Appendix A

Answers and Hints to Selected Exercises

Geometric transformations

1. $\left(M_{1}\right)$ and $\left(M_{2}\right)$ are immediate, but $\left(M_{3}\right)$ requires some work. (For a "clever" solution, you may think of the dot product of two points (vectors) in \mathbb{R}^{2}).
2. TRUE. Find the equation of the line.
3. The lines are parallel if and only if their direction vectors are collinear, and are perpendicular if and only if their direction vectors are orthogonal. Thus

$$
\mathcal{L} \| \mathcal{M} \Longleftrightarrow\left[\begin{array}{c}
-b \\
a
\end{array}\right]=r\left[\begin{array}{c}
-e \\
d
\end{array}\right] \quad \text { for some } r \in \mathbb{R} \backslash\{0\} \Longleftrightarrow a e-b d=0
$$

and

$$
\mathcal{L} \perp \mathcal{M} \Longleftrightarrow\left[\begin{array}{c}
-b \\
a
\end{array}\right] \bullet\left[\begin{array}{c}
-e \\
d
\end{array}\right]=0 \Longleftrightarrow a d+b e=0
$$

4. TRUE. Find the equation of the line.
5. The line passing through P_{2} and P_{3} has equation

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
x & x_{2} & x_{3} \\
y & y_{2} & y_{3}
\end{array}\right|=0
$$

6. The set cannot be finite.
7. The mapping is invertible. (One can solve uniquely for x and y in terms of x^{\prime} and y^{\prime}).
8. TRUE.
9. Recall (and use) the fact that a line is determined by two points.
10. Yes. (The mapping is invertible and coincides with its inverse).
11. Relation $P Q+Q R=P R$ (equality in the triangle inequality) implies

$$
Q-P=s(R-Q) \quad \text { for some } s>0
$$

Conversely, we have $P Q=t P R, Q R=(1-t) P R$, etc.
12. $(a),(d),(f),(h),(i)$.
13. (d) $3 a x+2 b y+6 c=0 ; \quad(f) \quad b x+3 a y+3(c-2 a)=0 ; \quad(h) \quad a x+b y-c=$ $0 ; \quad$ (i) $\quad a x+b y+(c-2 a+3 b)=0$.
14. (a) $\quad y=-5 x+7 ; \quad$ (b) $\quad y=-5 x-7 ; \quad$ (c) $\quad y=5 x-7 ; \quad$ (d) $\quad x-9 y-32=$ 0 .
15. TTTT TTFT TF.
16. For instance, examples (8), (9), and (10) from 1.2.2. (Find other examples.)
17. $x-10 y-2=0$.
18. The necessary and sufficient condition for α to be a transformation is $a d-b c \neq$ 0 . Such a transformation is always a collineation.
19. Straightforward verification.
20. (a) $(x, y) \mapsto(x, y)+x(0,1)$ is a shear (about the y-axis); the image of the unit square is a parallelogram. (b) $(x, y) \mapsto(y, x)$ is a reflection (in the angle bisector of the first quadrant); the image of the unit square is also the unit square. $(c) \quad(x, y) \mapsto(x, y)+x^{2}(0,1)$ is a generalized shear; the image of the unit square is a curvillinear quadrilateral (with two sides line segments). (d) $(x, y) \mapsto\left(x, \frac{y}{2}\right) \mapsto\left(x,-x+\frac{y}{2}\right) \mapsto\left(-x+\frac{y}{2}, x\right) \mapsto\left(-x+\frac{y}{2}, x+2\right)$ is a product of transformations (strain + shear + reflection + translation); the image of the unit square is a parallelogram. (The decomposition is not unique. Find other decompositions, for instance : strain + shear + rotation + reflection.)
21. (a) $\beta \alpha=\gamma \alpha \Rightarrow \beta \alpha\left(\alpha^{-1}\right)=\gamma \alpha\left(\alpha^{-1}\right) \Rightarrow \beta\left(\alpha \alpha^{-1}\right)=\gamma\left(\alpha \alpha^{-1}\right) \Rightarrow \beta \iota=\gamma \iota \Rightarrow$ $\beta=\gamma$. In particular, for $\gamma=\iota$, one has (c) $\beta \alpha=\alpha \Rightarrow \beta=\iota$. The parts (b), (d), and (e) can be proved analogously.
22. TTTF $F F$.
23. True. (The group generated by the rotation of 1 rad is an infinite cyclic group.)
24. TTFF.
25. $a=b \in \mathbb{R} \backslash\{0\}$.

Translations and halfturns

26. Express condition (4) in coordinates: $\left(x_{B}-x_{A}\right)^{2}+\left(y_{B}-y_{A}\right)^{2}=\left(x_{D}-x_{C}\right)^{2}+$ $\left(y_{D}-y_{C}\right)^{2}$ and $\frac{y_{B}-y_{A}}{y_{D}-y_{C}}=\frac{x_{B}-x_{A}}{x_{D}-x_{C}}=t>0$, etc.
27. If the points A, B, and C are collinear, then the parallelogram $\square C A B D$ becomes a "degenerate" one. (What is a degenerate parallelogram ?)
28. A translation : τ^{-1}.
29. The $L H S$ is a product of five halfturns that fixes Q.
30. FFTT TTTF TT.
31. - The halfturn σ_{A}, where $A=\left(\frac{3}{2},-4\right)$.

- $x^{\prime}=x+a-g$ and $y^{\prime}=y+c-h$.

32. TRUE.
33. $x^{\prime}=x+a_{5}$ and $y^{\prime}=y+b_{5}$.
34. $5 x-y+27=0$.
35. - $\sigma_{M} \alpha \sigma_{P}(P)=P \Rightarrow \alpha \sigma_{P}=\sigma_{M}$.

- $\sigma_{P} \alpha=\sigma_{N}(P$ is the midpoint of M and $N)$.

36. $\sigma_{P}(\mathcal{L})$ is the line with equation $y=5 x-21$.
37. For $n \in \mathbb{Z} \backslash\{0\}, \quad \tau_{P, Q}^{n} \neq \iota$.
38. $\tau_{P, Q} \in\left\langle\tau_{R, S}\right\rangle \Rightarrow \exists m \in \mathbb{Z}: \tau_{P, Q}=\tau_{R, S}^{m}=\tau_{S, R}^{-m}$.
39. TRUE.
40. (a) $\quad X=(0,-1)$;
(b) $Y=\left(0, \frac{1}{2}\right)$;
(c) $Z=(0,-2)$.

Reflections and rotations

41. If a product $\alpha_{2} \alpha_{1}$ is invertible, then α_{1} is one-to-one and α_{2} is onto.
42. Show that certain angles are supplementary.
43. Yes.
44. A line is uniquely determined by two (distinct) points.
45. TFFF TF.
46. The given reflection has the equations $x^{\prime}=\frac{1}{5}(-3 x+4 y)+4, \quad y^{\prime}=\frac{1}{5}(4 x+3 y)-$ 2. $(0,0) \mapsto(4,-2), \quad(1,-3) \mapsto(1,-3), \quad(-2,1) \mapsto(6,-3), \quad(2,4) \mapsto(6,2)$.
47. Reflection in the line through O and orthogonal to $\overleftrightarrow{O O^{\prime}}$.
48. (a) FALSE. (Notice that the statement " $\sigma_{\mathcal{L}} \sigma_{\mathcal{M}}=\sigma_{\mathcal{M}} \sigma_{\mathcal{L}} \Longleftrightarrow \mathcal{L}=\mathcal{M}$ or $\mathcal{L} \perp \mathcal{M}$ " is TRUE.) (b) TRUE.
49. FALSE. (Find a counterexample.)

Isometries I

52. No. (Find a simple counterexample.)
53. $2 x+y=5$ and $4 x-3 y=10$.
54. $x^{\prime}=-x+4, \quad y^{\prime}=-y+6$ (halfturn) and $x^{\prime}=x, \quad y^{\prime}=y+4$ (translation).
55. TRUE. $\sigma_{\mathcal{L}} \sigma_{\mathcal{L}}=\iota$
56. FALSE. (Consider an equilateral triangle.)
57. TTTF TFFF F.
58. If $Q=\sigma_{\mathcal{M}}(P)=\sigma_{\mathcal{N}}(P) \neq P$ then \mathcal{M} and \mathcal{N} are both perpendicular bisectors of $\overline{P Q}$, contradiction. Hence, $\sigma_{\mathcal{N}} \sigma_{\mathcal{M}}(P)=P \Rightarrow P \in \mathcal{M} \cap \mathcal{N}$.
59. TRUE.
60. $x^{\prime}=x+4, \quad y^{\prime}=y+2$.
61. $\sigma_{\mathcal{L}} \rho_{C, r} \sigma_{\mathcal{L}}=\sigma_{\mathcal{L}} \sigma_{\mathcal{M}} \sigma_{\mathcal{L}} \sigma_{\mathcal{L}}=\sigma_{\mathcal{L}} \sigma_{\mathcal{M}}=\rho_{C,-r}$.
62. TFTT FTFT TT.
63. Consider the perpendicular bisector of $\overline{A C}$. There are two cases; in each case construct the desired rotation.
64. TRUE. $\tau=\sigma_{\mathcal{N}} \sigma_{\mathcal{M}}=\left(\sigma_{\mathcal{N}} \sigma_{\mathcal{L}}\right)\left(\sigma_{\mathcal{L}} \sigma_{\mathcal{M}}\right)$.
65. TRUE.
66. Let $C \in \mathcal{L}$. If $\rho_{C, r}(\mathcal{L})=\mathcal{L}$, then let $\mathcal{M} \perp \mathcal{L}$ and $\rho_{C, r}=\sigma_{\mathcal{N}} \sigma_{\mathcal{M}}$. We have

$$
\mathcal{L}=\rho_{C, r}(\mathcal{L})=\sigma_{\mathcal{N}}(\mathcal{L}) \Rightarrow(1) \quad \mathcal{L}=\mathcal{N} \quad \text { or } \quad \text { (2) } \mathcal{L} \perp \mathcal{N} .
$$

In the first case, $\rho_{C, r}$ is a halfturn (and so any line through C is fixed), whereas in the second case, $\rho_{C, r}$ is the identity transformation (and so any line is fixed).
68. (\mathcal{M}) $2 x-y+c=0$ and $(\mathcal{N}) \quad 4 x-2 y+2 c-15=0$ (parallel lines).
69. If the lines are neither concurent nor parallel, then $\sigma_{\mathcal{C}} \sigma_{\mathcal{B}} \sigma_{\mathcal{A}}$ is the product of a (nonidentity) rotation and a reflection (in whatever order). Such a product cannot be a reflection : assume the contrary and derive a contradiction.
70. $\sigma_{\mathcal{N}} \sigma_{\mathcal{M}} \sigma_{\mathcal{L}}=\left(\sigma_{\mathcal{N}} \sigma_{\mathcal{M}} \sigma_{\mathcal{L}}\right)^{-1}=\sigma_{\mathcal{L}} \sigma_{\mathcal{M}} \sigma_{\mathcal{N}}$.

Isometries II

71. There are several cases.
72. $\left(\alpha \beta \alpha^{-1}\right)^{2}=\iota \Longleftrightarrow \alpha \beta^{2} \alpha^{-1}=\iota \Longleftrightarrow \beta^{2}=\iota$.
73. Consider the identity $\alpha \rho_{C, r} \alpha^{-1}=\rho_{\alpha(C), \pm r}$ (where α is any isometry).
74. Any translation is a product of two (special) rotations.
75. A translation fixing line \mathcal{C} commutes with (the reflection) $\sigma_{\mathcal{C}}$.
76. TTTT FT.
77. TRUE.
78. Let $\rho_{1}=\rho_{C_{1}, r}=\sigma_{\mathcal{C}} \sigma_{\mathcal{A}}$ with $\left\{C_{1}\right\}=\mathcal{A} \cap \mathcal{C}$, and $\rho_{2}=\rho_{C_{2}, s}=\sigma_{\mathcal{B}} \sigma_{\mathcal{C}}$ with $\left\{C_{2}\right\}=\mathcal{B} \cap \mathcal{C}$. Then

- $\rho_{2} \rho_{1}=\sigma_{\mathcal{B}} \sigma_{\mathcal{A}}=\rho_{C, r+s}$ and
- $\rho_{2}^{-1} \rho_{1}=\sigma_{\mathcal{B}^{\prime}} \sigma_{\mathcal{A}}=\rho_{C^{\prime}, r-s} \quad(r \neq s)$.

The points C_{1}, C, and C^{\prime} are collinear : they all lie on the line \mathcal{A}.
79. Let $\tau=\tau_{A, B}$ (that is, $\tau(A)=B$). Then
$\tau \sigma_{\mathcal{C}}=\sigma_{\mathcal{C}} \tau \Longleftrightarrow \sigma_{\mathcal{C}} \tau \sigma_{\mathcal{C}}^{-1}=\tau \Longleftrightarrow \tau_{\sigma_{\mathcal{C}(A)}, \sigma_{\mathcal{C}(B)}}=\tau_{A, B} \Longleftrightarrow \overleftrightarrow{A B} \| \mathcal{C} \Longleftrightarrow \tau(\mathcal{C})=\mathcal{C}$
80. FFFT FF.
81. TRUE. Let $\gamma=\sigma_{\mathcal{C}} \tau_{A, B}$. We can choose $A, B \in \mathcal{C}$ such that the given point M is the midpoint of the segment $\overline{A B}$.
82. TRUE. $\gamma=\sigma_{P} \sigma_{\mathcal{L}}=\sigma_{\mathcal{N}} \sigma_{\mathcal{M}} \sigma_{\mathcal{L}}$.
83. Translations and halfturns are dilatations. Reflections are not. Neither are glide reflections: if $\sigma_{\mathcal{L}} \sigma_{P}$ where a dilatation δ, then $\sigma_{\mathcal{L}}$ would be the dilatation $\delta \sigma_{P}$.
84. Let $\tau=\tau_{A, B}$ (that is, $\left.\tau(A)=B\right)$. Then, for the glide reflection $\gamma=\sigma_{\mathcal{L}} \sigma_{A}$,

$$
\gamma^{2}=\sigma_{\mathcal{L}} \sigma_{A} \sigma_{\mathcal{L}} \sigma_{A}=\left(\sigma_{\mathcal{L}} \sigma_{A} \sigma_{\mathcal{L}}^{-1}\right) \sigma_{A}=\sigma_{\sigma_{\mathcal{L}}(A)} \sigma_{A}=\sigma_{M} \sigma_{A}=\tau_{A, B}=\tau
$$

85. - $\rho_{O, 90}: x^{\prime}=-y$ and $y^{\prime}=x$.

- $\rho_{O, 180}: x^{\prime}=-x$ and $y^{\prime}=-y$.
- $\rho_{O, 270}: x^{\prime}=y$ and $y^{\prime}=-x$.

86. Since α is an odd isometry, we have that α is a reflection $\Longleftrightarrow \alpha=\alpha^{-1}$. The equations for α^{-1} are $x^{\prime}=a x+b y-(a h+b k)$ and $y^{\prime}=b x-a y+a k-b h$.
87. TFTT TTT.
88. $r=150$. Let $P=(u, v)$. Then $1=(1-\cos r) u+(\sin r) v$ and $-\frac{1}{2}=$ $(1-\cos r) v-(\sin r) u$ imply $u=\frac{4-\sqrt{3}}{4}$ and $v=\frac{3-2 \sqrt{3}}{4}$.
89. C is the only point fixed by $\rho_{C, r}$ with $r \neq 0$. The coordinates of C are

$$
x_{C}=\frac{(1-\cos r) h-(\sin r) k}{2(1-\cos r)} \quad \text { and } \quad y_{C}=\frac{(1-\cos r) k+(\sin r) h}{2(1-\cos r)}
$$

90. \mathcal{L} is the only line fixed by $\sigma_{\mathcal{L}}$. An equation for \mathcal{L} is $(a-1) x+b y+h=0$ or, equivalently, $b x-(a+1) y+k=0$.

Symmetry

92. (a) Yes. (b) No.
93. A bounded figure cannot have two points of symmetry, because if it had, it would be invariant under a nonidentity translation.
94. (a) \mathfrak{C}_{1}.(b) \mathfrak{D}_{1}.
95. (a) \mathfrak{C}_{2} or \mathfrak{D}_{2}.
96. \mathfrak{D}_{2}.
97. \mathfrak{D}_{2}.
98. $F T T F$.
99. \mathfrak{D}_{3}.
100. There are ten equivalence classes:

- A, M, T, U, V, W.
- B, C, D, E,K.
- F, G, J, P, R.
- H. I.
- L.
- N, S, Z.
- 0
- Q
- \mathbf{X}
- Y

104. (c) Use the relation $\sigma \rho^{k}=\rho^{-k} \sigma$ to show that $\sigma \rho^{n-1} \neq \rho^{n-1} \sigma$.
105. The polygons cannot be regular. (Find more than one example in each case.)

Similarities

107. The inverse of a similarity is also a similarity.
108. The function is invertible.
109. In each case we have

- $C=r A+(1-r) B=B+r(A-B) \in \overleftrightarrow{A B}, \quad C \neq B$.
- $C=\frac{s(1-r)}{1-r s} A+\frac{1-s}{1-r s} B \in \overleftrightarrow{A B}$.
- $C=\frac{1}{1-r} B+\frac{r}{r-1} A \in \overleftrightarrow{A B}$.

113. Let $P=(h, k)$. Then $x^{\prime}=-2(x-h)+h, \quad y^{\prime}=-2(y-k)+k \Rightarrow h=1$ and $k=-\frac{4}{3}$.
114. A stretch reflection fixes exactly one point and exactly two lines. A stretch rotation fixes no line.
115. TTTF FTT.
116. FALSE.
117. TRUE. α is $1-1$ and onto ($\alpha \beta$ is onto $\Rightarrow \alpha$ is onto). See NOTE 2 : Distancepreserving mappings.
118. (a) $\quad P=\left(-\frac{7}{2}, \frac{5}{2}\right) ;(b) \quad t=5 ;(c) \quad x=-15 ;(d) \quad P+\delta_{C, r}(B)=Q+$ $\delta_{C, r}(A)$; in particular, $P=\delta_{C, r}(A)$ and $Q=\delta_{C, r}(B) ;(e) \delta_{B, s}(A) ;(f) x=r ;$ (g) $C=\tau_{B, A}^{2}(B)$.
119. FALSE.
120. $r=\frac{5 \sqrt{2}}{4}$.
121. α is a direct similarity with equations $x^{\prime}=x-2 y+1, \quad y^{\prime}=2 x+y$. $\alpha((-1,6))=(-12,4) . \quad(\alpha$ is a stretch rotation; find its center and the angle of rotation.)
122. An involutory similarity is an isometry $(\alpha=\beta \delta \Rightarrow \delta=\iota)$.
123. TRUE. (Consider first the case when the circles are equal (i.e $A=C$ and $A B=C D)$).
124. $\sigma_{\mathcal{L}}=\delta_{P, r} \sigma_{\mathcal{L}} \delta_{P, r}^{-1}=\sigma_{\delta_{P, r}(\mathcal{L})} \Longleftrightarrow \mathcal{L}=\delta_{P, r}(\mathcal{L}) \Longleftrightarrow P \in \mathcal{L}$.

Affine transformations

126. You may use (in a clever way) the cross product of two vectors in \mathbb{R}^{3}.
127. (b) $\left|\begin{array}{lll}1 & 0 & 0 \\ h & a & b \\ k & c & d\end{array}\right|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.
128. $[\alpha \beta]=[\alpha][\beta]$ (closure property); $\left[\alpha^{-1}\right]=[\alpha]^{-1}$ (inverse property).
129.

$$
\left[\delta_{P, r}\right]=\left[\begin{array}{cc}
1 & 0 \\
(1-r) \mathbf{v} & r I
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
h \\
k
\end{array}\right]
$$

130. (a) For α_{k} : if $k=1\left(\alpha_{k}=\iota\right)$, then every point is fixed; if $k \neq 1$, then only the points on the y-axis are fixed. (b) $\quad P Q R=15$. (c) $\alpha_{k}(P) \alpha_{k}(Q) \alpha_{k}(R)=$ $15 \cdot|k| ; \quad \beta_{k}(P) \beta_{k}(Q) \beta_{k}(R)=15$.
131. TFFT TTF.
132. $\underline{P_{0} P^{\prime}}=k \cdot \underline{P_{0} P}, k \neq 0$.
133. $x=\frac{1}{\Delta}\left(d x^{\prime}-b y^{\prime}\right)-\frac{1}{\Delta}(d h-b k)$ and $y=\frac{1}{\Delta}\left(-c x^{\prime}+a y^{\prime}\right)-\frac{1}{\Delta}(-c h+a k) \quad(\Delta=$ $a d-b c \neq 0)$. We have

$$
[\alpha]=\left[\begin{array}{cc}
1 & 0 \\
\mathbf{v} & A
\end{array}\right] \quad \text { and } \quad\left[\alpha^{-1}\right]=[\alpha]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-A^{-1} \mathbf{v} & A^{-1}
\end{array}\right] .
$$

134. TRUE.
135. A similarity is a product of a stretch and an isometry, whereas a stretch is a product of two strains (about perpendicular lines).
136. The equations of the given transformation (shear) are not of the form

$$
x^{\prime}=(a r) x-(b s) y+h \quad \text { and } \quad y^{\prime}= \pm((b r) x+(a s) y)+k .
$$

137. $x^{\prime}=x-y, \quad y^{\prime}=y$ and $x^{\prime}=x, \quad y^{\prime}=x+y$. Only one point is fixed by the product of these two transformations (shears).
138. TRUE. (A similarity that preserves area must be an isometry.)
139. TRUE. (An involutory affine transformation is an isometry.)
140. $x^{\prime}=2 x$ and $y^{\prime}=\frac{1}{2} y$. (Find other examples.)
