
Chapter 6

Symmetry

Topics :

1. Symmetry and Groups

2. The Cyclic and Dihedral Groups

3. Finite Symmetry Groups
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84 Groups and Geometry

6.1 Symmetry and Groups

There is an abundant supply of objects (bodies, organisms, structures, etc.)

with symmetry in nature. Figures with symmetry appear throughout the

visual arts. There are also many scientific applications of symmetry (for in-

stance the classification of crystals and quasicrystals in chemistry). Theoreti-

cal physics makes heavy use of symmetry. But what is symmetry ?

When we say that a geometric figure (shape) is “symmetrical” we mean

that we can apply certain isometries, called symmetry operations, which leave

the whole figure unchanged while permuting its parts.

6.1.1 Example. The capital letters E and A have bilateral (or mirror)

symmetry, the mirror being horizontal for the former, vertical for the latter.

(Bilateral symmetry is the symmetry of left and right, which is so noticeable

in the structure of higher animals, especially the human body.)

6.1.2 Example. The capital letter N is left unchanged by a halfturn,

which may be regarded as the result of reflecting horizontally and then ver-

tically, or vice versa. (Alternatively, one may prefer to view the halturn as a

rotation about the “centre” through an angle of 180◦.) We can say that the

capital letter N has rotational symmetry.

6.1.3 Example. Another basic kind of symmetry is translational symme-

try. Several combinations of these so-called basic symmetries may occur (for

instance, bilateral and rotational symmetry, glide symmetry, translational and

rotational symmetry, two independent translational symmetries, etc.)

Exercise 91 Find simple geometric figures (patterns) exhibiting each of the fore-

going kinds of symmetry.

Note : In counting the symmetry operations of a figure, it is usual to include the

identity tranformation; any figure has this trivial symmetry.

We make the following definitions. Let S be a set of points (in E 2).
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6.1.4 Definition. Line L is a line of symmetry (or symmetry axis)

for S if

σL (S) = S.

6.1.5 Definition. Point P is a point of symmetry (or symmetry cen-

tre) for S if

σP (S) = S.

Exercise 92 Can a figure have

(a) exactly two lines of symmetry ?

(b) exactly two points of symmetry ?

Exercise 93 Why can’t a (capital) letter of the alphabet (written in most symmet-

ric form) have two points of symmetry ?

6.1.6 Definition. Isometry α is a symmetry for S if

α (S) = S.

6.1.7 Example. Find the symmetries of a rectangle R=2ABCD that is

not a square.

Solution : Without loss of generality, we may assume that

A = (h, k) , B = (−h, k) , C = (−h,−k) , and D = (h,−k) ; h, k > 0 , h 6= k.

Evidently, the x- and y-axes are lines of symmetry for the rectangle, and

the origin is a point of symmetry for the rectangle. Denoting the reflection

in the x-axis by σx and the reflection in the y-axis by σy, we have that

σx, σy, σO, and ι are symmetries for R. Note that ι is a symmetry for any

set of points. Since the image of the rectangle is known once it is known which

of A,B,C,D is the image of A, then these four transformations are the only

possible symmetries for R.
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Note : The (four) symmetries for a rectangle that is not a square form a group.

Traditionally, this group is denoted by V4 and is known as Klein’s four-group

(Vierergruppe in German).

6.1.8 Proposition. The set of all symmetries of a set of points forms a

group.

Proof : Let S be any set of points. The set of symmetries for S is not

empty as ι is a symmetry for S.

Suppose α and β are symmetries for S. Then

βα(S) = β(α(S)) = β(S) = S.

So the set of symmetries has the closure property.

If α is a symmetry for S, then α and α−1 are transformations and

α−1(S) = α−1(α(S)) = ι(S) = S.

So the set of symmetries also has the inverse property.

Hence, the set of all symmetries of the set S forms a group. 2

The group of all symmetries of the set (figure) S is denoted by Sym (S)

and is called the symmetry group of S.

What happens if the set of points is taken to be the set of all points, that

is the plane E 2 ? In this special case, the symmetries are exactly the same

thing as the isometries. So

Isom = Sym (E2).

In other words, the group Isom is the symmetry group of the Euclidean plane.

6.1.9 Corollary. The set of all isometries forms a group.
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Examples of symmetry groups

Symmetry groups can be complicated. However, the discrete ones can be

completely classified and listed (at least for Euclidean geometry).

6.1.10 Example. The symmetry group of the capital letter E (or A) is

the so-called dihedral group of order 2, generated by a single reflection and

denoted by D1.

Note : The Greek origin of the word dihedral is almost equivalent to the Latin

origin of bilateral .

Exercise 94 What is the symmetry group of

(a) a scalene triangle ?

(b) an isosceles triangle that is not equilateral ?

6.1.11 Example. The symmetry group of the capital letter N is likewise

of order 2, but in this case the generator is a halfturn and we speak of the

cyclic group C2.

Note : The two groups D1 and C2 are “abstractly identical” (or isomorphic).

Exercise 95 What is the symmetry group of

(a) a parallelogram that is not a rhombus ?

(b) a parallelogram that is neither a rectangle nor a rhombus ?

6.2 The Cyclic and Dihedral Groups

Let G be a group of isometries (i.e. a subgroup of Isom). Recall that G is

said to be finite if it consists of a finite number of elements (transformations);

otherwise, G is said to be infinite. The order of a (finite) group is the

number of elements it contains.
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The cyclic groups

Let α ∈G. If every element of G is a power of α, then we say that G is

cyclic with generator α and denoted by 〈α〉.

Note : The group 〈α〉 is the smallest subgroup of G containing the element

(transformation) α. Two possibilities may arise :

(a) All the powers αk are different. In this case the group 〈α〉 is infinite and

is referred to as an infinite cyclic group.

(b) Among the powers of α there are some that coincide. Then there is

a positive power of α which is equal to the identity transformation ι.

Denote by n the smallest positive exponent satisfying αn = ι. In this

case the group generated by α is

〈α〉 = {ι, α, α2, . . . , αn−1}.

Such a (finite) group is a cyclic group of order n.

Cyclic groups are Abelian (i.e. commutative).

Let n ≥ 1 be a positive integer and fix an arbitrary point C in the plane.

(Without any loss of generality, we may assume that C is the origin.)

6.2.1 Definition. The cyclic group Cn is the (finite) group generated

by the rotation ρ = ρC, 360
n

.

This group contains exactly n rotations (about the same centre C). The

angles of rotation are multiples of 360
n · We have

Cn = 〈ρ〉

= {ι, ρ, ρ2, . . . , ρn−1}

= {ι, ρC, 360
n
, ρC, 360·2

n
, . . . , ρ

C,
360·(n−1)

n

}.

6.2.2 Example. The cyclic group C1 is the trivial group {ι}.

6.2.3 Example. The cyclic group C2 has two elements : the identity

transformation ι and the halfturn σC . This is the symmetry group of the

capital letter N.
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6.2.4 Example. The swastika is symmetrical by rotation through any num-

ber of right angles; it admits four distinct symmetry operations : rotations

through 1, 2, 3, or 4 right angles. The last is the identity. The first and the

third are inverses of each other, since their product is the identity.

The symmetry group of the swastika is C4, the cyclic group of order 4,

generated by a rotation ρ of 90◦ (or quarterturn).

Exercise 96 Find a figure with symmetry group the cyclic group C3.

Note : For any positive integer n ≥ 2, there is polygon having symmetry group

Cn.

The dihedral groups

Again, let n ≥ 1 be a positive integer and C a fixed point. We are going

to extend the cycle groups Cn by incorporating appropriate reflections (i.e.

bilateral symmetries).

6.2.5 Definition. The dihedral group Dn is the (finite) group con-

taining the elements (rotations) of Cn together with reflections in the n lines

through C which devide the plane into 2n congruent angular regions.

This group has order 2n (i.e. it contains exactly 2n elements) : n rota-

tions (about C) and n reflections in lines (passing through C). The angles

between the axes of the reflections are multiples of 180
n ·

6.2.6 Example. The dihedral group D1 has two elements : the identity

transformation ι and the reflection σL in a line L passing through C (the

so-called symmetry axis). This is the symmetry group of the capital letter A.

6.2.7 Example. The capital letter H admits both reflections and rotations

as symmetry operations. It has a horizontal mirror (like E) and a vertical

mirror (like A), as well as a center of rotational symmetry (like N) where

the mirrors intersect. Thus it has four symmetry operations : the identity
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ι, the horizontal reflection σh, the vertical reflection σv, and the halfturn

σhσv = σvσh.

The symmetry group of the capital letter H is D2, the dihedral group

of order 4, generated by the two reflections σh and σv. Group D2 is the

familiar group V4 (Klein’s four-group).

Exercise 97 Compute the symmetry group of a rectangle that is not a square.

Note : Although C4 and D2 have both order 4, they are not isomorphic : they

have a different structure, different Cayley tables. To see this, it suffices to observe

that C4 contains two elements of order 4, whereas all the elements of D2 (except

the identity) are of order 2.

6.2.8 Example. Compute the symmetry group of a square.

Solution : We suppose the square is centered at the origin and that one

vertex lies on the positive x-axis. We see that the square is fixed by ρ and

σ, where

ρ = ρO,90 and σ = σh .

Observe that

ρ4 = σ2 = ι .

Since the symmetries of the square form a group, then the square must be fixed

by the four distinct rotations ρ, ρ2, ρ3, ρ4 and by the four distinct isometries

ρσ, ρ2σ, ρ3σ, ρ4σ. Let V1 and V2 be adjacent vertices of the square. Under

a symmetry, V1 must go to any one of the four vertices, but then V2 must go

to one of the two vertices adjacent to that one and the images of all remaining

vertices are then determined. So there are at most eight symmetries for the

square. We have listed eight distinct symmetries above. Therefore, there are

exactly eight symmetries and we have listed all of them. Isometries ρ and σ

generate the entire group.

The symmetry group of the square is

D4 = 〈ρ, σ〉 = {ι, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ}
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the dihedral group of order 8. Observe that

σρ = ρ3σ , σρ2 = ρ2σ , σρ3 = ρσ.

The Cayley table for D4 is given below.

D4 ι ρ ρ2 ρ3 σ ρσ ρ2σ ρ3σ

ι ι ρ ρ2 ρ3 σ ρσ ρ2σ ρ3σ

ρ ρ ρ2 ρ3 ι ρσ ρ2σ ρ3σ σ

ρ2 ρ2 ρ3 ι ρ ρ2σ ρ3σ σ ρσ

ρ3 ρ3 ι ρ ρ2 ρ3σ σ ρσ ρ2σ

σ σ ρ3σ ρ2σ ρσ ι ρ3 ρ2 ρ

ρσ ρσ σ ρ3σ ρ2σ ρ ι ρ3 ρ2

ρ2σ ρ2σ ρσ σ ρ3σ ρ2 ρ ι ρ3

ρ3σ ρ3σ ρ2σ ρσ σ ρ3 ρ2 ρ ι

6.2.9 Example. Let n ≥ 3 and consider a regular n-sided polygon cen-

tered at the origin. Suppose that one vertex lies on the positive x-axis.

The n-sided polygon is fixed by ρ and σ, where

ρ = ρO, 360
n

and σ = σh.

(σh is the reflection in the x-axis.)

Observe that

ρn = σ2 = ι.

Since the symmetries of the polygon form a group, then the polygon must be

fixed by the n distinct rotations

ρ, ρ2, . . . , ρn−1

and by the n distinct odd isometries

σ, ρσ, ρ2σ, . . . , ρn−1σ.
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The symmetry group of the n-sided polygon must have at least these 2n sym-

metries. Let V1 and V2 be adjacent vertices of the polygon. Under a symme-

try, V1 must go to any one of the n vertices, but then V2 must go to one of

the two vertices adjacent to that one and the images of all remaining vertices

are then determined. So there are at most 2n symmetries for the n-sided

polygon. Therefore, there are exactly 2n symmetries and we have listed all of

them. Isometries ρ and σ generate the entire group.

The symmetry group of the n-sided polygon is

Dn = 〈ρ, σ〉 = {ι, ρ, ρ2, . . . , ρn−1, σ, ρσ, ρ2σ, . . . , ρn−1σ},

the dihedral group of order 2n.

To compute the entire Cayley table, all that is needed are the equations

σρk = ρ−kσ and ρn = σ2 = ι.

Note : The groups D1 and D2 are, respectively, symmetry groups of an isosceles

triangle that is not equilateral and of a rectangle that is not a square. Hence, or any

positive integer n ≥ 1, there is polygon having symmetry group Dn.

6.3 Finite Symmetry Groups

We want to investigate the possible finite symmetry groups of figures (in the

Euclidean plane E2). So we are led to the study of finite subgroups G of the

group Isom of isometries (on E2).

The key observation which allows us to describe all finite symmetry groups

is the following result.

6.3.1 Proposition. Let G be a finite group of iometries. Then there is a

point C in the plane which is left fixed by every element of G.

Proof : Let P be any point in the plane, and let P be the set of points

which are images of P under the various elements (isometries) of G. So each

element P ′ ∈ P has the form P ′ = α(P ) for some α ∈G.
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Any element of the group G will permute P. (In other words, if P ′ ∈ P

and α ∈G, then α(P ′) ∈ P.)

We list the elements of P arbitrarily, writing

P = {P1, P2, . . . , Pn}.

The fixed point we are looking for is the centre of gravity of P, namely

C =
1

n
(P1 + P2 + · · ·+ Pn) .

Any element of G permutes the set {P1, P2, . . . , Pn}, hence it sends the centre

of gravity to itself. 2

Let G be a finite symmetry group (hence a finite subgroup of Isom).

Then there is a point C fixed by every element (isometry) of G, and we may

adjust coordinates so that this point is the origin. Also, it follows that G

cannot contain a nonidentity translation or a glide reflection.

So the group G contains only rotations (about the same point) or reflec-

tions.

Note : The group generated by a nonidentity translation is an infinite subgroup

of Isom. Hence any subgroup of Isom which contains either rotations about two

different points or a glide reflection is infinite. Indeed, if ρC,r and ρD,s are two

nonidentity rotations about different centres, then

ρ−1
C,rρ

−1
D,sρC,rρD,s

is a nonidentity translation. Also, the square of any glide reflection is a nonidentity

translation.

Leonardo da Vinci (1452-1519), who wanted to determine the possible

ways to attach chapels and niches to a central building without destroying the

symmetry of the necleus, realized that all designs (in the plane) with finitely

many symmetries have either rotational symmetries and bilateral symmetries

or just rotational symmetries. In other words, the following result holds.
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6.3.2 Theorem. (Leonardo’s Theorem) A finite symmetry group is ei-

ther a cyclic group Cn or a dihedral group Dn.

Proof : We shall consider the case G contains only rotations and the case

G contains at least one reflection separately.

Suppose that (the finite group of isometries) G contains only rotations.

One possibility is that G is the trivial group C1 = {ι}. Otherwise, we suppose

G contains a nonidentity rotation ρ = ρC,r. Then all the other elements in

G are rotations about the same centre C.

We note that

ρC,−s ∈G ⇐⇒ ρC,s ∈G

and that all the elements in G can be written in the form ρC,s, where 0 ≤
s < 360.

Let ρ = ρC,s, where s has the minimum positive value.

If ρC,t ∈ G with t > 0, then t − ks cannot be positive and less than s

for any integer k by the minimality of s. So

• t = ks for some integer k

• ρC,t = ρk.

In other words, the elements of G are precisely the powers of ρ. We conclude

that, in this case, G is a cyclic group Cn for some positive integer n.

Suppose now that (the finite group of isometries) G contains at least one

reflection. Since the identity transformation ι is an even isometry, since an

isometry and its inverse have the same parity, and since the product of two even

isometries is an even isometry, it follows that the subset of all even isometries

in G forms a finite subgroup G+ of G. By the foregoing argument, we see

that

G+ = Cn = {ι, ρ, ρ2, . . . , ρn−1}.

So the even isometries in G are the n rotations ι = ρn, ρ, ρ2, . . . , ρn−1.
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Suppose G has m reflections. If σ is a reflection in G, then the n odd

isometries

σ, ρσ, ρ2σ, . . . , ρn−1σ

are in G. So n ≤ m.

However, the m odd isometries multiplied (on the right) by σ give m

distinct even isometries. So m ≤ n.

Hence m = n and G contains the 2n elements generated by rotation ρ

and reflection σ. We conclude that, in this case, G is a dihedral group Dn

for some positive integer n. 2

Recall that an n-sided polygon (regular or not) has at most 2n symme-

tries. Since the symmetry group of a polygon must then be a finite group (of

isometries), Leonardo’s Theorem has the following immediate corollary.

6.3.3 Corollary. The symmetry group for a polygon is either a cyclic

group or a dihedral group.

6.4 Exercises

Exercise 98 What is the symmetry group of a rhombus that is not a square ?

Exercise 99 TRUE or FALSE ?

(a) If P is a point of symmetry for set S of points, then P is in S.

(b) If L and M are perpendicular lines, then L is a line of symmetry for

M.

(c) A regular pentagon has a point of symmetry.

(d) The symmetry group of a rectangle has four elements.

Exercise 100 Compute the symmetry group of an equilateral triangle.

Exercise 101 Determine the symmetry groups of each of the following figures.
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Exercise 102 What is the symmetry group of the graph of each of the following

equations?

(a) y = x2.

(b) y = x3.

(c) 3x2 + 4y2 = 12.

(d) xy = 1.

Exercise 103 Arrange the capital letters written in most symmetric form into

equivalent classes where two letters are in the same class if and only if the two letters

have the same symmetries when superimposed in standard orientation.

Exercise 104

(a) Prove that every cyclic group Cn is commutative.

(b) Verify that the dihedral groups D1 and D2 are commutative.

(c) Prove that the groups Dn, n ≥ 3 are not commutative.

Exercise 105 Find polygons having symmetry groups C3 and C4, respectively.

Discussion : Symmetry appeals to artist and scientist alike; it is

intimately associated with an innate human appeciation of pattern. Symmetry is

bound up in many of the deepest patterns of Nature, and nowadays it is fundamental

to our scientific understanding of the Universe. Conservation principles, such as

those for energy and momentum, express a symmetry that (we believe) is possessed

by the entire space-time continuum : the laws of physics are the same everywhere.

The quantum mechanics of fundamental particles is couched in the mathematical

language of symmetries. The symmetries of crystals not only classify their shapes, but

determine many of their properties. Many natural forms, from starfish to raindrops,

from viruses to galaxies, have striking symmetries.



C.C. Remsing 97

It took humanity roughly two and a half thousand years to attain a precise formu-

lation of the concept of symmetry, counting from the time when the Greek geometers

made the first serious mathematical discoveries about that concept, notably the proof

that there exist exactly five regular solids. (The five regular solids are the tetrahedron,

the cube, the octahedron, the dodecahedron, and the icosahedron.) Only after that

lengthy period of gestation was the concept of symmetry something that scientists

and mathematicians could use rather than just admire.

The understanding that symmetries are best viewed as transformations arose

when mathematicians realized that the set of symmetries of an object is not just an

arbitrary collection of transformations, but has a beautiful internal structure. The

fact that the symmetries of an object form a group is a significant one. However,

it’s such a simple and “obvious” fact that for ages nobody even noticed it; and even

when they did, it took mathematicians a while to appreciate just how significant this

simple observation really is. It leads to a natural and elegant “algebra” of symmetry,

known as Group Theory.

In 1952 the distinguished mathematician Hermann Weyl (1885-1955), who

was about to retire from the Institute for Advanced Studies at Princeton, gave a series

of public lectures on mathematics. His topic, and the title of the book that grew from

his talks, was Symmetry. It remains one of the classic popularizations of the subject.

Some of the Weyl’s greatest achievements had been in the deep mathematical setting

that underlies the study of symmetry, and his lectures were strongly influenced by

his mathematical tastes; but Weyl talked with authority about art and philosophy

as well as mathematics and science. You will find in the book discussions of the

cyclic groups, dihedral groups, as well as wallpaper groups. Most important, you will

find a fascinating treatment in words and pictures of how these purely mathematical

abstractions relate to the physical universe and works of art throughout the ages.

Symmetry is a vast subject, significant in art and nature. Mathematics lies

at its root, and it would be hard to find a better one on which to demonstrate

the working of the mathematical intellect.

Hermann Weyl


