Appendix B

Revision Problems

1. Find all triangles such that three given noncollinear points are the midpoints of the sides of the triangle.
2. Prove that:
i. $\sigma_{A} \sigma_{B}=\sigma_{B} \sigma_{C} \Longleftrightarrow B$ is the midpoint of $\overline{A C}$.
ii. $\sigma_{A} \sigma_{\mathcal{L}}=\sigma_{\mathcal{L}} \sigma_{B} \Longleftrightarrow \mathcal{L}$ is the perpendicular bisector of $\overline{A B}$.
3. Prove that any distance-preserving mapping $\alpha: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ is a bijection (hence an isometry).
4. If $\square A B C D$ and $\square E F G H$ are congruent rectangles and $A B \neq B C$, then how many isometries are there that take one rectangle to the other ?
5. Show that the product of the reflections in the three angle bisectors of a triangle is a reflection in a line perpendicular to a side of the triangle.
6. If $\mathcal{L}, \mathcal{M}, \mathcal{N}$ are the perpendicular bisector of sides $\overline{A B}, \overline{B C}, \overline{C A}$, respectively, of $\triangle A B C$, then $\sigma_{\mathcal{N}} \sigma_{\mathcal{M}} \sigma_{\mathcal{L}}$ is a reflection in which line ?
7. If \mathcal{L} and \mathcal{M} are distinct intersecting lines, find the locus of all points P such that $\rho_{P, r}(\mathcal{L})=\mathcal{M}$ for some r.
8. Let A, B, C be three noncollinear points such that $m(\angle A B C)=45, m(\angle B C A)=$ 105 and $m(\angle C A B)=30$. Find the fixed point of

$$
\rho_{B, 90} \rho_{A, 60} .
$$

9. Given a figure consisting of two points P and Q, sketch a construction of the fixed point of $\tau_{P, Q} \rho_{P, 45}$.
10. Given a figure consisting of three points A, B, C, sketch a construction of the fixed point of $\tau_{B, C} \rho_{A, 120}$.
11. Indicate all pairs of commuting elements in the dihedral groups \mathfrak{D}_{3} and \mathfrak{D}_{4}.
12. Show that any two parabolas are similar.
13. Find all stretch reflections taking point A to point B. Also, find all stretch rotations taking point A to point B.
14. Show that any given ellipse is the image of the unit circle under some affine transformation.
15. If $x^{\prime}=a x+b y+h$ and $y^{\prime}=c x+d y+k$ are the equations of mapping α and $a d-b c=0$, then show that α is not a collineation since all images are collinear.
16. Find equations for the strain of ratio r about the line with equation $y=m x$.
17. Find
(a) the equations for $\tau_{P, Q}^{-1}$ if $P=(a, b)$ and $Q=(h, k)$.
(b) the equations for $\sigma_{\mathcal{L}}$ if \mathcal{L} has equation $y=-x+1$.
(c) the image of the line with equation $x+y=3$ under the transformation $\sigma_{\mathcal{L}}$, where \mathcal{L} has equation $y=x-1$.
(d) the mage of the line with equation $x=2$ under $\sigma_{A} \sigma_{B}$, where $A=(2,1)$ and $B=(1,2)$.

Class test, March 1999
18. Find
(a) the equations for the rotation $\rho_{C, 30}$ where $C=(2,-1)$.
(b) \mathcal{L}, if $x^{\prime}=\frac{3}{5} x+\frac{4}{5} y$ and $y^{\prime}=\frac{4}{5} x-\frac{3}{5} y$ are equations for the isometry $\sigma_{\mathcal{L}}$.
(c) the image of the point $P=(a,-b)$ and of the line \mathcal{L} with equation $b x+a y=0$ under the isometry

$$
x^{\prime}=a x-b y-1, \quad y^{\prime}=b x+a y \quad\left(\text { with } a^{2}+b^{2}=1\right)
$$

Class test, May 1999

19. (a) Find equations of the dilation $\delta_{P,-3}$ about the point $P=(1,-1)$.
(b) If $\sigma_{P}((x, y))=(-2 x+3,-2 y-4)$, find P.
(c) Find equations of the strain of ratio k about the line with equation $y=$ $2 x$.

Exam, June 1999
20. (a) If $\rho_{C, r}((x, y))=((\cos r) x-(\sin r) y+m,(\sin r) x+(\cos r) y+n)$, find C.
(b) If $\sigma_{\mathcal{M}} \sigma_{\mathcal{L}}((x, y))=(x+6, y-3)$, find equations for lines \mathcal{L} and \mathcal{M}.
(c) Find all direct similarities α such that

$$
\alpha((1,0))=(0,1) \quad \text { and } \quad \alpha((0,1))=(1,0)
$$

Exam, June 1999

21. (a) Determine the preimage of the point $(-1,3)$ unde the mapping $(x, y) \mapsto$ $\left(-x+\frac{y}{3}, 3 x-y\right)$.
(b) Write the equations for $\tau_{P, Q}^{-1} \sigma_{P}$ if $P=(1,1)$ and $Q=(3,3)$.
(c) Find the image of the line with equation $x=2$ under $\sigma_{A} \sigma_{B}$, when $A=(2,1)$ and $B=(1,2)$.

Class test, March 2000

22. (a) What is the symmetry group of the capital letter \mathbf{H} (written in most symmetric form) ? Describe this group (e.g. order of the group, generators, etc.).
(b) Given the lines $(\mathcal{A}) x+y=0$ and $(\mathcal{B}) x+y=1$, find points A and B such that $\sigma_{\mathcal{B}} \sigma_{\mathcal{A}}=\sigma_{B} \sigma_{A}$.
(c) Find equations for the rotation $\rho_{C, 30}$ where $C=(2,-1)$.

Class test, May 2000
23. (a) What is the image of the line with equation $x-y+1=0$ under the reflection in the line with equation $2 x+y=0$?
(b) If $\rho_{C, r}((x, y))=(-y+h, x+k)$, find C and r.
(c) Find equations of the dilation $\delta_{P,-3}$ about the point $P=(1,-1)$.
(d) Find all stretch reflections taking point $A=(1,1)$ to point $B=(2,0)$.
(e) If $x^{\prime}=(1-a b) x-b^{2} y, \quad y^{\prime}=a^{2} x+(1+a b) y$ are equations for a shear about the line \mathcal{L}, find \mathcal{L}. What is the ratio of this shear ?

Exam, June 2000
24. Consider the transformation

$$
\alpha: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}, \quad(x, y) \mapsto(x+y, y)
$$

Show that α is a collineation. Is α an isometry ? Motivate your answer.

Class test, March 2001

25. (a) Write the equations for $\sigma_{P} \tau_{P, Q}^{-1}$ if $P=(a, b)$ and $Q=(c, d)$. What is this transformation?
(b) Find the image of the line with equation $x=2$ under $\sigma_{A} \sigma_{B}$, when $A=(2,1)$ and $B=(1,2)$.

Class test, March 2001

26. (a) What is the symmetry group of the capital letter \mathbf{H} (written in most symmetric form) ? Describe this group (e.g. order of the group, generators, etc.).
(b) If $\sigma_{\mathcal{A}} \sigma_{\mathcal{B}}((x, y))=(x-4, y+2)$, find equations for lines \mathcal{A} and \mathcal{B}.
(c) Find equations for

- the relection $\sigma_{\mathcal{L}}$
- the rotation $\rho_{C, r}$
that map the x-axis onto the line \mathcal{M} with equation $x-y+2=0$.

Class test, May 2001

27. (a) What is the image of the line with equation $x-y+1=0$ under the reflection in the line with equation $2 x+y=0$?
(b) If $\rho_{C, r}((x, y))=(-y+h, x+k)$, find C and r.
(c) Find all dilatations taking the circle with equation $x^{2}+y^{2}=1$ to the circle with equation $(x-1)^{2}+(y-2)^{2}=5$.
(d) Find equations for the strain of ratio k about the line with equation $2 x-y=0$.
(e) If $x^{\prime}=(1-a b) x-b^{2} y, \quad y^{\prime}=a^{2} x+(1+a b) y$ are equations for a shear about the line \mathcal{L}, find \mathcal{L}. What is the ratio of this shear?

Exam, June 2001
28. Consider the mapping

$$
\alpha: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}, \quad(x, y) \mapsto\left(x, x^{2}+y\right) .
$$

(a) Show that α is a transformation.
(b) Is α a collineation? Motivate your answer.
(c) What is the preimage of the parabola with equation $y-x^{2}=0$ under the transformation α ?
(d) Find the points and lines fixed by the transformation α.

Class test, August 2002

29. (a) Write the equations for the reflection σ in the line with equation

$$
(\sin r) x-(\cos r) y=0
$$

Use these equations to verify that σ is a transformation.
(b) Compute the (Cayley table for) the symmetry group of an equilateral triangle.

Class test, August 2002
30. (a) If $\sigma_{\mathcal{M}} \sigma_{\mathcal{L}}((x, y))=(x+6, y-3)$, find equations for lines \mathcal{L} and \mathcal{M}.
(b) If

$$
x^{\prime}=-\frac{\sqrt{3}}{2} x-\frac{1}{2} y+1, \quad y^{\prime}=\frac{1}{2} x-\frac{\sqrt{3}}{2} y-\frac{1}{2}
$$

are equations for the rotation $\rho_{C, r}$, then find the centre C and the angle r.

Class test, October 2002

31. (a) Compute (the Cayley table for) the symmetry group of an equilateral triangle.
(b) Show that if

$$
x^{\prime}=(\cos r) x-(\sin r) y+h, \quad y^{\prime}=(\sin r) x+(\cos r) y
$$

are equations for nonidentity rotation $\rho_{C, r}$, then

$$
x_{C}=\frac{h}{2} \quad \text { and } \quad y_{C}=\frac{h}{2} f\left(\frac{r}{2}\right)
$$

where f is a function to be determined.
(c) Find all dilatations taking the circle with equation $x^{2}+y^{2}=1$ to the circle with equation $(x-1)^{2}+(y-2)^{2}=5$.
(d) Find equations for the strain of ratio k about the line with equation $3 x-y=0$.

Exam, November 2002

32. Consider the mapping $\alpha: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ given by

$$
(x, y) \mapsto\left(\frac{1}{5}(-3 x+4 y)+4, \frac{1}{5}(4 x+3 y)-2\right)
$$

(a) Verify that α is a transformation (on \mathbb{E}^{2}).
(b) Investigate whether α is a collineation. If so, find the image of the line \mathcal{L} with equation $2 x-y=5$ under α.
(c) Determine all points P that are fixed by α (i.e. $\alpha(P)=P$).
(d) Find the image and the preimage of (the origin) $O=(0,0)$ under α.
(e) Write down the equations of the translation $\tau_{O, \alpha(O)}$ and the halfturn $\sigma_{\alpha(O)}$.

Class test, August 2003

33. Let $c, d \in \mathbb{R}$ and consider the transformation $a: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ be given by the equations

$$
x^{\prime}=x+c \quad \text { and } \quad y^{\prime}=-y+d .
$$

(a) Look at the form of these equations and conclude that they represent an odd isometry. Explain.
(b) For what values of the parameters c and d is the given isometry α

- a glide reflection?
- a reflection?

In each case, find the (equations of the) line fixed by α (i.e. the axis of the glide reflection and the mirror of the reflection, respectively).

Class test, October 2003

34.

(a) Given the point $C=(3,-2)$ and the line \mathcal{L} with equation $x+y-1=0$, find equations for $\delta_{C, 2}$ (stretch), $\alpha_{\mathcal{L}}$ (reflection), and $\rho_{C, 45}$ (rotation). Compute $\delta_{C, 2}(\mathcal{L})$ and $\rho_{C, 45}(\mathcal{L})$.
(b) Determine the collineation α such that
$\alpha((0,0))=(-1,4), \quad \alpha((-1,4))=(-9,6), \quad$ and $\quad \alpha((-9,16))=(-13,22)$.
Is this collineation a similarity ? If yes, find its ratio. Identify α.
(c) Find equations for α^{2} and then identify this transformation.

Exam, November 2003
35. Consider the mapping $\alpha: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ given by

$$
(x, y) \mapsto\left(\frac{1}{2}(x+\sqrt{3} y), \frac{1}{2}(\sqrt{3} x-y)\right)
$$

(a) Verify that α is a transformation.
(b) Determine whether α is a collineation. If so, find the image of the line \mathcal{L} with equation $\sqrt{3} x+y+1=0$ under α.
(c) Find all points P that are fixed by α (i.e. $\alpha(P)=P$).
(d) Given the points $O=(0,0), A=(1,0), B=\left(1, \frac{1}{\sqrt{3}}\right)$, and $C=\left(0, \frac{1}{\sqrt{3}}\right)$
i. verify that the quadrilateral $\square O A B C$ is a rectangle.
ii. determine with justification the image of $\square O A B C$ under α.

Class test, September 2004

36. Consider the points

$$
O=(0,0), \quad A=(1,1) \quad \text { and } \quad B=(-1,1)
$$

(a) Find the equations of all four isometries sending the segment $\overline{O A}$ onto the segment $\overline{O B}$.
(b) Identify these transformations. (Specify clearly, for a rotation: the centre and the directed angle, and for a reflection or glide reflection : the axis.)
(Hint : Use the general equations of an isometry.)
Class test, October 2004
37. Consider the points
$A=(2,1), \quad B=(2,-2), \quad C=(-2,3), \quad D=(4,3), \quad P=\left(\frac{4}{5}, \frac{3}{5}\right), \quad Q=(0,-1)$
and the line \mathcal{L} with equation

$$
x-y-1=0
$$

(a) Find the equations of the following transformations:
i. the stretch $\delta_{P, 2}$;
ii. the rotation $\rho_{P, 90}$;
iii. The stretch rotation $\alpha_{1}=\rho_{P, 90} \delta_{P, 2}$;
iv. the stretch $\delta_{Q, 2}$;
v. the reflection $\sigma_{\mathcal{L}}$;
vi. the stretch reflection $\alpha_{2}=\sigma_{\mathcal{L}} \delta_{Q, 2}$.
(b) How many similarities are there sending the segment $\overline{A B}$ onto the segment $\overline{C D}$? Justify your claim.
(c) Find the equations of the unique direct similarity such that $A \mapsto C$ and $B \mapsto D$.
(d) Find the equations of the unique opposite similarity such that $A \mapsto D$ and $B \mapsto C$.

Exam, November 2004

38. Consider the points $O=(0,0)$ and $P=(0,2)$, the line \mathcal{L} with equation $y-1=0$, and the mappings

$$
\begin{array}{llll}
\alpha_{1}: & (x, y) & \mapsto\left(x, x^{2}+y\right) \\
\alpha_{2}: & (x, y) & \mapsto & (x,-y+2) \\
\alpha_{3}: & (x, y) & \mapsto & \left(x-\frac{1}{2} y,-2 x+y\right) .
\end{array}
$$

(a) Find the point $\alpha_{2}(P)$ and the line $\alpha_{2}^{-1}(\mathcal{L})$.
(b) Find $\alpha_{1}(\mathcal{L})$ and $\alpha_{3}^{-1}(O)$.
(c) Which of the given mappings are transformations ? Which, if any, of these transformations is a collineation? Justify your answers.
(d) Find the equations for the following (transformations) :
i. $\tau_{O, P}$.
ii. $\sigma_{\mathcal{L}}$.
iii. σ_{P}.
iv. $\tau_{O, P} \sigma_{\mathcal{L}}$.

Class test, September 2005

39. (a) Let $a, b, h, k \in \mathbb{R}$ such that $a^{2}+b^{2}=1$. If

$$
\begin{aligned}
x^{\prime} & =a x+b y+h \\
y^{\prime} & =b x-a y+k
\end{aligned}
$$

are the equations for isometry α, show that α is a reflection if and only if

$$
a h+b k+h=0 \quad \text { and } \quad a k-b h=k .
$$

(Hint : Find the equations for α^{-1} by using Cramer's rule.)
(b) Determine the fixed points (if any) of the following isometry

$$
(x, y) \mapsto\left(\frac{1}{5}(-3 x+4 y)+4, \frac{1}{5}(-4 x-3 y)+2\right) .
$$

Hence identify this isometry.
(c) Find the glide reflection γ such that

$$
\gamma^{2}=\tau_{A, B}, \quad \text { where } A=(1,1), B=(2,2) .
$$

Class test, October 2005

40. Consider the points

$$
A=(4,2), \quad P=(h, k)
$$

and the lines

$$
\mathcal{L}: \quad y=0, \quad \mathcal{M}: \quad 2 x=y=3, \quad \mathcal{N}: \quad 2 x+y=8
$$

(a) Write the equations for the following transformations:
i. the halfturn σ_{P};
ii. the reflection $\sigma_{\mathcal{L}}$;
iii. the translation $\tau_{O, A}$;
iv. the rotation $\rho_{P, 30}$;
v. the glide reflection $\sigma_{\mathcal{M}} \sigma_{A}$;
vi. the translation $\sigma_{\mathcal{N}} \sigma_{\mathcal{M}}$.
(b) Under what conditions the transformations σ_{P} and $\sigma_{\mathcal{L}}$ do commute?
(c) Find the point C such that

$$
\delta_{P, 3} \delta_{A, \frac{1}{3}}=\tau_{A, C} .
$$

(d) Let $B=\tau_{O, A}((0,-4))$. (O is the origin.) Find the equations of all four isometries sending segment $\overline{O A}$ onto the segment $\overline{O B}$.
(Hint : Use the general equations for an isometry.)
Exam, November 2005

