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66 Groups and Geometry

5.1 Even and Odd Isometries

A product of two reflections is a translation or a rotation. By considering the

fixed points of each, we see that neither a translation nor a rotation can be

equal to a reflection. Thus, for lines L,M, N

σNσM 6= σL .

When a given isometry is expressed as a product of reflections, the number of

reflections is not invariant. Although the product of two reflections cannot

be a reflection, we know that in some cases a product of three reflections is a

reflection. (We shall see this is possible only because both 3 and 1 are odd

integers.) We make the following definitions.

5.1.1 Definition. An isometry that is a product of an even number of

reflections is said to be even.

5.1.2 Definition. An isometry that is a product of an odd number of

reflections is said to be odd.

Note : It is intuitively clear that the product of an even number of reflections

preserves the sense of a clockwise oriented circle in the plane, whereas the product of

an odd number of reflections reverses it. We say that even isometries are orientation-

preserving and that odd isometries are orientation-reversing isometries.

We shall refer to the property of an isometry of being even or odd as the

parity. But is this concept “well-defined” ? Observe that, since an isometry

is a product of reflections, an isometry is even or odd. Of course, no integer

can be both even and odd, but is it not conceivable some product of ten

reflections could equal to some product of seven reflections ? We shall show

this is impossible.

Exercise 71 Show that if P is a point and A and B are lines, then there are lines

C and D with C passing through P such that σBσA = σDσC .
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Based on this simple fact, we can now prove the following

5.1.3 Proposition. A product of four reflections is a product of two re-

flections.

Proof : Suppose product σSσRσQσP is given. We want to show this

product is equal to a product of two reflections. Let P a point on line

P. There are lines Q′ and R′ such that σRσQ = σR′σQ′ with P on Q′.
Also, there are lines R′′ and M such that σSσR′ = σMσR′′ with P on

R′′. Since P, Q′, R′′ are concurent at P , then there is a line L such that

σR′′σQ′σP = σL. Therefore,

σSσRσQσP = σSσR′σQ′σP = σMσR′′σQ′σP = σMσL.

2

Note : Not only are there lines such that the given product of four reflections is

equal to σMσL, but our proof even tells us how to find such lines.

5.1.4 Proposition. An even isometry is a product of two reflections. An

odd isometry is a reflection or a product of three reflections. No isometry is

both even and odd.

Proof : Given a long product of reflections, we can use Proposition 5.1.3

repeatedly to replace the first four reflections by two reflections until we have

obtained a product with less than four reflections. By repeated application of

the result to an even isometry, we can reduce the even isometry to a product of

two reflections. Also, by repeated application of the result to an odd isometry,

we can reduce the odd isometry to a product of three reflections or to a

reflection. Therefore, to show an isometry cannot be both even and odd, we

need to show only that a product of two reflections cannot equal a reflection

or a product of three reflections. Assume there are lines P, Q, R, S, T such

that σRσQσP = σSσT . Then, we have shown above that there are lines L
and M such that

σMσL = σSσRσQσP = σSσSσT = σT .



68 Groups and Geometry

We have a contradiction since σMσL is a translation or a rotation and cannot

be equal to reflection σT . A product of two reflections is never equal to a

reflection or a product of three reflections. 2

5.1.5 Proposition. An even involutory isometry is a halfturn; an odd in-

volutory isometry is a reflection.

Proof : The even isometries are the translations and the rotations. Since

the involutory isometries are the halfturns and the reflections, the result fol-

lows. 2

5.1.6 Proposition. The even isometries form a group Isom+.

Proof : An isometry and its inverse have the same parity, since the inverse

of a product of reflections is the product of the reflections in reverse order.

So the set Isom+ of all even isometries has the inverse property. Further,

the set Isom+ has the closure property since the sum of two even integers

is even. So the even isometries form a group. 2

Note : Isom+
will always denote the group of even isometries. So Isom+

consists of the translations and the rotations.

Some “technical” results

Exercise 72 Suppose that α and β are two isometries. Prove that

(a) αβα−1 is an involution ⇐⇒ β is an involution.

(b) αβα−1 and β must have the same parity.

Note : In general, αβα−1 is called the conjugate of β by α.

5.1.7 Proposition. If P is a point, L is a line, and α is an isometry,

then

ασLα
−1 = σα(L) and ασPα

−1 = σα(P ).

Proof : Since σP is an even involutory isometry, so is ασPα
−1 (Exercise

72). By Proposition 5.1.5, ασPα
−1 must be a halfturn. Since halfturn
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ασPα
−1 fixes point α(P ), then ασPα

−1 must be the halfturn about α(P );

that is,

ασPα
−1 = σα(P ).

In similar fashion, since ασLα
−1 is an odd involutory isometry, then ασLα

−1

is a reflection. Hence, since ασLα
−1 clearly fixes every point α(P ) on line

α(L), then ασLα
−1 must be the reflection in the line α(L). That is,

ασLα
−1 = σα(L).

2

5.1.8 Proposition. If α is an isometry, then

ατA,Bα
−1 = τα(A),α(B) and αρC,rα

−1 = ρα(C),±r

where the positive sign applies when α is even and the negative sign applies

when α is odd.

Proof : If M is the midpoint of AB, then point α(M) is the midpoint of

α(A)α(B). Also,

τA,B = σMσA and τα(A),α(B) = σα(M)σα(A).

Now

ατA,Bα
−1 = ασMσAα

−1 =
(
ασMα

−1) (ασAα−1) = σα(M)σα(A)

= τα(A),α(B).

That is,

ατA,Bα
−1 = τα(A),α(B).

Finding the conjugate of a rotation is slightly more complicated.

We first examine the conjugate of ρC,r by σL. Let M be the line through C

that is perpendicular to L. Then there exists a line N through C such that

ρC,r = σNσM.
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Now σL(M) =M and σL(N ) intersect at σL(C), and a directed angle from

σL(M) to σL(N ) is the negative of a directed angle from M to N . (This

explains the negative sign on the far right in the following calculation.) We

have

σLρC,rσ
−1
L = σLσNσMσ

−1
L =

(
σLσNσ

−1
L
) (
σLσMσ

−1
L
)

= σσL(N )
σσL(M)

= ρσL(C),−r.

If α = σT σS , then

αρC,rα
−1 = σT

(
σSρC,rσ

−1
S
)
σ−1T = ρα(C),r.

If α = σT σSσR, then the sign in front of r is back to a negative sign again.2

Commuting isometries

By taking α = ρD,s in Proposition 5.1.8, we can show that nonidentity

rotation ρD,s does not commute with nonidentity rotation ρC,r unless D = C.

We leave this as an exercise.

Exercise 73 Prove that nonidentity rotations with different centres do not com-

mute.

We are also in a position to answer the question “When do reflections commute

?”

5.1.9 Proposition. σMσN = σNσM if and only if M = N or M⊥ N .

Proof : For lines M and N the following five statements are seen to be

equivalent:

(1) σMσN = σNσM.

(2) σNσMσN = σM.

(3) σσN (M) = σM.
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(4) σN (M) =M.

(5) M = N or M⊥ N .

Comparing (1) and (2), we have the answer to our question. 2

We now consider products of even isometries. We already know that

• The product of two translations is a translation (Proposition 2.1.8).

• The product of two rotations can be a translation in some cases; for

example, σBσA = τ2A,B (Proposition 2.2.3).

• ρC,sρC,r = ρC,r+s (Exercise 44).

5.1.10 Theorem. (The Angle-addition Theorem) A rotation of r◦

followed by a rotation of s◦ is a rotation of (r+ s)◦ unless (r+ s)◦ = 0 ◦, in

which case the product is a translation.

Proof : Let’s consider the product

ρB,sρA,r

of two nonidentity rotations with different centres. With C =
←→
AB, there is a

line A through A and a line B through B such that

ρA,r = σCσA and ρB,s = σBσC .

So

ρB,sρA,r = σBσCσCσA = σBσA.

When (r+s)◦ = 0◦, then the lines A and B are parallel and our product is a

translation. On the other hand, when (r+ s)◦ 6= 0◦, then the lines A and B
intersect at some point C and our product is a rotation. We can see (by The

Exterior Angle Theorem) that one directed angle from A to B is
(
r
2 + s

2

)◦
.

Hence, our product σBσA is a rotation about C through an angle of (r+s)◦.

That is,

ρB,sρA,r = ρC,r+s.

2
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Note : The Angle-addition Theorem can also be proved by using the equations

for the even isometries that will be developed later.

Now, what is the product of a translation and a nonidentity rotation ?

Exercise 74 Prove that

(a) A translation followed by a nonidentity rotation of r◦ is a rotation of r◦.

(b) A nonidentity rotation of r◦ followed by a translation is a rotation of r◦.

5.2 Classification of Plane Isometries

We have classified all the even isometries as translations or rotations. An

odd isometry is a reflection or a product of three reflections. Only those odd

isometries σCσBσA, where A, B, C are neither concurrent nor have a common

perpendicular remain to be considered.

Glide reflections

We begin with the special case where A and B are perpendicular to C.
Then σBσA is a translation and σC is, of course, a reflection. We make the

following definition.

5.2.1 Definition. If A and B are distinct lines perpendicular to line C,
then σCσBσA is called a glide reflection with axis C.

We might as well call line M the axis of σM as the reflection and the

glide reflection then share the property that the midpoint of any point and its

image under the isometry lies on the axis.

5.2.2 Proposition. A glide reflection fixes no points. A glide reflection

fixes exactly one line, its axis. The midpoint of any point and its image under

a glide reflection lies on the axis of the glide reflection.

Proof : Suppose P is any point. Let line L be the perpendicular from P
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to C. Then there is a line M perpendicular to C such that σBσA = σMσL.

If M is the intersection of M and C, then P and M are distinct points

such that

σCσBσA(P ) = σCσMσL(P ) = σCσM(P ) = σM (P ) 6= P.

Since σCσBσA(P ) = σM (P ) and M is the midpoint of distinct points P and

σM (P ), we have shown that glide reflection σCσBσA fixes no point but the

midpoint of any point P and its image σCσBσA(P ) lies on the axis of the

glide reflection. So a glide reflection interchanges the halfplanes of its axis.

Hence, any line fixed by the glide reflection must intersect the axis at least

twice. That is, the glide reflection can fix no line except its axis. The axis of

a glide reflection is the unique line fixed by the glide reflection. 2

5.2.3 Proposition. A glide reflection is the composite of a reflection in

some line A followed by a halfturn about some point off A. A glide reflection

is the composite of a halfturn about some point A followed by a reflection in

some line off A. Conversely, if point P is off line L, then σPσL and σLσP

are glide reflections with axis the perpendicular from P to L.

Proof : If γ is a glide reflection, then there are distinct lines A, B, C such

that γ = σCσBσA, where A and B are perpendicular to C, say at points A

and B, respectively. Now

σA = σAσC = σCσA and σB = σBσC = σCσB.

Hence

γ = σC(σBσA) = (σCσB)σA = σB(σCσA) = (σBσA)σC

= σBσA = σBσA.

The first line of these equations tells us that γ is the product of the glide

σBσA and the reflection σC in either order. More important, the second line

tells us that γ is a product σBσA with B off A and a product σBσA with

A off B.
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We want to show, conversely, that such a product is a glide reflection.

Suppose point P is off line L. Let P be the perpendicular from P to L and

let M be the perpendicular at P to P. Lines L and M are distinct since

P is off L. Furthermore,

σPσL = σPσMσL and σLσP = σLσPσM = σPσLσM.

Therefore, the products σPσL and σLσP are glide reflections by the definition

of a glide reflection. 2

5.2.4 Corollary. The set of all glide reflections has the inverse property.

Note : The set of all glide reflections does not have the closure property because

the product of two glide reflections (= odd isometries) must be an even isometry.

5.2.5 Proposition. Lines P, Q, R are neither concurrent nor have a

common perpendicular if and only if σRσQσP is a glide reflection.

Proof : (⇐ ) If σRσQσP is a glide reflection, then σRσQσP is not a

reflection and the lines P, Q, R cannot be either concurrent or parallel.

(⇒ ) Suppose P, Q, R are any lines that are neither concurrent nor

have a common perpendicular. We wish to prove that σRσQσP is a glide

reflection.

First, we consider the case lines P and Q intersect at some point Q.

Then Q is off R as the lines are not concurrent. Let P be the foot of the

perpendicular from Q to R, and let M be the line through P and Q. There

is a line L through Q such that σQσP = σMσL. Since P 6= Q, then L 6=M
and P is off L. Hence,

σRσQσP = σRσMσL = σPσL

with P off L. Therefore, σRσQσP is a glide reflection by Proposition

5.2.3.

There remains the case P ‖ Q. In this case, lines R and Q must intersect

as otherwise P, Q, R have a common perpendicular. Then, by what we just
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proved, there is some point P off some line L such that σPσQσR = σPσL.

Hence,

σRσQσP = (σPσQσR)−1 = (σPσL)−1 = σLσP

with point P off line L. Therefore, again we have σRσQσP is a glide

reflection. 2

An immediate corollary of this result is that a product of three reflections

is a reflection or a glide reflection. Thus, we have a classification of odd

isometries.

5.2.6 Proposition. An odd isometry is either a reflection or a glide re-

flection.

We finally have

5.2.7 Theorem. (The Classification Theorem for Plane Isometries)

Each nonidentity isometry is exactly one of the following : translation, rota-

tion, reflection or a glide reflection.

Exercise 75 Prove that

(a) A translation that fixes line C commutes with a glide reflection with axis

C.

(b) The square of a glide reflection is a nonidentity translation.

5.2.8 Proposition. If γ is a glide reflection with axis C and α is an

isometry, then αγα−1 is a glide reflection with axis α(C).

Proof : We have γ2 6= ι. So, a glide reflection is not an involution. Since

αγα−1 is an odd isometry that fixes line α(C) but is not an involution, then

αγα−1 has to be a glide reflection with axis α(C). 2
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5.3 Equations for Isometries

The equations for a general translation were incorporated in the definition

of a translation. Equations for a reflection were determined in Proposition

3.1.3. We now turn to rotations.

5.3.1 Proposition. Rotation ρO,r about the origin has equations
x′ = (cos r)x− (sin r)y

y′ = (sin r)x+ (cos r)y.

Proof : Let

ρO,r = σMσL

where L is the x-axis. Then one directed angle from L to M has directed

measure r
2 . From the definition of trigonometric functions we know that(

cos r2 , sin
r
2

)
is a point on M. So line M has equation(

sin
r

2

)
x−

(
cos

r

2

)
y = 0.

Hence σM has equations :

x′ = x−
2 sin r

2

(
(sin r

2)x− (cos r2)y
)

sin2 r
2 + cos2 r2

=
(

1− 2 sin2 r

2

)
x+

(
2 sin

r

2
cos

r

2

)
y

= (cos r)x+ (sin r)y ,

y′ = y +
2 cos r2

(
(sin r

2)x− (cos r2)y
)

sin2 r
2 + cos2 r2

=
(

2 sin
r

2
cos

r

2

)
x−

(
1− 2 cos2

r

2

)
y

= (sin r)x− (cos r)y.

Since σL has equations 
x′ = x

y′ = −y
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then the rotation ρO,r = σMσL has the equations
x′ = (cos r)x− (sin r)y

y′ = (sin r)x+ (cos r)y.

2

5.3.2 Proposition. The general equations for an even isometry are
x′ = ax− by + h

y′ = bx+ ay + k

with a2 + b2 = 1

and, conversely, such equations are those of an even isometry.

Proof : Let C = (u, v). Since

ρC,r = τO,CρO,rτC,O (by Proposition 5.1.8)

the equations for rotation ρC,r about the point C = (u, v) are easily obtained

by composing three sets of equations. The rotation has equations
x′ = (cos r)(x− u)− (sin r)(y − v) + u

y′ = (sin r)(x− u) + (cos r)(y − v) + v.

These equations for the rotation ρC,r have the form
x′ = (cos r)x− (sin r)y + h

y′ = (sin r)x+ (cos r)y + k

which, conversely, are the equations of a rotation unless r◦ = 0◦. Indeed,

given h, k, and r, there are unique solutions for u and v given by

h = u(1− cos r) + v sin r

k = u(− sin r) + v(1− cos r)
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unless r◦ = 0◦. In case r◦ = 0◦, the equations above are those of a general

translation.

Since the even isometries are the translations and the rotations, setting

a = cos r and b = sin r

we have the general equations for an even isometry :
x′ = ax− by + h

y′ = bx+ ay + k

with a2 + b2 = 1.

2

5.3.3 Proposition. The general equations for an isometry (on the plane)

are 
x′ = ax− by + h

y′ = ±(bx+ ay) + k

with a2 + b2 = 1

and, conversely, such equations are those of an isometry.

Proof : If α is an odd isometry and L any line, then α is the product of

even isometry σLα followed by σL. Taking L as the x-axis, we have any odd

isometry is the product of an even isometry followed by the reflection in the

x-axis. This observation, together with Proposition 5.3.2, gives the desired

result, where the positive sign applies when isometry is even and negative sign

applies when isometry is odd. 2

5.4 Exercises

Exercise 76 TRUE or FALSE ?

(a) An even isometry that fixes two points is the identity.

(b) The set of rotations generates Isom+.

(c) An odd isometry is a product of three reflections.
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(d) An even isometry is a product of four reflections.

(e) If ρα(C),r = ρC,r for isometry α, then α fixes C.

(f) ρB,rρA,−r is the translation that takes A to ρB,r(A).

Exercise 77 PROVE or DISPROVE : Given τA,B and nonidentity rotation ρC,r,

there is a rotation ρD,s such that τA,B = ρD,sρC,r.

Exercise 78 Show that if ρ1, ρ2, ρ2ρ1, and ρ−1
2 ρ1 are rotations, then the centres

of ρ1, ρ2ρ1, and ρ−1
2 ρ1 are collinear.

Exercise 79 Show that translation τ commutes with σC if and only if τ fixes C.
Also, that τ commutes with a glide reflection with axis C if and only if τ fixes C.

Exercise 80 TRUE or FALSE ?

(a) Every isometry is a product of two involutions.

(b) An isometry that does not fix a point is a glide reflection.

(c) If γ = σLσP , then γ is a glide reflection with axis the line through P

that is perpendicular to L.

(d) If γ is a glide reflection with axis C and P is a point on C, then there

are unique lines L and M such that γ = σMσP = σPσL.

(e) If σCσBσA fixes line L, then σCσBσA is a glide reflection with axis L.

(f) If σCσBσA fixes line L, then σCσBσA is a glide reflection with axis L.

Exercise 81 PROVE or DISPROVE : If point M is on the axis of glide reflection

γ, then there is a point P such that M is the midpoint of P and γ(P ).

Exercise 82 PROVE or DISPROVE : Every glide reflection is a product of three

reflections in the three lines containing the sides of some triangle.

Exercise 83 Which isometries are dilatations ?

Exercise 84 Prove that if τ is a translation, then there is a glide reflection γ such

that τ = γ2.
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Exercise 85 What are the equations for each of the rotations ρO,90, ρO,180, and

ρO,270 ?

Exercise 86 If 
x′ = ax+ by + h

y′ = bx− ay + k

with a2 + b2 = 1

are the equations for isometry α, show that α is a reflection if and only if ah+bk+h =

0 and ak − bh− k = 0.

Exercise 87 TRUE or FALSE ?

(a) x′ = −x+ 6 and y′ = −y − 7 are equations for a rotation.

(b) x′ = px− qy+ r and y′ = qx+py+ s are equations for an even isometry.

(c) x′ = −px−qy−r and y′ = qx−py−s are equations for an even isometry

if p2 + q2 = 1.

(d) x′ = −ax+by+h and y′ = bx+ay+k are equations for an odd isometry

if a2 + b2 = 1.

(e) x′ = ±ax− by + h and y′ = ±bx+ ay + k are equations for an isometry

if a2 + b2 = 1.

(f) If M is any line, then every odd isometry is the product of σM followed

by an even isometry.

(g) If M is any line, then every odd isometry is the product of an even

isometry followed by σM.

Exercise 88 If 
x′ = −

√
3

2 x−
1
2y + 1

y′ = 1
2x−

√
3

2 y −
1
2

are equations for ρP,r, then find P and r.

Exercise 89 If 
x′ = (cos r)x− (sin r)y + h

y′ = (sin r)x+ (cos r)y + k

are equations for nonidentity rotation ρC,r, then find C.
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Exercise 90 If 
x′ = ax+ by + h

y′ = bx− ay + k

with a2 + b2 = 1 .

are equations for σL, then find L.

Discussion : The idea of doing geometry in terms of numbers and

equations caught on after the publication of Descartes’ La Géométrie in 1637.

However, the idea that numbers and equations are geometric objects arose much

later. In fact, the idea had no solid foundation until 1858, when the set R of real

numbers was first given a clear definition, by Richard Dedekind (1831-1916).

Dedekind’s definition explains in particular the continuity of R which enables it to

serve as a model for the line.

Once one has this model for the line it is relatively straightforward to model the

plane by R2 and to verify Euclid’s axioms. This was first done in detail by David

Hilbert (1862-1943), thus subordinating geometry to the number concept after

2000 years of independence. It should be mentioned, however, that any construction

of R from the natural numbers 0, 1, 2, · · · involves infinite sets. Thus, a “point” is a

much subtle object than näıve intuition suggests.

The idea of interpreting points as numbers has been unexpectedly fruitful. Of

course, we expect R to behave like a line because R was constructed with that

purpose in mind, and it is no surprise that + and × have a geometric meaning on

the line ( + as a translation, × as a dilation). It may also not be a surprise that + has

a meaning in R2 (translation = vector addition) and so does multiplication by a real

number (dilation again). But it is surely an unexpected bonus when multiplication

by a complex number turns out to be geometrically meaningful.

After all, this multiplication is forced on us by algebra – by the demand that

i2 = −1 and that the field laws hold – yet when a + ib ∈ C is interpreted as

(a, b) ∈ R2, multiplication by a complex number is simply the product of a dilation

and a rotation. In particular, we have the miraculous fact that multiplication by

eir is rotation through r. And this is just the beginning of the interplay between

complex numbers and angles, leading to many applications of complex numbers, and

particularly complex functions, in geometry.



82 Groups and Geometry

In terms of the correspondence between vectors, points, and complex numbers we

can set up a “dictionary” between geometry and complex numbers, as follows :

Vector, ~v =

[
x

y

]
(or point, P = (x, y)) Complex number, z = x+ iy

Length of a vector, ‖~v‖ Modulus, |z|

Distance between two points, P1P2 Modulus of the difference, |z1 − z2|

Dot product, ~v1 • ~v2 Real part of product, Re (z̄1z2)

Collinear points, P1 − P2 − P3 Vanishing imaginary part,
z2 − z1

z3 − z1
∈ R

Oriented angle between ~ı =

[
1

0

]
and ~v Argument, arg (z) ∈ (−π, π]

Orientation, ~v 7→ ~v⊥ Multiplication by i, z 7→ iz

Translation, ~v 7→ ~v + ~a Addition, z 7→ z + w

Rotation, ~v 7→ ρr(~v) Multiplication by eir, z 7→ eirz

Reflection in x-axis, Complex conjugation, z 7→ z̄ .

Using this dictionary we could translate all that we have done so far into the

language of complex numbers.

The meaning of the word geometry changes with time and with the speaker.

Shiing-Shen Chern


