
Chapter 2

Translations and Halfturns

Topics :

1. Translations

2. Halfturns

Copyright c© Claudiu C. Remsing, 2014.

All rights reserved.

24



C.C. Remsing 25

2.1 Translations

Let E 2 be the Euclidean plane.

2.1.1 Definition. A translation (or parallel displacement) is a map-

ping

τ : E 2 → E 2 , (x, y) 7→ (x+ h, y + k).

We use to say that such a translation τ has equations
x′ = x+ h

y′ = y + k.

Given any two of (x, y), (x′, y′), and (h, k), the third is then uniquely deter-

mined by this last set of equations. Hence, a translation is a transformation.

Note : We shall use the Greek letter tau only for translations.

2.1.2 Proposition. Given points P and Q, there is a unique translation

τP,Q taking P to Q.

Proof : Let P = (xP , yP ) and Q = (xQ, yQ). Then there are unique

numbers h and k such that

xQ = xP + h and yQ = yP + k.

So the unique translation τP,Q that takes P to Q has equations
x′ = x+ xQ − xP

y′ = y + yQ − yP .

2

By the proposition above, if τP,Q(R) = S, then τP,Q = τR,S for points

P,Q,R, S.
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Note : The identity is a special case of a translation as

ι = τP,P for each point P.

2.1.3 Corollary. If τP,Q(R) = R for point R, then P = Q.

2.1.4 Proposition. Suppose A,B,C are noncollinear points. Then τA,B =

τC,D if and only if 2CABD is a parallelogram.

Proof : The translation τA,B has equations
x′ = x+ xB − xA

y′ = y + yB − yA.

Then the following are equivalent :

(1) τA,B = τC,D.

(2) D = τA,B(C).

(3) D = (xD, yD) = (xC + xB − xA, yC + yB − yA).

(4) 1
2 (A+D) = 1

2 (B + C) ·

(5) 2CABD is a parallelogram.

2

Exercise 26 Prove the equivalence (3) ⇐⇒ (4).

Exercise 27 What happens (in Proposition 2.1.4) if we drop the requirement

that the points A,B,C are noncollinear ?

It follows that a translation moves each point the same distance in the same

direction. For nonidentity translation τA,B, the distance is given by AB and

the direction by (the directed line segment)
−→
AB.
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Note : The translation τA,B can be identified with the (geometric) vector

v =

[
xB − xA
yB − yA

]

where A = (xA, yA) and B = (xB , yB). A vector is really the same thing as a

translation, although one uses different phraseologies for vectors and translations.

It may be helpful to make this idea more precise. What is a vector ? The school

textbooks usually define a vector as a “quantity having magnitude and direction”,

such as the velocity vector of an object moving through space (in our case, the Eu-

clidean plane). It is helpful to represent a vector as an “arrow” attached to a point of

the space. But one is not supposed to think of the vector as being firmly rooted just

at one point. For instance, one wants to add vectors, and the recipe for doing this

is to pick up one vector and move it around without changing its length or direction

until its tail lies on the head of the other one.

It is better, then, to think of a vector as a instruction to move rather than as an

arrow pointing from one fixed point to another. The instruction makes sense wherever

you are, even if it may be rather difficult to carry out, whereas the arrow is not much

use unless you are already at its origin. The “instruction” idea makes vector addition

simple : to add two vectors, you just carry out one instruction after the other. Not

every instruction to move is a vector. For an instruction to be a vector, it must specify

movement through the same distance and in the same direction for every point.

This idea of an “instruction” is expressed mathematically as a function (or map-

ping). A vector is a mapping v (on the plane) which associates to each point A a new

point v(A), having the property that for any two points A and B , the midpoint of

Av(B) is equal to the midpoint of Bv(A). Thus, if v is a vector and A and B are

any two points, then 2ABv(B)v(A) is a parallelogram. Given two points P and

Q, there is exactly one vector v such that v(P ) = Q. This unique vector is denoted

by
−→
PQ; if P = (xP , yP ) and Q = (xQ, yQ), it is convenient to represent v =

−→
PQ by

the 2× 1 matrix [
xQ − xP
yQ − yP

]
.
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We have yet to show that a translation is a collineation. Suppose line L
has equation ax+ by+ c = 0 and nonidentity translation τP,Q has equations

x′ = x+ h

y′ = y + k.

So

τP,Q = τO,R , where R = (h, k) and
←→
PQ ‖

←→
OR .

Under the equations for τP,Q, we see that

ax+ by + c = 0 ⇐⇒ ax′ + by′ + (c− ah− bk) = 0.

We calculate that τP,Q(L) is the line M with equation

ax+ by + (c− ah− bk) = 0.

We have shown more than the fact that a translation is a collineation. By

comparing the equations for lines L and M, we see that L and M are

parallel. Thus, a translation always sends a line to a parallel line. We make

the following definition.

2.1.5 Definition. A collineation α is a dilatation if L ‖ α(L) for every

line L.

Note : While any collineation sends a pair of parallel lines to a pair of parallel

lines, a dilatation sends each given line to a line parallel to the given line. For example,

we shall see that a rotation of 90◦ is a collineation but not a dilatation.

Let α be a transformation and S a set of points.

2.1.6 Definition. Transformation α fixes set S if α (S) = S.

Note : In particular, the set S can be a point or a line.
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2.1.7 Proposition. A translation is a dilatation. If P 6= Q, then τP,Q

fixes no points and fixes exactly those lines that are parallel to
←→
PQ.

Proof : Our calculation above has shown that a translation is a dilatation.

Clearly, if P 6= Q, then τP,Q fixes no points. As above, let L be the line

with equation

ax+ by + c = 0

and M the line with equation

ax+ by + (c− ah− bk) = 0.

These two lines are the same if and only if ah + bk = 0. Since
←→
OR has

equation kx− hy = 0, then

ah+ bk = 0 ⇐⇒ L ‖
←→
OR .

Thus

τP,Q(L) = L ⇐⇒ L ‖
←→
PQ .

2

2.1.8 Proposition. The translations form a commutative group T, called

the translation group.

Proof : Translations are collineations.

Let S = (a, b), T = (c, d), and R = (a+ c, b+ d). Then

τO,T τO,S((x, y)) = τO,T ((x+ a, y + b)) = (x+ a+ c, y + b+ d) = τO,R((x, y)).

Since

τO,T τO,S = τO,R

then a product of two translations is a translation.

Also, by taking R = O, we see that the inverse of the translation τO,S is

the translation τO,S′ , where S′ = (−a,−b).
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Further, since a+ c = c+ a and b+ d = d+ b, it follows that

τO,T τO,S = τO,SτO,T .

So the translations form a commutative group (of transformations). 2

2.1.9 Proposition. The dilatations form a group D, called the dilata-

tion group.

Proof : Dilatations are collineations.

By the symmetry of parallelness for lines (i.e., L ‖ L′ ⇒ L′ ‖ L ), the

inverse of a dilatation is a dilatation.

By the transitivity of parallelness for lines (i.e., L ‖ L′ and L′ ‖ L′′ ⇒
L ‖ L′′ ), the product of two dilatations is a dilatation.

So the dilatations form a group (of transformations). 2

2.2 Halfturns

A halfturn turns out to be an involutory rotation; that is, a rotation of 180 ◦.

So, a halfturn is just a special case of a rotation. Although we have not formally

introduced rotations yet, we look at this special case now because halfturns

are nicely related to translations and have such easy equations. Informally,

we observe that if point A is rotated 180 ◦ about point P to point A′, then

P is the midpoint of A and A′. Hence, we need only the midpoint formulas

to obtain the desired equations. From equations
x+ x′

2
= a

y + y′

2
= b

we can make our definition as follows.

2.2.1 Definition. If P = (a, b), then the halfturn σP about point P

is the mapping

σP : E 2 → E 2 , (x, y) 7→ (−x+ 2a,−y + 2b).
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Such a halfturn σP has equations
x′ = −x+ 2a

y′ = −y + 2b.

Note : For the halfturn about the origin we have

σO((x, y)) = (−x,−y).

Under transformation σO does (x, y) go to (−x,−y) by going directly through O, by

rotating counterclockwise about O, by rotating clockwise about O, or by taking some

“fanciful path” ? Either the answer is “None of the above” or, perhaps, it would be

better to ask whether the question makes sense. Recall that transformations are just

one-to-one correspondences among points. There is actually no physical motion being

described. (That is done in the study called differential geometry.) We might say we

are describing the end position of physical motion. Since our thinking is often aided

by language indicating physical motion, we continue such usage as the customary “P

goes to Q ” in place of the more formal “P coresponds to Q ”.

What properties of a halfturn follow immediately from the definition of

σP ? First, for any point A, the midpoint of A and σP (A) is P . From this

simple fact alone, it follows that σP is an involutory transformation. Also

from this simple fact, it follows that σP fixes exactly the one point P . It

even follows that σP fixes line L if and only if P is on L.

2.2.2 Proposition. A halfturn is an involutory dilatation. The midpoint

of points A and σP (A) is P . Halfturn σP fixes point A if and only if

A = P . Halfturn σP fixes line L if and only if P is on L.

Proof : We shall show that σP is a collineation.

Suppose that line L has equation ax+ by + c = 0. Let P = (h, k). Then

σP has equations 
x′ = −x+ 2h

y′ = −y + 2k.



32 Groups and Geometry

Then

ax+ by + c = 0 ⇐⇒ ax′ + by′ + c− 2(ah+ bk + c) = 0.

So σP (L) is the line M with equation

ax+ by + c− 2(ah+ bk + c) = 0.

Therefore, not only σP is a collineation, but a dilatation as L ‖ M.

Finally, L and M are the same if and only if ah + bk + c = 0, which

holds if and only if (h, k) is on L. 2

Since a halfturn is an involution, then σPσP = ι. What can be said about

the product of two halfturns in general ?

Let P = (a, b) and Q = (c, d). Then

σQσP ((x, y)) = σQ((−x+ 2a,−y + 2b))

= (−(−x+ 2a) + 2c,−(−y + 2b) + 2d)

= (x+ 2(c− a), y + 2(d− b)).

Since σQσP has equations 
x′ = x+ 2(c− a)

y′ = y + 2(d− b)

then σQσP is a translation. This proves the important result that the product

of two halfturns is a translation.

2.2.3 Proposition. If Q is the midpoint of points P and R, then

σQσP = τP,R = σRσQ.

Proof : We have

σQσP (P ) = σQ(P ) = R and σRσQ(P ) = σR(R) = R.

Since there is a unique translation taking P to R, then each of σQσP and

σPσR must be τP,R. 2
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Note : A product of two halfturns is a translation and, conversely, a translation

is a product of two halfturns. Also, notice that σQσP moves each point twice the

directed distance from P to Q.

We now consider a product of three halfturns. By thinking about the

equations, it should almost be obvious that σRσQσP is itself a halfturn. We

shall prove that and a little more.

2.2.4 Proposition. A product of three halfturns is a halfturn. In partic-

ular, if points P,Q,R are not collinear, then σRσQσP = σS where 2PQRS

is a parallelogram.

Proof : Suppose P = (a, b), Q = (c, d), and R = (e, f). Let S =

(a − c + e, b − d + f). In case P,Q,R are not collinear, then 2PQRS is

a parallelogram. (This is easy to check as opposite sides of the quadrilateral

are congruent and parallel.) We calculated σQσP ((x, y)) above. Whether

P,Q,R are collinear or not, we obtain

σRσQσP ((x, y)) = (−x+ 2(a− c+ e),−y + 2(b− d+ f))

= σS((x, y)).

2

2.2.5 Example. Given any three of the not necessarily distinct points

A,B,C,D, then the fourth is uniquely determined by the equation τA,B =

σDσC .

Proof : We can solve the equation τA,B = σDσC for any one of A,B,C,D

in terms of the other three. Knowing C,D and one of A or B, we let the

other be defined by the equation σDσC(A) = B or the equivalent equation

σCσD(B) = A. In either case, product σDσC is the unique translation tak-

ing A to B, and so σDσC = τA,B. When we know both A and B, we let

M be the midpoint of A and B. So τA,B = σMσA. Knowing A,B,D, we

have C is the unique solution for Y in the equation σDσMσA = σY as then
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τA,B = σMσA = σDσY . Knowing A,B,C, we have D is the unique solution

for Z in the equation σMσAσC = σZ as then τA,B = σMσAσZσC . 2

Note : In general, halfturns do not commute. Indeed, if σQσP = τP,R, then

τ−1
P,R = σPσQ. So

σQσP = σPσQ ⇐⇒ P = Q.

2.2.6 Proposition. σRσQσP = σPσQσR for any points P,Q,R.

Proof : For any points P,Q,R, there is a point S such that

σRσQσP = σS = σ−1S = (σRσQσP )−1 = σ−1P σ−1Q σ−1R = σPσQσR.

2

Note : The halfturns do not form a group by themselves.

2.2.7 Proposition. The union of the translations and the halfturns forms

a group H.

Proof : The product of two halfturns is a translation. Since a translation

is a product of two halfturns, then the product in either order of a translation

and a halfturn is a halfturn.

Recall that the inverse of a translation is a translation, and that a halfturn

is an involutory transformation.

So the union of the translations and the halfturns forms a group. 2

Note : A product of an even number of halfturns is a product of translations and,

hence, is a translation.

A product of an odd number of halfturns is a halfturn followed by a trans-

lation and, hence, is a halfturn.

2.3 Exercises

Exercise 28 If τ is the product of halfturns about O and O′, what is the product

of halfturns about O′ and O ?
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Exercise 29 Prove that

τA,BσP τ
−1
A,B = σQ , where Q = τA,B(P ).

Exercise 30 TRUE or FALSE ?

(a) A product of two involutions is an involution or ι.

(b) D⊂H⊂T.

(c) If δ is a dilatation and lines L and M are parallel, then δ(L) and δ(M)

are parallel to L.

(d) Given points A,B,C, there is a D such that τA,B = τD,C .

(e) Given points A,B,C, there is a D such that τA,B = σDσC .

(f) If τA,B(C) = D, then τA,B = τC,D.

(g) If σQσP = τP,R, then σPσQ = τR,P .

(h) σAσBσC = σBσCσA for points A,B,C.

(i) A translation has equations x′ = x− a and y′ = y − b.

(j) σQσP = τ2
P,Q for any points P and Q.

Exercise 31 
x′ = −x+ 3

y′ = −y − 8

are the equations for which transformation ?

What are the equations for τ−1
S,T if S = (a, c) and T = (g, h) ?

Exercise 32 PROVE or DISPROVE : σP τA,BσP = τC,D, where C = σP (A) and

D = σP (B).

Exercise 33 If Pi = (ai, bi), i = 1, 2, 3, 4, 5, then what are the equations for the

product

τP4,P5τP3,P4τP2,P3τP1,P2τO,P1 ?

Exercise 34 What is the image of the line with equation y = 5x + 7 under σP ,

when P = (−3, 2) ?
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Exercise 35 If α is a translation, show that ασP is the halfturn about the mid-

point of points P and α(P ). What is σPα ?

Exercise 36 Draw line L with equation y = 5x+7 and point P with coordinates

(2, 3). Then draw σP (L).

Exercise 37 Show that τP,Q has infinite order if P 6= Q.

Exercise 38 Suppose that 〈τP,Q〉 is a subgroup of 〈τR,S〉. Show there is a positive

integer n such that PQ = nRS.

Exercise 39 PROVE or DISPROVE : 〈τP,Q〉 = 〈τR,S〉 implies τP,Q = τR,S or

τP,Q = τS,R.

Exercise 40 Consider the points A = (−1,−1), B = (0, 0), C = (1, 0), D = (1, 1),

and E = (0, 1). Find points X,Y, Z such that :

(a) σAσEσD = σX .

(b) σDτA,C = σY .

(c) τB,CτA,BτE,A(A) = Z.

Discussion : In the Euclidean plane E2, for each line L and point

P 6∈ L there is a unique line L′ through P which does not meet L. The line L′

is called the parallel to L through P . Parallels provide us with a global notion of

direction in the Euclidean plane. Each member of a family of parallel lines has the

same direction, measured by the angle a member of the family makes with the x-axis,

and parallels are a constant distance appart. A translation slides each member of a

family of parallels along itself a constant distance. Consequently, translations always

commute.

The situation changes in other spaces (with “non-euclidean” geometries). For

example, in the sphere S2 (viewed as a surface of positive constant curvature in

Euclidean 3-dimensional space) the “lines” are great circles (i.e. intersections of the

sphere with planes through the origin), and hence any two of them intersect. Thus,

there are no parallels, no global notion of direction (which way is north at the north

pole ?), and no translations. Each rotation slides just one line (great circle) along
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itself, together with the curves at constant distance from this line. These “equidistant

curves”, however, are not lines.

Another example is the hyperbolic plane H2 (viewed as a surface of negative

constant curvature in Euclidean 3-dimensional space, the pseudosphere). In this

case, there are many lines L′ through a point P 6∈ L which do not meet L. (This

is typical of the way hyperbolic geometry departs from Euclidean – in the opposite

way from spherical geometry.) Translations exist, but each translation slides just one

line along itself, together with the curves at constant distance from this line. These

“equidistant curves” are also no lines, and translations with different invariant lines

do not commute.

The most suggestive and notable achievement of the last [19th] century is the

discovery of non-Euclidean geometry.

David Hilbert


