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2 Groups and Geometry

1.1 The Euclidean Plane E2

Consider the Euclidean plane (or two-dimensional space) E2 as studied in

high school geometry.

Note : It is customary to assign different meanings to the terms set and space.

Intuitively, a space is expected to possess a kind of arrangement or order that is

not required of a set. The necessity of a structure in order for a set to qualify as a

space may be rooted in the feeling that a notion of “proximity” (in some sense not

necessarily quantitative) is inherent in our concept of a space. Thus a space differs

from the mere set of its elements by possessing a structure which in some way (however

vague) gives expression to that notion. A direct quantitative measure of proximity is

introduced on an abstract set S by associating with each ordered pair (x, y) of its

elements (called “points”) a non-negative real number, denoted by d(x, y), and called

the “distance” from x to y.

On this “geometric space” one introduces Cartesian coordinates which are

used to define a one-to-one correspondence

P 7→ (xP , yP )

between E2 and the set R2 of all ordered pairs of real numbers. This mapping

preserves distances between points of E2 and their images in R2. It is the

existence of such a coordinate system which makes the identification of E2

and R2 possible. Thus we can say that

R2 may be identified with E2 plus a coordinate system.

Note : The geometers before the 17th century did not think of the Euclidean plane

E2 as a “space” of ordered pairs of real numbers. In fact it was defined axiomatically

beginning with undefined objects such as points and lines together with a list of their

properties – the axioms – from which the theorems of geometry where then deduced.

The identification of E2 and R2 (or, more generally, of En and Rn ) came

about after the invention of analytic geometry by P. Fermat (1601-1665) and R.
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Descartes (1596-1650) and was eagerly seized upon since it is very tricky and dif-

ficult to give a suitable definition of Euclidean space (of any dimension) in the spirit

of Euclid. This difficulty was certainly recognized for a long time, and has inter-

ested many great mathematicians. It lead in part to the discovery of non-Euclidean

geometries (like spherical and hyperbolic geometries) and thus to manifolds.

We make the following definition.

1.1.1 Definition. The Euclidean plane E 2 is the set R2 together with

the Euclidean distance between points P = (xP , yP ) and Q = (xQ, yQ) given

by

d(P,Q) = PQ : =
√

(xQ − xP )2 + (yQ − yP )2.

Since the Euclidean distance d : E2×E2 → R is the only distance function to

be considered in this course, we shall called it, simply, the distance.

Numbers will be denoted by lowercase Roman letters.

Note : The set R2 has the structure of a vector space (over R). This means that

the set R2 is endowed with a rule for addition

(x1, y1) + (x2, y2) : = (x1 + x2, y1 + y2)

and a rule for scalar multiplication

r(x, y) : = (rx, ry)

such that these operations satisfy the eight axioms below (for all (x1, y1), (x2, y2), (x3, y3) ∈
R2 and all r, s ∈ R ) :

(VS1) ((x1, y1) + (x2, y2)) + (x3, y3) = (x1, y1) + ((x2, y2) + (x3, y3)) ;

(VS2) (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1) ;

(VS3) (x1, y1) + (0, 0) = (x1, y1) ;

(VS4) (x1, y1) + (−x1,−y1) = (0, 0) ;

(VS5) r((x1, y1) + (x2, y2)) = r(x1, y1) + r(x2, y2) ;
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(VS6) (r + s)(x1, y1) = r(x1, y1) + s(x1, y1) ;

(VS7) r(s(x1, y1)) = rs(x1, y1) ;

(VS8) 1(x1, y1) = (x1, y1).

Hence, the Euclidean plane E2 is a (real, 2-dimensional) vector space.

A point P of E2 is an ordered pair (x, y) of real numbers.

Points will be denoted by uppercase Roman letters.

Exercise 1 Verify that (for P,Q,R ∈ E2 ) :

(M1) PQ ≥ 0, and PQ = 0 ⇐⇒ P = Q ;

(M2) PQ = QP ;

(M3) PQ+QR ≥ PR.

Relation (M3) is known as the triangle inequality.

Note : A set S equipped with a function d : S×S→ R, (P,Q) 7→ PQ satisfying

conditions (M1)-(M3) is called a metric space (with metric d). Hence the Euclidean

plane E2 is not only a vector space. It is also a metric space.

It is important to realize that in order to do geometry we need a structure which

provides lines. In Euclidean geometry, a (straight) line may be defined as either a

curve with zero acceleration (i.e. such that the tangent vector to the curve is constant

along the curve) or a curve which represents the shortest path between points.

In our (Cartesian) model of Euclidean plane it is convenient to define a line by

specifying its (Cartesian) equation.

A line L in E2 is a set of points satisfying an equation ax+ by + c = 0 ,

where a, b, c are real numbers with not both a = 0 and b = 0 (i.e. a2 + b2 6=
0).

Note : The triplets (a, b, c) and (ra, rb, rc), r 6= 0 determine the same line. A

point P = (xP , yP ) lies on the line with equation ax + by + c = 0 if (and only if)

the coordinates of the point satisfy the equation of the line : axp + byp + c = 0. If

this is the case, we also say that the given line passes through the point P .
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Lines will be denoted by uppercase calligraphic letters.

Exercise 2 PROVE or DISPROVE : Through any two different points P1 = (x1, y1)

and P2 = (x2, y2), there passes a unique line.

Notation and terminology (review)

We introduce some basic geometric notation and terminology. This should

be read now to emphasize the basic notation and used later as a reference.

• By the triangle inequality, AB + BC ≥ AC. A − B − C is read “point B is

between points A and C ”, and means A,B,C are three distinct points such

that AB +BC = AC.

•
←→
AB is the unique line determined by two distinct points A and B.

• AB is a line segment and consists of A,B and all points between A and B.

• AB→ is a ray from A through B and consists of all points in AB together

with all points P such that A−B − P .

• ∠ABC is an angle and is the union of noncollinear rays BA→ and BC→.

m(∠ABC) is the degree measure of ∠ABC and is a number between 0 and

180.

• 4ABC is a triangle and is the union of noncollinear segments AB, BC, and

CA.

• “∼= ” is read “is congruent to” and has various meanings depending on context.

– AB ∼= CD ⇐⇒ AB = CD ;

– ∠ABC ∼= ∠DEF ⇐⇒ m(∠ABC) = m(∠DEF ) ;

– 4ABC ∼= 4DEF ⇐⇒ AB ∼= DE , BC ∼= EF , AC ∼= DF , ∠A ∼=
∠D , ∠B ∼= ∠E , ∠C ∼= ∠F . Not all six corresponding parts must be

checked to show triangles congruent. The familiar congruence theorems

for triangles 4ABC and 4DEF are :

∗ (SAS) : If AB ∼= DE , ∠A ∼= ∠D , and AC ∼= DF , then 4ABC ∼=
4DEF ;
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∗ (ASA) : If ∠A ∼= ∠D , AB ∼= DE, and ∠B ∼= ∠E, then 4ABC ∼=
4DEF ;

∗ (SAA) :If AB ∼= DE , ∠B ∼= ∠E, and ∠C ∼= ∠F , then 4ABC ∼=
4DEF ;

∗ (SSS) :If AB ∼= DE , BC ∼= EF , and CA ∼= FD, then 4ABC ∼=
4DEF .

• The Exterior Angle Theorem states that given 4ABC and B − C −D, then

m(∠ACD)

= m(∠A)+m(∠B). So for 4ABC we have m(∠A)+m(∠B)+m(∠C) = 180.

• Given 4ABC and 4DEF such that ∠A ∼= ∠D , ∠B ∼= ∠E, and ∠C ∼=
∠F , then 4ABC ∼ 4DEF , where “∼ ” is read “is similar to”. If two of

these angle congruences hold, then the third congruence necessarily holds and

the triangles are similar ; this result is known as the Angle–Angle Similarity

Theorem. Two triangles are also similar if and only if their corresponding sides

are proportional.

• At times, we shall need to talk about directed angles and directed angle measure,

say from AB→ to AC→, with counterclockwise orientation chosen as positive,

and clockwise orientation chosen as negative. In general, for real numbers r

and s, we agree that r◦ = s◦ ⇐⇒ r = s+ 360k for some integer k.

• Given line L, the points of the plane are partitioned into three sets, namely

the line itself and the two halfplanes of the line.

• Lines L1 and L2 are parallel if either L1 = L2 or else L1 and L2 have no

points in common.

• The locus of all points equidistant from two points A and B is the perpendic-

ular bisector of A and B, which is the line through the midpoint of AB and

perpendicular to AB.

Exercise 3 Show that the lines

(L) ax+ by + c = 0 and (M) dx+ ey + f = 0

are parallel if and only if ae−bd = 0, and are perpendicular if and only if ad+be = 0.
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Exercise 4 PROVE or DISPROVE : Through any point P off a line L, there passes

a unique line parallel to the given line L.

Exercise 5 Show that three points P1 = (x1, y1), P2 = (x2, y2) and P3 = (x3, y3)

are collinear if and only if ∣∣∣∣∣∣∣∣
1 1 1

x1 x2 x3

y1 y2 y3

∣∣∣∣∣∣∣∣ = 0.

1.2 Transformations

One of the most important concepts in geometry is that of a transformation.

Note : Transformations are a special class of functions. Consider two sets S and

T. A function (or mapping) α from S to T is a rule that associates with each element

s of S a unique element t = α(s) of T; the element α(s) is called the image of s

under α, and s is a preimage of α(s). The set S is called the domain (or source) of

α, and the set T is the codomain (or target) of α. The set of all α(s) with s ∈ S

is called the image (or range) of α and is denoted by α(S). If any two different

elements of the domain have different images under α (that is, if α(s1) = α(s2)

implies that s1 = s2), then α is one-to-one (or injective). If all elements of the

codomain are images under α (that is, if α(S) = T), then α is onto (or surjective).

If a function is injective and surjective, it is said to be bijective.

Exercise 6 If there exists a one-to-one mapping f : A → A which is not onto,

what can be said about the set A ?

When both the domain and codomain of a mapping are “geometrical” the

mapping may be referred to as a transformation. We shall find it convenient

to use the word transformation ONLY IN THE SPECIAL SENSE of a bijective

mapping of a set (space) onto itself. We make the following definition.

1.2.1 Definition. A transformation on the plane is a bijective mapping

of E 2 onto itself.
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Transformations will be denoted by lowercase Greek letters.

For a given transformation α, this means that for every point P there is a

unique point Q such that α(P ) = Q and, conversely, for every point S there

is a unique point R such that α(R) = S.

Note : Not every mapping on E2 is a transformation. Suppose a mapping α is

given by (x, y) 7→ (α1(x, y), α2(x, y)). Then α is a bijection (i.e. a transformation)

if and only if, given the equations (of α)

x′ = α1(x, y)

y′ = α2(x, y),

one can solve uniquely for (the “old” coordinates) x and y in terms of (the “new”

coordinates) x′ and y′ : x = β1(x′, y′) and y = β2(x′, y′).

1.2.2 Examples. The following mappings on E 2 are transformations:

1. (x, y) 7→ (x, y) (identity);

2. (x, y) 7→ (−x, y) (reflection);

3. (x, y) 7→ (x− 1, y + 2) (translation);

4. (x, y) 7→ (−y, x) (rotation);

5. (x, y) 7→ (2x, 2y) (dilation);

6. (x, y) 7→ (x+ y, y) (shear);

7. (x, y) 7→ (−x+ y
2 , x+ 2) (affinity);

8. (x, y) 7→ (x, x2 + y) (generalized shear);

9. (x, y) 7→ (x, y3);

10. (x, y) 7→ (x+ |y|, y).

1.2.3 Examples. The following mappings on E 2 are not transformations:
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1. (x, y) 7→ (x, 0);

2. (x, y) 7→ (xy, xy);

3. (x, y) 7→ (x2, y);

4. (x, y) 7→
(
−x+ y

2 , 2x− y
)
;

5. (x, y) 7→ (ex cos y, ex sin y).

1.2.4 Example. Consider the mapping

β : E2 → E2 , (x, y) 7→ (x′, y′) = (x2 − y2, 2xy).

Let us first use polar coordinates r, t so that

x = r cos t , y = r sin t , 0 ≤ t ≤ 2π.

By using some trigonometric identities, we can express β((x, y)) as

β((r cos t, r sin t)) = (r2 cos 2t, r2 sin 2t) , 0 ≤ t ≤ 2π.

From this it follows that under β the image curve of the circle of radius r and

center at the origin counterclockwise once is the circle of radius r2 and center

at the origin counterclockwise twice. Thus the effect of β is to wrap the plane

E2 smoothly around itself, leaving the origin fixed, since β((0, 0)) = (0, 0), and

therefore β is surjective but not injective.

Exercise 7 Verify that the mapping

(x, y) 7→
(
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

)
is a transformation.

Collineations

1.2.5 Definition. A transformation α with the property that if L is a

line, then α(L) is also a line is called a collineation.
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Note : We take the view that a line is a set of points and so α(L) is the set of

all points α(P ) with point P on line L; that is,

α(L) = {α(P ) |P ∈ L} ⊂ E2.

Clearly, α(P ) ∈ α(L) ⇐⇒ P ∈ L.

1.2.6 Example. The mapping

α : E 2 → E 2, (x, y) 7→ (x, y3)

is a transformation as (u, 3
√
v) is the unique point sent to (u, v) for given

numbers u and v (given the equations u = x and v = y3, one can solve

uniquely for x and y in terms of u and v). However, α is not a collineation,

since the line with equation y = x is not sent to a line, but rather to the cubic

curve with equation y = x3.

1.2.7 Example. The mapping

β : E 2 → E 2, (x, y) 7→
(
−x+

y

2
, x+ 2

)
is a collineation. Indeed, from (the equations of β)

x′ = −x+
y

2
y′ = x+ 2

we get (uniquely)

x = y′ − 2

y = 2x′ + 2y′ − 4.

Hence β is a transformation.

Now consider the line L with equation ax+by+c = 0, and let P ′ = (x′, y′)

denote the image of the (arbitrary) point P = (x, y) under (the transforma-

tion) β. Recall that

P ′ = (x′, y′) ∈ β(L) ⇐⇒ P = (x, y) ∈ L.
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Then

a(y′ − 2) + b(2x′ + 2y′ − 4) + c = 0

or, equivalently,

(2b)x′ + (a+ 2b)y′ + c− 4b− 2a = 0.

(Observe that (2b)2 + (a + 2b)2 6= 0 since a2 + b2 6= 0.) So the line L with

equation ax+ by + c = 0 goes to the line with equation (2b)x+ (a+ 2b)y +

c− 4b− 2a = 0. Hence β is a collineation.

Exercise 8 PROVE or DISPROVE : Collineations preserve parallelness among lines

(i.e. the images of two parallel lines under a given collineation are also parallel lines).

1.3 Properties of Transformations

Various sets of transformations correspond to important geometric properties.

We will look at properties of sets of transformations that make them alge-

braically interesting. Let G be a set of transformations.

Sets of transformations will be denoted by uppercase Gothic letters.

1.3.1 Definition. The transformation defined by

ι : E 2 → E 2, P 7→ P

is called the identity transformation.

Note : No other transformation is allowed to use the Greek letter iota. The identity

transformation may seem of little importance by itself, but its presence simplifies

investigations about transformations, just as the number 0 simplifies addition of

numbers.

If ι is in the set G, then G is said to have the identity property.

Recall that α is a transformation if (and only if) for every point P there

is a unique point Q such that α(P ) = Q and, conversely, for every point S
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there is a point R such that α(R) = S. From this definition we see that the

mapping α−1 : E 2 → E 2, defined by

α−1(A) = B ⇐⇒ α(B) = A

is a transformation, called the inverse of α.

Note : We read “α−1 ” as “alpha inverse”. If (the transformation) α is given by

(x, y) 7→ (x′, y′) = (α1(x, y), α2(x, y))

with x = β1(x′, y′) and y = β2(x′, y′), then (the transformation)

β : (x, y) 7→ (β1(x, y), β2(x, y))

is the inverse of a; that is, β = α−1.

If α−1 is also in G for every transformation α in our set G of transfor-

mations, then G is said to have the inverse property.

Whenever two transformations are brought together they might form new

transformations. In fact, one transformation might form new transformations

by itself, as we can see by considering α = β below.

1.3.2 Definition. Given two transformations α and β, the mapping

βα : E 2 → E 2 , P 7→ β(α(P ))

is called the product of the transformation β by the transformation α.

Note : Transformation α is applied first and then transformation β is applied.

We read “βα ” as “the product beta-alpha”.

1.3.3 Proposition. The product of two transformations is itself a trans-

formation.

Proof : Let α and β be two transformations. Since for every point C

there is a point B such that α(B) = C and for every point B there is a

point A such that α(A) = B, then for every point C there is a point A
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such that βα(A) = β(α(A)) = β(B) = C. So βα is an onto mapping. Also,

βα is one-to-one, as the following argument shows. Suppose βα(P ) = βα(Q).

Then β(α(P )) = β(α(Q)) by the definition of βα. So α(P ) = α(Q) since

β is one-to-one. Then P = Q as α is one-to-one. Therefore, βα is both

one-to-one and onto. 2

If our set G has the property that the product βα is in G whenever α

and β are in G, then G is said to have the closure property. Since both

α−1α(P ) = P and αα−1(P ) = P for every point P , we see that

α−1α = αα−1 = ι.

Hence if G is a nonempty set of transformations having both the inverse prop-

erty and the closure property, then G must necessarily have the identity prop-

erty.

Our set G of transformations is said to have the associativity property,

as any elements α, β, γ in G satisfy the associativity law :

γ(βα) = (γβ)α.

Indeed, for every point P ,

(γ(βα))(P ) = γ(βα(P )) = γ(β(α(P ))) = (γβ)(α(P )) = ((γβ)α)(P ).

Groups of transformations

The important sets of transformations are those that simultaneously satisfy

the closure property, the associativity property, the identity property, and the

inverse property. Such a set is called a group (of transformations).

Note : We mention all four properties because it is these four properties that are

used for the definition of an abstract group in algebra. However, when we want to

check that a nonempty set G of transformations forms a group, we need check only

the closure property and the inverse property.
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1.3.4 Proposition. The set of all transformations forms a group.

Proof : The closure property and the inverse property hold for the set of

all transformations. 2

Exercise 9 Let α be a collineation. Show that, given a line L, there exists a line

M such that α(M) = L.

1.3.5 Proposition. The set of all collineations forms a group.

Proof : We suppose α and β are collineations. Suppose L is a line. Then

α(L) is a line since α is a collineation, and β(α(L)) is then a line since β

is a collineation. Hence, βα(L) is a line, and βα is a collineation. So the

set of collineations satisfies the closure property. There is a line M such that

α(M) = L. So

α−1(L) = α−1(α(M)) = α−1α(M) = ι(M) =M.

Hence, α−1 is a collineation, and the set of all collineations satisfies the inverse

property. The set is not empty as the identity is a collineation. Therefore, the

set of all collineations forms a group. 2

If every element of transformation group G′ is an element of transformation

group G, then G′ is a subgroup of G. All of our groups will be subgroups

of the group of all collineations. These transformation groups will be a very

important part of our study of geometry.

Note : The word group now has a technical meaning and should never be used as

a general collective noun in place of the word set.

Transformations α and β may or may not satisfy the commutativity law :

αβ = βα. If the commutativity law is always satisfied by the elements from a

group, then that group is said to be commutative (or Abelian). The term

Abelian is after the Norwegian mathematician N.H. Abel (1801-1829).

Orders and generators
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Given a transformation α, the product αα . . . α (n times) is denoted by

αn. As expected, we define α0 to be ι. Also, we write

(
α−1

)n
= α−n, n ∈ Z.

If group G has exactly n elements, then G is said to be finite and have

order n; otherwise, G is said to be infinite. Analogously, if there is a smallest

positive integer n such that αn = ι, then transformation α is said to have

order n; otherwise α is said to have infinite order.

1.3.6 Example. Let ρ be a rotation of 360
n degrees about the origin with

n a positive integer and let

τ : E2 → E2, (x, y) 7→ (x+ 1, y).

Then

• ρ has order n,

• the set {ρ, ρ2, . . . , ρn} forms a group,

• τ has infinite order,

• the set {τk : k ∈ Z} forms an infinite group.

If every element of a group containing α is a power of α, then we say that

the group is cyclic with generator α and denote the group as 〈α〉.

1.3.7 Example. If ρ is a rotation of 36◦, then 〈ρ〉 is a cyclic group of

order 10. Note that this same group is generated by β where β = ρ3. In

fact, we have

〈ρ〉 = 〈ρ3〉 = 〈ρ7〉 = 〈ρ9〉.

So a cyclic group may have more than one generator.
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Note : Since the powers of a transformation always commute (i.e. αmαn =

αm+n = αnαm for integers m and n ), we see that a cyclic group is always Abelian.

If G = 〈α, β, γ, . . . , 〉 , then every element of group G can be written

as a product of powers of α, β, γ, . . . and G is said to be generated by

{α, β, γ, . . . }.

Involutions and multiplication tables

Among the particular transformations that will command our attention

are the involutions.

1.3.8 Definition. A transformation α is an involution if α2 = ι but

α 6= ι.

Note : The identity transformation is not an involution by definition.

1.3.9 Example. The following transformations are involutions :

1. (x, y) 7→ (y, x) ;

2. (x, y) 7→ (−x+ 2a,−y + 2b) ;

3. (x, y) 7→
(
1
2(x+

√
3 y), 1

2(
√

3x− y)
)
.

1.3.10 Proposition. A nonidentity transformation α is an involution if

and only if α = α−1.

Proof : (⇒) Assume the nonidentity transformation α is an involution.

Then α2 = ι. By multiplying both sides by α−1, we get

α−1(αα) = α−1ι ⇐⇒ (α−1α)α = α−1 ⇐⇒ ια = α−1 ⇐⇒ α = α−1 .

(⇐) Conversely, assume the nonidentity transformation α is such that α =

α−1. Then by multiplying both sides by α, we get

α2 = αα = αα−1 = ι.

2
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Exercise 10 Determine whether the transformation

(x, y) 7→
(
x− 2a

a2 + b2
(ax+ by + c), y − 2b

a2 + b2
(ax+ by + c)

)
is an involution.

A multiplication table for a finite group is often called a Cayley table

for the group. This is in honour of the English mathematician A. Cayley

(1821-1895). In a Cayley table, the product βα is found in the row headed

“β” and the column headed “α”.

1.3.11 Example. Consider the group C4 that is generated by a rotation

ρ of 90◦ about the origin. The Cayley table for C4 is given below :

C4 ι ρ ρ2 ρ3

ι ι ρ ρ2 ρ3

ρ ρ ρ2 ρ3 ι

ρ2 ρ2 ρ3 ι ρ

ρ3 ρ3 ι ρ ρ2

Clearly, C4 is a group of order 4 (it is easy to check the closure property and

the inverse property). Group C4 is cyclic and is generated by ρ. Since

(ρ3)2 = ρ6 = ρ2 , (ρ3)3 = ρ9 = ρ , and (ρ3)4 = ρ12 = ι ,

then C4 is also generated by ρ3. So

C4 = 〈ρ〉 = 〈ρ3〉 .

Note, also, that group C4 contains the one involution ρ2.

1.3.12 Example. Consider the group V4 = {ι, σO, σh, σv}, where

ι((x, y)) = (x, y) , σO((x, y)) = (−x,−y) ,

σh((x, y)) = (x,−y) , σv((x, y)) = (−x, y).

The Cayley table for V4 can be computed algebraically without any geomet-

ric interpretation.
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V4 ι σh σv σO

ι ι σh σv σO

σh σh ι σO σv

σv σv σO ι σh

σO σO σv σh ι

Group V4 is Abelian but not cyclic. Every element of V4 except the identity

is an involution.

1.4 Exercises

Exercise 11 Let P,Q, and R be three distinct points. Prove that

PQ+QR = PR ⇐⇒ Q = (1− t)P + tR for some 0 < t < 1.

(The line segment PR consists of P,R and all points between P and R. Hence

PR = {(1− t)P + tR | 0 ≤ t ≤ 1}.)

Exercise 12 Which of the following mappings defined on the Euclidean plane E 2

are transformations ?

(a) (x, y) 7→ (x3, y3).

(b) (x, y) 7→ (cosx, sin y).

(c) (x, y) 7→ (x3 − x, y).

(d) (x, y) 7→ (2x, 3y).

(e) (x, y) 7→ (−x, x+ 3).

(f) (x, y) 7→ (3y, x+ 2).

(g) (x, y) 7→ ( 3
√
x, ey).

(h) (x, y) 7→ (−x,−y).

(i) (x, y) 7→ (x+ 2, y − 3).

Exercise 13 Which of the transformations in the exercise above are collineations ?

For each collineation, find the image of the line with equation ax+ by + c = 0.
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Exercise 14 Find the image of the line with equation y = 5x+7 under collineation

α if α((x, y)) is :

(a) (−x, y).

(b) (x,−y).

(c) (−x,−y).

(d) (2y − x, x− 2) .

Exercise 15 TRUE or FALSE ? Suppose α is a transformation on the plane.

(a) If α(P ) = α(Q), then P = Q.

(b) For any point P there is a unique point Q such that α(P ) = Q.

(c) For any point P there is a point Q such that α(P ) = Q.

(d) For any point P there is a unique point Q such that α(Q) = P .

(e) For any point P there is a point Q such that α(Q) = P .

(f) A collineation is necessarily a transformation.

(g) A transformation is necessarily a collineation.

(h) A collineation is a mapping that is one-to-one.

(i) A collineation is a mapping that is onto.

(j) A transformation is onto but not necessarily one-to-one.

Exercise 16 Give three examples of transformations on the plane that are not

collineations.

Exercise 17 Find the preimage of the line with equation y = 3x + 2 under the

collineation

α : E 2 → E 2 , (x, y) 7→ (3y, x− y).

Exercise 18 If 
x′ = ax+ by + h

y′ = cx+ dy + k

are the equations for mapping α : E2 → E2, then what are the necessary and sufficient

conditions on the coefficients for α to be a transformation ? Is such a transformation

always a collineation ?
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Exercise 19 Let P = {P1, . . . , Pn} be a finite set of points (in the plane), and let

C be its centre of gravity, namely

C : =
1

n
(P1 + · · ·+ Pn) .

Consider a transformation α : E2 → E2 of the form

(x, y) 7→ (ax+ by + h, cx+ dy + k) with ad− bc 6= 0

and let P ′i = α(Pi), i = 1, 2, . . . n and C ′ = α(C). Show that

C ′ =
1

n
(P ′1 + · · ·+ P ′n) .

Exercise 20 Sketch the image of the unit square under the following transforma-

tions :

(a) (x, y) 7→ (x, x+ y).

(b) (x, y) 7→ (y, x).

(c) (x, y) 7→ (x, x2 + y).

(d) (x, y) 7→ (−x+ y
2 , x+ 2).

Exercise 21 Prove that if α, β, and γ are elements in a group, then

(a) βα = γα implies β = γ ;

(b) βα = βγ implies α = γ ;

(c) βα = α implies β = ι ;

(d) βα = β implies α = ι ;

(e) βα = ι implies β = α−1 and α = β−1.

Exercise 22 TRUE or FALSE ?

(a) If α and β are transformations, then α = β if and only if α(P ) = β(P )

for every point P .

(b) Transformation ι is in every group of transformations.

(c) If αβ = ι, then α = β−1 and β = α−1 for transformations α and β.

(d) “αβ ” is read “the product beta-alpha”.

(e) If α and β are both in group G, then αβ = βα.
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(f) (αβ)−1 = α−1β−1 for transformations α and β.

Exercise 23 PROVE or DISPROVE : There is an infinite cyclic group of rotations.

Exercise 24 TRUE or FALSE ?

(a) 〈ι〉 is a cyclic group of order 1.

(b) 〈γ〉 = 〈γ−1〉 for any transformation γ.

(c) An Abelian group is always cyclic, but a cyclic group is not always

Abelian.

(d) If 〈α〉 = 〈β〉, then α = β or α = β−1.

Exercise 25 Find all a and b such that the transformation

(x, y) 7→
(
ay,

x

b

)
is an involution.

Discussion : The Euclidean plane can be approached in many ways.

One can take the view that plane geometry is about points, lines, circles, and proceed

from “self-evident” properties of these figures (axioms) to deduce the less obvious

properties as theorems. This was the classical approach to geometry, also known as

synthetic. It was based on the conviction that geometry describes actual space and,

in particular, that the theory of lines and circles describes what one can do with ruler

and compass. To develop this theory, Euclid (c. 300 b.c.) stated certain plausible

properties of lines and circles as axioms and derived thorems from them by pure logic.

Actually he occasionally made use of unstated axioms; nevertheless his approach is

feasible and it was eventually made rigorous by David Hilbert (1862-1943).

Euclid’s approach has some undeniable advantages. Above all, it presents geom-

etry in a pure and self-contained manner, without use of “non-geometric” concepts.

One feels that the “real reason” for geometric theorems are revealed in such a system.

Visual intuition not only supplies the axioms, it also prompt the steps in a proof, so

that some extremely short and elegant proofs result.

Nevertheless, with the enormous growth of mathematics over the last two cen-

turies, Euclid’s approach has become isolated and inefficient. It is isolated because

Euclidean geometry is no longer the geometry of space and the basis for most of
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mathematics. Nowadays, numbers and sets are regarded as more fundamental than

points and lines. They form a much broader basis, not only for geometry, but for

mathematics as a whole. Moreover, geometry can be built more efficiently on this

basis because the powerful techniques of algebra and analysis can be brought into

play.

The construction of geometry from numbers and sets is implicit in the coordinate

geometry of René Descartes (1596-1650), though Descartes, in fact, took the

classical view that points, lines, and curves had a prior existence, and he regarded

coordinates and equations as merely a convenient way to study them. Perhaps the

first to grasp the deeper value of the coordinate approach was Bernhard Riemann

(1826-1866), who wrote the following : “It is well known that geometry assumes as

given not only the concept of space, but also the basic principles of construction in

space. It gives only nominal definitions of these things; their determination being in

the form of axioms. As a result, the relationships between these assumptions are left

in the dark; one does not see whether, or to what extent, connections between them

are necessary, or even whether they are a priori possible.”

Riemann went on to outline a very general approach to geometry in which

“points” in an “n-dimesional space” are n-tuples of numbers, and all geometric re-

lations are determined by a metric on this space, a differentiable function giving the

“distance” between two “points”. This analytic approach allows a vast range of spaces

to be considerd simultaneously, and Riemann found that their geometric properties

were largely controlled by a property of the metric he called its curvature.

The concept of curvature illuminates the axioms of Euclidean geometry by show-

ing them to hold only in the presence of zero curvature. In particular, the Euclidean

plane is a two-dimensional space of zero curvature (though not the only one). It also

becomes obvious what the natural alternatives to Euclidean geometry are – those

of constant positive and negative curvature – and one can pinpoint precisely where

change of curvature causes a change in axioms.

Riemann set up analytic machinery to study spaces whose curvature varies from

point to point. However, simpler machinery suffices for spaces of constant curvature.

The reason is that the geometry of these spaces is reflected in isometries (distance-

preserving transformations) and isometries turn out to be easily understood. This

approach is due to Felix Klein (1849-1925). The concept of isometry actually

fills a gap in Euclid’s approach to geometry, where the idea of “moving” one figure
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until it coincides with another is used without being formally recognized. Thus, when

geometry is based on coordinates and isometries, it is possible to enjoy the benefits

of both the analytic and synthetic approaches.

A point is that which has no parts.

Euclid

A “point” is much more subtle object than naive intuition suggests.

John Stillwell


