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116 Groups and Geometry

8.1 Collineations

We now turn to transformations that were first introduced by Leonhard

Euler (1707-1783).

Affine transformations (as collineations)

8.1.1 Definition. An affine transformation (or affinity) is a collineation

that preserves parallelness among lines.

So, if L and M are parallel lines and α is an affine transformation, then

lines α(L) and α(M) are parallel. It is easy to prove the following result.

8.1.2 Proposition. A collineation is an affine transformation and, con-

versely, an affine transformation is a collineation.

Proof : An affine transformation is by definition a collineation. If β is any

collineation and L and M are distinct parallel lines, then β(L) and β(M)

cannot contain a common point β(P ), as point P would then have to be on

both L and M. Therefore, every collineation is an affine transformation. 2

Note : Affine transformations and collineations are exactly the same thing for the

Euclidean plane. The choice between the terms affine transformation and collineation

is sometimes arbitrary and sometimes indicates a choice of emphasis on parallelness of

lines or on collinearity of points. Loosely speaking, affine geometry is what remains

after surrendering the ability to measure length (isometries) and surrendering the

ability to measure angles (similarities), but maintaining the incidence structure of

lines and points (collineations).

8.1.3 Example. Similarities preserve parallelness and hence are affine trans-

formations. In particular, isometries are also affine transformations.

8.1.4 Example. The mapping

α : E2 → E2 , (x, y) 7→ (2x, y)

is an affine transformation that is not a similarity.
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Note : The word symmetry brings to mind such general ideas as balance, agree-

ment, order, and harmony. We have been exceedingly conservative in our use of

the word symmetry ; for us, symmetries are restricted to isometries. With a broader

mathematical usage of the term, we would certainly be saying that the similarities are

the symmetries of similarity geometry and that the collineations are the symmetries

of affine geometry. In the most broad usage, the group of all transformations on a

structure that preserves the essence of that structure constitutes the symmetries (also

called the automorphisms) of the structure.

A collineation preserves collinearity of points. We wish to show that,

conversely, a transformation such that the image of every three collinear points

are themselves collinear must be a collineation.

8.1.5 Proposition. A transformation such that the images of every three

collinear points are themselves collinear is an affine transformation.

Proof : We suppose α is a transformation that preserves collinearity and

aim to show α(L) is a line whenever L is a line. Let A and B be distinct

points on L, and let M be the line through α(A) and α(B). By the definition

of α, all the points of α(L) are on M. However, are all the points of M
on α(L) ? Suppose C ′ is a point on M distinct from α(A) and α(B), and

let C be the point such that α(C) = C ′. To show C must be on L, we

assume C is off L and then obtain a contradiction. Now the image of all the

points of
←→
AB,

←→
BC, and

←→
AC are on M since collinearity is preserved under α.

However, any point P in the plane is on a line containing two distinct points

of 4ABC. Since the images of these two points lie on M, then the image of

P lies on M. Therefore, the image of every point lies on M, contradicting

the fact that α is an onto mapping. Hence, C must lie on L, M = α(L),

and α is a collineation, as desired. 2

Are the affine transformations the same as those transformations for which

the images of any three noncollinear points are themselves noncollinear ? The

answer is “Yes”.
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8.1.6 Proposition. A transformation is an affine transformation if and

only if the images of any three noncollinear points are themselves noncollinear.

Proof : Suppose α is an affine transformation. Then α−1 is an affine trans-

formation and can’t take three noncollinear points to three collinear points.

Therefore, affine transformation α must take any three noncollinear points to

three noncollinear points.

Conversely, suppose β is a transformation such that the images of any

three noncollinear points are themselves noncollinear. Assume β is not an

affine transformation. Then β−1 is not an affine transformation. By the

contrapositive of the preceding result, then there are three collinear points

whose images under β−1 are not collinear. Hence, since β is the inverse

of β−1, then there are three noncollinear points whose images under β are

collinear, contradiction. Therefore, β is an affine transformation. 2

An affine transformation preserves betweenness

The result above does not state that the image of a triangle under an affine

transformation is necessarily a triangle, but states only that the images of the

vertices of a triangle are themselves vertices of a triangle. We do not know the

image of a segment is necessarily a segment. More fundamental, we do not

know that an affine transformation necessarily preserves betweenness. It will

take some effort to prove this. We begin by showing that midpoint is actually

an affine concept ; that is, an affine transformation carries the midpoint of two

given points to the midpoint of their images.

8.1.7 Proposition. If α is an affine transformation and M is the mid-

point of points A and B, then α(M) is the midpoint of α(A) and α(B).

Proof : Suppose A and B are distinct points and α is an affine transfor-

mation. Let P be any point off
←→
AB. Let Q be the intersection of the line

through A that is parallel to
←→
PB and the line through B that is parallel to

←→
PA. So 2APBQ is a parallelogram. Let A′ = α(A), B′ = α(B), P ′ = α(P ),
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and Q′ = α(Q). Since two parallel lines go to two parallel lines under α,

then 2A′P ′B′Q′ is a parallelogram. (We are not claiming that α(2APBQ) =

2A′P ′B′Q′ but only that A′, P ′, B′, Q′ are vertices in order of a parallelogram.)

Further, M , the intersection of
←→
AB and

←→
PQ , must go to M ′, the intersec-

tion of
←→
A′B′ and

←→
P ′Q′. However, since the diagonals of a parallelogram bisect

each other, then M is the midpoint of A and B while M ′ is the midpoint

of A′ and B′. Hence, α preserves midpoints. 2

8.1.8 Proposition. If α is an affine transformation, the n + 1 points

P0, P1, P2,

. . . , Pn divide the segment P0Pn into n congruent segments Pi−1Pi, and

P ′i = α(Pi), then the n+1 points P ′0, P
′
1, P

′
2, . . . , P

′
n divide the segment P ′0P

′
n

into n congruent segments P ′i−1P
′
i .

Proof : Suppose α is an affine transformation and the n+1 points P0, P1, P2, . . . ,

Pn divide the segment P0Pn into n congruent segments Pi−1Pi. Let P ′i =

α(Pi). Since P0P1 = P1P2, P1P2 = P2P3, . . . , then P1 is the midpoint

of P0 and P2, point P2 is the midpoint of P1 and P3, etc. Hence, P ′1 is

the midpoint of P ′0 and P ′2, point P ′2 is the midpoint of P ′1 and P ′3, etc.

So the images P ′0, P
′
1, P

′
2, . . . , P

′
n divide the segment P ′0P

′
n into n congruent

segments P ′i−1P
′
i . 2

It follows from this last result that P between A and B implies α(P )

between α(A) and α(B) provided that AP/PB is rational.

Note : It would have to be a very strange collineation that allowed between-

ness not to be preserved in general although preserving midpoints. Early geometers

avoided such a “monster transformation” simply by incorporating the preservation of

betweenness within the definition of an affine transformation. In 1880 Gaston Dar-

boux (1842-1917) showed that the “monster transformation” does not exist. Thus

the following result holds (but the proof wil be omitted).

8.1.9 Theorem. If α is an affine transformation and point P is between

points A and B, then point α(P ) is between α(A) and α(B).
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As an immediate consequence of Theorem 8.1.9, we know that an affine

transformation preserves all those geometric entities whose definition goes back

only to the definition of betweenness. Thus, an affine transformation preserves

segments, rays, triangles, quadrilaterals, halfplanes, interiors of triangles, etc.

In particular, the following result holds :

8.1.10 Proposition. If A′, B′, C ′ are the respective images of three non-

collinear points A,B,C under affine transformation α, then

α(AB) = A′B′ and α(4ABC) = 4A′B′C ′ .

8.1.11 Proposition. An affine transformation fixing two points on a line

fixes that line pointwise.

Proof : Suppose affine transformation α fixes two points A and B. As-

sume there is a point C on
←→
AB such that C ′ 6= C with C ′ = α(C). Without

loss of generality, we may assume C is on AB→. As an intermediate step, we

shall show C is between two fixed points A and D. Let B0 = B and define

Bi+1 so that Bi is the midpoint of A and Bi+1 for i = 0, 1, 2 . . . . Since A

and B0 are given as fixed by α, then each of B1, B2, B3, . . . in turn must be

fixed by α since α preserves midpoints. Let D = Bk where k is an integer

such that

ABk = 2kAB > AC .

Then C lies between fixed points A and D. So AD is then fixed and both C

and C ′ lie in AD. Now, let n be an integer large enough so that nCC ′ > AD.

Let P0 = A, Pn = D, and the n+ 1 points P0, P1, . . . , Pn divide the segment

AD into n congruent segments Pi−1Pi. Each of the points Pi is fixed by

α by Proposition 8.1.7. So each APi and PiD is fixed by α. However,

integer n was chosen large enough so that for some integer j point Pj is

between C and C ′. So C and C ′ are in different fixed segments APj and

PjD, contradiction. Therefore, α(C) = C for all points on
←→
AB, as desired.

2
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8.1.12 Corollary. An affine transformation fixing three noncollinear points

must be the identity. Given 4ABC and 4DEF , there is at most one affine

transformation α such that α(A) = D, α(B) = E, and α(C) = F .

Note : In the next section we shall see that there is also at least one affine trans-

formation α as described in the corollary above. Thus an affine transformation is

completely determined once the images of any three noncollinear points are known.

8.2 Affine Linear Transformations

We start by making an “ad hoc” definition.

8.2.1 Definition. An affine linear transformation is any mapping

α : E2 → E2 , (x, y) 7→ (ax+ by + h, cx+ dy + k) where ad− bc 6= 0 .

The number ad− bc is called the determinant of α.

An affine linear transformation is actually a transformation since a given

(x, y) obviously determines a unique (x′, y′) and, conversely, a given (x′, y′)

determines a unique (x, y) precisely because the determinant is nonzero. As

we might expect, affine linear transformations are related to affine transfor-

mations.

Exercise 126 If P = (p1, p2), Q = (q1, q2), and R = (r1, r2) are vertices of a

triangle, show that the area of 4PQR is

1

2
|(q1 − p1)(r2 − p2)− (q2 − p2)(r1 − p1)|.

(Hence the area of a triangle with vertices (0, 0), (a, b), (c, d) is half the absolute

value of ad− bc.)

8.2.2 Proposition. An affine linear transformation is an affine transfor-

mation and, conversely, an affine transformation is an affine linear transfor-

mation.
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Proof : Let α be an affine linear transformation and suppose line L has

equation px+ qy+ r = 0. Since p and q are not both zero, then ap+ cq and

bp+ dq are not both zero. So there is a line M with equation

(ap+ cq)x+ (bp+ dq)y + r + hp+ kq = 0.

Line M is introduced because each of the following implies the next, where

α((x, y)) = (x′, y′) :

(1) (x′, y′) is on line L.

(2) px′ + qy′ + r = 0.

(3) p(ax+ by + h) + q(cx+ dy + k) + r = 0.

(4) (ap+ cq)x+ (bp+ dq)y + r + hp+ kq = 0.

(5) (x, y) is on line M.

We have shown that α−1 is a transformation that takes any line L to some

line M. So α−1 is a collineation. Hence, α is itself a collineation.

Conversely, suppose α is an affine transformation. Let

α((0, 0)) = (p1, p2) = P, α((1, 0)) = (q1, q2) = Q, and α((0, 1)) = (r1, r2) = R .

Since (0, 0), (1, 0), (0, 1) are noncollinear, then P,Q,R are noncollinear. Hence

the mapping β with equations
x′ = (q1 − p1)x+ (r1 − p1)y + p1

y′ = (q2 − p2)x+ (r2 − p2)y + p2

is an affine linear transformation, since the absolute value of its determinant is

twice the area of 4PQR and therefore nonzero (see Exercise 126). Further,

β((0, 0)) = α((0, 0)), β((1, 0)) = α((1, 0)), and β((0, 1)) = α((0, 1)).

Therefore (Corollary 8.1.11), we have α = β. So α is an affine linear

transformation. 2
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Note : Chosing the term affine linear transformation over its equivalents collineation

and affine transformation can emphasize a coordinate viewpoint.

Given 4ABC and 4DEF , we know that there is at most one affine

transformation α such that α(A) = D, α(B) = E, and α(C) = F . We can

now show that there is at least one such transformation α.

8.2.3 Proposition. Given 4ABC and 4DEF , there is a unique affine

transformation α such that

α(A) = D, α(B) = E, and α(C) = F.

Proof : Given 4ABC and 4DEF , we know (Corollary 8.1.12) there

is at most one affine transformation α such that α(A) = D, α(B) = E and

α(C) = F . We now show there is at least one such affine transformation α.

From the preceding paragraph, we see how to find the equations for an affine

linear transformation β1 such that

β1((0, 0)) = A, β1((1, 0)) = B, and β1((0, 1)) = C.

Repeating the process, we see there is an affine linear transformation β2 such

that

β2((0, 0)) = D, β2((1, 0)) = E, and β2((0, 1)) = F.

The transformation β2β
−1
1 is the desired affine transformation α that takes

points A,B,C to points D,E, F , respectively. 2

Matrix representation

Let α : E2 → E2 be a transformation given by

(x, y) 7→ (ax+ by + h, cx+ dy + k).

(α is an affine linear transformation.)

Note : Recall that [
a b

c d

][
x

y

]
=

[
ax+ by

cx+ dy

]
.
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Hence the matrix

[
a b

c d

]
defines a mapping (x, y) 7→ (ax + by, cx + dy). Indeed,

we write the pair (x, y) as a column matrix

[
x

y

]
(in fact, we identify points with

geometric vectors) and so we get

(x, y) =

[
x

y

]
7→

[
a b

c d

][
x

y

]
=

[
ax+ by

cx+ dy

]
= (ax+ by, cx+ dy).

This mapping is linear (i.e. preserves the vector structure of E2) and is invertible if

(and only if) the matrix is invertible.

When the coefficients h and k vanish, α is linear and hence admits a

matrix representation [
x′

y′

]
=

[
a b

c d

][
x

y

]
.

We say that the (invertible) matrix A =

[
a b

c d

]
represents the (linear) trans-

formation α. In order to extend this representation to the general case, of

affine linear transformations, we need to accomodate translations.

Exercise 127

(a) Verify that 
1 0 0

h a b

k c d




1

x

y

 =


1

ax+ by + h

cx+ dy + k

 .

(b) Show that the matrix


1 0 0

h a b

k c d

 is invertible if and only if ad− bc 6= 0,

and then find its inverse.

If we “redefine” the concept of point – and write the pair (x, y) as a column

matrix


1

x

y

 (this identification is more than just a “clever” notation) – then
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we have

(x, y) =


1

x

y

 7→


1 0 0

h a b

k c d




1

x

y

 =


1

ax+ by + h

cx+ dy + k

 = (ax+by+h, cx+dy+k).

We see that the 3× 3 matrix

[α] =


1 0 0

h a b

k c d

 =

[
1 0

v A

]

(where v =

[
h

k

]
and A =

[
a b

c d

]
) represents the transformation

α : E2 → E2, (x, y) 7→ (ax+ by + h, cx+ dy + k).

Exercise 128 Use matrix representation to show that the set of all linear affine

transformations forms a group. (This group consists of all collineations, and is usually

denoted by Aff.)

8.2.4 Example. The identity transformation ι is represented by the ma-

trix


1 0 0

0 1 0

0 0 1

. Thus

[ι] =

[
1 0

0 I

]
.

8.2.5 Example. Consider the point P = (h, k) and let v =

[
h

k

]
. The

translation τ = τO,P is represented by the matrix


1 0 0

h 1 0

k 0 1

. Thus

[τ ] =

[
1 0

v I

]
.
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8.2.6 Example. Again, consider the point P = (h, k). The halfturn σ =

σP is represented by the matrix


1 0 0

2h −1 0

2k 0 −1

. Thus

[σ] =

[
1 0

2v −I

]
.

Exercise 129 Let P = (h, k) be a point. Determine the matrix which represents

the dilation δP,r (of ratio r 6= 0 ) and hence verify the relations :

(a) δP,−r = σP δP,r.

(b) δP,1 = ι.

(c) δP,−1 = σP .

(d) δP,sδP,r = δP,rs (r, s 6= 0).

Strains and shears

Some specific, basic affine transformations are introduced next.

8.2.7 Definition. For number k 6= 0, the affine transformation

εX ,k : (x, y) 7→ (x, ky)

is called a strain of ratio k about the x-axis.

8.2.8 Definition. For number k 6= 0, the affine transformation

εY,k : (x, y) 7→ (kx, y)

is called a strain of ratio k about the y-axis.

For fixed k, the product of the two affine transformations above is the

familiar dilation about the origin (x, y) 7→ (kx, ky). Thus

εX ,kεY,k = δO,k.
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Note : The concept of a strain of ratio k about a given line L can be defined

analogously. However, one can prove that any dilation is the product of two strains

about perpendicular lines.

8.2.9 Example. The strain with equations
x′ = 2x

y′ = y

fixes the y-axis pointwise and stretches out the plane away from and perpen-

dicular to the y-axis.

Note : As with similarity theory, the terminology here is not standardized. Each

of the following words has been used for a strain or for a strain with positive ratio :

enlargement, expansion, lengthening, stretch, compression.

8.2.10 Definition. For number k 6= 0, the affine transformation

ζX ,k : (x, y) 7→ (x+ ky, y)

is called a shear along the x-axis.

Here the x-axis is fixed pointwise and every point is moved “horizontally”

a directed distance proportional to its directed distance from the x-axis. We

shall see below that a shear has the property of preserving area.

8.2.11 Definition. An affine transformation that preserves area is said to

be equiaffine.

8.2.12 Proposition. An affine transformation is the product of a shear,

a strain, and a similarity.

Proof : We can see that the general affine linear transformation with equa-

tions 
x′ = ax+ by + h

y′ = cx+ dy + k

with ad− bc 6= 0


