Appendix A

Answers and Hints to Selected Exercises

Geometric transformations

- **1.** (M_1) and (M_2) are immediate, but (M_3) requires some work. (For a "clever" solution, you may think of the *dot product* of two points (vectors) in \mathbb{R}^2).
- **2.** TRUE. Find the equation of the line.
- **3.** The lines are *parallel* if and only if their direction vectors are collinear, and are *perpendicular* if and only if their direction vectors are orthogonal. Thus

$$\mathcal{L} \parallel \mathcal{M} \iff \begin{bmatrix} -b \\ a \end{bmatrix} = r \begin{bmatrix} -e \\ d \end{bmatrix}$$
 for some $r \in \mathbb{R} \setminus \{0\} \iff ae - bd = 0$

and

$$\mathcal{L} \perp \mathcal{M} \iff \begin{bmatrix} -b \\ a \end{bmatrix} \bullet \begin{bmatrix} -e \\ d \end{bmatrix} = 0 \iff ad + be = 0.$$

- 4. TRUE. Find the equation of the line.
- 5. The line passing through P_2 and P_3 has equation

$$\begin{vmatrix} 1 & 1 & 1 \\ x & x_2 & x_3 \\ y & y_2 & y_3 \end{vmatrix} = 0.$$

- 6. The set *cannot* be finite.
- 7. The mapping is invertible. (One can solve uniquely for x and y in terms of x' and y').
- 8. TRUE.

- 9. Recall (and use) the fact that a line is determined by two points.
- 10. Yes. (The mapping is invertible and coincides with its inverse).
- 11. Relation PQ + QR = PR (equality in the triangle inequality) implies

Q - P = s (R - Q) for some s > 0.

Conversely, we have PQ = t PR, QR = (1 - t) PR, etc.

- **12.** (a), (d), (f), (h), (i).
- **13.** (d) 3ax + 2by + 6c = 0; (f) bx + 3ay + 3(c 2a) = 0; (h) ax + by c = 0; (i) ax + by + (c 2a + 3b) = 0.
- **14.** (a) y = -5x + 7; (b) y = -5x 7; (c) y = 5x 7; (d) x 9y 32 = 0.
- **15.** *TTTT TTFT TF*.
- 16. For instance, examples (8), (9), and (10) from 1.2.2. (Find other examples.)
- **17.** x 10y 2 = 0.
- 18. The necessary and sufficient condition for α to be a transformation is $ad-bc \neq 0$. Such a transformation is *always* a collineation.
- 19. Straightforward verification.
- (a) (x, y) → (x, y) + x(0, 1) is a shear (about the y-axis); the image of the unit square is a parallelogram. (b) (x, y) → (y, x) is a reflection (in the angle bisector of the first quadrant); the image of the unit square is also the unit square. (c) (x, y) → (x, y) + x²(0, 1) is a generalized shear; the image of the unit square is a curvillinear quadrilateral (with two sides line segments). (d) (x, y) → (x, ^y/₂) → (x, -x + ^y/₂) → (-x + ^y/₂, x) → (-x + ^y/₂, x + 2) is a product of transformations (strain + shear + reflection + translation); the image of the unit square is a parallelogram. (The decomposition is not unique. Find other decompositions, for instance : strain + shear + rotation + reflection.)
- **21.** (a) $\beta \alpha = \gamma \alpha \Rightarrow \beta \alpha(\alpha^{-1}) = \gamma \alpha(\alpha^{-1}) \Rightarrow \beta(\alpha \alpha^{-1}) = \gamma(\alpha \alpha^{-1}) \Rightarrow \beta \iota = \gamma \iota \Rightarrow \beta = \gamma$. In particular, for $\gamma = \iota$, one has (c) $\beta \alpha = \alpha \Rightarrow \beta = \iota$. The parts (b), (d), and (e) can be proved analogously.
- **22.** *TTTF FF*.
- 23. True. (The group generated by the rotation of 1 rad is an infinite cyclic group.)
- **24.** *TTFF*.
- **25.** $a = b \in \mathbb{R} \setminus \{0\}.$

Translations and halfturns

- **26.** Express condition (4) in coordinates : $(x_B x_A)^2 + (y_B y_A)^2 = (x_D x_C)^2 + (y_D y_C)^2$ and $\frac{y_B y_A}{y_D y_C} = \frac{x_B x_A}{x_D x_C} = t > 0$, etc.
- **27.** If the points A, B, and C are collinear, then the parallelogram $\Box CABD$ becomes a "degenerate" one. (What is a *degenerate* parallelogram ?)
- **28.** A translation : τ^{-1} .
- **29.** The LHS is a product of five halfturns that fixes Q.
- **30.** *FFTT TTTF TT*.
- The halfturn σ_A, where A = (³/₂, -4).
 x' = x + a g and y' = y + c h.
- 32. TRUE.
- **33.** $x' = x + a_5$ and $y' = y + b_5$.
- **34.** 5x y + 27 = 0.
- **35.** $\sigma_M \alpha \sigma_P(P) = P \Rightarrow \alpha \sigma_P = \sigma_M.$
 - $\sigma_P \alpha = \sigma_N$ (*P* is the midpoint of *M* and *N*).
- **36.** $\sigma_P(\mathcal{L})$ is the line with equation y = 5x 21.
- **37.** For $n \in \mathbb{Z} \setminus \{0\}$, $\tau_{P,Q}^n \neq \iota$.
- **38.** $\tau_{P,Q} \in \langle \tau_{R,S} \rangle \Rightarrow \exists m \in \mathbb{Z} : \tau_{P,Q} = \tau_{R,S}^m = \tau_{S,R}^{-m}$.
- 39. TRUE.
- **40.** (a) X = (0, -1); (b) $Y = (0, \frac{1}{2});$ (c) Z = (0, -2).

Reflections and rotations

- **41.** If a product $\alpha_2 \alpha_1$ is invertible, then α_1 is one-to-one and α_2 is onto.
- 42. Show that certain angles are supplementary.
- **43.** Yes.
- 45. A line is uniquely determined by two (distinct) points.
- **46.** *TFFF TF*.
- **47.** The given reflection has the equations $x' = \frac{1}{5}(-3x+4y)+4$, $y' = \frac{1}{5}(4x+3y)-2$. $(0,0) \mapsto (4,-2)$, $(1,-3) \mapsto (1,-3)$, $(-2,1) \mapsto (6,-3)$, $(2,4) \mapsto (6,2)$.
- **48.** Reflection in the line through O and orthogonal to OO'.
- **49.** (a) FALSE. (Notice that the statement " $\sigma_{\mathcal{L}}\sigma_{\mathcal{M}} = \sigma_{\mathcal{M}}\sigma_{\mathcal{L}} \iff \mathcal{L} = \mathcal{M}$ or $\mathcal{L} \perp \mathcal{M}$ " is TRUE.) (b) TRUE.

50. FALSE. (Find a counterexample.)

Isometries I

- 52. No. (Find a simple counterexample.)
- **53.** 2x + y = 5 and 4x 3y = 10.
- **54.** x' = -x + 4, y' = -y + 6 (halfturn) and x' = x, y' = y + 4 (translation).
- **55.** TRUE. $\sigma_{\mathcal{L}}\sigma_{\mathcal{L}} = \iota$
- 56. FALSE. (Consider an equilateral triangle.)
- **57.** *TTTF TFFF F*.
- **58.** If $Q = \sigma_{\mathcal{M}}(P) = \sigma_{\mathcal{N}}(P) \neq P$ then \mathcal{M} and \mathcal{N} are both perpendicular bisectors of \overline{PQ} , contradiction. Hence, $\sigma_{\mathcal{N}}\sigma_{\mathcal{M}}(P) = P \Rightarrow P \in \mathcal{M} \cap \mathcal{N}$.
- 59. TRUE.
- **61.** x' = x + 4, y' = y + 2.
- **62.** $\sigma_{\mathcal{L}}\rho_{C,r}\sigma_{\mathcal{L}} = \sigma_{\mathcal{L}}\sigma_{\mathcal{M}}\sigma_{\mathcal{L}}\sigma_{\mathcal{L}} = \sigma_{\mathcal{L}}\sigma_{\mathcal{M}} = \rho_{C,-r}.$
- **63.** *TFTT FTFT TT*.
- **64.** Consider the perpendicular bisector of \overline{AC} . There are two cases; in each case construct the desired rotation.
- **65.** TRUE. $\tau = \sigma_{\mathcal{N}} \sigma_{\mathcal{M}} = (\sigma_{\mathcal{N}} \sigma_{\mathcal{L}}) (\sigma_{\mathcal{L}} \sigma_{\mathcal{M}}).$
- 66. TRUE.
- **67.** Let $C \in \mathcal{L}$. If $\rho_{C,r}(\mathcal{L}) = \mathcal{L}$, then let $\mathcal{M} \perp \mathcal{L}$ and $\rho_{C,r} = \sigma_{\mathcal{N}} \sigma_{\mathcal{M}}$. We have

$$\mathcal{L} = \rho_{C,r}(\mathcal{L}) = \sigma_{\mathcal{N}}(\mathcal{L}) \Rightarrow (1) \quad \mathcal{L} = \mathcal{N} \quad \text{or} \quad (2) \quad \mathcal{L} \perp \mathcal{N}.$$

In the first case, $\rho_{C,r}$ is a halfturn (and so any line through C is fixed), whereas in the second case, $\rho_{C,r}$ is the identity transformation (and so any line is fixed).

- **68.** $(\mathcal{M}) \quad 2x y + c = 0 \text{ and } (\mathcal{N}) \quad 4x 2y + 2c 15 = 0 \text{ (parallel lines)}.$
- **69.** If the lines are neither concurrent nor parallel, then $\sigma_{\mathcal{C}}\sigma_{\mathcal{B}}\sigma_{\mathcal{A}}$ is the product of a (nonidentity) rotation and a reflection (in whatever order). Such a product *cannot* be a reflection : assume the contrary and derive a contradiction.
- **70.** $\sigma_{\mathcal{N}}\sigma_{\mathcal{M}}\sigma_{\mathcal{L}} = (\sigma_{\mathcal{N}}\sigma_{\mathcal{M}}\sigma_{\mathcal{L}})^{-1} = \sigma_{\mathcal{L}}\sigma_{\mathcal{M}}\sigma_{\mathcal{N}}.$

Isometries II

- **71.** There are several cases.
- **72.** $(\alpha\beta\alpha^{-1})^2 = \iota \iff \alpha\beta^2\alpha^{-1} = \iota \iff \beta^2 = \iota.$

- **73.** Consider the identity $\alpha \rho_{C,r} \alpha^{-1} = \rho_{\alpha(C),\pm r}$ (where α is any isometry).
- 74. Any translation is a product of two (special) rotations.
- **75.** A translation fixing line C commutes with (the reflection) σ_{C} .
- **76.** *TTTT FT*.
- 77. TRUE.
- **78.** Let $\rho_1 = \rho_{C_1,r} = \sigma_{\mathcal{C}}\sigma_{\mathcal{A}}$ with $\{C_1\} = \mathcal{A} \cap \mathcal{C}$, and $\rho_2 = \rho_{C_2,s} = \sigma_{\mathcal{B}}\sigma_{\mathcal{C}}$ with $\{C_2\} = \mathcal{B} \cap \mathcal{C}$. Then
 - $\rho_2 \rho_1 = \sigma_{\mathcal{B}} \sigma_{\mathcal{A}} = \rho_{C,r+s}$ and
 - $\rho_2^{-1}\rho_1 = \sigma_{\mathcal{B}'}\sigma_{\mathcal{A}} = \rho_{C',r-s} \quad (r \neq s).$

The points C_1, C , and C' are collinear : they all lie on the line \mathcal{A} .

79. Let $\tau = \tau_{A,B}$ (that is, $\tau(A) = B$). Then

$$\tau \sigma_{\mathcal{C}} = \sigma_{\mathcal{C}} \tau \iff \sigma_{\mathcal{C}} \tau \sigma_{\mathcal{C}}^{-1} = \tau \iff \tau_{\sigma_{\mathcal{C}(A)}, \sigma_{\mathcal{C}(B)}} = \tau_{A,B} \iff \stackrel{\longleftrightarrow}{AB} \parallel \mathcal{C} \iff \tau(\mathcal{C}) = \mathcal{C}$$

- **80.** *FFFT FF*.
- 81. TRUE. Let $\gamma = \sigma_{\mathcal{C}} \tau_{A,B}$. We can choose $A, B \in \mathcal{C}$ such that the given point M is the midpoint of the segment \overline{AB} .
- 82. TRUE. $\gamma = \sigma_P \sigma_L = \sigma_N \sigma_M \sigma_L$.
- 83. Translations and halfturns are dilatations. Reflections are not. Neither are glide reflections : if $\sigma_{\mathcal{L}}\sigma_{P}$ where a dilatation δ , then $\sigma_{\mathcal{L}}$ would be the dilatation $\delta\sigma_{P}$.
- 84. Let $\tau = \tau_{A,B}$ (that is, $\tau(A) = B$). Then, for the glide reflection $\gamma = \sigma_{\mathcal{L}} \sigma_A$,

$$\gamma^2 = \sigma_{\mathcal{L}} \sigma_A \sigma_{\mathcal{L}} \sigma_A = \left(\sigma_{\mathcal{L}} \sigma_A \sigma_{\mathcal{L}}^{-1} \right) \sigma_A = \sigma_{\sigma_{\mathcal{L}}(A)} \sigma_A = \sigma_M \sigma_A = \tau_{A,B} = \tau.$$

- 85. $\rho_{O,90}$: x' = -y and y' = x.
 - $\rho_{O,180}$: x' = -x and y' = -y.
 - $\rho_{O,270}$: x' = y and y' = -x.
- **86.** Since α is an odd isometry, we have that α is a reflection $\iff \alpha = \alpha^{-1}$. The equations for α^{-1} are x' = ax + by - (ah + bk) and y' = bx - ay + ak - bh.
- **87.** *TFTT TTT*.
- **88.** r = 150. Let P = (u, v). Then $1 = (1 \cos r)u + (\sin r)v$ and $-\frac{1}{2} = (1 \cos r)v (\sin r)u$ imply $u = \frac{4 \sqrt{3}}{4}$ and $v = \frac{3 2\sqrt{3}}{4}$.
- **89.** C is the only point fixed by $\rho_{C,r}$ with $r \neq 0$. The coordinates of C are

$$x_C = \frac{(1 - \cos r)h - (\sin r)k}{2(1 - \cos r)}$$
 and $y_C = \frac{(1 - \cos r)k + (\sin r)h}{2(1 - \cos r)}$.

90. \mathcal{L} is the only line fixed by $\sigma_{\mathcal{L}}$. An equation for \mathcal{L} is (a-1)x + by + h = 0 or, equivalently, bx - (a+1)y + k = 0.

Symmetry

- **92.** (a) Yes. (b) No.
- **93.** A *bounded* figure cannot have two points of symmetry, because if it had, it would be invariant under a nonidentity translation.
- 94. (a) $\mathfrak{C}_{1.}$ (b) $\mathfrak{D}_{1.}$
- **95.** (a) \mathfrak{C}_2 or \mathfrak{D}_2 .
- 97. \mathfrak{D}_{2} .
- 98. \mathfrak{D}_{2} .
- **99.** *FTTF*.
- **100.** \mathfrak{D}_{3} .
- 103. There are ten equivalence classes :
 - A, M, T, U, V, W.
 - B, C, D, E, K.
 - F, G, J, P, R.
 - **H**, **I**.
 - L.
 - N, S, Z.
 - **O**.
 - Q.
 - X.
 - Y.

104. (c) Use the relation $\sigma \rho^k = \rho^{-k} \sigma$ to show that $\sigma \rho^{n-1} \neq \rho^{n-1} \sigma$.

105. The polygons cannot be regular. (Find more than one example in each case.)

Similarities

- 107. The inverse of a similarity is also a similarity.
- 109. The function is invertible.
- **112.** In each case we have
 - $C = rA + (1 r)B = B + r(A B) \in \overleftrightarrow{AB}, \quad C \neq B.$

•
$$C = \frac{s(1-r)}{1-rs}A + \frac{1-s}{1-rs}B \in \overleftrightarrow{AB}.$$

• $C = \frac{1}{1-r}B + \frac{r}{r-1}A \in \overleftrightarrow{AB}.$

- **113.** Let P = (h, k). Then x' = -2(x h) + h, $y' = -2(y k) + k \Rightarrow h = 1$ and $k = -\frac{4}{3}$.
- **114.** A stretch reflection fixes *exactly one* point and *exactly two* lines. A stretch rotation fixes *no* line.
- **115.** *TTTF FTT*.
- 116. FALSE.
- 117. TRUE. α is 1-1 and onto ($\alpha\beta$ is onto $\Rightarrow \alpha$ is onto). See NOTE 2 : Distancepreserving mappings.
- **118.** (a) $P = \left(-\frac{7}{2}, \frac{5}{2}\right)$; (b) t = 5; (c) x = -15; (d) $P + \delta_{C,r}(B) = Q + \delta_{C,r}(A)$; in particular, $P = \delta_{C,r}(A)$ and $Q = \delta_{C,r}(B)$; (e) $\delta_{B,s}(A)$; (f) x = r; (g) $C = \tau_{B,A}^2(B)$.
- 119. FALSE.
- **120.** $r = \frac{5\sqrt{2}}{4}$.
- **121.** α is a direct similarity with equations x' = x 2y + 1, y' = 2x + y. $\alpha((-1, 6)) = (-12, 4)$. (α is a stretch rotation; find its center and the angle of rotation.)
- **122.** An involutory similarity is an isometry ($\alpha = \beta \delta \Rightarrow \delta = \iota$).
- **123.** TRUE. (Consider first the case when the circles are equal (i.e. A = C and AB = CD)).
- **124.** $\sigma_{\mathcal{L}} = \delta_{P,r} \sigma_{\mathcal{L}} \delta_{P,r}^{-1} = \sigma_{\delta_{P,r}(\mathcal{L})} \iff \mathcal{L} = \delta_{P,r}(\mathcal{L}) \iff P \in \mathcal{L}.$

Affine transformations

- **126.** You may use (in a clever way) the cross product of two vectors in \mathbb{R}^3 .
- **127.** (b) $\begin{vmatrix} 1 & 0 & 0 \\ h & a & b \\ k & c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc.$
- **128.** $[\alpha\beta] = [\alpha][\beta]$ (closure property); $[\alpha^{-1}] = [\alpha]^{-1}$ (inverse property). **129.**

$$[\delta_{P,r}] = \begin{bmatrix} 1 & 0\\ (1-r)\mathbf{v} & rI \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} h\\ k \end{bmatrix}.$$

130. (a) For α_k : if k = 1 ($\alpha_k = \iota$), then every point is fixed; if $k \neq 1$, then only the points on the *y*-axis are fixed. (b) PQR = 15. (c) $\alpha_k(P)\alpha_k(Q)\alpha_k(R) = 15 \cdot |k|; \quad \beta_k(P)\beta_k(Q)\beta_k(R) = 15.$

- **131.** *TFFT TTF*.
- **132.** $\underline{P_0P}' = k \cdot \underline{P_0P}, \ k \neq 0.$
- **133.** $x = \frac{1}{\Delta}(dx' by') \frac{1}{\Delta}(dh bk)$ and $y = \frac{1}{\Delta}(-cx' + ay') \frac{1}{\Delta}(-ch + ak)$ ($\Delta = ad bc \neq 0$). We have

$$[\alpha] = \begin{bmatrix} 1 & 0 \\ \mathbf{v} & A \end{bmatrix} \quad \text{and} \quad [\alpha^{-1}] = [\alpha]^{-1} = \begin{bmatrix} 1 & 0 \\ -A^{-1}\mathbf{v} & A^{-1} \end{bmatrix}.$$

- 134. TRUE.
- **135.** A similarity is a product of a stretch and an isometry, whereas a stretch is a product of two strains (about perpendicular lines).
- 136. The equations of the given transformation (shear) are not of the form

$$x' = (ar)x - (bs)y + h$$
 and $y' = \pm ((br)x + (as)y) + k$.

- 137. x' = x y, y' = y and x' = x, y' = x + y. Only one point is fixed by the product of these two transformations (shears).
- 138. TRUE. (A similarity that preserves area must be an isometry.)
- 139. TRUE. (An involutory affine transformation is an isometry.)
- **140.** x' = 2x and $y' = \frac{1}{2}y$. (Find other examples.)