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4.1 Isometries as Product of Reflections

A product of reflections is clearly an isometry. The converse is also true; that
is, every isometry is a product of reflections. We prove now this fact in seven
(small) steps. (Actually, we shall do better than that by showing the product

has at most three factors, not necessarily distinct.)

Looking at the fixed points of isometries turns out to be very rewarding in

general.

4.1.1 PROPOSITION.  If an isometry fizes two distinct points on a line, then

the isometry fizes that line pointwise.

PRrROOF : Knowing point P is on the line through distinct points A and
B and knowing the nonzero distance AP, we do not know which of the two
possible points is P. However, if we also know the distance BP, then P is
uniquely determined. It follows that an isometry fixing both A and B must
also fix the point P, since an isometry is a collineation that preserves distance.
In other words, an isometry fixing distinct points A and B must fix every

point on the line through A and B.

4.1.2 PROPOSITION.  If an isometry fixes three noncollinear points, then the

isometry must be the identity.

PROOF : Suppose that an isometry fixes each of three noncollinear points

A, B,C. Then the isometry must fix every point on AABC as the isometry
— >

fixes every point on any one of the lines AB, BC,CA. Every point () in the

plane lies on a line that intersects AABC' in two distinct points. Hence the

point @ is on a line containing two fixed points and, therefore, must also be

fixed. So an isometry that fixes three noncollinear points must fix every point

Q@ in the plane. a
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4.1.3 PROPOSITION.  If a and B are isometries such that

a(P)=pB(P), a(Q)=pB(Q), and o(R)=p5(R)

for three noncollinear points P,Q, R, then o = (3.

PROOF :  Multiplying each of the given equations by S~! on the left, we
see that B 'a fixes each of the noncollinear points P, @, R. Then B la =
by PROPOSITION 4.1.2. Multiplying this last equation by 8 on the left, we
have o = . O

4.1.4 PROPOSITION.  An isometry that fixes two points is a reflection or the

identity.

PROOF :  Suppose isometry « fixes distinct points P and ) on line £. We
know two possibilities for «, namely ¢ and oy. We shall show these are the
only two possibilities by supposing « # ¢ and proving « = og. If a # ¢,
then there is a point R not fixed by a. So R isoff £, and P,Q, R are three
noncollinear points. Let R’ = a(R). So PR = PR’ and QR = QR/, as « is
an isometry. Therefore, £ is the perpendicular bisector of RR’ as each of P

and (@ is in the locus of all points equidistant from R and R’. Hence,
a(R)=R =o0£(R) aswellas a(P)=P=o0(P) and a(Q)=Q =0.(Q).
By PROPOSITION 4.1.3 we have a = o,. O

4.1.5 PROPOSITION.  An isometry that fizes exactly one point is a product

of two reflections.

PROOF : Suppose isometry « fixes exactly one point C. Let P be a point
different from C, let a(P) = P’, and let £ be the perpendicular bisector of
PP'. Since CP = CP' as « is an isometry, then C' ison L. So o7(C) = C
and oz (P') = P. Then

ora(C)=0,(C)=C and opa(P)=o0s(P)=P.
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By PROPOSITION 4.1.4
<
ora=1 or opa=o0opn, where M =CP .

However, oo # 1 as otherwise « is o, and fixes more points than C. Thus
ora = op for some line M. Multiplying this equation by o, on the left, we

have a = opom. O

4.1.6 PROPOSITION. An isometry that fixes a point is a product of at most

two reflections.

PROOF : Since ¢ = oo, for any line L, the result follows as a corollary of

ProrosiTION 4.1.5. O

We are now prepared to prove the main result.

4.1.7 THEOREM. Every isometry is a product of at most three reflections.
(We count the number of factors even though the factors themselves may not

be distinct.)

PRrROOF :  The identity is a product of two reflections. Suppose nonidentity
isometry « sends point P to different point Q). Let £ be the perpendicular
bisector of PQ. Then oy« fixes point P. We have just seen that o o must
be a product [ of at most two reflections. Hence o« = o8 and « is a product

of at most three reflections. O
Congruence

Suppose APQR = AABC. We know there is at most one isometry «
such that
a(P)=A,a(Q)=B, and «oR)=C.

The question is whether there exists at least one such isometry «. It is pos-
sible to construct effectively such an isometry (as a product of at most three

reflections).
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4.1.8 PROPOSITION.  If APQR = AABC, then there is a unique isometry
o such that
a(P)=A, aQ)=B, and «a(R)=C.

PROOF : Suppose APQR = NABC. So AB = P(Q, AC = PR, and
BC = QR. If P # A, then let oy = o, where L is the perpendicular
bisector of PA. If P = A, then let a3 = ¢. In either case, then a;(P) = A.
Let a1(Q) = Q1 and a1(R) = R;. If Q1 # B, then let ay = o, where
M is the perpendicular bisector of QB. In this case, point A is on M
as AB = PQ = AQ:. If Q1 = B, then let oo = ¢. In either case, we
have ag(A) = A and a3(Q1) = B. Let as(R1) = Re. If Ry # C, then
let a3 = o, where N is the perpendicular bisector of RoC. In this case,
N :jél_B> as AC = PR = AR; = ARy and BC = QR = Q1R; = BRy. If
Ry = C, then let a3 = (. In any case, we have a3(A4) = A, ag(B) = B, and
asg(Rg) = C. Let o = agagary. Then

a(P) = asasai(P)=asa(A) =a3(A)=A

a(Q) = azaza1(Q) = azaz(Q1) = a3(B) =B
a(R) = asasai(R) = azaz(Ry) = as(Ry) =C

as desired. O

4.1.9 COROLLARY. Two segments, two angles, or two triangles are, respec-

tively, congruent if and only if there is an isometry taking one to other.

NOTE : In elementary plane geometry there are three different relations indicated
by the same words “is congruent to”, one for segments, one for angles, and a third
for triangles. All three can be combined under a generalized definition that applies
to arbitrary sets of points as follows. If S; and S, are sets of points, then S; and

S, are said to be congruent if there is an isometry o such that

Exercise 51 Give a reasonable definition for D ABCD = O PQRS.
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4.2 The Product of Two Reflections

Every isometry is a product of at most three reflections (see THEOREM 4.1.7).

So each isometry is of the form

og, OMOL, OF ONOMOL.

We shall examine now the case oaqoc. Since a reflection is an involution, we
know that o,o, = ¢ for any line L.

Thus we are concerned with the product of two reflections in distinct lines
L and M. There are two cases : either £ and M are parallel lines or else

L and M intersect at a unique point.
Case 1: £ and M are (distinct) parallel lines

4.2.1 PROPOSITION.  [If lines L and M are parallel, then opaop is the

translation through twice the directed distance from L to M.

PrOOF : Let £ and M be distinct parallel lines. Suppose IT/I is a common
perpendicular to £ and M with L on £ and M on M. The directed
distance from £ to M is the directed distance from L to M. (We are
going to use PROPOSITION 4.1.3.) With K a point on £ distinct from L,
let L' = om(L) and K' = 77 1/(K). Then (by PROPOSITION 2.1.2 and
PROPOSITION 2.1.4) we have 7 g = 77, 1» and OLKK'L' is a rectangle
with M the common perpendicular bisector of LL’ and of KK’. So

om(K) =K'

Now, let J = oz(M). Then, since L is the midpoint of JM and M is the

midpoint of LI/, we have

TIM = TL,L/

where 77,7/ is the translation through twice the directed distance from L to
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M. Hence
omoc(J) = om(M)=M=7,1(J)
O'MO'L(K) = O'M(K) = K/ = TL,L’(K)
O'MO'L(L) = O'M(L) = L/ = TL,L’(L)'
Since an isometry is determined by any three noncollinear points (see PROPO-
SITION 4.1.2), the equations above give the desired result
OMOL =TL L' = T[2,,M‘

d

4.2.2 PROPOSITION.  Ifline A is perpendicular to line L at L and to line
M at M, then

2
oMOL :TL,M = OoMOL.

PRrOOF : In the proof above we have 77, 1 = opror, (PROPOSITION 2.2.3).0

Is every translation a product of two reflections (in parallel lines) 7 The

answer is “Yes”. The following result holds.

4.2.3 THEOREM.  FEwvery translation is a product of two reflections in par-
allel lines, and, conversely, a product of two reflections in parallel lines is a

translation.

Proor : Given nonidentity translation 77, n, then 77, v = oaor, where M
R <

is the midpoint of LN. With £ the perpendicular to LM at L and M the
>

perpendicular to LM at M, we have

OMOL = OMOL
by PROPOSITION 4.2.2. So

LN =0omog with L || M.
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4.2.4 PROPOSITION.  If lines L, M, N are perpendicular to line A, then

there are unique lines P and Q such that

OMOL = ONOP = OQON .

Further, the lines P and Q are perpendicular to A.

PrROOF : The equations

OMOL = ONOP = OQON

have unique solutions for lines P and Q, given lines £, M, N are parallel. To
show this, let line A be perpendicular to lines £, M, N at points L, M, N,
respectively. Let P and @) be the unique points on A such that

OMOL = ONOpP = OQON.

Let line P be perpendicular to A at P, and let line @ be perpendicular to
A at Q. Then

OMOL = 0NMOL =0NOp =0NOp and om0z = O)OL = OQON = TQON-

The uniqueness of these lines P and @ that satisfy the equations follows

from the cancellation laws. (For example, oxrop = opops implies op = opr,
which implies P =P’.) O

NOTE : In the proposition above, P is just the unique line such that directed
distance from P to A equals the directed distance from £ to M and that Q is
just the unique line such that the directed distance from N to Q equals the directed
distance from £ to M.

4.2.5 COROLLARY. If P # Q, then Tpg may be expressed as opo 4, where
—
either one of A or B is an arbitrarily chosen line perpendicular to PQ and

<
the other is then a uniquely determined line perpendicular to PQ).
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Observe that

omor =onop and onOMmOL = Op
are equivalent equations.

4.2.6 COROLLARY.  If lines L, M, N are perpendicular to line A, then

oNOMmOr 1S a reflection in a line perpendicular to A.
Case 2 : £ and M are (distinct) intersecting lines

L and M are lines intersecting at a point C'. We shall follow much the

same path as we did for parallel lines.

4.2.7 PROPOSITION.  If lines £ and M intersect at point C and the di-

rected angle measure of a directed angle from L to M is %, then opmor =
PC,r-

ProOOF :  We first show that oaqo, is a rotation about C' by using the fact
that three noncollinear points determine an isometry. Suppose 5 is the di-
rected angle measure of one of the two directed angles from £ to M. We may
as well suppose —90 < § < 90. (Note that the notation suggests correctly
that we are going to encounter twice the directed angle from £ to M in our
conclusion.) Let L be a point on £ different from C. Let point M be the
intersection of line M and circle Cp such that the directed angle measure
N — — —
from CL to CM is §. We have £L =CL and M =CM. Let L' = pc,(L).
Then L' is on circle Cf, and M is the perpendicular bisector of LL’. So
L'=opm(L). Let J=0s(M). Then L is the perpendicular bisector of JM.
«— >
So J is on circle Cp, and the directed angle measure from CJ to CM is r.

Hence, M = pc(J). Therefore,

omor(C) = om(C)=C=pc,(0)
omoc(J) = om(M)=M=pc,(J)
omoc(L) = om(L)=L"= pc,(L).
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Since points C, J, L are not collinear, we conclude

OMOL = PCyr-

So oamor is the rotation about C' through twice a directed angle from L to
M. O

The following result (analogue of THEOREM 4.2.3) holds.

4.2.8 THEOREM. Every rotation is a product of two reflections in intersect-
ing lines, and, conversely, a product of two reflections in intersecting lines is

a rotation.

PROOF : Suppose pc, is given. Let £ be any line through C, and let M
be the line through C such that a directed angle from £ to M has directed
T

angle measure 5. Then pc, = orog, and this completes the proof. O

4.2.9 PROPOSITION.  If lines L, M, N are concurent at point C, then

there are unique lines P and O such that

OMOL = ONTP = OQON -
Further, the lines P and Q are concurent at C.

ProoOF : Given rays CL~, CM~, and CN7, there are unique rays CP~
and CQ~ such that the directed angle from CL™ to CM™, the directed
angle from CP~ to CN7, and the directed angle from CN~ to CQ™, all

< > <
have the same directed angle measure. With N'=CN, P =CP, and Q =CQ,

we have solutions P and @ to the equations

OMOL = ONOP = OQON.

when £, M, N are given lines concurent at C. The uniqueness of such lines

P and QO follows from the cancellation laws. O

4.2.10 COROLLARY. Rotation pc, may be expressed as opoa, where ei-
ther one of A or B is an arbitrarily chosen line through C and the other is

then a uniquely determined line through C.
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4.2.11 COROLLARY.  Halfturn op is the product (in either order) of the

two reflections in any two lines perpendicular at P.

4.2.12 COROLLARY.  If lines L, M, N are concurent at point C, then

onomor s a reflection in a line through C.

4.2.13 THEOREM. A product of two reflections is a translation or a rota-

tion; only the identity is both a translation and a rotation.

Proor :  Clearly,
Oror =Tpp = PP =1
for any line £ and any point P. Also, a rotation has a fixed point while a

nonidentity translation does not. From these observations and the fact that

lines £ and M must be parallel or intersect, we have the result. |

4.3 Fixed Points and Involutions

We have not considered products of three reflections, except in the very special
cases where the reflections are in lines that are parallel or in lines that are
concurent. Therefore, it would be fairly surprising if we could at this stage
classify all the isometries that have fixed points and classify all the isometries

that are involutions. Such is the case, however.

4.3.1 PROPOSITION.  An isometry that fizes exactly one point is a noniden-

tity rotation. An isometry that fixes a point is a rotation or a reflection.

PROOF : An isometry with a fixed point is a product of at most two reflec-
tions (PROPOSITION 4.1.6). Of course, the identity and a reflection have fixed
points. Otherwise, an isometry with a fixed point must be a translation or
a rotation (THEOREM 4.2.13). Since a nonidentity translation has no fixed
points and a nonidentity rotation has exactly one fixed point, the desired result

follows. O

The involutions come next.
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4.3.2 PROPOSITION. The involutory isometries are the reflections and the
halfturns.

PROOF : Suppose « is an involutory isometry. Since « is not the identity,
there are points P and @ such that a(P) = Q # P. Since P = o?(P) =
(@), then « interchanges distinct points P and ). Hence (PROPOSITION
3.2.3), a must fix the midpoint of PQ. Therefore, a must be a rotation or a
reflection by PROPOSITION 4.3.1. Since the involutory rotations are halfturns

(see Exercise 44), we obtain the desired result. O

Exercise 52 Do involutory isometries form a group ?

Although we know that halfturn op fixes line £ if and only if point P is
on line £ (see PROPOSITION 2.2.2), we have not considered the fixed lines of

an arbitrary rotation. We do so now.

4.3.3 PROPOSITION. A nonidentity rotation that fizes a line is a halfturn.

PROOF : Suppose nonidentity rotation pc, fixesline £. Let M be the line
through C that is perpendicular to £. Then (COROLLARY 4.2.10), there is
a line N through C' and different from M such that pc, = oxon. Since
L and M are perpendicular, then (PROPOSITION 3.1.2) we have

L= pcy(L) =onom(L) = on(L).

So o fixes line £. Then N =L or N L L. Lines M and N cannot be
two intersecting lines and both perpendicular to £. Hence, N = L. So M
and A are perpendicular at C' and pc, is the halfturn oc. O

4.4 Exercises

Exercise 53 Given AABC =2 ADEF, where A = (0,0), B = (5,0), C =(0,10), D =
(4,2), E = (1,-2), and F = (12,—4), find equations of lines such that the product
of reflections in these lines takes AABC to ADEF.
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Exercise 54 Suppose lines £, M, N have, respectively, equations z = 2, y = 3,
and y = 5. Find the equations for oro, and o opg.

Exercise 55 PROVE or DISPROVE : Every isometry is either a product of five

reflections or a product of six reflections.

Exercise 56 PROVE or DISPROVE : The images of a triangle under two distinct

isometries cannot be identical.

Exercise 57 TRUE or FALSE ?
(a) (0zoyox - ocopos) ! =0oa0p0c - oxoyoz foralllines A, B, C,...,
X,V 2.
If Ap =Cp, then AD = BC.
A product of four reflections is an isometry.

)
)
d) The set of all rotations generates a commutative group.
) The set of all reflections generates Jsom.

)

If A and B are two distinct points, PA = PB and QA = (B, then
P=qQ.

(g) An isometry that fixes a point is an involution.

(h) If isometry « fixes points A, B, and C, then « = .

(i) If @ and 8 are isometries and a? = 8%, then a = 3 or a = 1.

Exercise 58 Prove the if oaxopg fixes point P and M # N, then P is on both
M and N.

Exercise 59 PROVE or DISPROVE : If a is an involution, then BafB~! is an

involution for any transformation [.
Exercise 60 If M || NV, find points M and N such that
ONOM = ONOMN-

Exercise 61 What are the equations for oprong if line M has equation y =
—2z + 3 and line N has equation y = —2x + 87
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Exercise 62 Show that ospc oz = po,—r if point C is on line L.

Exercise 63 TRUE or FALSE ?

)

If a directed angle from line £ to line M is 240°, then oo, is a
rotation of 120°.

oMo = TiM = opoyp if point L is on line £ and point M is on line

M.

An isometry has a unique fixed point if and only if the isometry is a

nonidentity rotation.

An isometry that is its own inverse must be a halfturn, a reflection, or
the identity.

If L' =om(L) and K’ = 71, 1/ (K), then M is the perpendicular bisector
of KK'.

Given points L, M, N, there is a point P such that opjor, = onop.
Given lines £, M, N, there is a line P such that oo, = opnop.

If lines £ and M intersect at point C' and a directed angle from L to
M is r°, then opor = pcar-

An isometry that fixes a point must be a rotation, a reflection, or the
identity.

Isometry afa~! is an involution for any isometry « if and only if isom-

etry [ is an involution.

— —
Exercise 64 Given nonparallel lines AB and CD, show there is a rotation p such

that

— =
p(AB) =CD.

Exercise 65 PROVE or DISPROVE : Every translation is a product of two nonin-

volutory rotations.

Exercise 66 PROVE or DISPROVE : If P # @, then there is a unique translation

taking point P to point @) but there are an infinite number of rotations that take

P to Q.

Exercise 67 What lines are fixed by rotation pc,, ?
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Exercise 68 If ononm((z,y)) = (z+ 6,y — 3), find equations for lines M and N.

Exercise 69 If ocogo 4 is a reflection, show that lines A, B, C are either con-

curent or parallel to each other.

Exercise 70 Show that onoymor = ogomon whenever lines £, M, N are con-

curent or have a common perpendicular.

DISCUSSION : ‘ The regular polyhedra are five figures from the classical

geometry of E3 (the so-called “solid geometry” encountered in high school) : the
tetrahedron, cube, octohedron, dodecahedron, and icosahedron. The faces of the
tetrahedron, octahedron and icosahedron are equilateral triangles, those of the cube
are squares, and those of the dodecahedron are regular pentagons. It is easy to show
that these there are the only possible convexr polyhedra whose faces are all regular
polygons of the same type, because at least three faces must meet at each vertex and,
hence, the polygons must have angles < %’“

Corresponding to each regular polyhedron P we get a regular tessellation of the
sphere S? by placing P so that its center is at the origin O and projecting the edges
of P from O onto S?. Each regular polygonal face of P projects to a regular spherical
polygon on S2.

Each regular polyhedron P has a symmetry group which is a finite group of ro-
tations of S?. If we imagine a solid P occupying a P-shaped “hole” in E2, then
the rotations in the symmetry group are those which turn P to a position which fits
the hole. There are only three such symmetry groups, called the polyhedral groups,
because the octahedron and cube have the same group, as do the icosahedron and
dodecahedron.

In addition to the polyhedral groups, there are two infinite families of finite groups
of rotations of S2. The first consists of cyclic groups €, each generated by a rotation
through 27” The second consists of dihedral groups 2,,. 3, can be regarded as
the symmetry group of a degenerate polyhedron — the “dihedron” — with two regular

n-gonal faces.
The fact that there are only five regular polyhedra has the (not quite obvious)
consequence that the only finite groups of rotations of S* are &,,, ®,,, and the three

polyhedral groups. An even more remarkable consequence was proved by FELIX KLEIN
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(1849-1925): Any finite group of linear fractional transformations is isomorphic to
one of €,,, ®,, or the three polyhedral groups.

The psychological aspects of true geometric intuition will perhaps never be

cleared up. At one time it implied primarily the power of visualization in

three-dimensional space. Now that higher-dimensional spaces have mostly
driven out the more elementary problems, visualization can at best be partial

or symbolic. Some degree of tactile imagination seems also to be involved.

ANDRE WEIL



