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50 Groups and Geometry

4.1 Isometries as Product of Reflections

A product of reflections is clearly an isometry. The converse is also true; that

is, every isometry is a product of reflections. We prove now this fact in seven

(small) steps. (Actually, we shall do better than that by showing the product

has at most three factors, not necessarily distinct.)

Looking at the fixed points of isometries turns out to be very rewarding in

general.

4.1.1 Proposition. If an isometry fixes two distinct points on a line, then

the isometry fixes that line pointwise.

Proof : Knowing point P is on the line through distinct points A and

B and knowing the nonzero distance AP , we do not know which of the two

possible points is P . However, if we also know the distance BP , then P is

uniquely determined. It follows that an isometry fixing both A and B must

also fix the point P , since an isometry is a collineation that preserves distance.

In other words, an isometry fixing distinct points A and B must fix every

point on the line through A and B.

2

4.1.2 Proposition. If an isometry fixes three noncollinear points, then the

isometry must be the identity.

Proof : Suppose that an isometry fixes each of three noncollinear points

A,B,C. Then the isometry must fix every point on 4ABC as the isometry

fixes every point on any one of the lines
←→
AB,

←→
BC,

←→
CA. Every point Q in the

plane lies on a line that intersects 4ABC in two distinct points. Hence the

point Q is on a line containing two fixed points and, therefore, must also be

fixed. So an isometry that fixes three noncollinear points must fix every point

Q in the plane. 2
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4.1.3 Proposition. If α and β are isometries such that

α(P ) = β(P ) , α(Q) = β(Q) , and α(R) = β(R)

for three noncollinear points P,Q,R, then α = β.

Proof : Multiplying each of the given equations by β−1 on the left, we

see that β−1α fixes each of the noncollinear points P,Q,R. Then β−1α = ι

by Proposition 4.1.2. Multiplying this last equation by β on the left, we

have α = β. 2

4.1.4 Proposition. An isometry that fixes two points is a reflection or the

identity.

Proof : Suppose isometry α fixes distinct points P and Q on line L. We

know two possibilities for α, namely ι and σL. We shall show these are the

only two possibilities by supposing α 6= ι and proving α = σL. If α 6= ι,

then there is a point R not fixed by α. So R is off L, and P,Q,R are three

noncollinear points. Let R′ = α(R). So PR = PR′ and QR = QR′, as α is

an isometry. Therefore, L is the perpendicular bisector of RR′ as each of P

and Q is in the locus of all points equidistant from R and R′. Hence,

α(R) = R′ = σL(R) as well as α(P ) = P = σL(P ) and α(Q) = Q = σL(Q) .

By Proposition 4.1.3 we have α = σL. 2

4.1.5 Proposition. An isometry that fixes exactly one point is a product

of two reflections.

Proof : Suppose isometry α fixes exactly one point C. Let P be a point

different from C, let α(P ) = P ′, and let L be the perpendicular bisector of

PP ′. Since CP = CP ′ as α is an isometry, then C is on L. So σL(C) = C

and σL(P ′) = P . Then

σLα(C) = σL(C) = C and σLα(P ) = σL(P ′) = P .
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By Proposition 4.1.4

σLα = ι or σLα = σM , where M =
←→
CP .

However, σLα 6= ι as otherwise α is σL and fixes more points than C. Thus

σLα = σM for some line M. Multiplying this equation by σL on the left, we

have α = σLσM. 2

4.1.6 Proposition. An isometry that fixes a point is a product of at most

two reflections.

Proof : Since ι = σLσL for any line L, the result follows as a corollary of

Proposition 4.1.5. 2

We are now prepared to prove the main result.

4.1.7 Theorem. Every isometry is a product of at most three reflections.

(We count the number of factors even though the factors themselves may not

be distinct.)

Proof : The identity is a product of two reflections. Suppose nonidentity

isometry α sends point P to different point Q. Let L be the perpendicular

bisector of PQ. Then σLα fixes point P . We have just seen that σLα must

be a product β of at most two reflections. Hence α = σLβ and α is a product

of at most three reflections. 2

Congruence

Suppose 4PQR ∼= 4ABC. We know there is at most one isometry α

such that

α(P ) = A, α(Q) = B, and α(R) = C.

The question is whether there exists at least one such isometry α. It is pos-

sible to construct effectively such an isometry (as a product of at most three

reflections).
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4.1.8 Proposition. If 4PQR ∼= 4ABC, then there is a unique isometry

α such that

α(P ) = A , α(Q) = B , and α(R) = C.

Proof : Suppose 4PQR ∼= 4ABC. So AB = PQ, AC = PR, and

BC = QR. If P 6= A, then let α1 = σL, where L is the perpendicular

bisector of PA. If P = A, then let α1 = ι. In either case, then α1(P ) = A.

Let α1(Q) = Q1 and α1(R) = R1. If Q1 6= B, then let α2 = σM, where

M is the perpendicular bisector of Q1B. In this case, point A is on M
as AB = PQ = AQ1. If Q1 = B, then let α2 = ι. In either case, we

have α2(A) = A and α2(Q1) = B. Let α2(R1) = R2. If R2 6= C, then

let α3 = σN , where N is the perpendicular bisector of R2C. In this case,

N =
←→
AB as AC = PR = AR1 = AR2 and BC = QR = Q1R1 = BR2. If

R2 = C, then let α3 = ι. In any case, we have α3(A) = A, α3(B) = B, and

α3(R2) = C. Let α = α3α2α1. Then

α(P ) = α3α2α1(P ) = α3α2(A) = α3(A) = A

α(Q) = α3α2α1(Q) = α3α2(Q1) = α3(B) = B

α(R) = α3α2α1(R) = α3α2(R1) = α3(R2) = C

as desired. 2

4.1.9 Corollary. Two segments, two angles, or two triangles are, respec-

tively, congruent if and only if there is an isometry taking one to other.

Note : In elementary plane geometry there are three different relations indicated

by the same words “is congruent to”, one for segments, one for angles, and a third

for triangles. All three can be combined under a generalized definition that applies

to arbitrary sets of points as follows. If S1 and S2 are sets of points, then S1 and

S2 are said to be congruent if there is an isometry α such that

α (S1) = S2.

Exercise 51 Give a reasonable definition for 2ABCD ∼= 2PQRS.
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4.2 The Product of Two Reflections

Every isometry is a product of at most three reflections (see Theorem 4.1.7).

So each isometry is of the form

σL , σMσL , or σNσMσL.

We shall examine now the case σMσL. Since a reflection is an involution, we

know that σLσL = ι for any line L.

Thus we are concerned with the product of two reflections in distinct lines

L and M. There are two cases : either L and M are parallel lines or else

L and M intersect at a unique point.

Case 1 : L and M are (distinct) parallel lines

4.2.1 Proposition. If lines L and M are parallel, then σMσL is the

translation through twice the directed distance from L to M.

Proof : Let L and M be distinct parallel lines. Suppose
←→
LM is a common

perpendicular to L and M with L on L and M on M. The directed

distance from L to M is the directed distance from L to M . (We are

going to use Proposition 4.1.3.) With K a point on L distinct from L,

let L′ = σM(L) and K ′ = τL,L′(K). Then (by Proposition 2.1.2 and

Proposition 2.1.4) we have τK,K′ = τL,L′ and 2LKK ′L′ is a rectangle

with M the common perpendicular bisector of LL′ and of KK ′. So

σM(K) = K ′.

Now, let J = σL(M). Then, since L is the midpoint of JM and M is the

midpoint of LL′, we have

τJ,M = τL,L′

where τL,L′ is the translation through twice the directed distance from L to
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M. Hence

σMσL(J) = σM(M) = M = τL,L′(J)

σMσL(K) = σM(K) = K ′ = τL,L′(K)

σMσL(L) = σM(L) = L′ = τL,L′(L).

Since an isometry is determined by any three noncollinear points (see Propo-

sition 4.1.2), the equations above give the desired result

σMσL = τL,L′ = τ2L,M .

2

4.2.2 Proposition. If line A is perpendicular to line L at L and to line

M at M , then

σMσL = τ2L,M = σMσL.

Proof : In the proof above we have τL,L′ = σMσL (Proposition 2.2.3).2

Is every translation a product of two reflections (in parallel lines) ? The

answer is “Yes”. The following result holds.

4.2.3 Theorem. Every translation is a product of two reflections in par-

allel lines, and, conversely, a product of two reflections in parallel lines is a

translation.

Proof : Given nonidentity translation τL,N , then τL,N = σMσL, where M

is the midpoint of LN . With L the perpendicular to
←→
LM at L and M the

perpendicular to
←→
LM at M , we have

σMσL = σMσL

by Proposition 4.2.2. So

τL,N = σMσL with L ‖ M.

2
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4.2.4 Proposition. If lines L,M, N are perpendicular to line A, then

there are unique lines P and Q such that

σMσL = σNσP = σQσN .

Further, the lines P and Q are perpendicular to A.

Proof : The equations

σMσL = σNσP = σQσN

have unique solutions for lines P and Q, given lines L,M,N are parallel. To

show this, let line A be perpendicular to lines L,M,N at points L,M,N ,

respectively. Let P and Q be the unique points on A such that

σMσL = σNσP = σQσN .

Let line P be perpendicular to A at P , and let line Q be perpendicular to

A at Q. Then

σMσL = σMσL = σNσP = σNσP and σMσL = σMσL = σQσN = σQσN .

The uniqueness of these lines P and Q that satisfy the equations follows

from the cancellation laws. (For example, σNσP = σNσP ′ implies σP = σP ′ ,

which implies P = P ′ .) 2

Note : In the proposition above, P is just the unique line such that directed

distance from P to N equals the directed distance from L to M and that Q is

just the unique line such that the directed distance from N to Q equals the directed

distance from L to M.

4.2.5 Corollary. If P 6= Q, then τP,Q may be expressed as σBσA, where

either one of A or B is an arbitrarily chosen line perpendicular to
←→
PQ and

the other is then a uniquely determined line perpendicular to
←→
PQ.
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Observe that

σMσL = σNσP and σNσMσL = σP

are equivalent equations.

4.2.6 Corollary. If lines L,M, N are perpendicular to line A, then

σNσMσL is a reflection in a line perpendicular to A.

Case 2 : L and M are (distinct) intersecting lines

L and M are lines intersecting at a point C. We shall follow much the

same path as we did for parallel lines.

4.2.7 Proposition. If lines L and M intersect at point C and the di-

rected angle measure of a directed angle from L to M is r
2 , then σMσL =

ρC,r.

Proof : We first show that σMσL is a rotation about C by using the fact

that three noncollinear points determine an isometry. Suppose r
2 is the di-

rected angle measure of one of the two directed angles from L to M. We may

as well suppose −90 < r
2 ≤ 90. (Note that the notation suggests correctly

that we are going to encounter twice the directed angle from L to M in our

conclusion.) Let L be a point on L different from C. Let point M be the

intersection of line M and circle CL such that the directed angle measure

from
−→
CL to

−→
CM is r

2 . We have L =
←→
CL and M =

←→
CM . Let L′ = ρC,r(L).

Then L′ is on circle CL, and M is the perpendicular bisector of LL′. So

L′ = σM(L). Let J = σL(M). Then L is the perpendicular bisector of JM .

So J is on circle CL, and the directed angle measure from
←→
CJ to

←→
CM is r.

Hence, M = ρC,r(J). Therefore,

σMσL(C) = σM(C) = C = ρC,r(C)

σMσL(J) = σM(M) = M = ρC,r(J)

σMσL(L) = σM(L) = L′ = ρC,r(L).
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Since points C, J, L are not collinear, we conclude

σMσL = ρC,r.

So σMσL is the rotation about C through twice a directed angle from L to

M. 2

The following result (analogue of Theorem 4.2.3) holds.

4.2.8 Theorem. Every rotation is a product of two reflections in intersect-

ing lines, and, conversely, a product of two reflections in intersecting lines is

a rotation.

Proof : Suppose ρC,r is given. Let L be any line through C, and let M
be the line through C such that a directed angle from L to M has directed

angle measure r
2 . Then ρC,r = σMσL, and this completes the proof. 2

4.2.9 Proposition. If lines L,M, N are concurent at point C, then

there are unique lines P and Q such that

σMσL = σNσP = σQσN .

Further, the lines P and Q are concurent at C.

Proof : Given rays CL→, CM→, and CN→, there are unique rays CP→

and CQ→ such that the directed angle from CL→ to CM→, the directed

angle from CP→ to CN→, and the directed angle from CN→ to CQ→, all

have the same directed angle measure. With N =
←→
CN , P =

←→
CP , and Q =

←→
CQ,

we have solutions P and Q to the equations

σMσL = σNσP = σQσN .

when L,M, N are given lines concurent at C. The uniqueness of such lines

P and Q follows from the cancellation laws. 2

4.2.10 Corollary. Rotation ρC,r may be expressed as σBσA, where ei-

ther one of A or B is an arbitrarily chosen line through C and the other is

then a uniquely determined line through C.
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4.2.11 Corollary. Halfturn σP is the product (in either order) of the

two reflections in any two lines perpendicular at P .

4.2.12 Corollary. If lines L,M, N are concurent at point C, then

σNσMσL is a reflection in a line through C.

4.2.13 Theorem. A product of two reflections is a translation or a rota-

tion; only the identity is both a translation and a rotation.

Proof : Clearly,

σLσL = τP,P = ρP,0 = ι

for any line L and any point P . Also, a rotation has a fixed point while a

nonidentity translation does not. From these observations and the fact that

lines L and M must be parallel or intersect, we have the result. 2

4.3 Fixed Points and Involutions

We have not considered products of three reflections, except in the very special

cases where the reflections are in lines that are parallel or in lines that are

concurent. Therefore, it would be fairly surprising if we could at this stage

classify all the isometries that have fixed points and classify all the isometries

that are involutions. Such is the case, however.

4.3.1 Proposition. An isometry that fixes exactly one point is a noniden-

tity rotation. An isometry that fixes a point is a rotation or a reflection.

Proof : An isometry with a fixed point is a product of at most two reflec-

tions (Proposition 4.1.6). Of course, the identity and a reflection have fixed

points. Otherwise, an isometry with a fixed point must be a translation or

a rotation (Theorem 4.2.13). Since a nonidentity translation has no fixed

points and a nonidentity rotation has exactly one fixed point, the desired result

follows. 2

The involutions come next.
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4.3.2 Proposition. The involutory isometries are the reflections and the

halfturns.

Proof : Suppose α is an involutory isometry. Since α is not the identity,

there are points P and Q such that α(P ) = Q 6= P . Since P = α2(P ) =

α(Q), then α interchanges distinct points P and Q. Hence (Proposition

3.2.3), α must fix the midpoint of PQ. Therefore, α must be a rotation or a

reflection by Proposition 4.3.1. Since the involutory rotations are halfturns

(see Exercise 44), we obtain the desired result. 2

Exercise 52 Do involutory isometries form a group ?

Although we know that halfturn σP fixes line L if and only if point P is

on line L (see Proposition 2.2.2), we have not considered the fixed lines of

an arbitrary rotation. We do so now.

4.3.3 Proposition. A nonidentity rotation that fixes a line is a halfturn.

Proof : Suppose nonidentity rotation ρC,r fixes line L. Let M be the line

through C that is perpendicular to L. Then (Corollary 4.2.10), there is

a line N through C and different from M such that ρC,r = σNσM. Since

L and M are perpendicular, then (Proposition 3.1.2) we have

L = ρC,r(L) = σNσM(L) = σN (L).

So σN fixes line L. Then N = L or N ⊥ L. Lines M and N cannot be

two intersecting lines and both perpendicular to L. Hence, N = L. So M
and N are perpendicular at C and ρC,r is the halfturn σC . 2

4.4 Exercises

Exercise 53 Given 4ABC ∼= 4DEF , where A = (0, 0), B = (5, 0), C = (0, 10), D =

(4, 2), E = (1,−2), and F = (12,−4), find equations of lines such that the product

of reflections in these lines takes 4ABC to 4DEF .
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Exercise 54 Suppose lines L,M, N have, respectively, equations x = 2, y = 3,

and y = 5. Find the equations for σMσL and σNσM.

Exercise 55 PROVE or DISPROVE : Every isometry is either a product of five

reflections or a product of six reflections.

Exercise 56 PROVE or DISPROVE : The images of a triangle under two distinct

isometries cannot be identical.

Exercise 57 TRUE or FALSE ?

(a) (σZσYσX · · ·σCσBσA)−1 = σAσBσC · · ·σXσYσZ for all lines A, B, C, . . . ,
X , Y, Z.

(b) If AB = CD, then AD = BC.

(c) A product of four reflections is an isometry.

(d) The set of all rotations generates a commutative group.

(e) The set of all reflections generates Isom.

(f) If A and B are two distinct points, PA = PB and QA = QB, then

P = Q.

(g) An isometry that fixes a point is an involution.

(h) If isometry α fixes points A,B, and C, then α = ι.

(i) If α and β are isometries and α2 = β2, then α = β or α = β−1.

Exercise 58 Prove the if σNσM fixes point P and M 6= N , then P is on both

M and N .

Exercise 59 PROVE or DISPROVE : If α is an involution, then βαβ−1 is an

involution for any transformation β.

Exercise 60 If M ‖ N , find points M and N such that

σNσM = σNσM .

Exercise 61 What are the equations for σNσM if line M has equation y =

−2x+ 3 and line N has equation y = −2x+ 8 ?
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Exercise 62 Show that σLρC,rσL = ρC,−r if point C is on line L.

Exercise 63 TRUE or FALSE ?

(a) If a directed angle from line L to line M is 240◦, then σMσL is a

rotation of 120◦.

(b) σMσL = τ2
L,M = σMσL if point L is on line L and point M is on line

M.

(c) An isometry has a unique fixed point if and only if the isometry is a

nonidentity rotation.

(d) An isometry that is its own inverse must be a halfturn, a reflection, or

the identity.

(e) If L′ = σM(L) and K ′ = τL,L′(K), then M is the perpendicular bisector

of KK ′.

(f) Given points L,M,N , there is a point P such that σMσL = σNσP .

(g) Given lines L,M,N , there is a line P such that σMσL = σNσP .

(h) If lines L and M intersect at point C and a directed angle from L to

M is r◦, then σMσL = ρC,2r.

(i) An isometry that fixes a point must be a rotation, a reflection, or the

identity.

(j) Isometry αβα−1 is an involution for any isometry α if and only if isom-

etry β is an involution.

Exercise 64 Given nonparallel lines
←→
AB and

←→
CD, show there is a rotation ρ such

that

ρ(
−→
AB) =

−→
CD.

Exercise 65 PROVE or DISPROVE : Every translation is a product of two nonin-

volutory rotations.

Exercise 66 PROVE or DISPROVE : If P 6= Q, then there is a unique translation

taking point P to point Q but there are an infinite number of rotations that take

P to Q.

Exercise 67 What lines are fixed by rotation ρC,r ?
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Exercise 68 If σNσM((x, y)) = (x+ 6, y− 3), find equations for lines M and N .

Exercise 69 If σCσBσA is a reflection, show that lines A, B, C are either con-

curent or parallel to each other.

Exercise 70 Show that σNσMσL = σLσMσN whenever lines L, M, N are con-

curent or have a common perpendicular.

Discussion : The regular polyhedra are five figures from the classical

geometry of E3 (the so-called “solid geometry” encountered in high school) : the

tetrahedron, cube, octohedron, dodecahedron, and icosahedron. The faces of the

tetrahedron, octahedron and icosahedron are equilateral triangles, those of the cube

are squares, and those of the dodecahedron are regular pentagons. It is easy to show

that these there are the only possible convex polyhedra whose faces are all regular

polygons of the same type, because at least three faces must meet at each vertex and,

hence, the polygons must have angles < 2π
3 .

Corresponding to each regular polyhedron P we get a regular tessellation of the

sphere S2 by placing P so that its center is at the origin O and projecting the edges

of P from O onto S2. Each regular polygonal face of P projects to a regular spherical

polygon on S2.

Each regular polyhedron P has a symmetry group which is a finite group of ro-

tations of S2. If we imagine a solid P occupying a P-shaped “hole” in E3, then

the rotations in the symmetry group are those which turn P to a position which fits

the hole. There are only three such symmetry groups, called the polyhedral groups,

because the octahedron and cube have the same group, as do the icosahedron and

dodecahedron.

In addition to the polyhedral groups, there are two infinite families of finite groups

of rotations of S2. The first consists of cyclic groups Cn, each generated by a rotation

through 2π
n . The second consists of dihedral groups Dn. Dn can be regarded as

the symmetry group of a degenerate polyhedron – the “dihedron” – with two regular

n-gonal faces.

The fact that there are only five regular polyhedra has the (not quite obvious)

consequence that the only finite groups of rotations of S2 are Cn, Dn, and the three

polyhedral groups. An even more remarkable consequence was proved by Felix Klein
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(1849-1925): Any finite group of linear fractional transformations is isomorphic to

one of Cn, Dn or the three polyhedral groups.

The psychological aspects of true geometric intuition will perhaps never be

cleared up. At one time it implied primarily the power of visualization in

three-dimensional space. Now that higher-dimensional spaces have mostly

driven out the more elementary problems, visualization can at best be partial

or symbolic. Some degree of tactile imagination seems also to be involved.

André Weil


