
Chapter 3

Reflections and Rotations

Topics :

1. Equations for a Reflection

2. Properties of a Reflection

3. Rotations
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3.1 Equations for a Reflection

A reflection will be defined as a transformation leaving invariant every point

of a fixed line L and no other points. (An optical reflection along L in a

mirror having both sides silvered, would yield the same result.) We make the

following definition.

3.1.1 Definition. Reflection σL in line L is the mapping

σL : E 2 → E 2 , P 7→


P , if point P is on L

Q , if point P is off L and L is the

perpendicular bisector of PQ.

The line L is usually referred to as the mirror of the reflection.

Note : We do not use the word reflection to denote the image of a point or of a

set of points. A reflection is a transformation and never a set of points. Point σL(P )

is the image of point P under the reflection σL.

3.1.2 Proposition. Reflection σL is an involutory transformation that

interchanges the halfplanes of L. Reflection σL fixes point P if and only if

P is on L. Reflection σL fixes line M pointwise if and only if M = L.

Reflection σL fixes line M if and only if M = L or M⊥ L.

Proof : It follows immediately from the definition that

σL 6= ι but σ2L = ι

as the perpendicular bisector of PQ is the perpendicular bisector of QP .

Hence, σL is onto as σL(P ) is the point mapped onto the given point P

since σL(σL(P )) = P for any point P . Also, σL is one-to-one as

σL(A) = σL(B) implies A = σL(σL(A)) = σL(σL(B)) = B .
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Therefore, σL is an involutory transformation. Then, from the definition of

σL, it follows that σL interchanges the halfplanes of L.

Note : In fact, any involutory mapping (on E2 ) is a transformation (and hence

an involution).

Clearly, σL fixes point P if and only if P is on L. Not only does σL fix

line L, but σL fixes every point on L.

Note : In general, transformation α is said to fix pointwise set S of points if

α(P ) = P for every point P in S; that is, if α leaves invariant (unchanged) every

point in S. Observe the difference between fixing a set and fixing a set pointwise.

Every line perpendicular to L is fixed by σL, but none of these lines is fixed pointwise

as each contains only one fixed point.

Suppose line M is distinct from L and is fixed by σL. Let Q = σL(P )

for some point P that is on M but off L. Then P and Q are both on M
since M is fixed, and L is the perpendicular bisector of PQ. Hence, L and

M are perpendicular. 2

Exercise 41 Show that if the nonidentity mapping α : A→A is involutory (i.e.

α2 is the identity mapping), then it is invertible.

Note : We have used the Greek letter sigma for both halfturns and reflections; the

Greek letter rho is left free for use later with rotations. The Greek σ corresponds

to the Roman s which begins the German word Spiegelung, meaning reflection. A

halfturn is a sort of “reflection in a point”. The similar notation for halfturns and

reflections emphasizes the important property they do share, namely that of being

involutions :

σL = σ−1L , σP = σ−1P .

What are the equations for a reflection ?
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3.1.3 Proposition. If line L has equation ax+by+c = 0, then reflection

σL has equations : 
x′ = x− 2a(ax+ by + c)

a2 + b2

y′ = y − 2b(ax+ by + c)

a2 + b2
·

Proof : Let P = (x, y) and σL(P ) = (x′, y′) = Q. For the moment, sup-

pose that P is off L. Now, the line through points P and Q is perpendicular

to line L. This geometric fact is expressed algebraically by the equation

b(x′ − x) = a(y′ − y).

Also, (
x+ x′

2
,
y + y′

2

)
is the midpoint of PQ and is on L.

This geometric fact is expressed algebraically by the equation

a

(
x+ x′

2

)
+ b

(
y + y′

2

)
+ c = 0 .

Rewriting these two equations as
bx′ − ay′ = bx− ay

ax′ + by′ = −2c− ax− by

we see we have two linear equations in two unknowns x′ and y′. Solving these

equations for x′ and y′ (by using Cramer’s rule, for instance), we get
x′ =

a2x+ b2x− 2a2x− 2aby − 2ac

a2 + b2

y′ =
a2y + b2y − 2b2y − 2abx− 2bc

a2 + b2
·

With these equations in the form
x′ = x− 2a(ax+ by + c)

a2 + b2

y′ = y − 2b(ax+ by + c)

a2 + b2
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it is easy to check that the equations also hold when P is on L. This proves

the result. 2

Note : Suppose we had defined a reflection as a transformation having equations

given by Proposition 3.1.3. Not only would this have seemed artificial, since these

equations are not something you would think of examining in the first place, but just

imagine trying to prove Proposition 3.1.2 from these equations. Although this is

conceptually easy, the actual computation involves a considerable amount of algebra.

3.2 Properties of a Reflection

We have already mentioned those properties of a reflection that follow imme-

diately from the definition. Another important property is that a reflection

preserves distance, which means the distance from σL(P ) to σL(Q) is equal

to the distance from P to Q, for all points P and Q. The following definition

is fundamental.

3.2.1 Definition. A transformation α is an isometry (or congruent

transformation) if P ′Q′ = PQ for all points P and Q, where P ′ = α(P )

and Q′ = α(Q).

In other words, an isometry is a distance-preserving transformation.

Note : (1) In fact, any distance-preserving mapping is an isometry. Such a

mapping is one-to-one – because points at nonzero distance cannot have images at

zero distance – but it is not clear that such a mapping is onto.

(2) The name isometry comes from the Greek isos (equal) and metron (measure).

An isometry is also called a rigid motion.

The set of all isometries form a group. This group is denoted by Isom.

3.2.2 Proposition. Reflection σL is an isometry.

Proof : We shall consider several cases. Suppose P and Q are two points,

P ′ = σL(P ) and Q′ = σL(Q). We must show P ′Q′ = PQ.
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(a) If
←→
PQ= L or if

←→
PQ⊥ L, then the desired result follows immediately

from the definition of σL.

(b) Also, if
←→
PQ is parallel to L but distinct from L, the result follows

easily as 2PQQ′P ′ is a rectangle and so opposite sides PQ and P ′Q′ are

congruent.

(c) Further, if one of P or Q, say P , is on L and Q is off L, then

P ′Q′ = PQ follows from the fact that P ′ = P and that L is the locus of all

points equidistant from Q and Q′.

(d) Finally, suppose P and Q are both off L and that
←→
PQ intersects

L at point R, but is not perpendicular to L. So RP = RP ′ and RQ = RQ′.

The desired result, P ′Q′ = PQ, then follows provided R,P ′, Q′ are shown to

be collinear. 2

Exercise 42 Prove the preceding statement.

Exercise 43 Are translations and halfturns isometries ? Why ? (Hence the group

of translations T and the group H are subgroups of Isom.)

Now that we know a reflection is an isometry, a long sequence of other

properties dependent only on distance will follow.

3.2.3 Proposition. An isometry is a collineation that preserves between-

ness, midpoints, segments, rays, triangles, angles, angle measure, and perpen-

dicularity.

Proof : Since these properties are shared by all isometries, we shall consider

a general isometry α.

(a) Suppose A,B,C are any three points and let A′ = α(A), B′ =

α(B), C ′ = α(C). Since α preserves distance, if AB + BC = AC then

A′B′ + B′C ′ = A′C ′ as A′B′ = AB, B′C ′ = BC, and A′C ′ = AC. Hence,

A−B − C implies A′ −B′ − C ′; in other words, if B is between A and C,

then B′ is between A′ and C ′. We describe this by saying that α preserves

betweenness.
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(b) The special case AB = BC in the argument above implies A′B′ =

B′C ′. In other words, if B is the midpoint of A and C, then B′ is the

midpoint of A′ and C ′. Thus we say α preserves midpoints.

(c) More generally, since AB is the union of A,B, and all points between

A and B, then α(AB) is the union of A′, B′, and all points between A′ and

B′. So α(AB) = A′B′ and we say α preserves segments.

(d) Likewise, since α is onto by definition and AB→ is the union of AB

and all points C such that A− B − C, then α(AB→) is the union of A′B′

and all points C ′ such that A′ −B′ − C ′. So α(AB→) = A′B′→ and we say

α preserves rays.

(e) Since
←→
AB is the union AB→ and BA→ , then α(

←→
AB) is the union of

A′B′→ and B′A′→ , which is
←→
A′B′. So α is a transformation that preserves

lines ; in other words, α is a collineation.

(f) If A,B,C, are not collinear, then AB + BC > AC and so A′B′ +

B′C ′ > A′C ′ and A′, B′, C ′ are not collinear. Then, since 4ABC is a union

of the three segments AB,BC,CA, then we conclude that α(4ABC) is just

4A′B′C ′. So an isometry preserves triangles.

(g) It follows that α preserves angles as α(∠ABC) = ∠A′B′C ′.

(h) Not only does α preserve angles, but α also preserves angle measure.

That is, m(∠ABC) = m(∠A′B′C ′) since 4ABC ∼= 4A′B′C ′ by SSS.

(i) Finally, if
−→
BA⊥

−→
BC then

−→
B′A′⊥

−→
B′C ′ since m(∠ABC) = 90 implies

m(∠A′B′C ′) = 90. So α preserves perpendicularity. 2

3.3 Rotations

We shall now formally define rotations in the most elementary manner.

3.3.1 Definition. A rotation about point C through directed angle

of r ◦ is the transformation ρC,r that fixes C and otherwise sends a point P

to the point P ′, where CP ′ = CP and r is the directed angle measure of the

directed angle from
−→
CP to

−→
CP ′.
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We agree that ρC,0 is the identity ι. Rotation ρC,r is said to have centre

C and directed angle r ◦.

3.3.2 Proposition. A rotation is an isometry.

Proof : Suppose ρC,r sends points P and Q to P ′ and Q′, respectively.

If C,P,Q are collinear, then PQ = P ′Q′ by the definition. If C,P,Q are

not collinear, then 4PCQ ∼= 4P ′C ′Q′ by SAS and PQ = P ′Q′. So ρC,r is

a transformation that preserves distance. 2

3.3.3 Proposition. A nonidentity rotation fixes exactly one point, its cen-

tre. A rotation with centre C fixes every circle with centre C.

Proof : For distinct points C and P , circle CP is defined to be the circle

with centre C and radius CP . So CP is a radius of the circle CP , and point

P is on the circle. The result also follows immediately from the definition of

a rotation. 2

Exercise 44 Show that (for point C and real numbers r and s )

ρC,sρC,r = ρC,r+s and ρ−1
C,r = ρC,−r.

3.3.4 Corollary. The rotations with centre C form a commutative group.

Note : (1) The involutory rotations are the halfturns, and (for any point C)

ρC,180 = σC .

(2) Observe that, for example, ρC,30 = ρC,390 = ρC,−330. In general, for real num-

bers r and s, we have

r ◦ = s ◦ ⇐⇒ r = s+ 360 k , k ∈ Z.

For distinct intersecting lines L and M, there are two directed angles from L to

M. Clearly, these will have directed angle measures that differ by a multiple of 180.

If r and s are the directed angle measures of the two directed angles from L to M,

then (2r) ◦ = (2s) ◦, since numbers r and s differ by a multiple of 180. So, if we are

talking about the rotation through twice a directed angle from line L to line M, then

it makes no difference which of the two directed angles we choose.
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3.4 Exercises

Exercise 45 Given point P off line L, construct ρP,60(L).

Exercise 46 TRUE or FALSE ?

(a) If isometry α interchanges distinct points P and Q, then α fixes the

midpoint of P and Q.

(b) σL = σ−1
P if point P is on line L.

(c) Reflection σL fixes the halfplanes of L but does not fix the halfplanes

pointwise.

(d) Reflection σL fixes line M if and only if L ⊥ M.

(e) For line L and point P , σL = σ−1
L 6= ι and σP = σ−1

P 6= ι.

(f) ρ−1
C,r = ρC,−r = σC for any point C.

Exercise 47 What are the images of (0, 0), (1,−3), (−2, 1), and (2, 4) under the

reflection in the line with equation y = 2x− 5 ?

Exercise 48 Describe the product of the reflection in
←→
OO′ and the halfturn about

O.

Exercise 49 PROVE or DISPROVE :

(a) σLσM = σMσL ⇐⇒ L ⊥M.

(b) σPσL = σLσP ⇐⇒ P ∈ L.

Exercise 50 PROVE or DISPROVE : If ρ is a rotation, then the cyclic group 〈ρ〉
is finite.

Discussion : An axiomatic system provides an explicit foundation

for a mathematical subject. Axiomatic systems include several parts : the logical

language, rules of proof, undefined terms, axioms, definitions, theorems and proofs of

theorems, and models.

Consider Euclid’s definition of a point as “that which has no part”. This defi-

nition is more a philosophical statement about the nature of a point than a way to
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prove statements. Euclid’s definition of a straight line, “a line which lies evenly with

the points on itself”, is unclear as well as not useful. In essence, points and lines were

so basic to Euclid’s work that there is no good way to define them. Mathematicians

realized centuries ago the need for undefined terms to establish an unambiguous be-

ginning. (Otherwise, each term would have to be defined with other terms, leading

either to a cycle of terms or an infinite sequence of terms. Neither of these options is

acceptable for carefully reasoned mathematics.) Of course, we then define all other

terms from these initial, undefined terms. However, undefined terms are, by their

nature, unrestricted. How can we be sure that two people mean the same thing when

they use undefined terms ? In short, we can’t. The axioms of a mathematical system

become the “key” : they tell us how the undefined terms behave. (Axioms describe

how to use terms and how they relate to one another, rather than telling us what the

terms “really mean”.) Indeed, mathematicians permit any interpretation of undefined

terms, as long as all the axioms hold in that interpretation.

Unlike the Greek understanding of axioms as “self-evident truths”, we do not

claim the truth of axioms. However, this does not mean that we consider axioms

to be false. Rather, we are free to chose axioms to formulate the fundamental rela-

tionships we want to investigate. From a logical point of view, the choice of axioms

is arbitrary; in actuality, though, mathematicians carefully pick axioms to focus on

particular features. Axiomatic systems allow us to formulate and logically explore ab-

stract relationships, freed from the specificity and imprecision of real situations. There

are two basic types of axiomatic systems. One completely chracterizes a particular

mathematical system (for example, Hilbert’s axioms characterize Euclidean plane

geometry completely). The second focuses on the commmon features of a family of

structures (e.g. groups, vector spaces, or metric spaces); such axiomatic systems unite

a wide variety of examples within one powerful theoretical framework.

Mathematical definitions are built from undefined terms and previously defined

terms.

In an axiomatic system, a theorem is a statement whose proof depends only on

previously proven theorems, the axioms, the definitions, and the rules of logic. (This

condition ensures that the entire edifice of theorems rests securely on the explicit

axioms of the system.) Proofs of theorems in a axiomatic system cannot depend on

diagrams, even though diagrams have been part of geometry since the ancient Greeks

drew figures in the sand.
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Axiomatic systems are a workable compromise between the austere formal lan-

guages of mathematical logic and Euclid’s work with its many implicit assumptions.

Mathematicians need both the careful reasoning of proofs and the intuitive understand-

ing of content. Axiomatic systems provide more than a way to give careful proofs.

They enable us to understand the relationship of particular concepts, to explore the

consequences of assumptions, to contrast different systems, and to unify seemingly

disparate situations under one framework. In short, axiomatic systems are one im-

portant way in which mathematicians obtain insight.

Mathematical models provide an explicit link between intuitions and undefined

terms. The usual (Cartesian) model of Euclidean plane geometry is the set R2, where

a point is interpreted as an ordered pair of (real) numbers and a line is interpreted

as the locus of points that satisfy an appropriate (first degree) algebraic equation

ax+ by + c = 0. (In making a model, we are free to interpret the undefined terms in

any way we want, provided that all the axioms hold under our interpretation. Note

that the axioms are not by themselves true; a context is needed to give meaning to

the axioms in order for them to be true or false.) Models do much more than provide

concrete examples of axiomatic systems : they lead to important understandings

about axiomatic systems. The most important property of an axiomatic system is

consistency, which says that we cannot prove two statements that contradict each

other. An axiomatic system is consistent if and only if it has a model.

I am coming more and more to the conviction that the necessity of our

geometry cannot be demonstrated, at least neither by, nor for, the human

intellect. [...] geometry should be ranked, not with arithmetic, which is purely

aprioristic, but with mechanics.

Carl Friedrich Gauss


