sends nearby points

to nearby points”; that is, a continuous one. In dimension two, then, the relevant

group of transformations is the collection of all one-to-one mappings of the plane

onto itself that are continuous and have continuous inverse; such transformations are

called homeomorphisms (or topological transformations) of the plane. What sort of

properties of a plane geometric figure are preserved by homeomorphisms ? Certainly,

the property of being a line is not. Topological transformations are clearly capa-
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ble of a very great deal of distortion. Indeed, virtually all of the properties you are

accustomed to associating with plane geometric figures are destroyed by such trans-

formations. Nevertheless, homeomorphisms do preserve a number of very important,

albeit less obvious properties. For example, although a line need not be mapped onto

another line, its image must be “one-dimensional” and consist of one “connected”

piece. Properties of plane geometric figures such as these that are invariant under the

group of topological transformations of the plane are called topological properties.

During the past one hundred years topology has outgrown its geometrical origins

and today stands alongside analysis and algebra as one of the most fundamental

branches of mathematics.

Geometry is not true, it is advantageous.

Henri Poincaré



Appendix A

Answers and Hints to
Selected Exercises

Geometric transformations

1. (M1) and (M2) are immediate, but (M3) requires some work. (For a “clever”
solution, you may think of the dot product of two points (vectors) in R2).

2. TRUE. Find the equation of the line.

3. The lines are parallel if and only if their direction vectors are collinear, and are
perpendicular if and only if their direction vectors are orthogonal. Thus

L ‖ M ⇐⇒
[
−b
a

]
= r

[
−e
d

]
for some r ∈ R \ {0} ⇐⇒ ae− bd = 0

and

L ⊥M ⇐⇒
[
−b
a

]
•
[
−e
d

]
= 0 ⇐⇒ ad+ be = 0.

4. TRUE. Find the equation of the line.

5. The line passing through P2 and P3 has equation∣∣∣∣∣∣
1 1 1
x x2 x3

y y2 y3

∣∣∣∣∣∣ = 0.

6. The set cannot be finite.

7. The mapping is invertible. (One can solve uniquely for x and y in terms of
x′ and y′).

8. TRUE.

138
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9. Recall (and use) the fact that a line is determined by two points.

10. Yes. (The mapping is invertible and coincides with its inverse).

11. Relation PQ+QR = PR (equality in the triangle inequality) implies

Q− P = s (R−Q) for some s > 0.

Conversely, we have PQ = t PR, QR = (1− t)PR, etc.

12. (a), (d), (f), (h), (i).

13. (d) 3ax+ 2by+ 6c = 0 ; (f) bx+ 3ay+ 3(c−2a) = 0 ; (h) ax+ by− c =
0 ; (i) ax+ by + (c− 2a+ 3b) = 0.

14. (a) y = −5x+7 ; (b) y = −5x−7 ; (c) y = 5x−7 ; (d) x−9y−32 =
0.

15. TTTT TTFT TF .

16. For instance, examples (8), (9), and (10) from 1.2.2. (Find other examples.)

17. x− 10y − 2 = 0.

18. The necessary and sufficient condition for α to be a transformation is ad−bc 6=
0. Such a transformation is always a collineation.

19. Straightforward verification.

20. (a) (x, y) 7→ (x, y) + x(0, 1) is a shear (about the y-axis); the image of the
unit square is a parallelogram. (b) (x, y) 7→ (y, x) is a reflection (in the angle
bisector of the first quadrant); the image of the unit square is also the unit
square. (c) (x, y) 7→ (x, y) + x2(0, 1) is a generalized shear; the image of
the unit square is a curvillinear quadrilateral (with two sides line segments).
(d) (x, y) 7→

(
x, y2

)
7→
(
x,−x+ y

2

)
7→
(
−x+ y

2 , x
)
7→
(
−x+ y

2 , x+ 2
)

is a
product of transformations (strain + shear + reflection + translation); the im-
age of the unit square is a parallelogram. (The decomposition is not unique.
Find other decompositions, for instance : strain + shear + rotation + reflec-
tion.)

21. (a) βα = γα ⇒ βα(α−1) = γα(α−1) ⇒ β(αα−1) = γ(αα−1) ⇒ βι = γι ⇒
β = γ. In particular, for γ = ι, one has (c) βα = α ⇒ β = ι. The parts
(b), (d), and (e) can be proved analogously.

22. TTTF FF .

23. True. (The group generated by the rotation of 1 rad is an infinite cyclic group.)

24. TTFF .

25. a = b ∈ R \ {0}.
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Translations and halfturns

26. Express condition (4) in coordinates : (xB−xA)2 +(yB−yA)2 = (xD−xC)2 +
(yD − yC)2 and yB−yA

yD−yC = xB−xA

xD−xC
= t > 0, etc.

27. If the points A,B, and C are collinear, then the parallelogram 2CABD
becomes a “degenerate” one. (What is a degenerate parallelogram ?)

28. A translation : τ−1.

29. The LHS is a product of five halfturns that fixes Q.

30. FFTT TTTF TT .

31. • The halfturn σA, where A = ( 3
2 ,−4).

• x′ = x+ a− g and y′ = y + c− h.

32. TRUE.

33. x′ = x+ a5 and y′ = y + b5.

34. 5x− y + 27 = 0.

35. • σMασP (P ) = P ⇒ ασP = σM .

• σP α = σN (P is the midpoint of M and N).

36. σP (L) is the line with equation y = 5x− 21.

37. For n ∈ Z \ {0}, τnP,Q 6= ι.

38. τP,Q ∈ 〈τR,S〉 ⇒ ∃m ∈ Z : τP,Q = τmR,S = τ−mS,R .

39. TRUE.

40. (a) X = (0,−1) ; (b) Y = (0, 1
2 ) ; (c) Z = (0,−2).

Reflections and rotations

41. If a product α2α1 is invertible, then α1 is one-to-one and α2 is onto.

42. Show that certain angles are supplementary.

43. Yes.

45. A line is uniquely determined by two (distinct) points.

46. TFFF TF .

47. The given reflection has the equations x′ = 1
5 (−3x+ 4y)+4, y′ = 1

5 (4x+ 3y)−
2. (0, 0) 7→ (4,−2), (1,−3) 7→ (1,−3), (−2, 1) 7→ (6,−3), (2, 4) 7→ (6, 2).

48. Reflection in the line through O and orthogonal to
←→
OO′.

49. (a) FALSE. (Notice that the statement “σLσM = σMσL ⇐⇒ L = M or
L ⊥M” is TRUE.) (b) TRUE.
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50. FALSE. (Find a counterexample.)

Isometries I

52. No. (Find a simple counterexample.)

53. 2x+ y = 5 and 4x− 3y = 10.

54. x′ = −x+ 4, y′ = −y + 6 (halfturn) and x′ = x, y′ = y + 4 (translation).

55. TRUE. σLσL = ι

56. FALSE. (Consider an equilateral triangle.)

57. TTTF TFFF F .

58. If Q = σM(P ) = σN (P ) 6= P then M and N are both perpendicular bisectors
of PQ, contradiction. Hence, σNσM(P ) = P ⇒ P ∈M∩N .

59. TRUE.

61. x′ = x+ 4, y′ = y + 2.

62. σLρC,rσL = σLσMσLσL = σLσM = ρC,−r.

63. TFTT FTFT TT .

64. Consider the perpendicular bisector of AC. There are two cases; in each case
construct the desired rotation.

65. TRUE. τ = σNσM = (σNσL)(σLσM).

66. TRUE.

67. Let C ∈ L. If ρC,r(L) = L, then let M ⊥ L and ρC,r = σNσM. We have

L = ρC,r(L) = σN (L) ⇒ (1) L = N or (2) L ⊥ N .

In the first case, ρC,r is a halfturn (and so any line through C is fixed), whereas
in the second case, ρC,r is the identity transformation (and so any line is fixed).

68. (M) 2x− y + c = 0 and (N ) 4x− 2y + 2c− 15 = 0 (parallel lines).

69. If the lines are neither concurent nor parallel, then σCσBσA is the product of
a (nonidentity) rotation and a reflection (in whatever order). Such a product
cannot be a reflection : assume the contrary and derive a contradiction.

70. σNσMσL = (σNσMσL)
−1

= σLσMσN .

Isometries II

71. There are several cases.

72.
(
αβα−1

)2
= ι ⇐⇒ αβ2α−1 = ι ⇐⇒ β2 = ι.
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73. Consider the identity αρC,rα
−1 = ρα(C),±r (where α is any isometry).

74. Any translation is a product of two (special) rotations.

75. A translation fixing line C commutes with (the reflection) σC .

76. TTTT FT .

77. TRUE.

78. Let ρ1 = ρC1,r = σCσA with {C1} = A ∩ C, and ρ2 = ρC2,s = σBσC with
{C2} = B ∩ C. Then

• ρ2ρ1 = σBσA = ρC,r+s and

• ρ−1
2 ρ1 = σB′σA = ρC′,r−s ( r 6= s ).

The points C1, C, and C ′ are collinear : they all lie on the line A.

79. Let τ = τA,B (that is, τ(A) = B ). Then

τσC = σCτ ⇐⇒ σCτσ
−1
C = τ ⇐⇒ τσC(A),σC(B)

= τA,B ⇐⇒
←→
AB ‖ C ⇐⇒ τ(C) = C.

80. FFFT FF .

81. TRUE. Let γ = σCτA,B . We can choose A,B ∈ C such that the given point
M is the midpoint of the segment AB.

82. TRUE. γ = σPσL = σNσMσL.

83. Translations and halfturns are dilatations. Reflections are not. Neither are glide
reflections : if σLσP where a dilatation δ, then σL would be the dilatation
δσP .

84. Let τ = τA,B (that is, τ(A) = B). Then, for the glide reflection γ = σLσA,

γ2 = σLσAσLσA =
(
σLσAσ

−1
L
)
σA = σσL(A)σA = σMσA = τA,B = τ.

85. • ρO,90 : x′ = −y and y′ = x.

• ρO,180 : x′ = −x and y′ = −y.

• ρO,270 : x′ = y and y′ = −x.

86. Since α is an odd isometry, we have that α is a reflection ⇐⇒ α = α−1.
The equations for α−1 are x′ = ax+by−(ah+bk) and y′ = bx−ay+ak−bh.

87. TFTT TTT .

88. r = 150. Let P = (u, v). Then 1 = (1 − cos r)u + (sin r)v and − 1
2 =

(1− cos r)v − (sin r)u imply u = 4−
√

3
4 and v = 3−2

√
3

4 ·

89. C is the only point fixed by ρC,r with r 6= 0. The coordinates of C are

xC =
(1− cos r)h− (sin r)k

2(1− cos r)
and yC =

(1− cos r)k + (sin r)h

2(1− cos r)
·
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90. L is the only line fixed by σL. An equation for L is (a− 1)x+ by+ h = 0 or,
equivalently, bx− (a+ 1)y + k = 0.

Symmetry

92. (a) Yes. (b) No.

93. A bounded figure cannot have two points of symmetry, because if it had, it
would be invariant under a nonidentity translation.

94. (a) C1. (b) D1.

95. (a) C2 or D2.

97. D2.

98. D2.

99. FTTF .

100. D3.

103. There are ten equivalence classes :

• A, M, T, U, V, W.

• B, C, D, E, K.

• F, G, J, P, R.

• H, I.
• L.

• N, S, Z.

• O.

• Q.

• X.

• Y.

104. (c) Use the relation σρk = ρ−kσ to show that σρn−1 6= ρn−1σ.

105. The polygons cannot be regular. (Find more than one example in each case.)

Similarities

107. The inverse of a similarity is also a similarity.

109. The function is invertible.

112. In each case we have

• C = rA+ (1− r)B = B + r(A−B) ∈
←→
AB, C 6= B.
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• C = s(1−r)
1−rs A+ 1−s

1−rsB ∈
←→
AB.

• C = 1
1−rB + r

r−1A ∈
←→
AB.

113. Let P = (h, k). Then x′ = −2(x − h) + h, y′ = −2(y − k) + k ⇒ h = 1
and k = − 4

3 ·

114. A stretch reflection fixes exactly one point and exactly two lines. A stretch
rotation fixes no line.

115. TTTF FTT .

116. FALSE.

117. TRUE. α is 1-1 and onto (αβ is onto ⇒ α is onto). See NOTE 2 : Distance-
preserving mappings.

118. (a) P =
(
− 7

2 ,
5
2

)
; (b) t = 5; (c) x = −15; (d) P + δC,r(B) = Q +

δC,r(A); in particular, P = δC,r(A) and Q = δC,r(B); (e) δB,s(A); (f) x = r;
(g) C = τ2

B,A(B).

119. FALSE.

120. r = 5
√

2
4 ·

121. α is a direct similarity with equations x′ = x − 2y + 1, y′ = 2x + y.
α((−1, 6)) = (−12, 4). (α is a stretch rotation; find its center and the an-
gle of rotation.)

122. An involutory similarity is an isometry (α = βδ ⇒ δ = ι ).

123. TRUE. (Consider first the case when the circles are equal (i.e A = C and
AB = CD)).

124. σL = δP,rσLδ
−1
P,r = σδP,r(L) ⇐⇒ L = δP,r(L) ⇐⇒ P ∈ L.

Affine transformations

126. You may use (in a clever way) the cross product of two vectors in R3.

127. (b)

∣∣∣∣∣∣
1 0 0
h a b
k c d

∣∣∣∣∣∣ =

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

128. [αβ] = [α][β] (closure property); [α−1] = [α]−1 (inverse property).

129.

[δP,r] =

[
1 0

(1− r)v rI

]
, v =

[
h
k

]
.

130. (a) For αk : if k = 1 (αk = ι ), then every point is fixed; if k 6= 1, then only
the points on the y-axis are fixed. (b) PQR = 15. (c) αk(P )αk(Q)αk(R) =
15 · |k|; βk(P )βk(Q)βk(R) = 15.
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131. TFFT TTF .

132. P0P
′ = k · P0P , k 6= 0.

133. x = 1
∆ (dx′ − by′)− 1

∆ (dh− bk) and y = 1
∆ (−cx′ + ay′)− 1

∆ (−ch+ ak) (∆ =
ad− bc 6= 0). We have

[α] =

[
1 0
v A

]
and [α−1] = [α]−1 =

[
1 0

−A−1v A−1

]
.

134. TRUE.

135. A similarity is a product of a stretch and an isometry, whereas a stretch is a
product of two strains (about perpendicular lines).

136. The equations of the given transformation (shear) are not of the form

x′ = (ar)x− (bs)y + h and y′ = ± ((br)x+ (as)y) + k.

137. x′ = x − y, y′ = y and x′ = x, y′ = x + y. Only one point is fixed by the
product of these two transformations (shears).

138. TRUE. (A similarity that preserves area must be an isometry.)

139. TRUE. (An involutory affine transformation is an isometry.)

140. x′ = 2x and y′ = 1
2y. (Find other examples.)
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Revision Problems

1. Find all triangles such that three given noncollinear points are the midpoints

of the sides of the triangle.

2. Prove that :

i. σAσB = σBσC ⇐⇒ B is the midpoint of AC.

ii. σAσL = σLσB ⇐⇒ L is the perpendicular bisector of AB.

3. Prove that any distance-preserving mapping α : E2 → E2 is a bijection (hence

an isometry).

4. If 2ABCD and 2EFGH are congruent rectangles and AB 6= BC, then how

many isometries are there that take one rectangle to the other ?

5. Show that the product of the reflections in the three angle bisectors of a triangle

is a reflection in a line perpendicular to a side of the triangle.

6. If L,M,N are the perpendicular bisector of sides AB,BC,CA, respectively,

of 4ABC, then σNσMσL is a reflection in which line ?

7. If L and M are distinct intersecting lines, find the locus of all points P such

that ρP,r(L) =M for some r.

8. Let A,B,C be three noncollinear points such that m(∠ABC) = 45, m(∠BCA) =

105 and m(∠CAB) = 30. Find the fixed point of

ρB,90ρA,60.

146
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9. Given a figure consisting of two points P and Q, sketch a construction of the

fixed point of τP,QρP,45.

10. Given a figure consisting of three points A,B,C, sketch a construction of the

fixed point of τB,CρA,120.

11. Indicate all pairs of commuting elements in the dihedral groups D3 and D4.

12. Show that any two parabolas are similar.

13. Find all stretch reflections taking point A to point B. Also, find all stretch

rotations taking point A to point B.

14. Show that any given ellipse is the image of the unit circle under some affine

transformation.

15. If x′ = ax + by + h and y′ = cx + dy + k are the equations of mapping α

and ad − bc = 0, then show that α is not a collineation since all images are

collinear.

16. Find equations for the strain of ratio r about the line with equation y = mx.

17. Find

(a) the equations for τ−1
P,Q if P = (a, b) and Q = (h, k).

(b) the equations for σL if L has equation y = −x+ 1.

(c) the image of the line with equation x + y = 3 under the transformation

σL, where L has equation y = x− 1.

(d) the mage of the line with equation x = 2 under σAσB , where A = (2, 1)

and B = (1, 2).

Class test, March 1999

18. Find

(a) the equations for the rotation ρC,30 where C = (2,−1).

(b) L, if x′ = 3
5x+ 4

5y and y′ = 4
5x−

3
5y are equations for the isometry σL.

(c) the image of the point P = (a,−b) and of the line L with equation

bx+ ay = 0 under the isometry

x′ = ax− by − 1, y′ = bx+ ay (with a2 + b2 = 1).
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Class test, May 1999

19. (a) Find equations of the dilation δP,−3 about the point P = (1,−1).

(b) If σP ((x, y)) = (−2x+ 3,−2y − 4), find P .

(c) Find equations of the strain of ratio k about the line with equation y =

2x.

Exam, June 1999

20. (a) If ρC,r((x, y)) = ((cos r)x− (sin r)y +m, (sin r)x+ (cos r)y + n), find C.

(b) If σMσL((x, y)) = (x+ 6, y − 3), find equations for lines L and M.

(c) Find all direct similarities α such that

α((1, 0)) = (0, 1) and α((0, 1)) = (1, 0).

Exam, June 1999

21. (a) Determine the preimage of the point (−1, 3) unde the mapping (x, y) 7→(
−x+ y

3 , 3x− y
)
.

(b) Write the equations for τ−1
P,QσP if P = (1, 1) and Q = (3, 3).

(c) Find the image of the line with equation x = 2 under σAσB , when

A = (2, 1) and B = (1, 2).

Class test, March 2000

22. (a) What is the symmetry group of the capital letter H (written in most sym-

metric form) ? Describe this group (e.g. order of the group, generators,

etc.).

(b) Given the lines (A) x+ y = 0 and (B) x+ y = 1, find points A and B

such that σBσA = σBσA.

(c) Find equations for the rotation ρC,30 where C = (2,−1).

Class test, May 2000

23. (a) What is the image of the line with equation x − y + 1 = 0 under the

reflection in the line with equation 2x+ y = 0 ?

(b) If ρC,r((x, y)) = (−y + h, x+ k), find C and r.

(c) Find equations of the dilation δP,−3 about the point P = (1,−1).
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(d) Find all stretch reflections taking point A = (1, 1) to point B = (2, 0).

(e) If x′ = (1− ab)x− b2y, y′ = a2x+ (1 + ab)y are equations for a shear

about the line L, find L. What is the ratio of this shear ?

Exam, June 2000

24. Consider the transformation

α : E2 → E2, (x, y) 7→ (x+ y, y).

Show that α is a collineation. Is α an isometry ? Motivate your answer.

Class test, March 2001

25. (a) Write the equations for σP τ
−1
P,Q if P = (a, b) and Q = (c, d). What is

this transformation ?

(b) Find the image of the line with equation x = 2 under σAσB , when

A = (2, 1) and B = (1, 2).

Class test, March 2001

26. (a) What is the symmetry group of the capital letter H (written in most sym-

metric form) ? Describe this group (e.g. order of the group, generators,

etc.).

(b) If σAσB((x, y)) = (x− 4, y + 2), find equations for lines A and B.

(c) Find equations for

• the relection σL

• the rotation ρC,r

that map the x-axis onto the line M with equation x− y + 2 = 0.

Class test, May 2001

27. (a) What is the image of the line with equation x − y + 1 = 0 under the

reflection in the line with equation 2x+ y = 0 ?

(b) If ρC,r((x, y)) = (−y + h, x+ k), find C and r.

(c) Find all dilatations taking the circle with equation x2 + y2 = 1 to the

circle with equation (x− 1)2 + (y − 2)2 = 5.

(d) Find equations for the strain of ratio k about the line with equation

2x− y = 0.
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(e) If x′ = (1− ab)x− b2y, y′ = a2x+ (1 + ab)y are equations for a shear

about the line L, find L. What is the ratio of this shear ?

Exam, June 2001

28. Consider the mapping

α : E2 → E2, (x, y) 7→ (x, x2 + y).

(a) Show that α is a transformation.

(b) Is α a collineation ? Motivate your answer.

(c) What is the preimage of the parabola with equation y − x2 = 0 under

the transformation α ?

(d) Find the points and lines fixed by the transformation α.

Class test, August 2002

29. (a) Write the equations for the reflection σ in the line with equation

(sin r)x− (cos r)y = 0.

Use these equations to verify that σ is a transformation.

(b) Compute the (Cayley table for) the symmetry group of an equilateral

triangle.

Class test, August 2002

30. (a) If σMσL((x, y)) = (x+ 6, y − 3), find equations for lines L and M.

(b) If

x′ = −
√

3

2
x− 1

2
y + 1, y′ =

1

2
x−
√

3

2
y − 1

2

are equations for the rotation ρC,r, then find the centre C and the angle

r.

Class test, October 2002

31. (a) Compute (the Cayley table for) the symmetry group of an equilateral

triangle.

(b) Show that if

x′ = (cos r)x− (sin r)y + h, y′ = (sin r)x+ (cos r)y
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are equations for nonidentity rotation ρC,r, then

xC =
h

2
and yC =

h

2
f
(r

2

)
where f is a function to be determined.

(c) Find all dilatations taking the circle with equation x2 + y2 = 1 to the

circle with equation (x− 1)2 + (y − 2)2 = 5.

(d) Find equations for the strain of ratio k about the line with equation

3x− y = 0.

Exam, November 2002

32. Consider the mapping α : E2 → E2 given by

(x, y) 7→
(

1

5
(−3x+ 4y) + 4,

1

5
(4x+ 3y)− 2

)
.

(a) Verify that α is a transformation (on E2).

(b) Investigate whether α is a collineation. If so, find the image of the line

L with equation 2x− y = 5 under α.

(c) Determine all points P that are fixed by α (i.e. α(P ) = P ).

(d) Find the image and the preimage of (the origin) O = (0, 0) under α.

(e) Write down the equations of the translation τO,α(O) and the halfturn

σα(O).

Class test, August 2003

33. Let c, d ∈ R and consider the transformation a : E2 → E2 be given by the

equations

x′ = x+ c and y′ = −y + d.

(a) Look at the form of these equations and conclude that they represent an

odd isometry. Explain.

(b) For what values of the parameters c and d is the given isometry α

• a glide reflection ?

• a reflection ?

In each case, find the (equations of the) line fixed by α (i.e. the axis of

the glide reflection and the mirror of the reflection, respectively).
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Class test, October 2003

34.

(a) Given the point C = (3,−2) and the line L with equation x+y−1 = 0,

find equations for δC,2 (stretch), αL (reflection), and ρC,45 (rotation).

Compute δC,2(L) and ρC,45(L).

(b) Determine the collineation α such that

α((0, 0)) = (−1, 4), α((−1, 4)) = (−9, 6), and α((−9, 16)) = (−13, 22).

Is this collineation a similarity ? If yes, find its ratio. Identify α.

(c) Find equations for α2 and then identify this transformation.

Exam, November 2003

35. Consider the mapping α : E2 → E2 given by

(x, y) 7→
(

1

2
(x+

√
3y),

1

2
(
√

3x− y)

)
.

(a) Verify that α is a transformation.

(b) Determine whether α is a collineation. If so, find the image of the line

L with equation
√

3x+ y + 1 = 0 under α.

(c) Find all points P that are fixed by α (i.e. α(P ) = P ).

(d) Given the points O = (0, 0), A = (1, 0), B = (1, 1√
3
), and C = (0, 1√

3
)

i. verify that the quadrilateral 2OABC is a rectangle.

ii. determine with justification the image of 2OABC under α.

Class test, September 2004

36. Consider the points

O = (0, 0), A = (1, 1) and B = (−1, 1).

(a) Find the equations of all four isometries sending the segment OA onto

the segment OB.

(b) Identify these transformations. (Specify clearly, for a rotation : the centre

and the directed angle, and for a reflection or glide reflection : the axis.)
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(Hint : Use the general equations of an isometry.)

Class test, October 2004

37. Consider the points

A = (2, 1), B = (2,−2), C = (−2, 3), D = (4, 3), P =

(
4

5
,

3

5

)
, Q = (0,−1)

and the line L with equation

x− y − 1 = 0.

(a) Find the equations of the following transformations :

i. the stretch δP,2;

ii. the rotation ρP,90;

iii. The stretch rotation α1 = ρP,90δP,2;

iv. the stretch δQ,2;

v. the reflection σL;

vi. the stretch reflection α2 = σLδQ,2.

(b) How many similarities are there sending the segment AB onto the seg-

ment CD ? Justify your claim.

(c) Find the equations of the unique direct similarity such that A 7→ C and

B 7→ D.

(d) Find the equations of the unique opposite similarity such that A 7→ D

and B 7→ C.

Exam, November 2004

38. Consider the points O = (0, 0) and P = (0, 2), the line L with equation

y − 1 = 0, and the mappings

α1 : (x, y) 7→ (x, x2 + y)

α2 : (x, y) 7→ (x,−y + 2)

α3 : (x, y) 7→
(
x− 1

2
y,−2x+ y

)
.

(a) Find the point α2(P ) and the line α−1
2 (L).

(b) Find α1(L) and α−1
3 (O).
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(c) Which of the given mappings are transformations ? Which, if any, of

these transformations is a collineation ? Justify your answers.

(d) Find the equations for the following (transformations) :

i. τO,P .

ii. σL.

iii. σP .

iv. τO,P σL.

Class test, September 2005

39. (a) Let a, b, h, k ∈ R such that a2 + b2 = 1. If

x′ = ax+ by + h

y′ = bx− ay + k

are the equations for isometry α, show that α is a reflection if and only if

ah+ bk + h = 0 and ak − bh = k.

(Hint : Find the equations for α−1 by using Cramer’s rule.)

(b) Determine the fixed points (if any) of the following isometry

(x, y) 7→
(

1

5
(−3x+ 4y) + 4,

1

5
(−4x− 3y) + 2

)
.

Hence identify this isometry.

(c) Find the glide reflection γ such that

γ2 = τA,B , where A = (1, 1), B = (2, 2).

Class test, October 2005

40. Consider the points

A = (4, 2), P = (h, k)

and the lines

L : y = 0, M : 2x = y = 3, N : 2x+ y = 8.

(a) Write the equations for the following transformations :
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i. the halfturn σP ;

ii. the reflection σL;

iii. the translation τO,A;

iv. the rotation ρP,30;

v. the glide reflection σMσA;

vi. the translation σNσM.

(b) Under what conditions the transformations σP and σL do commute ?

(c) Find the point C such that

δP,3δA, 13 = τA,C .

(d) Let B = τO,A((0,−4)). (O is the origin.) Find the equations of all four

isometries sending segment OA onto the segment OB.

(Hint : Use the general equations for an isometry.)

Exam, November 2005



Appendix C

Miscellany

The Greek Alphabet

Letters Names Letters Names Letters Names

A, α alpha I, ι iota P, ρ (%) rho

B, β beta K, κ kappa Σ, σ (ς) sigma

Γ, γ gamma Λ, λ lambda T, τ tau

∆, δ delta M, µ mu Υ, υ upsilon

E, ε (ε) epsilon N, ν nu Φ, φ (ϕ) phi

Z, ζ zeta Ξ, ξ xi X, χ chi

H, η eta O, o omicron Ψ, ψ psi

Θ, θ (ϑ) theta Π, π ($) pi Ω, ω omega

156
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The Gothic (Fraktur) Alphabet

A, a H, h O, o U, u

B, b I, i P, p V, v

C, c J, j Q, q W, w

D, d K, k R, r X, x

E, e L, l S, s Y, y

F, f M, m T, t Z, z

G, g N, n
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Affine Transformations on the Euclidean Plane

1. The identity transformation

t

The identity transformation ι

2. Translation

The translation τP,Q
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3. Halfturn (about a point)

The halfturn σP

4. Reflection (in a line)

The reflection σL
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5. Rotation (about a point)

�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
AA

The rotation ρP,r

6. Glide reflection (along an axis)

The glide reflection γ = σBσA = σBσA
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7. Stretch (about a point)

��
��

The stretch δP,r

8. Stretch reflection

��
��

The stretch reflection σLδP,r
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9. Stretch rotation

��
��

�
�
��

A
A
AA

A
A
AA

�
�
��

The stretch rotation ρP,sδP,r

10. Dilation

��
��

The (nonisometric) dilation σP δP,r (r 6= 1)
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11. Strain (about a line)

The strain εL,r

12. Shear (along a line)

�
�
�
�
�
�
�
�
��

The shear ζL,r
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Similarities on the Euclidean Plane

v

v
�
�
�
�
�

A
A
A
A
A

j

j

j
�
�
�
�

A
A
A
A

A
A
A
A

�
�
�
�

j
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