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2 M4.3 - Geometry

1.1 Euclidean 3-Space

The Euclidean space, points, and vectors

Three-dimensional visual space S is often used in mathematics without being

formally defined. The “elements” of S are called points. In the usual sense,

we introduce Cartesian coordinates by fixing a point, called the origin, and

three (mutually orthogonal) coordinate axes. The choice of origin and of axes

is arbitrary, but once it has been fixed, three real numbers (or coordinates)

p1, p2, p3 can be measured to describe the position of each point p.

The one-to-one correspondence

p ∈ S 7→ (p1, p2, p3) ∈ R3

makes possible the identification of S with the set R3 of all ordered triplets

of real numbers. In other words, instead of saying that three numbers describe

the position of a point, we define them to be the point.

We make the following definition.

1.1.1 Definition. The (standard) Euclidean 3-space is the set R3 to-

gether with the Euclidean distance between points p = (p1, p2, p3) and q =

(q1, q2, q3) given by

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

Note : Euclidean 3-space R3 is a model for the physical space. There are other

models for our Universe. The question of what is the most convenient geometry

with which to model physical space is an open one, and is the subject of intense

contemporary investigation and speculation.

Let p = (p1, p2, p3) and q = (q1, q2, q3) be two points of R3, and let λ be

a scalar (real number). The sum of p and q is the point

p+ q : = (p1 + q1, p2 + q2, p3 + q3)

and the scalar multiple of p by λ is the point

λp : = (λp1, λp2, λp3).
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Under these two operations (the usual addition and scalar multiplication), R3

is a vector space over R.

Note : The origin o = (0, 0, 0) plays the role of identity (with respect to addition).

The sum p+ (−1)q is usually written p− q.

We shall consider now the relationship between points and geometric vec-

tors in Euclidean 3-space R3.

Note : The concept of vector originated in physics from such notions as velocity,

acceleration, force, and angular momentum. These physical quantities are supplied

with length and direction; they can be added and multiplied by scalars.

Intuitively, a geometric vector v in R3 is represented by a directed line seg-

ment (or “arrow”) −→pq . Here we take the view that a geometric vector is really

the same thing as a translation in space.

Note : We can also take the view that we can describe an “arrow” (located at some

point) by giving the starting point and the change necessary to reach its terminal

point. This approach leads to the concept of (geometric) tangent vector and will be

considered in the next chapter.

We make the following definition.

1.1.2 Definition. A (geometric) vector in Euclidean 3-space R3 is a

mapping

v : R3 → R3, p 7→ v(p)

such that for any two points p and q, the midpoint of pv(q) is equal to the

midpoint of qv(p).

Thus, if v is a vector and p, q are two points, then the quadrilateral 2 pqv(q)v(p)

is a parallelogram (proper or degenerate).

� Exercise 1 Show that given two points p and q, there is exactly one vector

v such that v(p) = q.

This unique vector is denoted by −→pq . A vector −→pq is sometimes called a free

vector.
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Note : An alternative description is the following. Two directed line segments
−→pq and

−→
p′q′ (or, if one prefers, two ordered pairs of points (p, q) and (p′, q′) ) are

equivalent if the line segments −→pq and
−→
p′q′ are of the same length and are parallel in

the same sense. This relation, being reflexive, symmetric, and transitive, is a genuine

equivalence relation. Such an equivalence class of directed line segments (or, if one

prefers, of ordered pairs of points) is a vector. We denote the vector [−→pq ] simply

by −→pq . If p = (p1, p2, p3) and q = (q1, q2, q3), the components of the vector are

q1− p1, q2− p2, and q3− p3. Two vectors are equal if and only if they have the same

components.

� Exercise 2 Show that two directed line segments −→pq and
−→
p′q′ are equivalent

if and only if p+ q′ = p′ + q.

If p = (p1, p2, p3) and q = (q1, q2, q3), it is customary to represent the

vector v = −→pq by the 3× 1 matrixq1 − p1

q2 − p2

q3 − p3

 .
Let o be the origin of the Euclidean 3-space R3. Any point p ∈ R3 can be

described by means of the vector −→op (the position vector of the point p ).

Each point has a unique position vector, and each position vector describes a

unique point. Hence we set up a one-to-one correspondence between points

and geometric vectors in R3. It is convenient to identify

the point (p1, p2, p3) with the vector

p1

p2

p3

 .
Note : An element of Euclidean 3-space E3 can be considered (or represented)

either as an ordered triplet of real numbers or as a column 3-matrix with real entries.

In other words, we can think of the Euclidean 3-space as either the set of all its points

or the set of all its (geometric) vectors.

� Exercise 3 Explain why the identification of the vector v = −→pq with the

point q − p is legitimate.
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The (vector) space R3 has a built-in standard inner product (i.e., a non-

degenerate symmetric bilinear form). For v, w ∈ R3, the dot product of (the

vectors) v and w is the number (scalar)

v • w : = v1w1 + v2w2 + v3w3.

The dot product is a positive definite inner product; that is, it has the following

three properties (for v, v′, w ∈ R3 and λ, λ′ ∈ R) :

(IP1) (λv + λ′v′) • w = λ(v • w) + λ′(v′ • w) (linearity);

(IP2) v • w = w • v (symmetry);

(IP3) v • v ≥ 0, and v • v = 0 ⇐⇒ v = 0 (positivity).

� Exercise 4 Given v, w ∈ R3, show that

(v • w)2 ≤ (v • v)(w • w).

This inequality is called the Cauchy-Schwarz inequality.

Write

‖v‖ : =
√
v • v =

√
v2

1 + v2
2 + v2

3

and call it the norm (or length) of (the vector) v. A vector with unit norm

is called a unit vector.

Note : In view of our definition, we can rewrite the Cauchy-Schwarz inequality in

the form

|v • w| ≤ ‖v‖ ‖w‖.

The norm (more precisely, the norm function v ∈ R3 7→ ‖v‖ ∈ R ) has the

following properties (for v, w ∈ R3 and λ ∈ R) :

(N1) ‖v‖ ≥ 0, and ‖v‖ = 0 ⇐⇒ v = 0 (positivity);

(N2) ‖λv‖ = |λ| ‖v‖ (homogeneity);

(N3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ (the triangle inequality).

� Exercise 5 Let v, w ∈ R3. Verify the following properties.
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(a) Polarization identity : v •w = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
, which expresses

the standard inner product in terms of the norm.

(b) Parallelogram identity : ‖v+w‖2 + ‖v−w‖2 = 2
(
‖v‖2 + ‖w‖2

)
. That is,

the sum of the squares of the diagonals of a parallelogram equals the sum

of the squares of the sides.

� Exercise 6 Given v, w ∈ R3, prove the Pythagorean property

v • w = 0 ⇐⇒ ‖v ± w‖2 = ‖v‖2 + ‖w‖2.

In terms of the norm we get a compact version of the (Euclidean) distance

formula :

d(p, q) = ‖v − w‖ with v = −→op and w = −→oq .

In other words, ‖v − w‖ represents the distance between two points with

position vectors v and w.

� Exercise 7 Verify that the Euclidean distance satisfies the following properties

(the axioms for a metric):

(M1) d(p, q) ≥ 0, and d(p, q) = 0 ⇐⇒ p = q ;

(M2) d(p, q) = d(q, p) ;

(M3) d(p, r) ≤ d(p, q) + d(q, r).

Relation (M3) is also known as the triangle inequality.

Note : Euclidean 3-space R3 is not only a vector space. It is also a metric space.

It is important to realize that the Euclidean distance is completely determined by the

dot product; indeed,

d(p, q) =
√

(q − p) • (q − p) (p, q ∈ R3).

However, not any distance function is associated with an inner product. A (real)

vector space endowed with a specific (positive definite) inner product is called an

inner product space.

Let v and w be two nonzero vectors of R3. The Cauchy-Schwarz inequal-

ity permits us to define the cosine of the angle θ, 0 ≤ θ ≤ π between v and

w by the equation

v • w = ‖v‖ ‖w‖ cos θ.
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Thus the dot product of two vectors is the product of their lengths times the

cosine of the angle between them. If θ = 0 or θ = π, the vectors v and w

are said to be collinear, whereas if θ = π
2 , the vectors are called orthogonal.

Note : We regard the zero vector as both collinear with and orthogonal to every

vector. Clearly, vectors v and w are orthogonal if and only if v • w = 0.

� Exercise 8 Given a nonzero vector w, show that vectors v and w are collinear

if and only if v = λw for some λ ∈ R.

There is another product on the Euclidean 3-space R3, second in impor-

tance only to the dot product. For v, w ∈ R3, the cross product of v and

w is the vector

v × w : =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .
An easy way to remember this formula is to compute the “determinant”

v × w =

∣∣∣∣∣∣∣
e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣
by formal expansion along the first row. Here e1, e2, e3 denote the standard

unit vectors

e1 =

1

0

0

 , e2 =

0

1

0

 , and e3 =

0

0

1

 .
Note : The vectors e1, e2, e3 are lineary independent, and hence form a (orthonor-

mal) basis of the vector space R3. Any vector v ∈ R3 can be expressed uniquely as

a linear combination of the standard unit vectors e1, e2, e3 :

v =

v1

v2

v3

 = v1

1

0

0

+ v2

0

1

0

+ v3

0

0

1

 = v1e1 + v2e2 + v3e3.

Familiar properties of determinants show that the cross product (also called

vector product) is a skew-symmetric bilinear mapping; that is, it has the fol-

lowing properties (for v, v′, w ∈ R3 and λ ∈ R) :
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(VP1) (v + v′)× w = v × w + v′ × w (additivity);

(VP2) λ(v × w) = (λv)× w (homogeneity);

(VP3) v × w = −w × v (skew-symmetry).

Hence, in particular, v × v = 0.

� Exercise 9 Show that

v • (v × w) = 0 and w • (v × w) = 0.

Therefore, the cross product of two vectors is a vector orthogonal to both of them.

� Exercise 10 Verify (by tedious computation) the following formula known as

the Lagrange identity :

‖v × w‖2 = ‖v‖2‖w‖2 − (v • w)2.

Note : The geometric usefulness of the cross product is based mostly on this result.

A more intuitive description of the length of a cross product is

‖v × w‖ = ‖v‖ ‖w‖ sin θ

where θ is the angle between v and w. The direction of v × w on the straight line

orthogonal to v and w is given, for practical purposes, by the so-called “right-hand

rule”: if the fingers of the right hand point in the direction of the shortest rotation of

v to w, then the thumb points in the direction of v × w.

� Exercise 11 Show that vectors v and w are collinear if and only if v×w = 0.

Combining the dot and cross product, we get the triple scalar product of

three vectors u, v, and w : u•v×w. Parantheses are unnecessary : u•(v×w)

is the only possible meaning.

� Exercise 12 Given vectors u, v, and w, show that

u • v × w = v • w × u = w • u× v =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ .
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� Exercise 13 Let v, w ∈ R3. Show that the only vector x ∈ R3 such that

u • x is equal to the determinant det
[
u v w

]
for all u ∈ R3 is x = v × w.

� Exercise 14 Given vectors u, v, and w, show that

(u× v)× w = (u • w)v − (v • w)u.

Deduce the Jacobi identity :

(u× v)× w + (v × w)× u+ (w × u)× v = 0.

� Exercise 15 Let v1, v2, w2, w2 ∈ R3. Verify the following identities.

(a) (v1 × v2) • (w1 × w2) = det
[
v1 × v2 w1 w2

]
.

(b) (v1 × v2)× (w1 × w2) = det
[
v1 w1 w2

]
v2 − det

[
v2 w1 w2

]
v1.

Geometric transformations

One of the most important concepts in geometry is that of a transforma-

tion.

Note : Moving geometric figures around is an ancient and natural approach to

geometry. However, the Greek emphasis on synthetic geometry and constructions

and much later the development of analytic geometry overshadowed transformational

thinking. The study of polynomials and their roots in the early nineteenth century

led to algebraic transformations and abstract groups. At the same time, August

Ferdinand Möbius (1790-1868) began studying geometric transformations. In the

late nineteenth century, Felix Klein (1849-1925) and Sophus Lie (1842-1899)

showed the central importance of both groups and transformations for geometry.

Generally speaking, a geometric transformation is merely a mapping be-

tween two sets. However, these sets are assumed to be, in a certain sense,

geometrical; they are equipped with some additional structure and are usually

referred to as “spaces”. We shall find it convenient to use the word transfor-

mation ONLY IN THE SPECIAL SENSE of a bijective mapping of a set (space)

onto itself. Groups of transformations form the heart of geometry.

We make the following definition.
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1.1.3 Definition. A (geometric) transformation on R3 is a mapping

from R3 to itself that is one-to-one and onto.

Note : Hereafter, in this chapter, all the definitions and results hold for R3 as

well as for the Euclidean plane R2. We shall only discuss the case of R3, and consider

the case of R2 as a special case.

Let T be a transformation on R3. Then T can be visualized as “moving”

(or transforming) each point p ∈ R3 to its unique image T (p) ∈ R3. Given

two transformations T and S, their composition (T followed by S)

ST : R3 → R3, p 7→ S(T (p))

is called the product of S with T .

� Exercise 16 Verify that the product of two transformations is a transforma-

tion.

The identity transformation I is defined by

I : R3 → R3, p 7→ p.

For any transformation T on R3, TI = IT = T . Every transformation T

has a unique inverse T−1.

� Exercise 17 Given two transformations T and S, show that

(ST )
−1

= T−1S−1.

The set of all transformations on R3 is a (transformation) group. Various

sets of transformations corespond to important geometric properties and also

form groups.

Note : Felix Klein in his famous Erlanger Programm (1872) used groups of

transformations to give a definition of geometry : Geometry is the study of those

properties of a set that are preserved under a group of transformations on that set.

Klein showed that various non-Euclidean geometries, projective geometry, and Eu-

clidean geometry were closely related, not competing subjects. He realized that we

can, for example, investigate the properties of Euclidean geometry by studing isome-

tries (i.e., distance-preserving transformations).
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1.2 Linear Transformations

Linear transformations (on R3 ) are structure-preserving transformations on

the vector space R3. The structure that must be preserved is that of vector

addition and scalar multiplication (of which the geometric analogues are the

parallelograms with one vertex at the origin and straight lines through the

origin, respectively).

1.2.1 Definition. A transformation T : R3 → R3 is a linear transfor-

mation if, for all x, y ∈ R3 and all λ ∈ R,

(L1) T (x+ y) = T (x) + T (y);

(L2) T (λx) = λT (x).

Note : The terms function, mapping, map, and transformation are commonly used

interchangeably. However, in studying geometric objects (particularly, on smooth

manifolds), it is often convenient to make slight distinctions between them. Thus, we

will reserve the term “function” for a map whose range is R (i.e., a real-valued map),

whereas the terms “map” or “mapping” can mean any type of map. Furthermore,

invertible maps (or mappings) – on some structured sets – will be referred to as

“transformations”. Typical transformations are structure-preserving bijections on

structured sets of a certain kind. (In modern algebraic parlance, such transformations

are usually called automorphisms.)

Addition and scalar multiplication of linear transformations are defined in

the usual way. That is, for (linear) transformations S, T and scalar λ ∈ R,

(S + T ) (x) : = S(x) + T (x)

(λT ) (x) : = λT (x).

� Exercise 18 Is the sum of any two linear transformations a linear transfor-

mation ? Justify your answer.

� Exercise 19 Verify that, under the usual product, the set of all linear trans-

formations on R3 is a (transformation) group.
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Let {e1, e2, e3} be the standard basis of R3 and let T be a linear trans-

formation on R3. Then we have, uniquely,

T (ei) = a1ie1 + a2ie2 + a3ie3, i = 1, 2, 3.

So we can associate to T a 3× 3 matrix with real entries

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Notice that the image of ei under T is the ith column of the matrix A; that

is, A =
[
T (e1) T (e2) T (e3)

]
. We can write

T (x) = T (x1e1 + x2e2 + x3e3) = x1T (e1) + x2T (e2) + x3T (e3)

= x1(a11e1 + a21e2 + a31e3) + x2(a12e1 + a22e2 + a32e3) +

x3(a13e1 + a23e2 + a33e3)

= (a11x1 + a12x2 + a13x3)e1 + (a21x1 + a22x2 + a23x3)e2 +

(a31x1 + a32x2 + a33x3)e3

=

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


x1

x2

x3


= Ax.

Consider now two linear transformations T and S with associated ma-

trices (with respect to the standard basis of R3 ) A =
[
aij

]
and B =

[
bij

]
,

respectively. Then the product ST is a linear transformation whose asso-

ciated matrix is C = BA (the matrix product of B and A). Indeed, we

have

Cx = ST (x) = S (T (x)) = S(Ax) = B(Ax) = (BA)x.

� Exercise 20 Show that the matrix associated with a linear transformation is

nonsingular (i.e., invertible).

Let GL (3,R) be the set of all nonsingular 3×3 matrices with real entries.

Under the usual matrix multiplication, GL (3,R) is a group.
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� Exercise 21 Show that the group of all linear transformations on R3 is iso-

morphic to the group GL (3,R).

Either one of these groups is called the general linear group. Given

a matrix A ∈ GL (3,R), the transformation T, x 7→ Ax is the only linear

transformation whose associated matrix is A. We say that the matrix A

represents the linear transformation T . It is convenient to identify

the linear transformation T, x 7→ Ax with the (nonsingular) matrix A.

Henceforth, the same symbol will be used to denote a linear transformation

and its associated matrix. Thus, for instance, I will denote the identity

transformation x 7→ x as well as the identity matrix

[
δij

]
=

1 0 0

0 1 0

0 0 1

 .
Note : The notation Ax stands for both the image of (the point) x under the

linear transformation A and the matrix product of the (nonsingular) matrix A by

the column matrix (vector) x.

Orthogonal transformations

Recall that the Euclidean 3-space R3 has a built-in inner product. Inner-

product-preserving transformations form an important class of (linear) trans-

formations.

1.2.2 Definition. A linear transformation A, x 7→ Ax is an orthogonal

transformation if it preserves the inner-product between any two vectors;

that is, for all x, y ∈ R3,

Ax •Ay = x • y.

Let A and B be two orthogonal transformations. Then their product

BA is also an orthogonal transformation. Indeed, for all vectors x, y ∈ R3,

(BA)x • (BA)y = B(Ax) •B(Ay) = Ax •Ay = x • y.
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� Exercise 22 Verify that the inverse of an orthogonal transformation is also

an orthogonal transformation.

The set of all orthogonal transformations on R3 is a (transformation) group.

1.2.3 Definition. A 3×3 matrix (with real entries) A is called orthog-

onal if

A>A = I,

where A> is the transpose of A.

Note : If the matrix A =
[
aij

]
is orthogonal, then (and only then)

a1ia1j + a2ia2j + a3ia3j = δij , i, j = 1, 2, 3.

Thus the vectors (the columns of the matrix)

ai : =

a1i

a2i

a3i

 , i = 1, 2, 3

have unit length and are orthogonal to one another :

‖a1‖ = ‖a2‖ = ‖a3‖ = 1 and ai • aj = 0 (i 6= j).

(This can be written, in a more compact form, as ai • aj = δij , i, j = 1, 2, 3.)

Hence {a1, a2, a3} is an orthonormal basis for R3.

� Exercise 23 Show that any orthogonal matrix is nonsingular.

� Exercise 24 Let A ∈ GL (3,R). Show that

A>A = I ⇐⇒ AA> = I ⇐⇒ A−1 = A>.

Let O (3) be the set of all orthogonal matrices. Thus

O (3) : = {A ∈ GL (3,R) |A>A = I}.

� Exercise 25 Show that O (3) is a subgroup of the general linear group GL (3,R).
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1.2.4 Proposition. A linear transformation A, x 7→ Ax is an orthogonal

transformation if and only if the matrix A is orthogonal.

Proof : (⇒ ) Suppose the transformation A, x 7→ Ax is orthogonal.

Then we have

δij = ei • ej = Aei •Aej
= (Aei)

>Aej = e>i (A>A)ej

= (A>A)ij

and hence the matrix A is orthogonal.

(⇐ ) Conversely, suppose the matrix A is orthogonal. Then

Ax •Ay = (Ax)>Ay = x>(A>A)y = x>Iy = x • y

and thus the transformation x 7→ Ax is orthogonal. 2

The group of all orthogonal transformations is isomorphic to the group

O (3). Either one of these groups is called the orthogonal group. Those

elements of O (3) which have determinant equal to +1 form a subgroup of

O (3), denoted by SO (3) and called the special orthogonal group.

1.2.5 Proposition. An orthogonal transformation A, x 7→ Ax preserves

the distance between any two points; that is, for all x, y ∈ R3,

d (Ax,Ay) = d(x, y).

Proof : First we show that A preserves norms. By definition, ‖x‖2 = x•x
and hence

‖Ax‖2 = Ax •Ax = x • x = ‖x‖2.

Thus ‖Ax‖ = ‖x‖ for all (vectors) x ∈ R3. Since A is linear, it follows that

d (Ax,Ay) = ‖Ax−Ay‖ = ‖A(x− y)‖ = ‖x− y‖ = d(x, y).

2

Note : The orthogonal groups O (2) and O (3) were first studied, by the number

theorists of the eighteenth century, as the groups of transformations preserving the

quadratic form ξ2
1 + ξ2

2 or ξ2
1 + ξ2

2 + ξ2
3 , respectively.
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Rotations and reflections

If A ∈ O (2), then the columns of A are unit vectors and are orthogonal

to one another. Suppose

A =

[
a1 a3

a2 a4

]
.

Then the point (a1, a2) lies on the unit circle S1 giving

a1 = cos θ and a2 = sin θ

for some θ satisfying 0 ≤ θ < 2π. As the vector

[
a3

a4

]
is at right angles to[

a1

a2

]
and (as a point) also lies on the unit circle S1, we have

a3 = cosϕ and a4 = sinϕ

where either ϕ = θ + π
2 or ϕ = θ − π

2 · In the first case we obtain[
cos θ − sin θ

sin θ cos θ

]

which is an element of SO (2) and represents a rotation about the origin (more

precisely, a counterclockwise rotation about the origin through the angle θ).

The second case gives [
cos θ sin θ

sin θ − cos θ

]
which has determinant −1 and represents a reflection in a line through the

origin (more precisely, a reflection in a line through the origin at angle θ
2 to

the positive x1-axis).

Therefore, a 2 × 2 orthogonal matrix represents either a rotation of the

plane about the origin or a reflection in a line through the origin, and the

matrix has determinant +1 precisely when it represents a rotation.

Note : The group SO (2) is often referred to as the rotation group. SO (2) is in

fact the unit circle S1 in disguise. (Each point on the unit circle has the form eiθ,

where 0 ≤ θ < 2π and hence corresponds to an angle.)
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� Exercise 26 Show that the mapping

eiθ 7→

[
cos θ − sin θ

sin θ cos θ

]

is an isomorphism from S1 to SO (2). (Here S1 = {z ∈ C | |z| = 1} is considered as

a subgroup of the multiplicative group C× of complex numbers.)

� Exercise 27 Let

Aθ =

[
cos θ − sin θ

sin θ cos θ

]
and Bϕ =

[
cosϕ sinϕ

sinϕ − cosϕ

]
.

(a) Verify that

AθAϕ = Aθ+ϕ, AθBϕ = Bθ+ϕ, BθAϕ = Bθ−ϕ, BθBϕ = Aθ−ϕ

where the angles in the matrices are read modulo 2π. Interpret these

results geometrically.

(b) Work out the products

AθBϕA
−1
θ , BϕAθBϕ, AθBϕA

−1
θ Bϕ.

Evaluate each of these when θ = π
3 and ϕ = π

2 ·

Rotations of the Euclidean space about any one of the coordinate axes are

similar to those of the plane (about the origin). The three basic types are

(realized by the following orthogonal matrices) :

R(e1, θ) = R1(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ



R(e2, θ) = R2(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



R(e3, θ) = R3(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
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Note : The minus sign appears above the (main) diagonal in R1 and R3, but

below the diagonal in R2. This is not a “mistake” : it is due to the orientation of the

positive x1-axis with respect to the x2x3-plane. Clearly, Ri(θ) ∈ SO (3), i = 1, 2, 3.

It can be shown that any rotation x 7→ Ax of R3 which fixes the origin

can be written as a product of just three of these elementary rotations :

A = R1(θ)R2(ϕ)R3(ψ).

(The independent parameters θ, ϕ, ψ are called the Euler angles for the given

rotation.)

It follows that

1.2.6 Proposition. Every rotation of R3 which fixes the origin can be

represented by a matrix in SO (3).

Now suppose that A ∈ SO (3). The characteristic polynomial charA(λ) =

det (λI − A) is cubic and therefore must have at least one real root. That is

to say, A has a real eigenvalue. As the product of the eigenvalues of a matrix

is the determinant of the matrix, we see that +1 is an eigenvalue of A.

� Exercise 28 Show that every A ∈ SO (3) has an eigenvalue equal to +1.

Note : The other two eigenvalues are complex conjugate and have absolute value

1, so they can be written as eiθ and e−iθ for some θ ∈ R.

If w is a corresponding eigenvector (i.e., Aw = w), the line through the

origin determined by w is invariant under (the linear transformation) A. Also

since A preserves right angles, it must send the plane which is orthogonal to

w, and which contains the origin, to itself.

� Exercise 29 Check that the set (plane) w⊥ = {y ∈ E3 | y•w = 0} is invariant

under (the orthogonal transformation) A; that is, A(w⊥) = w⊥.

Construct an orthonormal basis for R3 which has the unit vector 1
‖w‖w as

first member. The matrix of x 7→ Ax with respect to this new basis will be
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of the form 1 0 0

0 a1 a3

0 a2 a4

 =

[
1 0

0 R

]
.

Since R ∈ SO (2), x 7→ Ax is a rotation with axis determined by w.

Therefore, each matrix in SO (3) represents a rotation of R3 about an

axis which passes through the origin.

Note : Every element (rotation) A ∈ SO (3) can be written as

A = R(w, θ)

= P R(e1, θ)P
−1

for some w, θ, and P ∈ SO (3). (We say that A and R(e1, θ) are conjugate in

SO (3).) The eigenvector w determines the axis of the rotation (i.e., the unique line

through the origin which is left fixed). The angle of rotation is obtained from the

other two eigenvectors. (In fact, θ is given by the eigenvalue eiθ .)

� Exercise 30 Let A = R(w, θ) ∈ SO (3).

(a) Show that

A−A> =

 0 c b

−c 0 a

−b −a 0

 and w ∈ ker
(
A−A>

)
.

Hence deduce that (for θ 6= 0, π)

w = λ

−ab
−c

 .
(b) Show that

trA = 1 + 2 cos θ.

(So we can solve for cos θ from the trace of A. However, we don’t know

without further investigation if the rotation is clockwise or counterclock-

wise about w.)
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� Exercise 31 Show that the matrices1 0 0

0 −1 0

0 0 −1

 and

 2/3 1/3 2/3

−2/3 2/3 1/3

−1/3 −2/3 2/3


both represent rotations, and then find axes and angles for these rotations.

� Exercise 32 Let A ∈ SO (3) and w ∈ E3 such that ‖w‖ = 1. Show that, for

all x, y ∈ E3 and θ ∈ R,

(a) Ax×Ay = A(x× y) ;

(b) w • (R(w, θ)x− x) = 0 ;

(c) AR(w, θ)A−1 = R(Aw, θ).

(Hint : The cross product x×y can be characterized as the unique vector such that

w • x× y = det
[
w x y

]
for every vector w. See Exercise 13.)

Note : The group SO (3) is often referred to as the rotation group. SO (3) and

the sphere S3 are not the “same” (i.e., they are not isomorphic groups). It is an

interesting fact that S0 = {−1, 1}, S1, and S3 are the only spheres which can be

groups.

If A lies in O (3) but not in SO (3), then AS ∈ SO(3) where

S =

1 0 0

0 1 0

0 0 −1

 .
The matrix S represents a reflection in the x1x2-plane (identified with the

Euclidean plane R2 ). We write

A = (AS)S.

As above, the transformation x 7→ ASx is a rotation. Consequently, A is a

reflection (in the x1x2-plane) followed by a rotation.
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� Exercise 33 Complete the entries in the matrix
1√
2

0 ·
0 1 ·
− 1√

2
0 ·


to give an element of SO (3), and to give an element of O (3) \ SO (3). Describe the

(linear) trasformations represented by these matrices.

� Exercise 34 Let c ∈ R3 such that ‖c‖ = 1. Prove that the correspondence

x 7→ c× x+ (c • x)c

defines an orthogonal transformation. Describe its general effect on R3.

1.3 Translations and Affine Transformations

Let c ∈ R3 be a vector and let Tc be the mapping that adds c to every point

of R3. This mapping is one-to-one and onto and hence a transformation.

1.3.1 Definition. The transformation

Tc : R3 → R3, x 7→ x+ c

is called the translation by vector c.

Note : A nonidentity translation is not a linear transformation.

� Exercise 35 Show that given two points p, q ∈ R3, there exists a unique

translation T such that T (p) = q.

The inverse of the translation Tc, x 7→ x+ v is the translation T−1
c , x 7→

x− c. Thus,

T−1
c = T−c.

� Exercise 36 Verify that the product of two translations is also a translation.

The set of all translations on R3 is a (transformation) group. This group is

isomorphic to the additive group (also denoted by R3 ) of (the vectors of) R3.

Either one of these groups is called the translation group.
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1.3.2 Proposition. A translation T = Tc, x 7→ x + c preserves the dis-

tance between any two points; that is, for all x, y ∈ R3,

d(T (x), T (y)) = d(x, y).

Proof : We have

d(T (x), T (y)) = ‖T (x)− T (y)‖ = ‖x+ c− (y + c)‖ = ‖x− y‖ = d(x, y).

2

1.3.3 Definition. An affine transformation F on R3 is a linear trans-

formation followed by a translation; that is, a transformation of the form

F : R3 → R3, F = TA

where A, x 7→ Ax is a linear transformation, and T = Tc, x 7→ x + c is a

translation. A is called the linear part of F , and T the translation part of

F .

For every x ∈ R3,

F (x) = Ax+ c.

Note : The pair (c, A) ∈ R3 × GL (3,R) represents the affine transformation

F, x 7→ Ax+ c.

Affine transformations F, x 7→ Ax+ c, include the linear transformations

(with c = 0 ) and the translations (with A = I). Let F, x 7→ Ax + c and

G, x 7→ Bx+ d be two affine transformations. Then (for x ∈ R3 )

GF (x) = G(F (x)) = B (Ax+ c) + d = (BA)x+Bc+ d

and thus the product of G with F is also an affine transformation.

� Exercise 37 Show that the inverse of an affine transformation is also an affine

transformation.

The set of all affine transformations on R3 is a (transformation) group, which

contains as subgroups the general linear group GL (3,R) and the translation

group R3.
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Note : Affine transformations preserve lines, parallelism, betweeness, and propor-

tions on lines. Affine transformations can distort shapes. However, there is a limit

to the amount of distortion : a convex set is always mapped to a convex set. (The

converse holds as well : Transformations on R3 that preserve convexity are affine

transformations.)

Any affine transformation (on R3 ) is represented by a pair (c, A) ∈ R3 ×

GL (3,R) which we can write further as a 4 × 4 matrix

[
1 0

c A

]
. Call such

a matrix an affine matrix. Let GA (3,R) be the set of all affine matrices.

Thus

GA (3,R) : =

{[
1 0

c A

]
| c ∈ R3, A ∈ GL (3,R)

}
.

� Exercise 38 Show that GA (3,R) is a group.

The group of all affine transformations on R3 is isomorphic to the group

GA (3,R). Either of these groups is called the general affine group.

Note : In R3, of special interest are the affine transformations x 7→ Ax+ c with

detA = 1. These transformations also form a group..

1.4 Isometries

Isometries (on Euclidean 3-space R3 ) are distance-preserving transformations

on the metric space R3. They do not change the distance between points as the

transformations move these points. Isometries are the dynamic counterpart

to the Euclidean notion of congruence.

1.4.1 Definition. A transformation F : R3 → R3 is an isometry (or

rigid motion) if it preserves the distance between any two points; that is, for

all x, y ∈ R3,

d(F (x), F (y)) = d(x, y).

Orthogonal transformations and translations are isometries. If F is an isom-

etry, then (for x, y ∈ R3)

d(F−1(x), F−1(y)) = d(FF−1(x), FF−1(y)) = d(x, y)
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and thus the inverse F−1 is also an isometry.

� Exercise 39 Verify that the product of two isometries is also an isometry.

The set of all isometries on R3 is a (transformation) group, which contains as

subgroups the orthogonal group O (3) and the translation group R3.

1.4.2 Proposition. If F is an isometry on R3 such that F (0) = 0, then

F is an orthogonal transformation.

Proof : For any (vector) x ∈ R3,

‖F (x)‖ = d(0, F (x)) = d(F (0), F (x)) = d(0, x) = ‖x‖.

Let x, y ∈ R3. Then we have

‖F (x)− F (y)‖ = d(F (x), F (y)) = d(x, y) = ‖x− y‖

which implies

(F (x)− F (y)) • (F (x)− F (y)) = (x− y) • (x− y)

or

‖F (x)‖2 − 2F (x) • F (y) + ‖F (y)‖2 = ‖x‖2 − 2x • y + ‖y‖2.

Thus we have

F (x) • F (y) = x • y

so that F preserves the inner product of any two vectors.

It remains to prove that F is a linear transformation. Let x ∈ R3. Then

(with respect to the standard basis)

x = x1e1 + x2e2 + x3e3.

Since {e1, e2, e3} is an orthonormal basis (and F preserves the inner product

of any two vectors), it follows that {F (e1), F (e2), F (e3)} is also an orthonor-

mal basis so that

F (x) = x̄1F (e1) + x̄2F (e2) + x̄3F (e3).
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Taking the inner product of both sides with F (ei), we get

x̄i = F (x) • F (ei) = x • ei = xi, i = 1, 2, 3.

Hence

F (x) = x1F (e1) + x2F (e2) + x3F (e3)

and we can easily check the linearity conditions (L1) and (L2). 2

1.4.3 Theorem. If F is an isometry on R3, then there exists a unique

orthogonal transformation A, x 7→ Ax and a unique translation T = Tc, x 7→
x+ c such that

F = TA.

A is called the orthogonal part of F , and T the translation part of F .

Proof : Let T be the translation by vector c = F (0). Then T−1 is the

translation by vector −c = −F (0), and so T−1F is an isometry. Furthermore,

T−1F (0) = T−1(F (0)) = F (0)− F (0) = 0.

Thus T−1F is an orthogonal transformation, say T−1F = A, from which

follows immediately F = TA.

To prove the required uniqueness, suppose F = T̄ Ā, where T̄ is a trans-

lation and Ā is an orthogonal transformation. Then

TA = T̄ Ā

so that A = T−1T̄ Ā. Since A and Ā are linear transformations, A(0) =

Ā(0) = 0. It follows that T−1T̄ = I (the identity transformation), so that

T̄ = T , which implies Ā = A. 2

Note : We see that an isometry on R3 is a special affine transformation. Inter-

mediate between isometries and affine transformations are similarities, the transfor-

mations corresponding to similar figures. Similarities preserve betweeness, segments,

angle measure, and the proportions of all distances. The set of all similarities on R3

is a subgroup GE (3) of the general affine group, called the general Euclidean group.

A similarity that is not an isometry is either a dilation or a dilative rotation (spiral).
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The group of all isometries on R3 is (isomorphic to) a subgroup of the

general affine group GA (3,R), denoted by E (3). We have

E (3) =

{[
1 0

c A

]
| c ∈ R3, A ∈ O (3)

}
.

Either one of these groups is called the Euclidean group.

Note : The Euclidean group E (3) is generated by reflections. Each isometry

on R3 is exactly one of the following : translation, rotation, glide rotation (screw),

reflection, glide reflection, or rotary reflection. In the case of the plane, an element

of E (2) is exactly one of the following : translation, rotation, reflection, or glide

reflection.

Orientation

We now come to one of the most interesting and elusive ideas in geometry.

Intuitively, it is orientation that distinguishes between a right-handed glove

and a left-handed glove in ordinary space. We shall not formalize this concept

now.

Note : To handle the concept of orientation mathematically, we replace “gloves”

by orthonormal bases (in fact, frames) and separate all these orthonormal bases of

R3 into two classes : positively-oriented (or right-handed) and negatively-oriented

(or left-handed).

Let F, x 7→ Ax + c be an isometry on R3. Since (the matrix) A is

orthogonal, its determinant is either +1 or −1. We define the sign of F to

be the determinant of A, with notation

sgnF : = detA.

1.4.4 Definition. An isometry F, x 7→ Ax+ c is said to be

• direct (or orientation-preserving) if sgnF = +1;

• opposite (or orientation-reversing) if sgnF = −1.
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All translations are orientation-preserving. Intuitively this is clear. In fact,

the orthogonal part of a translation T is just the identity transformation I,

and so sgnT = det I = +1.

� Exercise 40 Consider the orthogonal transformation R1(θ) represented by

the matrix 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .
Show that R1(θ) is orientation-preserving.

1.4.5 Example. One can (literally) see reversal of orientation by using a

mirror. Suppose the x2x3-plane of R3 is the mirror. If one looks toward the

plane, the point p = (p1, p2, p3) appears to be located at the point

S(p) = (−p1, p2, p3).

The transformation S, p 7→ S(p) is the reflection in the x2x3-plane. Ev-

idently, S is an orthogonal transformation represented by the (orthogonal)

matrix −1 0 0

0 1 0

0 0 1

 .
Thus S is an orientation-reversing isometry, as confirmed by the experimental

fact that the mirror image of the right hand is a left hand.

Recall that an isometry is also called a rigid motion. If this is the case, a

direct isometry is referred to as a proper rigid motion. The set of all direct

isometries (or proper rigid motions) on R3 is a (transformation) group. This

group is (isomorphic to) a subgroup of the Euclidean group E (3), denoted by

SE (3). We have

SE (3) : =

{[
1 0

c A

]
| c ∈ R3, A ∈ SO (3)

}
.

Either one of these groups is called the special Euclidean group.
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Note : The orientation-preserving isometries on R3 are precisely the translations,

rotations, and glide rotations (screws). In the case of the plane, the elements of the

special Euclidean group SE (2) are the translations and the rotations.

1.5 Galilean Transformations

Galilean spacetime

Newtonian mechanics takes place in a Galilean spacetime. Let R3 be the

Euclidean 3-space and let R×R3 denote the (standard) Galilean spacetime.

Elements of R× R3 are called events.

Note : R × R3 is a model for spatio-temporal world of Newtonian mechanics.

The Newtonian world is comprised of objects sitting in a Universe (i.e., a Galilean

spacetime) and interacting with one another in a way consistent with the Galilean

relativity principle (which states that for a closed system in Galilean spacetime the

governing physical laws are invariant under Galilean transformations). In particular,

determinacy principle says that to “see” what will happen in the Universe, one need

only specify initial conditions for the ODEs of Newtonian mechanics, and all else

follows, at least in principle.

Given two events ξ = (t, x) = (t, (x1, x2, x3)) and ξ′ = (t′, x′) = (t′, (x′1, x
′
2, x
′
3)),

the time between these events is

t (ξ, ξ′) : = t′ − t.

The distance between simultaneous events (t, x) and (t, x′) is then

d ((t, x), (t, x′)) : = ‖x′ − x‖ =
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2,

where ‖ · ‖ is the (standard) Euclidean norm on R3.

Note : Distance between events that are not simultaneous cannot be measured.

In particular, it does not make sense to talk about two non-simultaneous events as

ocurring in the same place (i.e., as separated by zero distance). The picture one

should have in mind for a Galilean spacetime is of it being a union of simultaneous

events, nicely stacked together. We write

R× R3 =
⋃
t∈R
{t} × R3 : =

⋃
t∈R

R3
t .
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That one cannot measure distance between non-simultaneous events reflects there

being no natural direction transverse to the stratification by simultaneous events.

Galilean transformations

Galilean transformations are structure-preserving transformations on the

Galilean spacetime. They preserve simultaneity of events and do not change

the distance between simultaneous events.

1.5.1 Definition. An affine transformation F : R × R3 → R × R3 is a

Galilean transformation if it preserves the time between any two events and

the distance between any two simultaneous events; that is, for all ξ, ξ′ ∈ R×R3,

t (F (ξ), F (ξ′)) = t (ξ, ξ′)

and, for all t ∈ R and ξ, ξ′ ∈ R3
t ,

d (F (ξ), F (ξ′)) = d (ξ, ξ′).

Let F, (t, x) 7→ A(t, x) + (ζ, c) be a Galilean transformation. Let us write

A(t, x) + (ζ, c) =

[
A11 A12

A21 A22

][
t

x

]
+

[
ζ

c

]

=

[
A11t+A12x+ ζ

A21t+A22x+ c

]
= (A11t+A12x+ ζ,A21t+A22x+ c)

where A11 ∈ R and A22 ∈ GL (3,R).

� Exercise 41 Show that if

(t, x) 7→ (A11t+A12x+ ζ, A21t+A22x+ c)

is a Galilean transformation, then

A11 = 1, A12 =
[
0 0 0

]
, A21 = v ∈ R3×1, A22 ∈ O (3).
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Any Galilean transformation

(t, x) 7→ (t+ ζ, Rx+ tv + c)

where ζ ∈ R, c, v ∈ R3×1, and R ∈ O (3), may be written in matrix form as[
t

x

]
7→

[
1 0

v R

][
t

x

]
+

[
ζ

c

]
.

� Exercise 42 Show that the set of all Galilean transformations is a (transfor-

mation) group.

The following basic Galilean transformations

• (t, x) 7→ (t+ ζ, x+ c) (shift of origin);

• (t, x) 7→ (t, x+ tv) (velocity boost);

• (t, x) 7→ (t, Rx) (“rotation” of reference frame)

can be used to generate the whole set (group) of Galilean transformations.

Note : The names given to these basic Galilean transformations are suggestive. A

shift of the origin (in fact a spacetime translation) may be thought of as moving the

origin to a new position and resetting the clock, but maintaining the same orientation

in space. A (Galilean) velocity boost means the origin maintains its “orientation”

and uses the same clock, but now moves with a certain velocity with respect to the

previous origin. Finally, the “rotation” of reference frame (in fact an orthogonal

transformation or linear isometry) means the origin stays in the same place and uses

the same clock, but rotates the “point of view”.

Any Galilean transformation is represented by a quadruple (ζ, c, v, R) ∈
R× R3 × R3 × O (3) which we can write further as a 5× 5 matrix1 0 0

ζ 1 0

c v R

 .
Let Gal be the set of all such matrices. Thus

Gal : =


1 0 0

ζ 1 0

c v R

 | ζ ∈ R, c, v ∈ R3, R ∈ O (3)

 .
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� Exercise 43 Show that Gal is a group.

The group of all Galilean transformations is isomorphic to the group Gal.

Either one of these groups is called the Galilean group

We saw that the elements of Gal are products of spacetime translations,

velocity boosts, and spatial orthogonal transformations (in particular, rota-

tions). Various subgroups of Gal are of particular interest in applications

(including some familiar transformation groups). For instance,

• the subgroup of isochronous Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which ζ = 0;

• the subgroup of unboosted Galilean transformations consists of those

Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which v = 0;

• the subgroup of anisotropic Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which R = I;

• the subgroup of homogeneous Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which ζ = 0, c = 0.

� Exercise 44 Identify the following subgroups of Gal.

(a) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which ζ = 0, v = 0.

(b) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which v = 0, R = I.

(c) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple ζ, c, v, R)) for which ζ = 0, v = 0, R = I.

(d) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which c = 0, v = 0, R = I.
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1.6 Lorentz Transformations

Minkowski spacetime

The geometric setting for Einstein’s Special Theory of Relativity is provided

by Minkowski spacetime.

Note : A spacetime is simply the mathematical version of a universe that, like our

own physical universe, has dimensions both of space and of time. A flat spacetime

is a spacetime with no gravity, since gravitation tends to “bend” spacetime. Flat

spacetimes are the simplest kind of spacetimes; they stand in the same relation to

curved spacetimes as a flat Euclidean plane does to a curved surface.

We make the following definition.

1.6.1 Definition. The (standard) Minkowski spacetime R1,3 is the

vector space R4 together with the Minkowski product between vectors v =

(v0, v1, v2, v3) and w = (w0, w1, w2, w3) given by

v � w : = −v0w0 + v1w1 + v2w2 + v3w3.

The Minkowski product is an inner product; that is, it has the following

three properties (for v, v′, w ∈ R1,3 and λ, λ′ ∈ R) :

(IP1) (λv + λ′v′)� w = λ(v � w) + λ′(v′ � w);

(IP2) v � w = w � v;

(IP4) v � w = 0 for all v implies w = 0.

We can write (for v, w ∈ R1,3 )

v � w = v>Qw

where

Q = diag (−1, 1, 1, 1) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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The elements (vectors) of R1,3 are also called events.

Note : We can use t in place of v0 since in relativity theory this coordinate is

related to the time measurements while the others are related to the spatial ones.

Hence we can write elements of the Minkowski spacetime R1,3 in the form

ξ = (t, x) =

[
t

x

]
(t ∈ R, x ∈ R3).

Then (for ξ = (t, x) and ξ′ = (t′, x′)) ξ � ξ′ = −tt′ + x • x′.

Two vectors v, w ∈ R1,3 are Minkowski-orthogonal provided v�w = 0.

1.6.2 Example. Since the Minkowski product is not positive definite, there

exist nonzero elements (vectors) v ∈ R1,3 for which v � v = 0. For instance,

such a vector is v = (1, 0, 1, 0). Such vectors are said to be null and R1,3

actually has bases which consist exclusively of this type of vector. A null basis

cannot consist of mutually (Minkowski-)orthogonal vectors, however.

� Exercise 45 Show that two null vectors v, w are Minkowski-orthogonal if and

only if they are linearly dependent (i.e., v = λw for some λ ∈ R).

We make the following definitions (this terminology derives from relativity

theory).

1.6.3 Definition. A nonzero vector v ∈ R1,3 is called

• spacelike provided v � v > 0;

• timelike provided v � v < 0;

• null (or lightlike) provided v � v = 0.

� Exercise 46 Show that if a nonzero vector is Minkowski-orthogonal to a time-

like vector, then it must be spacelike.

Note : Let Q denote the quadratic form associated with the Minkowski product

on R1,3; that is, the mapping

Q : R1,3 → R, v 7→ v � v.
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Consider two distinct events ξ and ξ0 for which the displacement vector v : = ξ− ξ0
from ξ0 to ξ is null (i.e., Q(ξ − ξ0) = 0). Then we can define the null cone (or light

cone CN (ξ0)) at ξ0 by

CN (ξ0) : =
{
ξ ∈ R1,3 | Q(ξ − ξ0) = 0

}
.

CN (ξ0) consists of all those events in R1,3 that are “connectible to ξ0 by a light ray”.

Let T denote the collection of all timelike vectors in R1,3 and define a relation

∼ on T as follows :

v ∼ w ⇐⇒ v � w < 0.

This is an equivalence relation and hence T is the union of two disjoint subsets

(equivalence classes) T + and T −, called time cones, and there is no intrinsic way to

distinguish one from the other. We think of the elements of T + (and T − ) as having

the same time orientation. More specifically, we select (arbitrarily) T + and refer to

its elements as future-directed timelike vectors, whereas the vectors in T − we call

past-directed.

For each ξ0 in R1,3 we define the time cone CT (ξ0), future time cone C+
T (ξ0),

and past time cone C−T (ξ0) at ξ0 by

CT (ξ0) : =
{
ξ ∈ R1,3 | Q(ξ − ξ0) < 0

}
C+
T (ξ0) : =

{
ξ ∈ R1,3 | ξ − ξ0 ∈ T +

}
= CT (ξ0) ∩ T +

C−T (ξ0) : =
{
ξ ∈ R1,3 | ξ − ξ0 ∈ T −

}
= CT (ξ0) ∩ T −.

We picture CT (ξ0) as the interior of the null cone CN (ξ0). It is the (disjoint) union

of C+
T (ξ0) and C−T (ξ0).

The notion of time-orientation can be extended to null vectors. We say that a null

vector n is future-directed if n� v < 0 for all v ∈ T + and past-directed if n� v > 0

for all v ∈ T +. For any event ξ0 we define the future null cone C+
N (ξ0) and the past

null cone C−N (ξ0) at ξ0 by

C+
N (ξ0) : = {ξ ∈ CN (ξ0) | ξ − ξ0 is future-directed}

C−N (ξ0) : = {ξ ∈ CN (ξ0) | ξ − ξ0 is past-directed} .

Physically, event ξ is in C+
N (ξ0) if ξ0 and ξ can be regarded as the emission and

reception of a light signal, respectively. Consequently, C+
N (ξ0) may be thought of as

the history in spacetime of a spherical electromagnetic wave (photons in all directions)

whose emission event is ξ0.
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For a vector v = (v0, v1, v2, v3) ∈ R1,3 we write

‖v‖ : =
√
v � v =

√∣∣−v2
0 + v2

1 + v2
2 + v2

3

∣∣
and call it the Minkowski norm (or length) of v. A unit vector is a vector

v with Minkowski norm 1 : v � v = ± 1.

Note : This is a funny kind of “length” since null vectors have zero length (even

though they are not zero). For any timelike vector v, the Minkowski norm ‖v‖
is commonly referred to as the duration of v. If v = ξ − ξ0 is the displacement

vector between two events ξ, ξ0, then ‖v‖ is to be interpreted physically as the time

separation of ξ0 and ξ (in any admissible frame of reference in which both events

occur at the same spatial location).

Many features of Euclidean 3-space R3 (which is a positive definite inner

product space) have counter-intuitive analogues in the Minkowski case. For

example, analogues of the basic inequalities (like the Cauchy-Schwarz inequal-

ity and the triangle inequality) are generally reversed.

� Exercise 47 Show that if v and w are timelike vectors, then

(v � w)2 ≥ (v � v)(w � w)

and equality holds if and only if v and w are linearly dependent.

1.6.4 Proposition. Let v and w be timelike vectors in the same time

cone (i.e., with the same time orientation : v � w < 0). Then

‖v + w‖ ≥ ‖v‖+ ‖w‖

and equality holds if and only if v and w are linearly dependent.

Proof : Since v � v < 0, v + w ∈ T and (by Exercise 47)

‖v‖ ‖w‖ ≤ −v � w.

Hence

(‖v‖+ ‖w‖)2 = ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

≤ ‖v‖2 − 2v � w + ‖w‖2

≤ −(v + w)� (v + w)

= ‖v + w‖2
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and the equality holds if and only if ‖v‖ ‖w‖ = −v � w. The conclusion now

follows from Exercise 47. 2

Lorentz transformations

Lorentz transformations are structure-preserving transformations on the

Minkowski spacetime.

1.6.5 Definition. A linear transformation (on R1,3 ) L, v 7→ Lv is an

orthogonal transformation if it preserves the Minkowski product between

any two vectors; that is, for all v, w ∈ R1,3,

Lv � Lw = v � w.

The set of all orthogonal transformations on R1,3 is a (transformation)

group.

� Exercise 48 Let L : R1,3 → R1,3 be a linear transformation. Then show that

the following statements are equivalent :

(a) L is an orthogonal transformation.

(b) L preserves the quadratic form on R1,3 (i.e., Q(Lv) = Q(v) for all v ∈
R1,3).

(c) (The matrix of) L satisfies the condition

L>QL = Q

where Q = diag (−1, 1, 1, 1). (Hint : To prove that (b) ⇒ (a) compute

L(v + w)� L(v + w)− L(v − w)� L(v − w).)

Any such linear transformation L, v 7→ Lv on R1,3 is called a general

(homogeneous) Lorentz transformation.

Note : If L =
[
lij

]
is a 4 × 4 matrix such that L>QL = Q, where Q =

diag (−1, 1, 1, 1), then its columns are mutually Minkowski-orthogonal unit vectors.

Let LorGH be the set of all such 4×4 matrices (i.e. matrices representing

general homogeneous Lorentz transformations). Thus

LorGH : = {L ∈ GL (4,R) |L>QL = Q}.
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� Exercise 49 Show that LorGH is a subgroup of the general linear group GL (4,R).

The group of all (Minkowski-)orthogonal transformations is isomorphic to

the group LorGH . Either one of these groups is called the general (homo-

geneous) Lorentz group.

Let L =
[
lij

]
∈ LorGH (i.e., L>QL = Q). Then, in particular, we have

l211 = 1 + l212 + l213 + l214 ≥ 1

so that

l11 ≥ 1 or l11 ≤ −1.

L is said to be orthocronous if l11 ≥ 1 and nonorthocronous if l11 ≤ −1.

Nonorthocronous Lorentz transformations have certain “unsavory” character-

istics; for instance, they always reverse time orientation (and so presumably

relate reference frames in which someone’s clock is running backwards). For

this reason, it is commom practice to restrict attention to the orthocronous

elements of LorGH .

There is yet one more restriction we would like to impose on our Lorentz

transformations.

� Exercise 50 Show that if L ∈ LorGH , then

detL = 1 or detL = −1.

We shall say that a Lorentz transformation v 7→ Lv is proper if detL = 1

and improper if detL = −1. The set Lor of all proper, orthocronous Lorentz

transformations is a subgroup of LorGH . Generally, we shall refer to Lor simply

as the Lorentz group and its elements as Lorentz transformations with the

understanding that they are all proper and orthocronous.

Note : Ocasionally, it is convenient to enlarge the group Lor to include spacetime

translations, thereby obtaining the so-called inhomogeneous Lorentz group (or

Poincaré group). Physically, this amounts to allowing “admissible” observers to

use different spacetime origins.
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The Lorentz group Lor has an important subgroup consisting of those

elements of the form

R =

[
1 0

0 A

]

where A ∈ SO (3) (i.e., A> = A−1 and detA = 1). Such elements are called

(spatial) rotations (in Lor).

A Lorentz transformation v 7→ L(β)v of the form

L(β) : =


γ 0 0 −βγ
0 1 0 0

0 0 1 0

−βγ 0 0 γ


where −1 < β < 1 (and γ : = 1√

1−β2
≥ 1 ) is called a special Lorentz

transformation. The matrix L(β) is often called a (Lorentz) boost in the

x1-direction.

Note : Likewise, one can define matrices (representing) boosts in the x2- and x3-

directions. One can also define a boost in an arbitrary direction by first rotating, say,

the positive x1-axis into that direction and then applying L(β).

� Exercise 51 Suppose −1 < β1 ≤ β2 < 1. Show that :

(a)

∣∣∣∣ β1 + β2

1 + β1β2

∣∣∣∣ < 1.

(b) L(β2)L(β1) = L

(
β1 + β2

1 + β1β2

)
·

(Hint : Show that if a is a constant, then the function x 7→ x+ a

1 + ax
is increasing

for −1 ≤ x ≤ 1.)

It follows from Exercise 51 that the product of two boosts in the x1-

direction is another boost in the x1-direction. Since L(β)−1 = L(−β), the

collection of all such special Lorentz transformations forms a subgroup of Lor.

We point out, however, that the product of two boosts in two different direc-

tions is, in general, not equivalent to a single boost in any direction.
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Note : A simple computation shows that if we put β = tanh θ, then the Lorentz

transformation L(β) takes the hyperbolic form :

L(θ) =


cosh θ 0 0 − sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ

 .
It is remarkable that all of the physically interesting behaviour of (proper, orthochronous)

Lorentz transformations is exhibited by the special Lorentz transformations : any ele-

ment of Lor differs from some L(β) only by at most two rotations (in Lor); that is,

for L ∈ Lor there is some (real) number θ and (spatial) rotations R1, R2 ∈ Lor, such

that

L = R1L(θ)R2.
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2.1 Tangent Vectors and Frames

Tangent vectors

The basic method used to investigate curves (in Euclidean 3-space R3 ) con-

sists in assigning at each point (along the curve) a certain frame (i.e., a set of

three mutually orthogonal unit vectors) and then express the rate of change of

the frame in terms of the frame itself. In a real sense, the geometry of curves

is merely a corollary of these basic results.

Note : A frame consists of vectors located at some specific point. These vectors

are not free vectors (viewed as translations) but fixed vectors. We need to make

this distinction precise by “re-thinking” the representation of a geometric vector. To

obtain a concept that is both practical and precise, we shall describe an “arrow” by

giving the starting (fixed) point p and the change (vector) v, necessary to reach its

terminal point p+ v.

We make the following definition.

2.1.1 Definition. A tangent vector to R3 at a point p, denoted by vp,

is an ordered pair (p, v). p is the point of application of vp, and v is the

vector part.

Note : p+ v is considered as the position vector of a point.

We shall always picture vp as the arrow (directed line segment) from the

point p to the point p+ v.

2.1.2 Example. If p = (1, 1, 3) and v = (2, 3, 2) (in fact, v =

2

3

2

), then

vp “runs” from (1, 1, 3) to (3, 4, 5).

We emphasize that tangent vectors vp and wq are equal if and only if

they have the same vector part and the same point of application :

vp = wq ⇐⇒ ( v = w and p = q ).
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Tangent vectors vp and vq with the same vector part, but different points of

application, are said to be parallel.

Note : It is essential to recognize that vp and vq are different tangent vectors

if p 6= q. In physics, the concept of moment of a force shows this clearly : the same

force v applied at different points p and q of a rigid body can produce quite different

rotational effects.

Let p be a point of R3. The set TpR3 of all tangent vectors to R3 at p

is called the tangent space of R3 at p.

Note : R3 has a different tangent space at each and every one of its points.

Since all the tangent vectors in a given tangent space have the same point

of application, we can borrow the vector addition and scalar multiplication of

R3 to turn TpR3 into a vector space. Explicitly, we define (for vp, wp ∈ TpR3

and λ ∈ R )

vp + wp : = (v + w)p and λvp : = (λv)p.

This is just the usual “parallelogram law” for addition of vectors, and scalar

multiplication by λ merely stretches a tangent vector by a factor |λ|, reversing

its direction if λ < 0.

� Exercise 52 Show that, for a fixed point p, the vector spaces R3 and TpR3

are isomorphic.

Vector fields

2.1.3 Definition. A vector field X on R3 is a mapping

p ∈ R3 7→ X(p) ∈ TpR3.

Let X and Y be vector fields on R3. Then we can define X + Y to be

the vector field on R3 such that

(X + Y )(p) : = X(p) + Y (p)

for all p ∈ R3. Similarly, if f is a (real-valued) function on R3 and X is a

vector field on R3, then we can define fX to be the vector field on R3 such

that

(fX)(p) : = f(p)X(p)
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for all p ∈ R3.

Note : Both operations were defined “pointwise”. This scheme is general. For

convenience, we shall call it the pointwise principle : if a certain operation can be

performed on the values of two functions at each point, then that operation can be

extended to the functions themselves; simply apply it to their values at each point.

By means of the pointwise principle we can automatically extend other operations

on individual tangent vectors (like dot product and cross product) to operations on

vector fields.

Let E1, E2, E3 be the vector fields on R3 such that

E1(p) : = (1, 0, 0)p, E2(p) : = (0, 1, 0)p, and E3(p) : = (0, 0, 1)p

at each point p of R3. Thus Ei is the unit vector field in the positive xi-

direction. We shall refer to the ordered set E = (E1, E2, E3) as the natural

frame field on R3.

2.1.4 Proposition. If X is a vector field on R3, then there exist uniquely

determined real-valued functions X1, X2, X3 on R3 such that

X = X1E1 +X2E2 +X3E3.

Proof : By definition, vector field X assigns to each point p a tangent

vector X(p) at p. Thus the vector part of X(p) depends on p, so we write it

(X1(p), X2(p), X3(p)) .

This defines X1, X2 and X3 as (real-valued) functions on R3. Hence

X(p) = (X1(p), X2(p), X3(p))p

= X1(p)(1, 0, 0)p +X2(p)(0, 0, 1)p +X3(p)(0, 0, 1)p

= X1(p)E1(p) +X2(p)E2(p) +X3(p)E3(p)

for each point p. This means that the vector fields X and X1E1 + X2E2 +

X3E3 have the same (tangent vector) value at each point, and hence they are

equal. 2
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The functions X1, X2, and X3 are called the Euclidean coordinate func-

tions of X. We write

X = (X1, X2, X3) or sometimes X =

X1

X2

X3

 .
Note : A vector field X on R3 is a mapping not from R3 to R3 but from R3 to

(the union)
⋃
p∈R3

TpR3. So X(p) = (p, (X1(p), X2(p), X3(p))) = (X1(p), X2(p), X3(p))p.

Computations involving vector fields may always be expressed in terms

of their Euclidean coordinate functions. A vector field X is differentiable

provided its Euclidean coordinate functions are differentiable. Henceforth, we

shall understand “vector field” to mean “differentiable vector field”.

Note : Since the subscript notation vp for a tangent vector is somewhat cumber-

some, from now on we shall omit the point of application p from the notation if no

confusion is caused. However, in many situations the point of application is crucial,

and will be indicated by using the old notation vp or the phrase “a tangent vector v

to R3 at p”.

� Exercise 53 Sketch the following vector fields on (the Euclidean plane) R2 :

(a) X(p) = (1, 0);

(b) X(p) = p;

(c) X(p) = −p;

(d) X(x1, x2) = (x2, x1);

(e) X(x1, x2) = (−x2, x1).

Frames

Using the isomorphism v 7→ vp between R3 and TpR3, the dot product

on R3 may be transferred to each of its tangent spaces.

2.1.5 Definition. The dot product of tangent vectors vp and wp at the

same point of E3 is the number

vp • wp : = v • w.
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Note : This definition provides a dot product on each tangent space Tp(R3) with

the same properties as the original dot product on R3. In particular, each tangent

vector vp has a norm (or length) ‖vp‖ : = ‖v‖. A vector of length 1 is called a

unit tangent vector. Two tangent vectors vp and wp are orthogonal if and only if

vp • wp = 0.

2.1.6 Definition. An ordered set u = (u1, u2, u3) of three mutually or-

thogonal unit tangent vectors to R3 at the point p is called a frame (at

p).

Thus u = (u1, u2, u3) is a frame if and only if

ui • uj = δij , i, j = 1, 2, 3.

� Exercise 54 Check that the tangent vectors

u1 =
1√
6

(1, 2, 1)p, u2 =
1

2
√

2
(−2, 0, 2)p, and u3 =

1√
3

(1,−1, 1)p

constitute a frame at p. Express v = (6, 1,−1)p as a linear combination of these

vectors. (Check the result by direct computation.)

2.1.7 Example. At each point p ∈ R3, the tangent vectors

E1(p) : = (1, 0, 0)p, E2(p) : = (0, 1, 0)p, E3(p) : = (0, 0, 1)p

constitute a frame, called the natural frame (at p ).

If v is a tangent vector to R3 at some point p, then

v = (v1, v2, v3)p = v1E1(p) + v2E2(p) + v3E3(p).

� Exercise 55 Let v ∈ TpR3 and let (u1, u2, u3) be a frame (at p). Show that

v = (v1, v2, v3)p = (v • u1)u1 + (v • u2)u2 + (v • u3)u3.

The numbers v • ui (i = 1, 2, 3) are the coordinates of the tangent vector v

with respect to the frame u = (u1, u2, u3).
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2.1.8 Definition. The cross product of tangent vectors vp and wp at

the same point p ∈ R3 is the tangent vector (at p )

vp × wp : =

∣∣∣∣∣∣∣
E1(p) E2(p) E3(p)

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣
= (v2w3 − v3w2)E1(p) + (v3w1 − v1w3)E2(p) + (v1w2 − v2w1)E3(p).

Note : Likewise, this definition provides a cross product on each tangent space

TpR3 with the same properties as the original cross product on R3. In particular,

two tangent vectors vp and wp are collinear if and only if vp × wp = 0.

� Exercise 56 If (u1, u2, u3) is a frame, show that

u1 • u2 × u3 = ±1.

Let F, x 7→ Ax + c be an isometry on R3. Then its orthogonal part A

defines a mapping F∗ that carries each tangent vector at p to a tangent vector

at F (p). The mapping

F∗ = F∗,p : TpR3 → TF (p)R3, vp 7→ (Av)F (p)

is called the tangent mapping of F (at p). In terms of Euclidean coordi-

nates, we have

F∗ (v1E1(p) + v2E2(p) + v3E3(p)) = (a11v1 + a12v2 + a13v3)E1(F (p)) +

(a21v1 + a22v2 + a23v3)E2(F (p)) +

(a31v1 + a32v2 + a33v3)E3(F (p))

=
3∑

i,j=1

(aijvj)Ei(F (p)).

� Exercise 57 If T is a translation on R3, then for every tangent vector v ∈
TpR3 show that T∗(v) is parallel to v.

� Exercise 58 If F and G are two isometries on R3, show that

(GF )∗ = G∗F∗ and
(
F−1

)
∗ = (F∗)

−1.
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� Exercise 59 Given an isometry F on R3, show that its tangent mapping F∗

preserves the dot product of any two (tangent) vectors.

Since dot products are preserved, it follows automatically that derived con-

cepts such as norm and orthogonality are preserved. Explicitly, if F is an

isometry, then ‖F∗(v)‖ = ‖v||, and if v and w are orthogonal, so are F∗(v)

and F∗(w). Thus frames are also preserved.

� Exercise 60 If u = (u1, u2, u3) is a frame at some point p ∈ R3 and F is an

isometry on R3, show that F∗(u) = (F∗(u1), F∗(u2), F∗(u3)) is a frame at F (p).

Recall that two points uniquely determine a translation. We now show

that two frames uniquely determine an isometry.

2.1.9 Theorem. Given any two frames on R3, say u = (u1, u2, u3) at the

point p and w = (w1, w2, w3) at the point q, there exists a unique isometry

F on R3 such that

F∗(ui) = wi, i = 1, 2, 3.

Proof : First we show that there is such an isometry. Let u1, u2, u3 and

w1, w2, w3 be the points of R3 corresponding to (the vector parts of) the

elements in the two frames. Let A be the unique linear transformation on

R3 such that A(ui) = wi, i = 1, 2, 3.

� Exercise 61 Check that the transformation (matrix) A is orthogonal.

Let T be the translation by (the vector) q−A(p). We claim that the isometry

F = TA carries the frame u = (u1, u2, u3) to the frame w = (w1, w2, w3).

First observe that

F (p) = TA(p) = q −A(p) +A(p) = q.

Then we get

F∗(ui) = (Aui)F (p) = (wi)F (p) = (wi)q = wi, i = 1, 2, 3.

To prove uniqueness, we observe that the choice of A is the only possibility

for the orthogonal part of the required isometry. The translation part is then

completely determined also, since it must carry p to q. Hence the isometry

F = TA is uniquely determined. 2
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The isometry F = TA (that carries the frame u = (u1, u2, u3) to the frame

w = (w1, w2, w3) ) can be computed explicitly as follows. Let

ui = (u1i, u2i, u3i)p and wi = (w1i, w2i, w3i)q, i = 1, 2, 3.

Then we form the 3× 3 matrices (called the attitude matrices of the frames)

U : =
[
u1 u2 u3

]
=
[
uij

]
and W : =

[
w1 w2 w3

]
=
[
wij

]
.

� Exercise 62 Show that the attitude matrix of a frame is orthogonal.

We claim that (the orthogonal matrix) A is WUT . To verify this it suffices

to check that

WU>(ui) = wi, i = 1, 2, 3

since this uniquely characterizes A. For i = 1, we have

WU>(u1) = WU>

u11

u21

u31

 = W

1

0

0

 =

w11

w21

w31

 = w1.

That is, WU>(u1) = w1. The cases i = 2, 3 are similar; hence

A = WU>
(
= WU−1

)
.

As noted above, T is then necessarily the translation by q −A(p).

� Exercise 63 In each case decide whether F is an isometry on R3. If isometry

exists, find the translation and orthogonal parts.

(a) F (x) = −x;

(b) F (x) = (x • a)a where ‖a‖ = 1;

(c) F (x) = (x3 − 3, x2 − 2, x1 + 1);

(d) F (x) = (x1, x2, 2).

� Exercise 64 Identify the isometry F, x 7→ −x on R3.
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� Exercise 65 Show that the matrix

A =

0 0 1

0 1 0

1 0 0


represents a reflection in a plane. Find the plane.

� Exercise 66 Given the frame

u1 =
1

3
(2, 2, 1)p, u2 =

1

3
(−2, 1, 2)p, u3 =

1

3
(1,−2, 2)p

at p = (0, 1, 0) and the frame

w1 =
1√
2

(1, 0, 1)q, w2 = (0, 1, 0)q, w3 =
1√
2

(1, 0,−1)q

at q = (3,−1, 1), find c and A such that the isometry F = TcA carries the frame

u = (u1, u2, u3) to the frame w = (w1, w2, w3).

Frame fields

2.1.10 Definition. Vector fields U1, U2, U3 on R3 constitute a frame

field on R3 provided

Ui • Uj = δij , i, j = 1, 2, 3.

Thus at each point p ∈ R3 the (tangent) vectors U1(p), U2(p), U3(p) form a

frame.

� Exercise 67 If X and Y are vector fields on R3 that are linearly independent

at each point, show that

U1 =
X

‖X‖
, U2 =

Ỹ

‖Ỹ ‖
, U3 = U1 × U2

is a frame field, where Ỹ = Y − (Y • U1)U1.

Let (U1, U2, U3) be a frame field on R3. If X is a vector field on R3, then

X = f1U1 + f2U2 + f3U3,
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where the (differentible) functions fi = X •Ui are called the coordinate func-

tions of X with respect to the frame (U1, U2, U3). If

X = f1U1 + f2U2 + f3U3 and Y = g1U1 + g2U2 + g3U3

are two vector fields on R3, then

X • Y = f1g1 + f2g2 + f3g3.

In particular,

‖X‖ =
√
f2

1 + f2
2 + f2

3 .

Note : A given vector field X has a different set of coordinates functions with

respect to each choice of a frame field (U1, U2, U3). The Euclidean coordinate func-

tions, of course, come from the natural frame field (E1, E2, E3). In studying curves

in R3 we shall be able to choose a frame field specifically adapted to the problem at

hand. Not only does this simplify computations, but it gives a clearer understanding

of geometry than if we had insisted on using the same frame field in every situation.

Orientation

Let u = (u1, u2, u3) be a frame at a point p ∈ R3. Recall that associated

with each frame u is its attitude matrix U .

Note : u1 • u2 × u3 = detU = ±1.

We make the following definition.

2.1.11 Definition. The frame u = (u1, u2, u3) is said to be

• positively-oriented (or right-handed) provided u1 • u2 × u3 = +1;

• negatively-oriented (or left-handed) provided u1 • u2 × u3 = −1.

At each point p of R3, the natural frame (e1, e2, e3) is positively-oriented.

� Exercise 68 Show that a frame (u1, u2, u3) is positively-oriented if and only

if u1 × u2 = u3. Thus the orientation of a frame can be determined, for practical

purposes, by the “right-hand rule”.
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We know that the tangent mapping of an isometry carries frames to frames.

The following result tells what happens to their orientations.

2.1.12 Proposition. If u = (u1, u2, u3) is a frame at a point p ∈ R3 and

F is an isometry on R3, then

F∗(u1) • F∗(u2)× F∗(u3) = (sgnF )u1 • u2 × u3.

Proof : If

uj = u1jE1(p) + u2jE2(p) + u3jE3(p), j = 1, 2, 3

then we have

F∗(uj) =
3∑

i,k=1

aikukjEi(F (p)),

where A =
[
aik

]
is the orthogonal part of F . Thus the attitude matrix of

the frame F∗(u) = (F∗(u1), F∗(u2), F∗(u3)) is the matrix[
3∑

k=1

aikukj

]
= AU.

But the triple scalar product of a frame is the determinant of its attitude

matrix, and hence

F∗(u1) • F∗(u2)× F∗(u3) = det (AU)

= detA · detU

= (sgnF )u1 • u2 × u3.

2

This result shows that if the isometry F is direct (i.e., sgnF = +1 ), then

F∗ carries positively-oriented frames to positively-oriented frames and carries

negatively-oriented frames to negatively-oriented frames. On the other hand,

if the isometry F is opposite (i.e., sgnF = −1 ), then positive goes to negative

and negative to positive.
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Note : Direct isometries preserve orientation (of frames), and opposite isometries

reverse it. For this very reason, direct isometries are also called orientation-preserving

isometries, whereas opposite isometries are called orientation-reversing isometries.

Both dot and cross product were originally defined in terms of Euclidean

coordinates. It is easy to see that the dot product is given by the same formula,

no matter what frame (u1, u2, u3) is used to get coordinates. Indeed, we have

v • w = (v1u1 + v2u2 + v3u3) • (w1u1 + w2u2 + w3u3)

=

3∑
i,j=1

(viwj)ui • uj

=
3∑

i,j=1

δij viwj

= v1w1 + v2w2 + v3w3.

Almost the same result holds for cross products, but orientation is now in-

volved.

� Exercise 69 Let (u1, u2, u3) be a frame at a point p ∈ R3. If v =
∑
viui

and w =
∑
wiui, show that

v × w = ε

∣∣∣∣∣∣∣
e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ ,
where ε = u1 • u2 × u3 = ±1.

It follows immediately that the effect of an isometry on cross products also

involves orientation. Explicitly, if v and w are tangent vectors to R3 at p,

and F is an isometry on R3, then

F∗(v × w) = (sgnF )F∗(v)× F∗(w).

2.2 Directional Derivatives

Associated with each tangent vector vp to R3 is the line t 7→ p+ tv. If f is

a differentiable function on R3, then

t 7→ f(p+ tv)
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is an ordinary differentiable function R→ R.

Note : The derivative of this function at t = 0 tells the initial rate of change of

f as p moves in the v direction.

We make the following definition.

2.2.1 Definition. Given a differentiable function f : R3 → R and a tan-

gent vector vp ∈ TpR3, the number

vp[f ] : =
d

dt
f(p+ tv)

∣∣∣∣
t=0

is called the directional derivative of f with respect to vp.

Note : This definition appears in elementary calculus with the additional restric-

tion that vp be a unit vector. Even though we do not impose this restriction, we

shall nevertheless refer to vp[f ] as a directional derivative.

2.2.2 Example. We compute (the directional derivative) vp[f ] for the

function f(x1, x2, x3) = x2
1x2x3 with p = (1, 1, 0) and v = (1, 0,−3). Then

p+ tv = (1, 1, 1) + t(1, 0,−3) = (1 + t, 1,−3t)

describes the line through p in the v direction. Evaluating f along this line,

we get

f(p+ tv) = (1 + t)2 · 1 · (−3t) = −3t− 6t2 − 3t3.

Now
d

dt
f(p+ tv) = −3− 12t− 9t2

and hence, at t = 0, we find vp[f ] = −3. Thus, in particular, the function f

is initially decreasing as p moves in the v direction.

� Exercise 70 Compute the directional derivative of the function f(x1, x2, x3) =

x1x2 + x3 with respect to vp = (1,−4, 2)p, where p = (1, 1, 0).

The following result shows how to compute vp[f ] in general, in terms of

the partial derivatives of f at the point p.
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2.2.3 Proposition. If vp = (v1, v2, v3)p is a tangent vector to R3, then

vp[f ] = v1
∂f

∂x1
(p) + v2

∂f

∂x2
(p) + v3

∂f

∂x3
(p)·

Proof : Let p = (p1, p2, p3). Then

p+ tv = (p1 + tv1, p2 + tv2, p3 + tv3).

We use the chain rule to compute the derivative at t = 0 of the function

f(p+ tv) = f(p1 + tv1, p2 + tv2, p3 + tv3).

We obtain

vp[f ] =
d

dt
f(p+ tv)

∣∣∣∣
t=0

=
3∑
i=1

d

dt
(pi + tvi)

∂f

∂xi
(p)

= v1
∂f

∂x1
(p) + v2

∂f

∂x2
(p) + v3

∂f

∂x3
(p)·

2

Note : We can write the directional derivative vp[f ] in matrix form :

vp[f ] =
[
∂f
∂x1

(p) ∂f
∂x2

(p) ∂f
∂x3

(p)
]v1

v2

v3

 .

The main properties of this notion of derivative are as follows.

� Exercise 71 Let f and g be differentiable functions on R3, vp and wp

tangent vectors at a point p ∈ R3, and λ and µ real numbers. Show that :

(a) (λvp + µwp)[f ] = λvp[f ] + µwp[f ].

(b) vp[λf + µg] = λvp[f ] + µvp[f ].

(c) vp[fg] = vp[f ]g(p) + f(p)vp[g].
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The first two properties may be summarized by saying that (the mapping)

(vp, f) 7→ vp[f ] is linear in vp and f . The third property is essentially just

the usual Leibniz rule for differentiation of a product.

Note : No matter what form differentiation may take, it will always have suitable

linear and Leibnizian properties.

� Exercise 72 Given two tangent vectors vp, wp to R3, show that if

vp[f ] = wp[f ]

for every differentiable function f on R3, then vp = wp.

We now use the pointwise principle to define the operation of a vector field

on a function. Let X be a vector field and f a differentiable function on R3.

Then we define the function X[f ] (or simply Xf ) by

X[f ](p) : = X(p)[f ].

That is, the value of X[f ] at the point p is the directional derivative of f

with respect to the tangent vector X(p) at p.

� Exercise 73 If X and Y are vector fields, and f, g, h are differentiable func-

tions on R3, then show that (for λ, µ ∈ R) :

(a) (fX + gY )[h] = fX[h] + gY [h].

(b) X[λf + µg] = λX[f ] + µX[g].

(c) X[fg] = X[f ] · g + f ·X[g].

In particular, if (E1, E2, E3) is the natural frame field on R3, then

Ei[f ] =
∂f

∂xi
(i = 1, 2, 3).

This is an immediate consequence of Proposition 2.2.3. For example,

E1(p) = (1, 0, 0)p and hence (for all points p = (p1, p2, p3))

E1(p)[f ] =
d

dt
f(p1 + t, p2, p3)

∣∣∣∣
t=0

=
∂f

∂x1
(p)·
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If X = (X1, X2, X3) is a vector field on R3 we can write

X = X1E1 +X2E2 +X3E3

= X1
∂

∂x1
+X2

∂

∂x2
+X3

∂

∂x3
·

This notation makes it a simple matter to carry out explicit computations.

2.2.4 Example. For (the vector field)

X = x1
∂

∂x1
− x2

2

∂

∂x3

and (the differentiable function) f = x2
1x2 + x3

3 we compute

X[f ] = x1
∂

∂x1

(
x2

1x2 + x3
3

)
− x2

2

∂

∂x3

(
x2

1x2 + x3
3

)
= x1(2x1x2)− x2

2(3x2
3)

= 2x2
1x2 − 3x2

2x
2
3.

� Exercise 74 Given a vector field X, show that

X = X[x1]
∂

∂x1
+X[x2]

∂

∂x2
+X[x3]

∂

∂x3

where x 7→ xi, i = 1, 2, 3 are the natural coordinate functions.

� Exercise 75 Let

X =
∂

∂x1
+

∂

∂x2

Y = x1
∂

∂x1
− ∂

∂x3

f = x1x2.

Compute X[f ], Y [f ], X[f2], X[X[f ]], and X[Y [f ]]− Y [X[f ]].

2.3 Curves in Euclidean 3-Space R3

Parametrized curves
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We want to characterize certain subsets of Euclidean 3-space R3 (to be called

curves) that are, in a certain sense, one-dimensional and to which the methods

of calculus can be applied.

Note : There are various notions of a curve in R3. We shall deal here with only one

such notion. The definition is not entirely satisfactory but sufficient for our purposes.

A convenient way of defining such subsets is through differentiable maps. Let

J be an interval on the real line (the interval may be open or closed, finite,

semi-infinite or the entire real line). One can picture a curve in R3 as a trip

taken by a moving particle α. At each “time” t, α is located at the point

α(t) = (α1(t), α2(t), α3(t)) in R3. We make the following definition.

2.3.1 Definition. A (parametrized) curve in R3 is a smooth map

α : J → R3, t 7→ (α1(t), α2(t), α3(t)).

The curve is regular if α̇(t) = dα
dt (t) 6= 0 for all t ∈ J .

The functions α1, α2, α3 are called the Euclidean coordinate functions

and t is called the parameter of α. We write α = (α1, α2, α3).

Note : More generally, we can speak of differentiability of order k (or class Ck).

One then requires the appropriate order of differentiability in each definition and

theorem. To focus more on the geometry than the analysis we have ignored this

subtlety by assuming curves to be smooth (i.e., of class C∞).

The image set α(J) ⊂ R3 is called the trace of α, which is the geometric

object of interest. One should carefully distinguish a parametrized curve,

which is a map, from its trace, which is a subset of R3.

Note : A given trace may be the image set (or route) of many (parametrized)

curves. In this setting, it may be appropriate to call the common trace a geometric

curve and refer to the curves as parametrizations (or parametric representations).

2.3.2 Example. (The line) A (straight) line is the simplest type of geo-

metric curve in R3. We know that two points determine a line. For two points

p, q ∈ R3, the line
←→
pq may be described as follows. To attain the line, add
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the vector p. To travel along the line, use the direction vector q−p since this

is the direction from p to q. A parameter t tells exactly how far along q− p
to go. Putting these steps together produces

α : R→ R3, t 7→ p+ t(q − p), q 6= p

which gives a parametrization of the line through the points p and q (or, if

one prefers, the line through the point p with direction vector q − p).

� Exercise 76 Find a parametrization of the line through the points (−1, 0, 5)

and (3,−1,−2).

2.3.3 Example. (The circle) The circle of radius a with centre p =

(p1, p2, 0) ∈ R2 is the set (locus) of points x in the plane R2 (i.e., the x1x2-

plane of R3) such that

‖x− p‖ = a

(the distance between x and p is the fixed positive real number a). A natural

parametric representation is

α : R→ R3, t 7→ (p1 + a cos t, p2 + a sin t, 0).

� Exercise 77 Find a curve α : R→ R3 whose trace is the unit circle x2
1 +x2

2 =

1, x3 = 0 and such that α(t) runs clockwise around the circle with α(0) = (0, 1).

2.3.4 Example. (The helix ) A (circular) helix is a geometric curve rep-

resented (given) parametrically by

α : R→ R3, t 7→ (a cos t, a sin t, bt); a > 0, b 6= 0.

It rises (when b > 0) or falls (when b < 0) at a constant rate on the (circular)

cylinder x2
1 + x2

2 = a2. The x3-axis is called the axis, and 2π b the pitch of

the helix.

2.3.5 Example. The curve

α : R→ R3, t 7→ (t3, t2, 0).

is not regular because α̇(0) = (0, 0, 0). The trace has a cusp at the origin.
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2.3.6 Example. The curve

α : R→ R3, t 7→ (cosh t, sinh t, t)

is known as the hyperbolic helix. (Recall that the hyperbolic trigonometric

functions are defined by the formulas

cosh t =
et + e−t

2
, sinh t =

et − e−t

2
, tanh t =

et − e−t

et + e−t
·

We have the fundamental identity cosh2 t− sinh2 t = 1.)

If we visualize a (parametrized) curve α in R3 as a moving particle, then

at every time t there is a tangent vector at the point α(t) which gives the

instantaneous velocity of α at that time.

2.3.7 Definition. Let α : J → E3 be a curve in R3 with α = (α1, α2, α3).

For each number t ∈ J , the velocity vector of α at t is the tangent vector

α̇(t) : =

(
dα1

dt
(t),

dα2

dt
(t),

dα3

dt
(t)

)
α(t)

at the point α(t) ∈ R3.

If α is a regular curve, all its velocity vectors are different from zero. A regular

curve can have no corners or cusps.

2.3.8 Example. The velocity vector of the (straight) line α(t) = p+ t(q−
p) is

α̇(t) = (q1 − p1, q2 − p2, q3 − p3)α(t) = (q − p)α(t).

The fact that α is “straight” is reflected in the fact that all its velocity vectors

are parallel ; only the point of application changes as t changes.

2.3.9 Example. For the helix represented by α(t) = (a cos t, a sin t, bt),

the velocity vector at t is

α̇(t) = (−a sin t, a cos t, b)α(t).

The fact that the helix “rises” constantly is shown by the constancy of the

x3-coordinate of α̇(t).



60 M4.3 - Geometry

Note : The line, the circle, the ellipse, and the helix (circular or hyperbolic) are

all regular curves.

� Exercise 78 For a fixed t, the tangent line to a regular curve α : J → R3 at

the point α(t) is the line u 7→ α(t) + uα̇(t). Find the tangent line to the helix

α(t) = (2 cos t, 2 sin t, t)

at the points p = α(0) and q = α
(
π
4

)
.

� Exercise 79 Find the curve α : R→ R3 such that

α(0) = (2, 3, 0) and α̇(t) = (et,−2t, t2).

Let α : J → R3 be a curve. The norm of the velocity vector α̇(t) of α

at t

‖α̇(t)‖ : =
√
α̇(t) • α̇(t) =

√(
dα1

dt
(t)

)2

+

(
dα2

dt
(t)

)2

+

(
dα3

dt
(t)

)2

is called the speed of α at t. Again, thinking of α as the path of a moving

particle and t as time, we see that the length of the velocity vector is precisely

the speed of the particle at the given time.

Note : A regular curve has speed always greater than zero.

� Exercise 80 If α : J → R3 is a curve, its acceleration vector at t is given by

α̈(t) : =

(
d2α1

dt2
(t),

d2α2

dt2
(t),

d2α3

dt2
(t)

)
α(t)

.

What can be said about α if its acceleration is identically zero ?

� Exercise 81 Verify that the curve α(t) = (cos t, sin t, 1) has constant speed,

but nonzero acceleration.

� Exercise 82 For the curve α(t) =
(

2t, t2, t
3

3

)
, find the velocity, speed, and

acceleration for arbitrary t, and at t = 1.

� Exercise 83 Show that (the trace of) the curve α(t) = (t cos t, t sin t, t) lies

on a cone in R3. Find the velocity, speed, and acceleration of α at the vertex of the

cone.
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Other examples of curves

The following plane parametrized curves arise naturally throughout the

physical sciences and mathematics.

2.3.10 Example. (The catenary) Let f : J → R be any smooth function.

The graph of f is the set of all points (t, f(t)) ∈ R2 with t ∈ J , so is the

trace of the (regular) curve

α : J → R2, t 7→ (t, f(t)).

In particular, for f(t) = a cosh t
a , we get the catenary (from the Latin for

“chain”).

Note : The catenary is of historical interest, representing the form (shape) adopted

by a perfect inextensible chain of uniform density suspended by its ends and acted

upon by gravity. It was studied first by Galileo Galilei (1564-1642), who mistook

it for a parabola, and later by Gottfried Leibniz (1646-1716), Christiaan Huy-

gens (1629-1695), and Johann Bernoulli (1667-1748). (They were responding

to the challenge put out by Jakob (Jacques) Bernoulli (1654-1705) to find the

equation of the “chain-curve”.) It is also of contemporary mathematics interest, being

a plane section of the minimal surface (a soap film catenoid) spanning two circular

discs, the only minimal surface of revolution.

2.3.11 Example. (The cycloid) Suppose a circle of radius a sits on the x1-

axis making contact at the origin. Let the circle to roll (without slipping) along

the positive x1-axis. The figure (path) described by the point on the circle,

originally in contact with the x1-axis, is a geometric curve called cycloid. It

can be shown that a parametric reprezentation of the cycloid is

α : R→ E2, t 7→ (a(t− sin t), a(1− cos t))

where (the parameter) t is the angle formed by the (new) point of contact

with the axis, the centre of the circle, and the original point of contact.

� Exercise 84 Draw a picture (i.e., sketch the graph) of the cycloid.
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We can see that the cycloid has infinitely many cusps (corresponding to t =

2kπ, k ∈ Z) : the arc of the cycloid between any two consecutive cusps is called

an arch. Generally, when a curve rolls (without slipping) along another fixed

curve, any point which moves with the moving curve describes a curve, called

a roulette (from the French for “small wheel”). Consider now the roulette of

a tracing point carried by a (moving) circle of radius a rolling along a line

(the x1-axis, say). It is assumed that in the initial configuration the (moving)

circle is tangent to the x1-axis at the origin and that the tracing point is the

point on the x2-axis distance ha from the centre of the circle. The resulting

roulette, also known as a cycloid, has the parametrization

x1(t) = a(t− h sin t), x2(t) = a(1− h cos t).

The form of the cycloid depends on whether the tracing point is inside (h < 1),

on (h = 1) or outside (h > 1) the moving circle. For h < 1 we obtain a

“shortened” cycloid reminiscent of the sine curve. For h > 1 we obtain an

“extended” cycloid with infinitely many self crossings. Finally, for h = 1 we

get the (standard or “cuspidal”) cycloid as introduced above.

Note : The cycloid has two additional names and a lot of interesting history. The

other two names are the tautochrone and the brachistochrone. Christiaan Huygens

(1629-1695) discovered a remarkable property of the cycloid : it is the only curve

such that a body falling under its own weight is guided by this curve so as to oscillate

with a period that is independent of the initial point where the body is released.

Therefore, he called this curve (i.e. the cycloid) the tautochrone (from the Greek for

“same time”; ταυτ óς : equal, and χρóνoς : time).

In 1696 Johann Bernoulli (1667-1784) posed a question (problem) and in-

vited his fellow mathematicians to solve it. The problem (which he had solved and

which he considered very beautiful and very difficult), called the brachistochrone prob-

lem, is the following : Given two points p and q in a vertical plane (with q below

and to the right of p ) find, among all (smooth) curves with endpoints p and q, the

curve such that a particle which slides without friction along the curve under the in-

fluence of gravity will travel from the one point to the other in the least possible time.

(Johann Bernoulli solved the problem ingeniously by employing Fermat’s princi-

ple that light travels to minimize time together with Snell’s law of refraction. The

other solvers included Johann’s brother, Jakob Bernoulli, as well as Gottfried
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Leibniz (1646-1716), Isaac Newton (1642-1727), and L’Hôpital (1661-1704).)

This problem is important because it led to the systematic consideration of similar

problems; the new discipline which developed thereby is called the calculus of vari-

ations. Moreover, Bernoulli’s problem is a true minimum time problem of the kind

that is studied today in optimal control theory. Bernoulli called the “fastest path”

the brachistochrone (from the Greek for “shortest time”; βράχιστoς : shortest, and

χρóνoς : time).

2.3.12 Example. (The astroid) A parametric reprezentation of the curve

called the astroid is

α : [0, 2π]→ E2, t 7→
(
a cos3 t, a sin3 t

)
.

The definition of the astroid is very similar to that of the cycloid. For the

astroid, however, a circle is rolled (without slipping), not on a line, but inside

another (fixed) circle. More precisely, let a circle of radius a
4 roll inside a large

circle of radius a (and centered at the origin say). For concreteness, suppose

we start the little circle at (a, 0) and follow the path of the point originally

in contact with (a, 0) as the circle rolls up. Let t denote the angle from the

centre of the large circle to the new contact point. One can show that, with

respect to the origin, the rolling point moves to

α(t) =

(
3a

4
cos t+

a

4
cos 3t,

3a

4
sin t− a

4
sin 3t

)
.

� Exercise 85 Show that the formula for the astroid may be reduced to

α(t) =
(
a cos3 t, a sin3 t

)
with implicit form

x
2
3
1 + x

2
3
2 = a

2
3 .

Note : Recall that when one curve rolls along another fixed curve, any point which

moves with the moving curve describes a curve, called a roulette. When the curves

are circles the resulting roulette is called a trochoid. Trochoids occur naturally in

the physical sciences. Assume that the fixed circle has centre o at the origin and

radius a > 0, and that the moving circle has centre o′ and “radius” a′ 6= 0. The

case a′ > 0 is interpreted as the moving circle rolling on the outside of the fixed one
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(an epitrochoid), while a′ < 0 is interpreted as the moving circle rolling on the inside

of it (an hypotrochoid). Suppose the tracing point is distant a′h from the centre a′

of the moving circle. Write t for the angle between the line oo′ and the x1-axis,

and assume (without loss of generality) that when t = 0 the tracing point lies on the

x1-axis. It can be shown that the following parametric reprezentation results

t 7→ ((λ+ 1) cos t− h cos(λ+ 1)t, (λ+ 1) sin t− h sin(λ+ 1)t)

where λ : = a
a′ 6= 0 and h > 0. The case h = 1 (i.e. when the tracing point lies on

the moving circle) is of special significance. Various names have been assigned tradi-

tionally to the curves (trochoids) arising by taking certain values of λ; for example,

for λ = 1 : the cardioid (the “heart shaped” curve), for λ = −3 : the deltoid, or for

λ = −4 : the astroid. Ellipses are special case of trochoids. (Consider the special case

when λ = −2 : the moving circle rolls inside the fixed circle, and has half the radius.

For 0 < h < 1 this is an ellipse; for h = 0 the ellipse becomes a circle, concentric

with the fixed circle, and of half its radius.)

Another special case is obtained when λ = 1 : the moving circle rolls outside

the fixed circle, and has the same radius. The (epi)trochoid is then a limancon with

parametric reprezentation

(x1(t), x2(t)) = (2 cos t− h cos 2t, 2 sin t− h sin 2t) .

The form of the limancon depends on the value of h. (When h = 1 we get the

cardioid.)

2.3.13 Example. (The tractrix ) The trace of the parametrized curve

α : R→ E2, t 7→
(
t− tanh t,

1

cosh t

)
is called the tractrix.

� Exercise 86 Show that the tractrix has the following remarkable property :

the length of the line segment of the tangent of the tractrix between the point of

tangency and the x1-axis is constantly equal to 1.

There is another way of saying this : the circle of unit radius centered at the

point (t, 0) passes through the point x(t) (on the tractrix), and the tangent

line to the circle at x(t) is orthogonal to the tangent line to the tractrix at

that point. Thus the tractrix has the property that it meets all circles of unit
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radius centered on the x1-axis orthogonally. (For that reason the tractrix is

described as an “orthogonal trajectory” of that family of circles.)

Note : The tractrix gives rise to an interesting example in the elementary geometry

of surfaces : the surface of revolution obtained by rotating it about the x1-axis is the

pseudosphere, distinguished by the property of having constant negative (Gaussian)

curvature. (Intuitively, the curvature of a surface is a number κ that measures the

extent to which the surface “bends”. In general, the curvature κ varies from point

to point, being close to zero at points where the surface is rather flat, large at points

where the surface bends sharply. For some surfaces the curvature is the same at all

points, so naturally these are called surfaces of constant curvature κ.)

2.3.14 Example. (The standard conics) A general conic is a set of points

defined by the vanishing of a polynomial of degree two in two variables :

Ax2
1 + 2Bx1x2 + Cx2

2 + 2Dx1 + 2Ex2 + F = 0,

where A,B,C,D,E, F ∈ R and not all of A,B, and C are zero. A class of

conics arises from the following classical construction. One is given a line D
(the directrix ), a point f (the focus) not on D, and a variable point p subject

to the constraint that its distance from f is proportional to its distance from

L. Write p′ for the (orthogonal) projection of p onto D. Then the constraint

reads

‖p− f‖ = ε ‖p− p′‖

for some positive constant of proportionality ε, known as the eccentricity. (The

line through f and its projection f ′ onto D is an axis of symmetry.) The

locus of p is a parabola when ε = 1, an ellipse when ε < 1, or a hyperbola

when ε > 1. The “standard conics” arise from the special case when D is

parallel to one of the coordinate axes (the x2-axis say), and the focus lies on

the other coordinate axis (the x1-axis say). Then we get an equation of the

form

(1− ε2)x2
1 + 2βx1 + x2

2 + γ = 0.

(Circles cannot be constructed in this way since the eccentricity is positive.)

Convenient forms for the equations of the three “standard conics” can be now

obtained easily.
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(i) Consider first the case ε = 1 of a parabola. The equation of the conic

reduces to that of a standard parabola

x2
2 = 4ax1

with directrix the line x1 = −a and focus the point f = (a, 0). The

x1-axis is the axis of symmetry of the parabola, and the point where it

meets the parabola (in this case, the origin) is the vertex. A standard

parametrization of this parabola is

x1 = at2, x2 = 2at.

(ii) Consider next the case ε < 1 of an ellipse. The equation of the conic

reduces to that of a standard ellipse

x2
1

a2
+
x2

2

b2
= 1

where b2 = a2(1 − ε2) and 0 < b < a. The coordinate axes are axes of

symmetry of a standard ellipse. The points (0,±b), (±a, 0) where the

axes meet the ellipse provide the four vertices. It is traditional to refer

to a as the major semiaxis and b as the minor semiaxis. The directrix

D− is the line x1 = −a
ε , and the focus is the point f− = (−aε, 0). The

symmetry of the equation shows that there is a second directrix D+

with equation x1 = a
ε having a corresponding focus f+ = (aε, 0). The

centre of a standard ellipse is the mid-point of the line segment joining

the two foci (in this case, the origin).

Note : Despite the fact that the circle does not appear as a standard conic,

it is profitable to think of a circle (centered at the origin) as the limiting case

of standard ellipses as b→ a (which corresponds to ε→ 0).

A standard parametrization of this ellipse is

(x1(t), x2(t)) = (a cos t, b sin t).
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(iii) Finally, consider the case ε > 1 of a hyperbola. The equation of the

conic reduces to that of a standard hyperbola

x2
1

a2
− x2

2

b2
= 1

where b2 = a2(ε2−1) and 0 < a, b. The coordinate axes are axes of sym-

metry of a standard hyperbola. Only the x1-axis meets the hyperbola,

at the vertices (±a, 0). Again we have directrix lines x1 = −a
ε , x1 = a

ε

with corresponding foci (±aε, 0). The centre of a standard hyperbola is

the mid-point of the line segment joining the two foci (i.e. the origin).

The lines x2 = ± b
ax are the asymptotes of the hyperbola. (The asymp-

totes are orthogonal if and only if a = b; this corresponds to the case

when the eccentricity ε =
√

2.)

Note : A point p = (x1, x2) satisfying the equation of a standard hyperbola

is subject only to the constraint that x1 ≥ a or x1 ≤ −a. Thus the key feature

of a (standard) hyperbola is that it splits into two “branches” : the positive

branch (defined for x1 ≥ a) and the negative branch (defined for x1 ≤ −a).

� Exercise 87 Find parametrizations for each of the two branches of this hy-

perbola.

Note : A general conic

Ax2
1 + 2Bx1x2 + Cx2

2 +Dx1 + Ex2 + F = 0

(where not all of A,B, and C are zero) represents one of the following eight types

of loci (geometric curves) : an ellipse, a hyperbola, a parabola, a pair of intersecting

lines, a pair of parallel lines, a line “counted twice”, a single point, or the empty

set. Moreover, the cases that can occur are governed by the sign of the expression

AC −B2 as follows :

• If AC − B2 > 0, the possibilities are an ellipse, a single point, or the empty

set.

• If AC − B2 = 0, the possibilities are a parabola, two parallel lines, a single

line, or the empty set.

• If AC −B2 < 0, the possibilities are a hyperbola or two intersecting lines.
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2.3.15 Example. (General algebraic curves)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The shortest distance between two points

Let’s consider the following question : What is the shortest distance be-

tween two points p, q ∈ R3 ? We have been taught since childhood that the

answer is the (straight) line, but now we can see why our intuition is correct.

Let α : J → R3 be a curve. Let [t0, t1] ⊂ J and set α(t0) = p and

α(t1) = q. We defined the speed of α at t as the length of the velocity

vector α′(t). Thus speed is a real-valued (continuous) function on the interval

J . In physics, the distance traveled by a moving particle is determined by

integrating its speed with respect to time. Thus we define the arc length of

α, from p to q, to be the number

L(α) : =

∫ t1

t0

‖α̇(t)‖ dt.

We are able to answer the question of which route between two given points

gives the shortest distance.

2.3.16 Theorem. The line is the curve of least arc length between two

points.

Proof : Consider two points p, q ∈ R3. The line segment between them

may be parametrized by

λ : [0, 1]→ E3, t 7→ p+ t(q − p)

where q − p gives the direction. Then

λ̇(t) = q − p and ‖λ̇(t)‖ = ‖q − p‖.

Therefore

L(λ) =

∫ 1

0
‖λ̇(t)‖ dt = ‖q − p‖

∫ 1

0
dt = ‖q − p‖

and the length of the line segment (or direction vector) from p to q is the

distance from p to q (as of course expected). Now we consider another curve



C.C. Remsing 69

segment α : [t0, t1] → R3 which joins p and q; that is, α(t0) = p and

α(t1) = q.

We want to show that L(α) > L(λ) and, since α is arbitrary, this will

say that the straight line minimizes distance.

Now, why should α be longer than λ ? One intuitive explanation is to say that

α starts off in the wrong direction. That is, α̇(t0) is not “pointing toward” q. How

can we measure this deviation ? The angle between the unit vector u in the direction

of q − p and the velocity vector α̇(t0) of α at p may be calculated by taking the

dot product α̇(t) • u. The total deviation may be added up by integration to give us

an idea of why L(α) > L(λ) should hold.

Let u = 1
‖q−p‖(q − p). We have

d

dt
(α(t) • u) = α̇(t) • u+ α(t) • u̇ = α̇(t) • u.

Now we compute the integral ∫ t1

t0

α̇(t) • u dt

in two different ways to obtain the inequality. On the one hand, we have∫ t1

t0

α̇(t) • u dt =

∫ t1

t0

d

dt
(α(t) • u) dt = α(t1) • u− α(t0) • u

= q • u− p • u

= (q − p) • u

=
(q − p) • (q − p)
‖q − p‖

= ‖q − p‖

= L(λ).

On the other hand, we have∫ t1

t0

α̇(t) • u dt ≤
∫ t1

t0

‖α̇(t)‖ ‖u‖ dt (by the Cauchy-Schwarz inequality)

=

∫ t1

t0

‖α̇(t)‖ dt

= L(α).
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Consequently,

L(λ) =

∫ t1

t0

α̇(t) • u dt ≤ L(α).

Observe that

α̇(t) • u = ‖α̇(t)‖ ‖u‖

only when cos θ = 1, or θ = 0. That is, the vector α̇(t) must be collinear

with q− p for all t. In this case α is (a parametrization of) the line segment

from p to q. Therefore we have strict inequality L(λ) < L(α) unless α is a

line segment. 2

� Exercise 88

(a) Find the arc length of the catenary t 7→ (t, cosh t) from t = 0 to t = t1.

(b) Show that the curve t 7→ (3t2, t− 3t3) has a unique self crossing, deter-

mine the corresponding parameters a and b, and then find the arc length

from t = a to t = b.

(c) Find the arc length of the astroid t 7→ (cos3 t, sin3 t) from t = 0 to t = π
2

and then from t = 0 to t = π. Compare the results.

(d) Show that the arc length of the parabola t 7→ (t2, 2t) from t = 0 to

t = t1 is given by

L = t1

√
1 + t21 + ln

(
t1 +

√
1 + t21

)
.

� Exercise 89 Find an expression for the arc length of the cycloid

t 7→ (a(t− sin t), a(1− cos t)) from t = 0 to t = t0, where 0 ≤ t0 ≤ 2π. Deduce that

the arc length from t = 0 to t = 2π is 8.

Arc length parametrizations

Given a (parametrized) curve α, we can construct many new (parametrized)

curves that follow the same route (i.e., have the same trace) as α but travel

at different speeds. Any such alteration is called a reparametrization. More

precisely, we have the following definition.
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2.3.17 Definition. Let J and J ′ be intervals on the real line. Let α :

J → R3 be a curve and let h : J ′ → J be a smooth function (usually with

smooth inverse). Then the composite function

β = α(h) : J ′ → E3, β(s) = α(h(s))

is a curve called the reparametrization of α by h. (The function h is the

change of parameter.)

The curves β and α pass through the same points in R3, but they reach any

of these points in different “times” ( s and t).

� Exercise 90 A smooth function

h : Jθ → Jt, θ 7→ t = h(θ)

is said to be an allowable change of parameter on (the interval) Jθ if it is onto and

h′(θ) 6= 0 on Jθ. Show that if h is an allowable change of parameter, then h is

invertible and its inverse h−1 is also an allowable change of parameter (on Jt).

2.3.18 Example. The (smooth) function s 7→ s+ s3 defines an allowable

change of parameter on R. On the other hand, the function s 7→ s3 does not

(since its derivative vanishes at s = 0).

� Exercise 91 Check that

(a) The function θ 7→ t =
θ − a
b− a

is an allowable change of parameter which

takes the interval [a, b] onto [0, 1].

(b) The function θ 7→ t =
1

π

(π
2

+ arctan θ
)

is an allowable change of pa-

rameter which takes the interval (−∞,∞) onto (0, 1).

(c) The function θ 7→ t =
arctan θ − arctan a

π
2 − arctan a

is an allowable change of

parameter which takes the interval [a,∞) onto [0, 1).

2.3.19 Example. The reparametrization of the curve

α : (0, 4)→ R3, t 7→ (
√
t, t
√
t, 1− t)

by (the change of parameter)h : (0, 2)→ (0, 4), s 7→ s2 is

β(s) = α(h(s)) = α(s2) = (s, s3, 1− s2), s ∈ (0, 2).



72 M4.3 - Geometry

� Exercise 92 Reparametrize

(a) the circle

t 7→ (a cos t, a sin t), t ∈ [−π, π]

by h : [−1, 1]→ [−π, π], θ 7→ 4 arctan θ.

(b) the positive branch of the (standard) hyperbola

t 7→ (a cosh t, b sinh t), t ∈ R

by h : (0,∞)→ R, θ 7→ ln θ.

(c) the tractrix

t 7→
(
t− tanh t,

1

cosh t

)
, t ∈ R

by h : (0, π)→ R, θ 7→ ln tan θ
2 ·

The following result relates the velocities of a curve and of a reparametriza-

tion.

2.3.20 Proposition. If β is a reparametrization of α by h, then

β̇(s) =
dh

ds
(s) · α̇(h(s)).

Proof : If α = (α1, α2, α3), then

β(s) = α(h(s)) = (α1(h(s)), α2(h(s)), α3(h(s))) .

By the chain-rule we obtain

β̇(s) =
dβ

ds
(s) =

dα(h)

ds
(s)

=

(
dα1

ds
(h(s)) · dh

ds
(s),

dα2

ds
(h(s)) · dh

ds
(s),

dα3

ds
(h(s)) · dh

ds
(s)

)
=

dh

ds
(s) · α̇(h(s)).

2

� Exercise 93 Recall that the arc length of a curve α : [a, b]→ R3 is given by

L(α) =
∫ b
a
‖α̇(t)‖ dt. Let β : [c, d]→ R3 be a reparametrization of a by (the change

of parameter) h : [c, d] → [a, b]. Show that the arc length does not change under

reparametrization.
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� Exercise 94 Let α : J → R3 be a curve and f : R3 → R a (smooth) function

on R3. Show that (for t ∈ J)

α̇(t)[f ] =
d

dt
f(α(t)).

This simple result shows that the rate of change of f along the line through the point

α(t) in the direction α′(t) is the same as along the curve α itself.

Sometimes one is interested only in the trace of a curve and not in the

particular speed at which it is covered. One way to ignore the speed of a

curve α is to reparametrize to a curve β which has unit speed. Then β

represents a “standard trip” along the trace of α.

2.3.21 Theorem. If α : J → R3 is a regular curve, then there exists a

reparametrization β of α such that β has unit speed.

Proof : Fix a number t0 in J and consider the arc length function

s(t) : =

∫ t

t0

‖α̇(u)‖ du.

Since α is regular, the Fundamental Theorem of Calculus implies

ds

dt
= ‖α̇(t)‖ > 0.

By the Mean Value Theorem, s is strictly increasing on J and so is

one-to-one. Therefore s has an inverse function t = t(s) and the respective

derivatives are inversely related :

dt

ds
(s) =

1
ds
dt (t(s))

> 0.

Let β(s) = α(t(s)) be the reparametrization of α. We claim that β has unit

speed. Indeed, we have

β̇(s) =
dt

ds
(s) · α̇(t(s))

and hence

‖β̇(s)‖ =

∣∣∣∣ dtds(s)

∣∣∣∣ · ‖α̇(t(s))‖

=
dt

ds
(s) · ds

dt
(t(s))

= 1.
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2

Without loss of generality, suppose β is defined on the interval [0, 1]. Consider

the arc length of the reparametrization β out to a certain parameter value s0

L(β) =

∫ s0

0
‖β̇(s)‖ ds =

∫ s0

0
ds = s0.

Thus β has its arc length as parameter. We sometimes call the unit speed

curve β the arc length parametrization of α.

Note : Observe that a curve β parametrized by arc length has speed given by

‖β̇(s)‖ =

∣∣∣∣ dtds
∣∣∣∣ · ‖α̇(t)‖ =

‖α̇(t)‖
‖α̇(t)‖

= 1.

Hence we speak of a unit speed curve as a curve parametrized by arc length. We

reserve the variable s for the arc length parameter when it is convenient and t for

an arbitrary parameter.

2.3.22 Example. If α(t) = p+ t(q−p), then α̇(t) = (q−p)α(t) and hence

‖α̇(t)‖ = ‖q − p‖.

Then

s(t) =

∫ t

0
‖α̇(t)‖ dt =

∫ t

0
‖q − p‖ dt = ‖q − p‖t

and the inverse function is t(s) = 1
‖q−p‖s. So an arc length parametrization is

given by

β(s) = p+ s
q − p
‖q − p‖

·

Note that ‖β̇(s)‖ = 1.

� Exercise 95 Find an arc length parametrization of the circle x2
1 + x2

2 = a2.

2.3.23 Example. Consider the helix α(t) = (a cos t, a sin t, bt) with α̇(t) =

(−a sin t, a cos t, b)α(t). We have

‖α̇(t)‖2 = α̇(t) • α̇(t) = a2 sin2 t+ a2 cos2 t+ b2 = a2 + b2.
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Thus α has constant speed k =
√
a2 + b2. Then

s(t) =

∫ t

0
‖α̇(t)‖ dt =

∫ t

0
k dt = kt.

Hence t(s) = s
k . Substituting in the formula for α, we get the unit speed

reparametrization

β(s) = α
( s
k

)
=

(
a cos

s

k
, a sin

s

k
,
bs

k

)
·

It is easy to check directly that ‖β̇(s)‖ = 1.

Note : If a curve α has constant speed, then it may be parametrized by arc length

explicitly. For general curves, however, the integral defining s may be impossible to

compute in closed form.

2.3.24 Example. The curve α(t) = (a cos t, b sin t) gives an ellipse in (the

x1x2-plane of R3, identified with) R2. Furthermore, α̇(t) = (−a sin t, b cos t)α(t)

and

‖α̇(t)‖ =
√
a2 sin2 t+ b2 cos2 t =

√
a2 + (b2 − a2) cos2 t.

The resulting length-function

s(t) =

∫ t

0

√
a2 + (b2 − a2) cos t dt

is not generally expressible in terms of elementary functions (it is an example

of an elliptic integral).

Vector fields (on curves)

The general notion of vector field can be adapted to curves as follows.

2.3.25 Definition. A vector field X on a curve α : J → R3 is a (dif-

ferentible) mapping

t ∈ J 7→ X(t) ∈ Tα(t)R3.
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We have already met such a vector field : for any curve α, its velocity α̇

clearly satisfies this definition.

Note : It is important to realize that unlike α̇, arbitrary vector fields on α need

not be tangent to (the trace of) the curve a, but may point in any direction.

A vector field X on a curve α is a unit vector field if each vector α′(t)

(which is a tangent vector to E3 at α(t) ) is a unit vector.

The properties of vector fields on curves are analogous to those of vector

fields on R3. For example, if X is a vector field on the curve α : J → R3,

then for each t ∈ J we can write

X(t) = (X1(t), X2(t), X3(t))α(t)

= X1(t)E1(α(t)) +X2(t)E2(α(t)) +X3(t)E3(α(t))

= X1(t)
∂

∂x1

∣∣∣∣
α(t)

+X2(t)
∂

∂x2

∣∣∣∣
α(t)

+X3(t)
∂

∂x3

∣∣∣∣
α(t)

.

We have thus defined real-valued functions X1, X2, X3 on J , called the Eu-

clidean coordinate functions of X. These will always be assumed to be differ-

entiable (in fact, smooth).

Note : The composite function t 7→ Ei(α(t)) = ∂
∂xi

∣∣∣
α(t)

is a vector field on α.

Where it seems to be safe to do so, we shall often write merely Ei (or ∂
∂xi

) insted

of Ei(α(t)).

The operations of addition, scalar multiplication, dot product, and cross

product of vector fields (on the same curve) are all defined in the usual point-

wise fashion.

2.3.26 Example. Given

X(t) = t2
∂

∂x1
− t ∂

∂x3
, Y (t) = (1− t2)

∂

∂x2
+ t

∂

∂x3
, and f(t) =

1 + t

t
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we obtain the vector fields

(X + Y )(t) = t2
∂

∂x1
+ (1− t2)

∂

∂x2

(fX)(t) = t(t+ 1)
∂

∂x1
− (t+ 1)

∂

∂x3

(X × Y )(t) =

∣∣∣∣∣∣∣
E1 E2 E3

t2 0 −t
0 1− t2 t

∣∣∣∣∣∣∣
= t(1− t2)

∂

∂x1
− t3 ∂

∂x2
+ t2(1− t2)

∂

∂x3

and the real-valued function

(X • Y )(t) = −t2.

To differentiate a vector field on α one simply differentiate its Euclidean

coordinate functions, thus obtaining a new vector field on α. Explicitly, if

X = X1
∂

∂x1
+X2

∂

∂x2
+X3

∂

∂x3

then

Ẋ = Ẋ1
∂

∂x1
+ Ẋ2

∂

∂x2
+ Ẋ3

∂

∂x3
·

In particular, the derivative α̈ of the velocity vector field α̇ is called the

acceleration of α.

Note : By contrast with velocity, acceleration is generally not tangent to the curve.

The following basic differentiation rules hold (for X and Y vector fields

on R3, f a real-valued (differentiable) function on R3, and λ and µ real

numbers) :

(λX + µY )· = λẊ + µẎ

(fX)· = ḟX + fẊ

(X • Y )· = Ẋ • Y +X • Ẏ .

If the function X • Y is constant, the last formula shows that

Ẋ • Y +X • Ẏ = 0.
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� Exercise 96 Show that a curve has constant speed if and only if its accelera-

tion is everywhere orthogonal to its velocity.

� Exercise 97 Let X be a vector field on the helix α(t) = (cos t, sin t, t). In

each of the following cases, express X in the form
∑
Xi

∂
∂xi
·

(a) X(t) is the vector from α(t) to the origin of R3 ;

(b) X(t) = α̇(t)− α̈(t);

(c) X(t) has unit length and is orthogonal to both α̇(t) and α̈(t) ;

(d) X(t) is the vector from α(t) to α(t+ π).

Recall that tangent vectors are parallel if they have the same vector parts.

We say that a vector field X on a curve is parallel provided all its (tangent

vector) values are parallel. In this case, if the common vector part is (c1, c2, c3),

then

X(t) = (c1, c2, c3)α(t) = c1
∂

∂x1
+ c2

∂

∂x2
+ c3

∂

∂x3

for all t. The parallelism for a vector field is equivalent to the constancy of

its Euclidean coordinate functions.

� Exercise 98 Let α, ᾱ : J → R3 be two curves such that α̇(t) and ˙̄α(t) are

parallel (same Euclidean coordinates) at each t. Show that α and ᾱ are parallel in

the sense that there is a point p ∈ R3 such that ᾱ(t) = α(t) + p for all t.

2.4 Serret-Frenet Formulas

The geometry of a curve (i.e., its turning and twisting) may be (completely)

described by attaching a “moving trihedron” (or moving frame) along the

curve. The variation of its elements is described by the so-called Serret-Frenet

formulas, which are fundamental in the study of (differential) geometry of

curves in R3. We start by deriving mathematical measurements of the turning

and twisting of a curve.

The Serret-Frenet frame

Let β : J → R3 be a unit speed curve, so ‖β̇(s)‖ = 1 for all s ∈ J .
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2.4.1 Definition. The vector field T : = β̇ is called the unit tangent

vector field on β.

Since T has constant length 1, its derivative Ṫ = β̈ measures only the rate

of change of T ′s direction (i.e., measures the way the curve is turning in R3).

Hence Ṫ is a good choice to detect some of the geometry of β.

2.4.2 Definition. The vector field Ṫ is called the curvature vector

field on β.

Differentiation of T • T = 1 gives

0 = (T • T )· = Ṫ • T + T • Ṫ = 2T • Ṫ .

Hence T • Ṫ = 0 and, therefore, Ṫ is orthogonal to T . We say that Ṫ is

normal to β. The length of the curvature vector field Ṫ gives a numerical

measurement of the turning of β.

2.4.3 Definition. The real-valued function κ : I → R given by

κ(s) : = ‖Ṫ (s)‖

is called the curvature function of β.

Of course κ ≥ 0 and κ increases as β turns more sharply.

Note : If κ = 0, then (as we will see in Theorem 2.4.10 below) we know every-

thing about the curve β already.

We assume that κ is never zero, so κ > 0. Then the vector field N = 1
κ Ṫ

on β tells the direction in which β is turning at each point.

2.4.4 Definition. The vector field

N : =
1

κ
Ṫ

is called the principal normal vector field on β.

We need to introduce a third vector field on β as part of our “moving

trihedron” along the curve and this vector field should be orthogonal to both

T and N (just as T and N are to each other).
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2.4.5 Definition. The vector field

B : = T ×N

is called the binormal vector field on β.

2.4.6 Proposition. Let β : J → R3 be a unit speed curve with nonzero

curvature. Then the three vector fields T,N, and B on β are unit vector

fields which are mutually orthogonal at each point.

Proof : By definition, ‖T‖ = 1. Since κ = ‖Ṫ‖ > 0, we have

‖N‖ =
1

κ
‖Ṫ‖ =

‖Ṫ‖
‖Ṫ‖

= 1.

We saw that T and N are orthogonal; that is, T •N = 0. Now B = T ×N
is orthogonal to both T and N , and we have

‖B‖ = ‖T ×N‖ =

√
‖T‖2‖N‖2 − (T •N)2 =

√
1− 0 = 1.

2

The ordered set (T,N,B) is a frame field, called the Serret-Frenet

frame field, on (the unit speed curve) β. The Serret-Frenet frame field

on β is full of information about β.

Note : The moving trihedron (with its curvature and torsion functions) was in-

troduced in 1847 by Jean-Frédéric Frenet (1816-1900) and independently by

Joseph Serret (1819-1885) in 1851.

The Serret-Frenet formulas

Let β : J → R3 be a unit speed curve with nonzero curvature (i.e., κ > 0)

and consider the associated Serret-Frenet frame field (T,N,B). The measure-

ment of how T,N, and B vary as we move along (the trace of) the curve β

will tell us how the curve itself turns and twists through space. The variation

of T,N, and B will be determined by calculating the derivatives Ṫ , Ṅ , and

Ḃ. We already know

Ṫ = κN

by definition of N . So the curvature κ describes T ′s variation in direction.
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� Exercise 99 Show that Ḃ •B = 0 and Ḃ • T = 0.

Because Ḃ is orthogonal to both B and T , it follows that, at each point,

Ḃ is a scalar multiple of N .

2.4.7 Definition. The real-valued function τ : J → R3 given by

Ḃ = −τN

is called the torsion function of β. The minus sign is traditional.

Note : By contrast with curvature, there is no restriction on the values of τ :

it can be positive, negative, or zero at various points of I. We shall show that the

torsion function τ does measure the twisting (or torsion) of the curve β.

For a unit speed curve β : J → R3, the associated collection

{κ, τ, T,N,B}

is called the Serret-Frenet apparatus of β.

2.4.8 Example. Consider the arc length parametrization of a circle of ra-

dius a

β(s) =
(
a cos

s

a
, a sin

s

a
, 0
)
.

The unit tangent vector field is given by

T (s) = β̇(s) =
(
− sin

s

a
, cos

s

a
, 0
)

and

Ṫ (s) = β̈(s) = −1

a

(
cos

s

a
, sin

s

a
, 0
)
.

Hence

κ(s) = ‖Ṫ (s)‖ =
1

a
·

It follows that

N(s) =
1

κ(s)
Ṫ (s) =

(
− cos

s

a
,− sin

c

a
, 0
)
.

To compute the binormal vector field B, we take the cross product :

B(s) = T (s)×N(s) = e3 = (0, 0, 1).

Hence −τ(s)N(s) = Ḃ(s) = 0, and therefore τ = 0.
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Note : For a circle of radius a, the curvature function is constant and is equal to
1
a . This makes sense intuitively since, as a increases, the circle becomes less curved.

The limit κ = 1
a → 0 reflects this. Moreover, the circle has zero torsion. We shall

see a general reason for this fact shortly.

� Exercise 100 Compute the Serret-Frenet apparatus of the unit speed curve

(the helix )

β(s) =

(
a cos

s

k
, a sin

s

k
,
bs

k

)
with k =

√
a2 + b2.

2.4.9 Theorem. (The Serret-Frenet Theorem) If β : J → R3 is a

unit speed curve with nonzero curvature, then

Ṫ = κN

Ṅ = −κT + τB

Ḃ = −τN.

Proof : The first and the third formulas are essentially just the definitions

of curvature and torsion. To prove the second formula, we express Ṅ in terms

of T,N, and B :

Ṅ = (Ṅ • T )T + (Ṅ •N)N + (Ṅ •B)B.

These coefficients are easily found. Differentiating N •T = 0, we get Ṅ •T +

N • Ṫ = 0, and hence

Ṅ • T = −N • Ṫ = −N • (κN) = −κ.

As usual, Ṅ •N = 0, since N is a unit vector field. Finally,

Ṅ •B == −N • Ḃ = −N • (−τN) = τ.

2

Note : We can record the Serret-Frenet formulas more succinctly in the matrix

expression  ṪṄ
Ḃ

 =

 0 κ 0

−κ 0 τ

0 −τ 0


TN
B





C.C. Remsing 83

or, equivalently,

[
Ṫ Ṅ Ḃ

]
=
[
T N B

]0 −κ 0

κ 0 −τ
0 τ 0

 .

� Exercise 101 If a rigid body moves along a (unit speed ) curve β, then the

motion of the body consists of translation along (the trace of) β and rotation about

(the trace of) β. The rotation is determined by an angular velocity vector ω which

satisfies

Ṫ = ω × T, Ṅ = ω ×N, and Ḃ = ω ×B.

The vector ω is called the Darboux vector. Show that ω, in terms of T,N, and B,

is given by ω = τT +κB. (Hint : Write ω = aT + bN + cB and take cross products

with T,N, and B to determine a, b, and c.)

� Exercise 102 Show that

Ṫ × T̈ = κ2 ω

where ω is the Darboux vector.

Constraints on curvature and torsion

Constraints on curvature and torsion produce constraints on the geometry

of the curve. The simplest constraints are contained in the following two

results.

2.4.10 Theorem. Let β : J → R3 be a unit speed curve. Then

κ = 0 if and only if β is a (part of a) line.

Proof : (⇒ ) Suppose κ = 0. Then Ṫ = 0 by the Serret-Frenet formulas,

and so T = v is a constant (with ‖v‖ = 1 since β has unit speed). But

β̇(s) = T = v ⇒ β(s) = p+ sv

with p a constant of integration. Hence β is (the arc length parametrization

of) a line.
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(⇐ ) Suppose β is (the arc length parametrization of) a line. Then β(s) =

p+ sv with ‖v‖ = 1 (so β has unit speed). It follows that

T (s) = β̇(s) = v = constant

and so Ṫ = 0 = κN , and hence κ = 0. 2

A plane curve in R3 is a curve that lies in a single plane of R3. That is,

the trace of the curve is a subset of a certain plane of R3. Clearly, the straight

line and the circle are plane curves.

2.4.11 Theorem. Let β : J → R3 be a unit speed curve with nonzero

curvature. Then

τ = 0 if and only if β is a plane curve.

Proof : (⇒ ) Suppose τ = 0. Then, by the Serret-Frenet formulas, Ḃ = 0

and so B is constant (parallel). But this means that β(s) should always lie

in the plane through β(0) orthogonal to B. We show this.

Take the plane determined by the point β(0) and the normal vector B.

Recall that a point p is in this plane if (p − β(0)) • B = 0. Consider the

real-valued function

f(s) : = (β(s)− β(0)) •B

for all s. Then

ḟ(s) = (β(s)− β(0))· •B + (β(s)− β(0)) • Ḃ = β̇(s) •B = T •B = 0.

Hence f(s) = constant. To identify the constant, evaluate

f(0) = (β(0)− β(0)) = 0.

Then (for all s ) (β(s) − β(0)) • B = 0 and hence β(s) is in the plane

determined by β(0) and the (constant) vector B.

(⇐ ) Suppose β lies in a plane. Then the plane is determined by a point p

and a normal vector n 6= 0. Since β lies in the plane, we have (for all s )

(β(s)− p) • n = 0.
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By differentiating, we get

β̇(s) • n = β̈(s) • n = 0.

That is, T • n and κN • n = 0. These equations say that n is orthogonal to

both T and N . Thus n is collinear to B and

B = ± 1

‖n‖
n.

Hence Ḃ = 0 and the Serret-Frenet formulas then give τ = 0. 2

We now see that curvature measures the deviation of a curve from being

a (straight) line and torsion the deviation of a curve from being contained in

a plane. We know that the standard circle of radius a in the x1x2-plane in

R3 has κ = 1
a and τ = 0. To see that a circle located anywhere in R3 has

these properties we have two choices. We could give a parametrization for an

arbitrary circle in R3 or we could use the familiar definition of a circle as the

locus of points in a plane equally distanced from a fixed point (in the plane).

In order to emphasize geometry, we take the latter approach.

2.4.12 Theorem. Let β : J → R3 be a unit speed curve. Then (the trace

of) β is a part of a circle if and only if κ > 0 is constant and τ = 0.

Proof : (⇒ ) Suppose (the trace of) β is part of a circle. By definition,

β is a plane curve, so τ = 0. Also by definition (for all s ) ‖β(s) − p‖ = r.

Squaring both sides gives (β(s)− p) • (β(s)− p) = a2. If we differentiate this

expression, we get (for T = β̇ )

2T • (β(s)− p) = 0 or T • (β(s)− p) = 0.

If we differentiate again, then we obtain

Ṫ • (β(s)− p) + T • T = 0

κN • (β(s)− p) + 1 = 0 (∗)

κN • (β(s)− p) = −1.
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This means, in particular, that κ > 0 and N • (β(s)− p) 6= 0. Now differen-

tiating (∗) produces

dκ

ds
N • (β(s)− p) + κ Ṅ • (β(s)− p) + κN • T = 0

dκ

ds
N • (β(s)− p) + κ(−κT + τB) • (β(s)− p) + 0 = 0.

Since τ = 0 and T • (β(s)− p) = 0 by above, we have

dκ

ds
N • (β(s)− p) = 0.

Also N • (β(s) − p) 6= 0 by above, and so
dκ

ds
= 0. This means, of course,

that κ > 0 is constant.

(⇐ ) Suppose now that τ = 0 and κ > 0 is constant. To show β(s) is part

of a circle we must show that each β(s) is a fixed distance from a fixed point.

For the standard circle, from any point on the circle to the center we proceed in the

normal direction a distance equal to the radius. That is, we go aN = 1
κN . We do

the same here.

Let γ denote the curve

γ(s) : = β(s) +
1

κ
N.

Since we want γ to be a single point (the center of the desired circle), we

must have γ̇(s) = 0. Computing, we obtain

γ̇(s) = β̇(s) +
1

κ
Ṅ

= T +
1

κ
(−κT + τ B)

= T − T

= 0.

Hence γ(s) is a constant p. Then we have

‖β(s)− p‖ =

∥∥∥∥−1

κ
N

∥∥∥∥ =
1

κ

so p is the center of a circle β(s) of radius 1
κ . 2
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� Exercise 103 Compute the Serret-Frenet apparatus of the unit speed curve

β(s) =

(
4

5
cos s, 1− sin s,−3

5
cos s

)
.

� Exercise 104 Let β be a unit speed curve which lies entirely on the sphere of

radius a centered at the origin. Show that the curvature κ is such that κ ≥ 1
a · (Hint

: Differentiate β • β = a2 and use the Serret-Frenet formulas to get κβ •N = −1.)

� Exercise 105 Let β be a unit speed curve which lies entirely on the sphere

of center p and radius a. Show that, if τ 6= 0, then

β(s)− p = − 1

κ
N −

(
1

κ

)·
1

τ
B and a2 =

(
1

κ

)2

+

((
1

κ

)·
1

τ

)2

.

� Exercise 106 Show that, if(
1

κ

)·
6= 0 and

(
1

κ

)2

+

((
1

κ

)·
1

τ

)2

is a constant

then the unit speed curve β lies entirely on a sphere. (Hint : Show that the “center

curve” γ(s) : = β(s) +
(

1
κ

)· 1
τ B is constant.)

� Exercise 107 Find the curvature κ and torsion τ for the curve

β(s) =

(
1√
2

cos s, sin s,
1√
2

cos s

)
.

Identify the curve.

2.5 The Fundamental Theorem for Curves

Recall the notion of a vector field on a curve. If X is a vector field on

α : J → R3 and F is an isometry, then X̃ = F∗(X) is a vector field on the

image curve α̃ = F (α). In fact, for each t ∈ J , X(t) is a tangent vector to

E3 at the point α(t). But then X̃(t) = F∗(X(t)) is a tangent vector to E3

at the point F (α(t)) = α̃(t).

Isometries preserve the derivatives of such vector fields.

� Exercise 108 If X is a vector field on a curve α in R3 and F is an isometry

on R3, then X̃ = F∗(X) is a vector field on α̃ = F (α). Show that

˙̃
X = F∗(Ẋ).



88 M4.3 - Geometry

It follows immediately that (if we set X = α̇)

¨̃α =
˙̃
X = F∗(Ẋ) = F∗(α̈).

That is, isometries preserve acceleration. Now we show that the Serret-Frenet

apparatus of a curve is preserved by isometries.

Note : This is certainly to be expected on intuitive grounds, since a rigid motion

ought to carry one curve into another that turns and twists in exactly the same way.

And this is what happens when the isometry is orientation-preserving.

2.5.1 Proposition. Let β be a unit speed curve on R3 with nonzero cur-

vature and let β̃ = F (β) be the image curve of β under the isometry F on

R3. Then

κ̃ = κ, T̃ = F∗(T )

τ̃ = (sgnF ) τ, Ñ = F∗(N)

B̃ = (sgnF )F∗(B).

Proof : Observe first that β̃ is also a unit speed curve, since

‖ ˙̃
β‖ = ‖F∗(β̇)‖ = ‖β̇‖ = 1.

Thus

T̃ =
˙̃
β = F∗(β̇) = F∗(T ).

Since F∗ preserves both acceleration and norms, it follows from the definition

of curvature that

κ̃ = ‖¨̃β‖ = ‖F∗(β̈)‖ = ‖β̈‖ = κ.

To get the full Serret-Frenet frame, we now use the hypothesis κ > 0 (which

implies κ̃ > 0, since κ̃ = κ). By definition, N = 1
κ β̈ and hence

Ñ =
¨̃
β

κ̃
=
F∗(β̈)

κ
= F∗

(
β̈

κ

)
= F∗(N).

It remains only to prove the interesting cases B and τ . We have

B̃ = T̃ × Ñ = F∗(T )× F∗(N) = (sgnF )F∗(T ×N) = (sgnF )F∗(B).
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Furthermore,

τ̃ = B̃ • ˙̃
N = (sgnF )F∗(B) • F∗(Ṅ) = (sgnF )B • Ṅ = (sgnF ) τ.

2

Note : The presence of sgnF in the formula for the torsion of F (β) shows that the

torsion of a curve gives more subtle description of the curve than has been apparent

so far. The sign of τ measures the orientation of the twisting of the curve.

We have seen that curvature and torsion, individually and in combination,

tell us a great deal about the geometry of a curve. In fact, in a very real sense,

they tell us everything. Precisely, if two unit speed curves have the same

curvature and torsion functions, then there is a rigid motion of R3 taking

one curve onto another. Furthermore, given specified curvature and torsion

functions, there is a curve which realizes them as its own curvature and tor-

sion. These results are, essentially, theorems about existence and uniqueness

of solutions of systems of differential equations. The Serret-Frenet formulas

provide the system and the unique solution provides the curve.

2.5.2 Theorem. (The Fundamental Theorem) Let κ, τ : (a, b) → R
be (smooth) functions with κ > 0. Then there exists a regular curve β :

(a, b) → R3 parametrized by arc length such that κ is the curvature function

and τ is the torsion function of β. Moreover, any other curve β̄ satisfying

the same conditions, differs from β by a proper rigid motion; that is, there

exists a direct isometry F, x 7→ Ax+ c such that (for all s)

β(s) = Aβ̄(s) + c.

Proof : Consider the matrix-valued function

g(s) : =

 0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0

 =
[
aij

]
.

If we write

ξ1 = T, ξ2 = N, and ξ3 = B
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then the Serret-Frenet formulas give us the system of differential equations

ξ̇1 = a11ξ1 + a12ξ2 + a13ξ3

ξ̇2 = a21ξ1 + a22ξ2 + a23ξ3

ξ̇3 = a31ξ1 + a32ξ2 + a33ξ3

or, equivalently, the vector differential equationξ̇1

ξ̇2

ξ̇3

 = g(s)

ξ1

ξ2

ξ3

 .
It is known that if the matrix-valued function s 7→ g(s) is continuous, then the

diferential equation

ξ̇ = g(s)ξ, s ∈ (a, b)

has solutions ξ : (a, b)→ E3.

Thus there is a solution (ξ1(s), ξ2(s), ξ3(s)) dependent upon the initial

conditions. For a value s0 ∈ (a, b), we may take (ξ1(s0), ξ2(s0), ξ3(s0)) to be

a choice of a positively-oriented frame on R3. We next show that (for every

s ) the solution (ξ1(s), ξ2(s), ξ3(s)) is a frame. Observe that

(ξi • ξj)· =
3∑

k=1

(aikξj • ξk + ajkξi • ξk), i, j = 1, 2, 3.

Let ξij : = ξi • ξj . We obtain the system of differential equations

ξ̇ij =
3∑

k=1

(aikξjk + ajkξik), i, j = 1, 2, 3 (∗)

with initial conditions

ξij = δij (the Kronecker delta function).

In order to have a frame we need to show that ξij(s) = δij holds for all s.

But notice

δ̇ij = 0 = aij + aji =
3∑

k=1

(aikδjk + ajkδik), i, j = 1, 2, 3



C.C. Remsing 91

which holds by the skew-symmetry of the matrix g(s). Thus δij , i, j = 1, 2, 3

satisfies the differential equation (∗) and so, by the uniqueness of solutions to

differential equations, we have (for all s ) a frame.

To define the curve β : (a, b)→ R3 we integrate

β(s) =

∫ s

s0

ξ1(σ) dσ.

Then β̇(s) = ξ1(s) = T (s) and so

β̈ = ξ̇1 = κ ξ2 = κN.

Thus κ(s) is the curvature of β (at s) and hence κβ = κ.

� Exercise 109 Show that if β is a unit speed curve with nonzero curvature,

then

τ =
β̇ • β̈ ×

...
β

κ2
·

(Hint : Compute β̇ × β̈ and
...
β (in terms of T,N, and B) and then dot them.)

It follows immediately that τ(s) is the torsion of β (at s) and hence τβ = τ .

Now assume that two (unit speed) curves β and β̄ satisfy the conditions

κβ = κβ̄ = κ and τβ = τβ̄ = τ.

Let (T0, N0, B0) and (T̄0, N̄0, B̄0) be the Serret-Frenet frames at s0 ∈ I =

(a, b) of β and β̄, respectively. By Theorem 2.1.9, there is a (proper) rigid

motion F, x 7→ Ax+c on E3 which takes β̄(s0) into β(s0) and (T̄0, N̄0, B̄0)

into (T0, N0, B0).

Denote the Serret-Frenet apparatus of β̃ = F (β̄) by {k̃, τ̃ , T̃ , Ñ , B̃}. Then

(from Proposition 2.5.1 and the information above)

β̃(s0) = β(s0)

κ̃ = κ, T̃ (s0) = T0

τ̃ = τ, Ñ(s0) = N0

B̃(s0) = B0.
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We need to show that the curves β and β̃ coincide; that is (for all s)

β(s) = β̃(s) = F (β̄(s)) = Aβ̄(s) + c.

We shall show that T = T̃ ; that is, the curves β and β̃ are parallel.

� Exercise 110 Show that if two curves β, β̃ : J → R3 are parallel and β(s0) =

β̃(s0) for some s0 ∈ I, then β = β̃.

Consider the real-valued function (on the interval J)

f = T • T̃ +N • Ñ +B • B̃.

Since these are unit vector fields, the Cauchy-Schwarz inequality shows that

T • T̃ ≤ 1.

Furthermore, T • T̃ = 1 if and only if T = T̃ . Similar remarks hold for the

other two terms in f . Thus it suffices to show that f has constant value 3.

� Exercise 111 Show that the real-valued function

f = T • T̃ +N • Ñ +B • B̃

has constant value 3. (Hint : Compute ḟ = 0 and observe that f(s0) = 3.)

2

2.6 Some Remarks

Arbitrary speed curves

Let α : J → R3 be a regular curve that does not necessarily have unit

speed. We may reparametrize α to get a unit speed curve ᾱ and then transfer

to α the Serret-Frenet apparatus of ᾱ. Explicitly, if s is an arc length function

for α, then

α(t) = ᾱ(s(t)) for t ∈ J.

Let {κ̄, τ̄ , T̄ , N̄ , B̄} be the Serret-Frenet apparatus of ᾱ. We now make the

following definition (for κ̄ > 0).
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2.6.1 Definition. We define (for the regular curve α )

• the curvature function : κ(t) : = κ̄(s(t));

• the torsion function : τ(t) : = τ̄(s(t));

• the unit tangent vector field : T (t) : = T̄ (s(t));

• the principal normal vector field : N(t) : = N̄(s(t));

• the binormal vector field : B(t) : = B̄(s(t)).

Note : In general, κ and κ̄ are different functions, defined on different intervals.

But they give exactly the same description of the turning of the common route of

α and ᾱ, since at any point α(t) = ᾱ(s(t)) the numbers κ(t) and κ̄(s(t)) are by

definition the same. Similarly with the rest of the Serret-Frenet apparatus; since only

the change of parametrization is involved, its fundamental geometric meaning is the

same as before.

For purely theoretical work, this simple transference is often all that is needed.

Data about α converts into data about the unit speed reparametrization ᾱ; results

about ᾱ convert to results about α. However, for explicit numerical computations

– and occasionally for the theory as well – this transference is impractical, since it is

rarely possible to find explicit formulas for ᾱ.

The Serret-Frenet formulas are valid only for unit speed curves; they tell

the rate of change of the frame field (T,N,B) with respect to arc length.

However, the speed ν of the curve is the proper correction factor in the general

case.

2.6.2 Proposition. If α is a regular curve with nonzero curvature, then

Ṫ = κν N

Ṅ = −κν T + τν B

Ḃ = −τν N.

Proof : The speed of α is

ν(t) = ‖α̇(t)‖ =
ds

dt
·
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Let ᾱ be a unit speed reparametrization of α. Then T (t) = T̄ (s(t)). The

chain rule and the usual Serret-Frenet equations give

Ṫ =
dT

dt
=

dT̄

ds

ds

dt
= κ̄N̄ν

= κν N

so the first formula is proved. For the second and third,

Ṅ =
dN

dt
=

dN̄

ds

ds

dt
= (−κ̄T̄ + τ̄ B̄)ν

= −κν T + τν B

and

Ḃ =
dB

dt
=

dB̄

ds

ds

dt
= −τ̄ N̄ν

= −τν N.

2

Recall that only for a constant speed curve is acceleration everywhere or-

thogonal to velocity. In the general case, we analyze velocity and acceleration

by expressing them in terms of the Serret-Frenet frame field.

2.6.3 Proposition. If α is a regular curve with speed function ν, then

the velocity and acceleration of α are given by

α̇ = ν T and α̈ =
dν

dt
T + κν2N.

Proof : Since α(t) = ᾱ(s(t)), the first calculation is

α̇ =
dα

dt
=

dᾱ

ds

ds

dt
= ν T̄

= ν T
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while the second is

α̈ =
dα̇

dt
=

dν

dt
T + ν Ṫ

=
dν

dt
T + νκν N

=
dν

dt
T + κν2N.

2

Note : The formula α̇ = ν T is to be expected since α̇ and T are each tangent to

the curve and T has unit length, while ‖α̇‖ = ν. The formula for acceleration is more

interesting. By definition, α̈ is the rate of change of the velocity α̇, and in general

both the length and the direction of α̇ are changing. The tangential component

(dν/dt)T of α̈ measures the rate of change of the length of α̇ (i.e. of the speed of

α). The normal component κν2N measures the rate of change of the direction of α̇.

Newton’s laws of motion show that these components may be experienced as forces.

We now find effectively computable expressions for the Serret-Frenet ap-

paratus. Clearly we have (for an arbitrary speed curve)

T =
α̇

‖α̇‖
and N = B × T.

We also have

2.6.4 Proposition. For any regular curve α (with positive curvature)

(1) B =
α̇× α̈
‖α̇× α̈‖

;

(2) κ =
‖α̇× α̈‖
‖α̇‖3

;

(3) τ =
(α̇× α̈) • ...

α

‖α̇× α̈‖2
·

Proof : For (1), we use the formulas of Proposition 2.6.3 to get

α̇× α̈ = (ν T )×
(
dν

dt
T + κν2N

)
= ν

dν

dt
T × T + κν3 T ×N

= 0 + κν3B.
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Hence ‖α̇× α̈‖ = κ ν3 and so

B =
α̇× α̈
‖α̇× α̈‖

·

For (2), we use the expression for α̈ in Proposition 2.6.3, take cross product

with T and note that T × T = 0 to isolate the curvature

T × α̈ = 0 + κν2 T ×N
α̇× α̈
‖α̇‖

= κν2 T ×N.

We get (by taking norms)

‖α̇× α̈‖
ν

= κν2 ‖B‖

and hence
‖α̇× α̈‖
ν3

= κ.

For (3), we take the third derivative

...
α =

(
dν

dt
T + κν2N

)·
=

d2ν

dt2
T +

dν

dt
Ṫ +

dκ

dt
ν2N + 2κν

dν

dt
N + κν2Ṅ .

Therefore, since Ṫ = κN and B is othogonal to T and N , we get

B • ...
α = κν2B • Ṅ

= κν2B • (−κν T + τν B)

= κτν3.

Now α̇× α̈ = κν3B, and so

(α̇× α̈) • ...
α = κν3B • ...

α

= κν3(κτν3)

= κ2ν6τ.

Of course ‖α̇× α̈‖ = κ2ν6, so we have

τ =
(α̇× α̈) • ...

α

κ2ν6
=

(α̇× α̈) • ...
α

‖α̇× α̈‖2
·

2
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Note : Equation (2) shows that for regular curves, ‖α̇× α̈‖ > 0 is equivalent to

the usual condition κ > 0.

2.6.5 Example. We compute the Serret-Frenet apparatus of the regular

curve

α(t) =
(
3t− t3, 3t2, 3t+ t3

)
.

The derivatives are

α̇ = 3(1− t2, 2t, 1 + t2)

α̈ = 6(−t, 1, t)

α̈ = 6(−1, 0, 1).

We have α̇ • α̇ = 18(1 + 2t2 + t4), and so

ν = ‖α̇‖ = 3
√

2(1 + t2).

Next

α̇× α̈ = 18

∣∣∣∣∣∣∣
E1 E2 E3

1− t2 2t 1 + t2

−t 1 t

∣∣∣∣∣∣∣ = 18(−1 + t2,−2t, 1 + t2)

and hence

‖α̇× α̈‖ = 18
√

2(1 + t2).

The expressions above for α̇× α̈ and
...
α yield

(α̇× α̈) • ...
α = 216.

It remains only to substitute this data into the formulas above, with N being

computed by another cross product. The final results are

T =
(1− t2, 2t, 1 + t2)√

2(1 + t2)

N =
(−2t, 1− t2, 0)

1 + t2

B =
(−1 + t2,−2t, 1 + t2)√

2(1 + t2)

κ = τ =
1

3(1 + t2)
·
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� Exercise 112 Compute the Serret-Frenet apparatus for each of the following

(regular) curves :

(a) α(t) = (et cos t, et sin t, et).

(b) β(t) = (cosh t, sinh t, t) (the hyperbolic helix).

� Exercise 113 If α is a regular curve with constant speed c > 0, show that

T =
1

c
α̇ ; N =

α̈

‖α̈‖
; B =

α̇× α̈
c ‖α̈‖

; κ =
1

c2
‖α̈‖ ; τ =

(α̇× α̈) • ...
α

c2 ‖α̈‖2
·

� Exercise 114 Consider the unit speed helix

β(s) =

(
a cos

s

k
, a sin

s

k
,
bs

k

)
, k =

√
a2 + b2

and define the curve σ : = β̇, the spherical image of β. (For every s, the point σ(s)

lies on the unit sphere S2, and the motion of σ represents the turning of β.) Show

that

κσ =

√
1 +

(
τβ
κβ

)2

≥ 1

(and thus depends only on the ratio of torsion to curvature for the original curve).

Some implications of curvature and torsion

There are instances in which the ratio of torsion to curvature (for a certain

curve) plays an important role (see Exercise 107). This ratio can be used to

characterize an entire class of regular curves, called cylindrical helices.

� Exercise 115 Consider the standard helix

α(t) = (a cos t, a sin t, bt) .

Verify that the angle θ between the unit tangent vector T = α̇
‖α̇‖ of α and the

standard unit vector e3 is constant.

A cylindrical helix is a generalization of a standard (or circular) helix. We

make the following definition.

2.6.6 Definition. A regular curve α : J → R3 is called a cylindrical

helix provided the unit tangent vector T of α has constant angle θ with

some fixed unit vector u; that is, T (t) • u = cos θ for all t ∈ J .
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The condition is not altered by reparametrization, so without loss of gen-

erality we may assume that cylindrical helices have unit speed. Cylindrical

helices can be identified by a simple condition on torsion and curvature.

2.6.7 Proposition. Let β : J → R3 be a unit speed curve with nonzero

curvature. Then

β is a cylindrical helix if and only if
τ

κ
is constant.

Proof : (⇒ ) If β is a cylindrical helix with T • u = cos θ, then

0 = (T • u)· = Ṫ • u = κN • u

so N • u = 0 since κ > 0. The unit vector u is orthogonal to N and hence

u = (u • T )T + (u •B)B

= cos θ T + sin θ B.

By differentiating we obtain

0 = cos θ Ṫ + sin θ Ḃ

= κ cos θ N − τ sin θ N

= (κ cos θ − τ sin θ)N.

Thus κ cos θ − τ sin θ = 0 which gives

τ

κ
= cot θ = constant.

(⇐ ) Now suppose
τ

κ
is constant. Choose an angle θ such that cot θ =

τ

κ
·

Define U : = cos θ T + sin θ B to get

U̇ = (κ cos θ − τ sin θ)N = 0.

This parallel vector field U then determines a unit vector u such that

T • u = cos θ.

Thus β is a cylindrical helix. 2
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Note : A regular curve with nonzero curvature is a circular helix if and only if

both τ and κ are constant. Also, it can be shown that a regular curve is a cylindrical

helix if and only if its spherical image is part of a circle.

� Exercise 116 Show that the curve

α(t) =
(
at, bt2, t3

)
is a cylindrical helix if and only if 4b4 = 9a2. In this case, find the vector u such

that T • u= constant.

Plane Curves

Recall that a plane curve in R3 is a curve that lies entirely in a single

plane of R3. The theory of plane curves can be viewed as a special case of the

theory of curves in R3.

Note : The Euclidean plane R2 can be embedded in R3 and thus identified with a

subset (plane) of R3. For instance, we can think of R2 as the x1x2-plane of R3; that

is, we identify the Euclidean plane R2 with the plane {x = (x1, x2, x3) |x3 = 0} ⊂ R3.

Another option is to identify R2 with the plane {x = (x1, x2, x3) |x1 = 1} ⊂ R3. In

this case, it is convenient to represent the point (p1, p2) of R2 as the column matrix

(vector)

 1

p1

p2

.

We can also give an independent treatment of plane curves; this approach

has the advantage that the plane R2 can be taken to be oriented. An orien-

tation of R2 may be given by fixing a positive frame at a point p ∈ R2; an

obvious choice is the natural frame (e1, e2) at the origin.

Let β : J → R2 an oriented unit speed curve and denote by T the unit

tangent vector field on β : T : = β̇. We define the normal vector field

(on β ) N by requiring the oriented frame field (T,N) to have the “same

orientation” as the plane R2.

Then the Serret-Frenet formulas become

Ṫ = κN

Ṅ = −κT
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where the real-valued function κ : J → R is the (signed) curvature of β.

Note : The curvature κ might be either positive or negative. It is clear that |κ|
agrees with the curvature in the case of space curves and that κ changes sign when

we change either the orientation of β or the orientation of R2.

� Exercise 117 Show that if β = (β1, β2) is a unit speed curve in R2, then

T (s) = (β̇1(s), β̇2(s)) and N(s) = (−β̇2(s), β̇1(s)).

� Exercise 118 Show that the regular plane curve α(t) = (x1(t), x2(t)) has

curvature

κ(t) =
ẋ1(t)ẍ2(t)− ẍ1(t)ẋ2(t)

(ẋ2
1(t) + ẋ2

2(t))3/2

at α(t).

2.6.8 Example. The curvature of the (standard) ellipse α(t) = (a cos t, b sin t)

is given by

κ(t) =
ab

(a2 sin2 t+ b2 cos2 t)3/2
=

ab√
(a2 + (b2 − a2) cos2 t)3

·

Recall that 0 < b < a and hence observe that that the curvature achieves a

minimum when t = ±π
2 and a maximum when t = 0 or π.

Consider the example of a (regular) plane curve given by the graph of a

(differentiable) function

α(t) = (t, f(t)).

Here ‖α̇(t)‖ =

√
1 + ḟ2 and so we can compute

T =

 1√
1 + ḟ2(t)

,
ḟ(t)√

1 + ḟ2(t)


N =

 −ḟ(t)√
1 + ḟ2(t)

,
1√

1 + ḟ2(t)


Ṫ =

f̈(t)

1 + ḟ2(t)

 −ḟ(t)√
1 + ḟ2(t)

,
1√

1 + ḟ2(t)

 .
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Hence

κ(t) =
f̈(t)(

1 + ḟ2(t)
)3/2
·

Observe that the sign of the curvature is determined by the second derivative

f̈(t), which is positive if f(t) is concave up, negative if f(t) is concave down.

Since any curve in R2 is locally the graph of a function, we see that the signed

curvature at a point is positive if the curve turns to left of the tangent, negative

if to the right.

� Exercise 119 Compute the curvature of the semicircle

x2 =
√
a2 − x2

1.

� Exercise 120 Show that the curvature of the (cuspidal) cycloid t 7→ (t −
sin t, 1− cos t) (at a regular value t) is given by

κ(t) = − 1

4 sin t
2

·

� Exercise 121 Find a formula for the curvature of the parabola x1 = at2, x2 =

2at (with a > 0). Show that the vertex is the unique point on the parabola where

the curvature assumes a maximal value.

In the case of a plane curve, the proof of the Fundamental Theorem is

actually very simple.

� Exercise 122 Given a smooth function κ : (a, b) → R, show that the plane

curve β : (a, b)→ R2, parametrized by arc length and having κ as (directed) curva-

ture function, is given by

β(s) =

(∫
cos θ(s) ds+ c1,

∫
sin θ(s) ds+ c2

)
where

θ(s) =

∫
κ(s) ds+ ϕ.

Furthermore, any other curve curve β̄ satisfying the same conditions, differs from β

by a rotation of angle ϕ followed by a translation by vector c =

[
c1

c2

]
.
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3.1 Euclidean m-Space

Let R be the set of real numbers and let Rm (m ≥ 1) denote the Cartesian

product of m copies of R. Clearly, R1 = R. The elements of Rm are ordered

m-tuples of real numbers. Under the usual addition and scalar multiplication,

Rm is a vector space over R.

Note : The set Rm may be equipped with various “natural” structures (e.g.,

group structure, vector space structure, topological structure, etc.) thus yielding

various spaces (having the same underlying set) Rm. We must usually decide from

the context which structure is intended. We shall find it convenient to refer to the

vector space Rm equipped with its canonical topology as the Cartesian m-space.

For 0 < ` < m the canonical inclusion R` ↪→ Rm is defined as the map

(x1, . . . , x`) 7→ (x1, . . . , x`, 0, . . . , 0). Similarly, the map (x1, . . . , x`, . . . xm) 7→
((x1, . . . , x`), (x`+1, . . . xm)) defines a canonical isomorphism between (vector

spaces) Rm and R` × Rm−`. We write Rm = R` × Rm−`.

The concept of Euclidean (2- or 3-dimensional) space extends straightfor-

wardly to higher dimensions. We make the following definition.

3.1.1 Definition. The (standard) Euclidean m-space is the set Rm

together with the Euclidean distance between points x = (x1, . . . , xm) and

y = (y1, . . . , ym) given by

d(x, y) =
√

(y1 − x1)2 + · · ·+ (ym − xm)2.

The distance function d : Rm × Rm → R, (x, y) 7→ d(x, y) is a metric

(see Exercise 7) and hence Euclidean m-space Rm is a metric space.

Note : Any metric space is a topological space and so any (standard) Euclidean

space is, by definition, a Cartesian space. It is important to realize that these two

structures are distinct : a Euclidean space has “more structure” than a Cartesian

space; this distinction will subsequently play an important role.

We denote the open ball of center p and radius ρ > 0 by

B(x, ρ) : = {x ∈ Rm | d(x, p) < ρ}.
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It turns out that the open sets are exactly the (arbitrary) unions of such open

balls. In the usual sense one can introduce concepts like closed sets, connected

sets, convergence (of sequences), completeness, compact sets, etc. Also, one

can speak of continuous mappings.

Under the usual addition and scalar multiplication, Euclidean m-space Rm

is a vector space. This vector space is rather special in the sense that it has

a built-in positive definite inner product (i.e., a positive definite symmetric

bilinear form), the so-called dot product,

x • y : = x1y1 + x2y2 + · · ·+ xmym

and an orthonormal basis

{e1, e2, . . . , em} with ei • ej = δij .

Note : (1) The Euclidean metric d can be defined using the standard inner

product on Rm. We define ‖x‖, the norm of the element (vector) x, by ‖x‖ =
√
x • x.

Then we have

d(x, y) = ‖x− y‖.

This notation is frequently useful even when we are dealing with the Euclidean m-

space Rm as a metric space and not using its vector space structure. In particular,

‖x‖ = d(x, 0).

(2) An abstract concept of Euclidean space (i.e., a space satisfying the axioms of

Euclidean geometry) can be introduced. It is defined as a structure
(
E , ~E, ϕ

)
, con-

sisting of a (nonempty) set E , an associated standard vector space (which is a real

vector space equipped with an arbitrary positive definite inner product 〈·, ·〉), and a

structure map

ϕ : E × E → ~E, (p, q) 7→ −→pq

such that

(AS1) −→pq +−→qr = −→pr for every p, q, r ∈ E ;

(AS2) For every o ∈ E and every v ∈ ~E, there is a unique p ∈ E such that
−→op = v.

Elements of E are called points, whereas elements of ~E are called vectors. (−→op is the

position vector of p with the initial point o.) The dimension of E is the dimension

of (the vector space) ~E. It turns out that



106 M4.3 - Geometry

(i) if we fix an arbitrary point o ∈ E , there is a one-to-one correspondence between

E and ~E (the mapping p 7→ −→op is a bijection);

(ii) in addition, if we fix an arbitrary orthonormal basis e1, e2, . . . , em of ~E, the

(inner product) spaces ~E and Rm are isomorphic. (In other words, the inner product

on ~E “is” a dot product : for v, w ∈ ~E,

〈v, w〉 = 〈v1e1 + · · ·+ vmem, w1e1 + · · ·+ wmem〉

= v1w1 + · · ·+ vmwm.)

In this sense, we identify the (abstract) m-dimensional Euclidean space E = Em with

the (concrete) standard Euclidean m-space Rm.

Elements of Euclidean m-space Rm, when thought of as points, will be

written as m-tuples. When thought of as vectors, they will be written as

column m-matrices. Euclidean 1-space R1 = R will be referred to as the real

line.

Let U ⊆ Rm. Let x = (x1, . . . , xm) denote the general (variable) point of

U and let p = (p1, . . . , pm) be a fixed but arbitrary point of U . U is an open

set if (and only if) for each point x ∈ U there is an open ball B(x, ρ) ⊂ U ;

intuitively, this means that points in U are entirely surrounded by points of

U (or that points sufficiently close to points of U still belong to U). Let

∅ 6= A ⊆ Rm. An open neighborhood of A is an open set containing A, and

a neighborhood of A is any set containing an open neighborhood of A. In

particular, a neighborhood of a set {p} is also called a neighborhood of the

point p.

Henceforth, throughout this chapter, U will denote an open set.

Continuity

A mapping F : U ⊆ Rm → Rn is continuous at p ∈ U if (and only if)

given ε > 0, there exists a δ > 0 such that

F (B(p, δ)) ⊆ B(F (p), ε).

In other words, F is continuous at p if (and only if) points arbitrarily close to

F (p) are images of points sufficiently close to p. We say that F is continuous

provided it is continuous at each p ∈ U .
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Given a mapping F : U ⊆ Rm → Rn, we can determine n functions (of

m variables) as follows. Let x = (x1, . . . , xm) ∈ U and F (x) = (y1, . . . , yn).

Then we can write

y1 = f1(x1, . . . , xm), y2 = f2(x1, . . . , xm), . . . , yn = fn(x1, . . . , xm).

The functions fi : U → R, i = 1, 2, . . . , n are the component functions

of F . The continuity of the mapping F is equivalent to the continuity of its

component functions.

� Exercise 123 Prove that a mapping F : U ⊆ Rm → Rn is continuous if and

only if each component function fi : U ⊆ Rm → R, i = 1, 2, . . . , n is continuous.

The following results are standard (and easy to prove).

3.1.2 Proposition. Let F,G : U ⊆ Rm → Rn be continuous mappings

and let λ ∈ R. Then F + G, λF, and F • G are each continuous. If n = 1

and G(x) 6= 0 for all x ∈ U , then the quotient F
G is also continuous.

3.1.3 Proposition. Let F : U ⊆ R` → Rm and G : V ⊆ Rm → Rn be

continuous mappings, where U and V are open sets such that F (U) ⊆ V .

Then G ◦ F is a continuous mapping.

� Exercise 124 Show that the following mappings (or functions) are continuous.

(a) The identity mapping id : Rm → Rm, x 7→ x.

(b) The norm function ν : Rm → R, x 7→ ‖x‖.

(c) The ith natural projection pri : Rm → R, x 7→ xi.

Hence derive that every polynomial function (in several variables)

pk : Rm → R, x = (x1, . . . , xm) 7→
k∑

i1,...,im=0
i1+···+im≤k

ai1...imx
i1
1 . . . ximm

is continuous.

Note : More generally, every rational function (i.e., a quotient of two polynomial

functions) is continuous. In can be shown that elementary functions like exp, log, sin,

and cos are also continuous.
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Mappings L : Rm → Rn that preserve the linear structure of the Euclidean

space (i.e., linear mappings) play an important role in differentiation. Such

mappings are continuous (see also Exercise 128).

� Exercise 125 Show that every linear mapping L : Rm → Rn is continuous.

In most applications it is convenient to express continuity in terms of

neighborhoods instead of open balls.

� Exercise 126 Prove that a mapping F : U ⊆ Rm → Rn is continuous at p ∈
U if and only if given a neighborhood N of F (p) in Rn there exists a neighborhood

M of p in Rm such that F (M) ⊆ N .

It is often necessary to deal with mappings (or functions) defined on ar-

bitrary (i.e., not necessarily open) sets. To extend the previous ideas to this

situation, we shall proceed as follows.

Let F : A ⊆ Rm → Rn be a mapping, where A is an arbitrary set. We say

that F is continuous on A provided there exists an open set U ⊆ Rm, A ⊆
U , and a continuous mapping F̄ : U → Rn such that the restriction F̄

∣∣
A

= F .

In other words, F is continuous (on A ) if it is the restriction of a continuous

mapping defined on an open set containing A.

Note : It is clear that if F : A ⊆ Rm → Rn is continuous, then given a neigh-

borhood N of F (p) in Rn, p ∈ A, there exists a neighborhood M of p in Rm

such that F (M∩ A) ⊆ N . For this reason, it is convenient to call the set W ∩ A a

neighborhood of p in A.

We say that a continuous mapping F : A ⊆ Rm → Rm is a homeomor-

phism onto F (A) if F is one-to-one and the inverse F−1 : F (A) ⊆ Rm →
Rm is continuous. In this case A and F (A) are homeomorphic sets.

3.1.4 Example. Let F : R3 → R3 be given by

F (x1, x2, x3) = (ax1, bx2, cx3).

F is clearly continuous, and the restriction of F to the (unit) sphere

S2 =
{
x = (x1, x2, x3) ∈ R3 |x2

1 + x2
2 + x2

3 = 1
}
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is a continuous mapping F̃ : S2 → R3. Observe that F̃ (S2) = E, where E is

the ellipsoid

E =

{
x = (x1, x2, x3) ∈ R3 | x

2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1

}
.

It is also clear that F is one-to-one and that

F−1(x1, x2, x3) =
(x1

a
,
x2

b
,
x3

c

)
·

Thus F̃−1 = F−1
∣∣
E

is continuous. Therefore, F̃ is a homeomorphism of the

sphere S2 onto the ellipsoid E.

Differentiability

A function f : U ⊆ Rm → R is differentiable at p ∈ U if there exists a

linear functional Lp : Rm → R such that

lim
x→p

f(x)− f(p)− Lp(x− p)
‖x− p‖

= 0

or, equivalently, if there exist a linear functional Lp : Rm → R and a function

R(·, p), defined on an open neighborhood V of p ∈ U , such that

f(x) = f(p) + Lp(x− p) + ‖x− p‖ ·R(x, p), x ∈ V

and

lim
x→p

R(x, p) = 0.

Then Lp is called a derivative (or differential) of f at p. We say that f is

differentiable provided it is differentiable at each p ∈ U .

Note : We think of a derivative Lp as a linear approximation of f near p. By the

definition, the error involved in replacing f(x) by Lp(x− p) is negligible compared

to the distance from x to p, provided that this distance is sufficiently small.

If Lp(x) = b1x1 + · · ·+ bmxm is a derivative of f at p, then

bi =
∂f

∂xi
(p) : = lim

t→0

1

t
(f(p+ tei)− f(p)) , i = 1, 2, . . . ,m.
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In particular, if f is differentiable at p, these partial derivatives exist and

the derivative Lp is unique. We denote by Df(p) (or sometimes f ′(p)) the

derivative of f at p, and write (by a slight abuse of notation)

Df(p) =
∂f

∂x1
(p)(x1 − p1) +

∂f

∂x2
(p)(x2 − p2) + · · ·+ ∂f

∂xn
(p)(xm − pm).

� Exercise 127 Show that any linear functional f : Rm → R is differentiable

and Df(p) = f for all p ∈ Rm.

� Exercise 128 Prove that any differentiable function f : U ⊆ Rm → R is

continuous.

Note : Mere existence of partial derivatives is not sufficient for differentiability (of

the function f). For example, the function f : R2 → R defined by

f(x1, x2) =
x1x2

x2
1 + x2

2

and f(0, 0) = 0

is not continuous at (0, 0), yet both partial derivatives are defined there. However, if

all partial derivatives ∂f
∂xi

, i = 1, 2, . . . ,m are defined and continuous in a neighbor-

hood of p ∈ U , then f is differentiable at p.

If the function f : U ⊆ Rm → R has all partial derivatives continuous (on

U) we say that f is continuously differentiable (or of class C1 ) on U . We

denote this class of functions by C1(U). (The class of continuous functions

on U is denoted by C0(U).)

Note : We have seen that

f ∈ C1(U) ⇒ f is differentiable (on U) ⇒ all partial derivatives
∂f

∂xi
exist (on U)

but the converse implications may fail. Many results actually need f to be of class

C1 rather than differentiable.

If r ≥ 1, the class Cr(U) of functions f : U ⊆ Rm → R that are r-

fold continuously differentiable (or Cr functions) is specified inductively by

requiring that the partial derivatives of f exist and belong to Cr−1(U). If f

is of class Cr for all r, then we say that f is of class C∞ or simply smooth.

The class of smooth functions on U is denoted by C∞(U).
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Note : If f ∈ Cr(U), then (at any point of U) the value of the partial derivatives

of order k, 1 < k ≤ r is independent of the order of differentiation; that is, if

(j1, . . . , jk) is a permutation of (i1, . . . , ik), then

∂kf

∂xi1 . . . ∂xik
=

∂kf

∂xj1 . . . ∂xjk
·

We are now interested in extending the notion of differentiability to map-

pings F : U ⊆ Rm → Rn. We say that F is differentiable at p ∈ U if (and

only if) its component functions are differentiable at p; that is, by writing

F (x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

the functions fi : U → R, i = 1, 2, . . . , n have partial derivatives at p ∈ U .

F is differentiable provided it is differentiable at each p ∈ U .

The class Cr(U,En), 1 ≤ r ≤ ∞ of Cr-mappings F : U ⊆ Rm → Rn is

defined in the obvious way. We will be concerned primarily with smooth (i.e.,

of class C∞ ) mappings. So if F is a smooth mapping, then its component

functions fi, i = 1, 2, . . . , n have continuous partial derivatives of all orders

and each such derivative is independent of the order of differentiation.

Note : For the case m = 1, we obtain the notion of (parametrized) smooth curve

in Euclidean n-space Rn. In Chapter 2, we have already seen such an object in E3.

(Most of the concepts introduced in Chapter 2 can be extended to higher dimensions;

in particular, the concept of tangent vector.)

Let TpRm be the tangent space to Rm at p; this vector space can be

identified with Rm via

v1
∂

∂x1

∣∣∣∣
p

+ · · ·+ vm
∂

∂xm

∣∣∣∣
p

7→ (v1, · · · , vm).

Let α : U ⊆ R→ Rm be a smooth (parametrized) curve with component

functions α1, . . . , αm. The velocity vector (or tangent vector) to α at t ∈ U
is the element

α̇(t) : =

(
dα1

dt
(t), · · · , dαm

dt
(t)

)
∈ Tα(t)Rm.
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3.1.5 Example. Given a point p ∈ U ⊆ Rm and a (tangent) vector v ∈
TpRm, we can always find a smooth curve α : (−ε, ε) → U with α(0) =

p and α̇(0) = v. Simply define α(t) = p + tv, t ∈ (−ε, ε). By writing

p = (p1, . . . , pm) and v = (v1, . . . , vm), the component functions of α are

αi(t) = pi + tvi, i = 1, 2, . . . ,m. Thus α is smooth, α(0) = p and

α̇(0) =

(
dα1

dt
(0), · · · , dαm

dt
(0)

)
= (v1, . . . , vm) = v.

We shall now introduce the concept of derivative (or differential) of a

differentiable mapping. Let F : U ⊆ Rm → Rn be a differentiable mapping.

To each p ∈ U we associate a linear mapping

DF (p) : Rm = TpRm → Rn = TF (p)Rn

which is called the derivative (or differential) of F at p and is defined as

follows. Let v ∈ TpEm and let α : (−ε, ε)→ U be a differentiable curve such

that α(0) = p and α̇(0) = v. By the chain rule (for functions), the curve

β = F ◦ α : (−ε, ε)→ En is also differentiable. Then

DF (p) · v : = β̇(0).

Note : The above definition of DF (p) does not depend on the choice of the curve

which passes through p with tangent vector v, and DF (p) is, in fact, linear. So

DF (p) · v =
d

dt
F (α(t))

∣∣∣∣
t=0

∈ TF (p)Rn = Rn.

The derivative DF (p) is also denoted by F∗,p and called the tangent mapping of F

at p (see Section 2.1 for the special case when F is an isometry on Euclidean 3-space

R3).

The matrix of the linear mapping DF (p) (relative to bases

(
∂
∂x1

∣∣∣
p
, . . . , ∂

∂xm

∣∣∣
p

)
of TpRm and

(
∂
∂y1

∣∣∣
F (p)

, . . . , ∂
∂yn

∣∣∣
F (p)

)
of TF (p)Rn ) is the Jacobian matrix

∂F

∂x
(p) =

∂(f1, . . . , fn)

∂(x1, . . . , xm)
(p) : =


∂f1
∂x1

(p) · · · ∂f1
∂xm

(p)
...

...
∂fn
∂x1

(p) · · · ∂fn
∂xm

(p)

 ∈ Rn×m
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of F at p. When m = n this is a square matrix and its determinant is then

defined. This determinant is called the Jacobian of F at p and is denoted

by JF (p). Thus

JF (p) =

∣∣∣∣∂F∂x (p)

∣∣∣∣ : = det
∂F

∂x
(p)·

� Exercise 129 Let f : I → R and g : J → R be differentiable functions,

where I and J are open intervals such that f(I) ⊆ J . Show that the function g ◦ f
is differentiable and (for t ∈ I)

(g ◦ f)
′
(t) = g′(f(t)) · f ′(t).

The standard chain rule (for functions) extends to mappings.

3.1.6 Proposition. (The General Chain rule) Let F : U ⊆ R` →
Rm and G : V ⊆ Rm → Rn be differentiable mappings, where U and V are

open sets such that F (U) ⊆ V . Then G ◦ F is a differentiable mapping and

(for p ∈ U)

D(G ◦ F )(p) = DG(F (p)) ◦DF (p).

Proof : The fact that G ◦ F is differentiable is a consequence of the chain

rule for functions. Now, let v ∈ TpE` be given and let us consider a (differen-

tiable) curve α : (−ε, ε)→ U with α(0) = p and α̇(0) = v. Set DF (p)·v = w

and observe that

DG(F (p)) · w =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

.

Then

D(G ◦ F )(p) · v =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

= DG(F (p)) · w

= DG(F (p)) ◦DF (p) · v.

2

Note : In terms of Jacobian matrices, the general chain rule can be written

∂(G ◦ F )

∂x
(p) =

∂G

∂y
(F (p)) · ∂F

∂x
(p)·
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Thus if H = G ◦ F and y = F (x), then

∂H

∂x
=


∂g1
∂y1

· · · ∂g1
∂ym

...
...

∂gn
∂y1

· · · ∂gn
∂ym



∂f1
∂x1

· · · ∂f1
∂x`

...
...

∂fm
∂x1

· · · ∂fm
∂x`


where

∂g1

∂y1
, . . . ,

∂gn
∂ym

are evaluated at y = F (x) and
∂f1

∂x1
, · · · , ∂Fm

∂x`
at x. Writing

this out, we obtain

∂hi
∂xj

=
∂gi
∂y1

∂y1

∂xj
+ · · ·+ ∂gi

∂ym

∂ym
∂xj

(i = 1, 2, . . . , n ; j = 1, 2, . . . , `).

� Exercise 130 Let

F (x1, x2) = (x2
1 − x2

2 + x1x2, x
2
2 − 1) and G(y1, y2) = (y1 + y2, 2y1, y

2
2).

(a) Show that F and G are differentiable, and that G ◦ F exists.

(b) Compute D(G ◦ F )(1, 1)

i. directly

ii. using the chain rule.

� Exercise 131 Show that

(a) if σ : R2 → R is defined by σ(x, y) = x+ y, then Dσ(a, b) = σ.

(b) if π : R2 → R is defined by π(x, y) = x·y, then Dπ(a, b)·(x, y) = bx+ay.

Hence deduce that if the functions f, g : U ⊆ Rm → R are differentiable at p ∈ U ,

then

D(f + g)(p) = DF (p) +Dg(p)

D(f · g)(p) = g(p)DF (p) + f(p)DG(p).

If moreover g(p) 6= 0, then

D

(
f

g

)
=
g(p)DF (p)− f(p)DG(p)

(g(p))2
·

Note : The precise sense in which the derivative DF (p) of the (differentiable)

mapping F at p is a linear approximation of F near p is given by the following
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result (in which DF (p) is interpreted as a linear mapping from Rm to Rn) : If the

mapping F : U ⊆ Rm → Rn is differentiable, then for each p ∈ U ,

lim
x→p

F (x)− F (p)−DF (p) · (x− p)
‖x− p‖

= 0.

.

If A ⊆ Rm is an arbitrary set, then C∞(A) denotes the set of all functions

f : A → R such that f = f̄
∣∣
A

, where f̄ : U → R is a smooth function on

some open neighborhood U of A.

3.2 Linear Submanifolds

Smooth curves in Euclidean 3-space R3 represent an important class of “geo-

metrically interesting” subsets that are one-dimensional and can be thoroughly

studied with the methods of calculus (and linear algebra). The simplest type of

such geometric curve is the line, which is “straight”. A two-dimensional ana-

logue of the line is the plane, which is “flat”. We shall briefly discuss these two

simple cases before considering their natural higher-dimensional analogues, the

linear submanifolds.

Lines and planes in R3

Let p ∈ R3 and 0 6= v ∈ TpR3 = R3. The line through the point p with

direction vector v is the subset

L : = p+ span {v} ⊂ R3.

We can write

L = {p+ λv |λ ∈ R}

and refer to the equation

x = p+ λv, λ ∈ R

as the vector equation of the line.
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Note : In the vector equation of line L, the elements x, p, and v are all viewed

as geometric vectors, hence written as column matrices :x1

x2

x3

 =

p1

p2

p3

+ λ

v1

v2

v3

 , λ ∈ R.

The vector equation is equivalent to the following set of three scalar equa-

tions :

x1 = p1 + λv1

x2 = p2 + λv2

x3 = p3 + λv3, λ ∈ R

called parametric equations for the line L. Alternatively, the line L can

be viewed as the image set of the linear mapping

G : R→ R3, t 7→ (p1 + tv1, p2 + tv2, p3 + tv3) .

Now let p ∈ R3 and consider two linearly independent vectors v, w ∈
TpR3 = R3. The plane through the point p with direction subspace ~P =

span{v, w} is the subset

P : = p+ span{v, w} ⊂ R3.

Likewise, we can write

P = {p+ λv + µw |λ, µ ∈ R}

and refer to the equation

x = p+ λv + µw, λ, µ ∈ R

as the vector equation of the plane. The vector equation is equivalent to

the following set of three scalar equations :

x1 = p1 + λv1 + µw1

x2 = p2 + λv2 + µw2

x3 = p3 + λv3 + µw3, λ, µ ∈ R
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called parametric equations for the plane P .

Note : The fact that the vectors v and w are linearly independent is equivalent

to the following rank condition :

rank
[
v w

]
= rank

v1 w1

v2 w2

v3 w3

 = 2.

Alternatively, the plane P can be viewed as the image set of the linear

mapping

G′ : R2 → R3, (s, t) 7→ (p1 + sv1 + tw1, p2 + sv2 + tw2, p3 + sv3 + tw3) .

� Exercise 132 Show that the system of linear equations (in unknowns λ and

µ )

λv1 + µw1 = x1 − p1

λv2 + µw2 = x2 − p2

λv3 + µw3 = x3 − p3

(where rank
[
v w

]
= 2) is consistent if and only if∣∣∣∣∣∣∣

x1 − p1 x2 − p2 x3 − p3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ = 0.

(Hint : A system of linear equations Ax = b is consistent if and only if rank
[
A b

]
=

rank (A).)

� Exercise 133 Show that the condition x−p = λv+µw (where rank
[
v w

]
=

2) is equivalent to

(x− p) • v × w = 0.

The plane

P = p+ ~P = p+ span{v, w}, rank
[
v w

]
= 2

can be described by the scalar equation

a1(x1 − p1) + a2(x2 − p2) + a3(x3 − p3) = 0
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or by the so-called (general) Cartesian equation

a1x1 + a2x1 + a3x3 + c = 0, a2
1 + a2

2 + a2
3 6= 0.

(Here

a1 =

∣∣∣∣∣v2 v3

w2 w3

∣∣∣∣∣ , a2 =

∣∣∣∣∣v3 v1

w3 w1

∣∣∣∣∣ , a3 =

∣∣∣∣∣v1 v2

w1 w2

∣∣∣∣∣ .)
� Exercise 134 Show that any equation of the form

a1x1 + a2x2 + a3x3 + c = 0, a2
1 + a2

2 + a2
3 6= 0

represents a plane P in R3.

Note : The Cartesian equation for the plane P can be put into the form

u • x+ c = 0

where u = v × w and c = −p • v × w. The (nonzero) vector u defines the normal

direction of P . We can see that the line with vector direction u = v×w is orthogonal

to the plane with vector subspace span{v, w}.

Let P1 and P2 be two planes (not necessarily distinct) in R3. So

Pi = pi + ~Pi, i = 1, 2

and it is easy to see that

P1 = P2 ⇐⇒ p2 − p1 ∈ ~P1 = ~P2.

Hence

P1 6= P2 ⇐⇒
(
~P1 6= ~P2 or p2 − p1 6∈ ~P1 = ~P2

)
.

It turns out that condition p2 − p1 6∈ ~P1 = ~P2 is equivalent to P1 ∩ P2 = ∅;
in this case, we say that the planes P1 and P2 are strictly parallel : P1 ‖ P2

but P1 6= P2. Otherwise, P1 and P2 are two intersecting planes.

On intuitive grounds we “know” that the intersection of two distinct planes

is either the empty set (when the planes are strictly parallel) or a line.
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3.2.1 Proposition. The intersection of two distinct, intersectiong planes

is a line.

Proof : Let P1 and P2 be two distinct, intersecting planes. We can de-

scribe each of these planes by a Cartesian equation of the form

ai1x1 + ai2x2 + ai3x3 + ci = 0

where each set of coefficients is such that a2
i1 + a2

i2 + a2
i3 6= 0, i = 1, 2.

The facts that the planes are distinct and are not parallel translate into the

following rank condition :

rank

[
a11 a12 a13

a21 a22 a23

]
= 2.

But this means that the system of two linear equations in three unknowns

x1, x2, and x3

a11x1 + a12x2 + a13x3 = −c1

a21x1 + a22x2 + a23x3 = −c2

is consistent and, moreover, there is one basic variable ( v 6= 0) and one free

variable (λ). As a result, the general solution has the form

x = p+ λv, λ ∈ R

which represents a line. 2

� Exercise 135 Show that any line can be represented as an intersection of two

(distinct) planes. (Hint : Write the parametric equations of your line in “symmetric

form” :
x1 − p1

v1
=
x2 − p2

v2
=
x3 − p3

v3
·)

Note : Any line can be represented as the intersection of an arbitrary family of

planes. Indeed, given a line L described by the (Cartesian) equations

(P ) a1x1 + a2x2 + a3x3 + c = 0

(P ′) a′1x1 + a′2x2 + a′3x3 + c′ = 0
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where the coefficients satisfy the rank condition

rank

[
a1 a2 a3

a′1 a′2 a′3

]
= 2

(i.e., the line L is represented as an intersection of two planes : L = P ∩ P ′), then

the family of planes

ν1 (a1x1 + a2x2 + a3x3 + c) + ν2 (a′1x1 + a′2x2 + a′3x3 + c′) = 0, ν1, ν2 ∈ R

contains all planes through the line L. (For ν1 = 0 we get the plane P . If ν1 6= 0,

put ν : =
ν2

ν1
and we may write our family of planes - excluding the plane P ′ - as

follows

a1x1 + a2x2 + a3x3 + c+ ν (a′1x1 + a′2x2 + a′3x3 + c′) = 0, ν ∈ R.

So

L = P ∩ P ′ =
⋂
ν∈R

Pν .

Clearly, P = P0 ∈ (Pν)ν∈R but P ′ 6∈ (Pν)ν∈R. The “exclusion” of the plane P ′

can be easily fixed by simply putting P ′ = P∞ : = limν→∞ Pν . Hence any subfamily,

finite or infinite, of (Pν)ν∈R , R : = R ∪ {∞} has the desired property.

� Exercise 136 Show that the Cartesian equation of the plane through three

noncolinear points p, q, r can be put into the form∣∣∣∣∣∣∣∣∣
x1 x2 x3 1

p1 p2 p3 1

q1 q2 q3 1

r1 r2 r3 1

∣∣∣∣∣∣∣∣∣ = 0.

What do we get when the points are collinear ?

� Exercise 137 Prove that the lines

(L) x = p+ λv and (L′) x = p′ + µv′

lie in the same plane if and only if∣∣∣∣∣∣∣
p1 − p′1 p2 − p′2 p3 − p′3
v1 v2 v3

v′1 v′2 v′3

∣∣∣∣∣∣∣ = 0.
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`-Planes in Rm

Higher-dimensional analogues of lines and planes can be now defined with-

out difficulty.

3.2.2 Definition. A (nonempty) subset L ⊆ Rm of the form

L = p+ ~L,

where p ∈ Rm and ~L is a vector subspace of ToRm = Rm, is said to be a

linear submanifold of Euclidean m-space Rm.

The vector subspace ~L is called the direction subspace of the linear

submanifold L. If the dimension of ~L (as a vector subspace) is `, then we

say that L is a linear submanifold of dimension ` (or, simply, a linear `-

submanifold); in this case, m− ` is referred to as the codimension of L.

Note : A linear submanifold L = p+~L is the result of “shifting” a vector subspace

~L by (a vector) p. In this vein, linear `-submanifolds are also called `-planes (or

even `-flats).

3.2.3 Example. Vector subspaces of Rm are linear submanifolds. Indeed,

if p ∈ ~L (in particular, if p = o), then L = ~L.

3.2.4 Example. A linear 0-submanifold is simply a point (in fact, a sin-

gleton). In this case, L = p+~0 = p, hence L = {p}.

3.2.5 Example. A linear 1-submanifold is a line (in Rm).

A linear submanifold of dimension m− 1 is called a hyperplane. A hy-

perplane has codimension 1. What about linear submanifolds of codimension

zero ? There is only one such linear submanifold, the space itself. Indeed, in

this case,

L = p+ span {v1, v2, . . . , vm} = p+ Rm = Rm.

� Exercise 138 Let L = p + ~L be a linear submanifold and let q ∈ L. Show

that

L = q + ~L.

Hence deduce that a linear submanifold L is a vector subspace if and only if o ∈ L.
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� Exercise 139 Prove that if p+ ~L = p′ + ~L′, then ~L = ~L′.

� Exercise 140 Let (Lα)α∈A be a family of linear submanifolds such that⋂
α∈A

Lα 6= ∅. Show that the subset L =
⋂
α∈A

Lα is a linear submanifolds. Hence

deduce that

dim (L) = dim
⋂
α∈A

~Lα.

3.2.6 Proposition. Given two distinct points p, q ∈ Rm, there exists a

unique line
←→
pq containing p and q.

Proof : (Existence) The line p+ span{q − p} contains both points p, q.

(Uniqueness) Let L be a line such that p, q ∈ L. We must show that

L = p+ span{q − p}.

We have

L = p+ ~L

and so

q ∈ p+ ~L.

Thus the 1-dimensional vector subspace ~L contains the nonzero vector q−p.
Hence

~L = span{q − p}.

2

Note : The line
←→
pq throught the points p and q can be expressed as follows

←→
pq = {(1− λ)p+ λq |λ ∈ R} .

We can now characterize linear submanifolds in terms of lines.

3.2.7 Theorem. A subset ∅ 6= L ⊆ Rm is a linear submanifold if and only

if for every two distinct points x, y ∈ Rm, the line
←→
xy is contained in L.

Proof : Observe that this condition is equivalent to

(x, y ∈ L, λ ∈ R) ⇒ (1− λ)x+ λy ∈ L.
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(⇒) Let x, y ∈ L. Then L = x+ ~L, so y − x ∈ ~L and hence

λ(y − x) ∈ ~L.

We have

(1− λ)x+ λy = x+ λ(y − x) ∈ x+ ~L = L.

(⇐) Let p ∈ L and denote ~L : = L− p. Let

y1 = x1 − p ∈ ~L and y2 = x2 − p ∈ ~L.

Then

(1− λ)y1 + λy2 = (1− λ)(x1 − p) + λ(x2 − p)

= (1− λ)x1 + λx2 − p ∈ L− p.

Hence (
y1, y2 ∈ ~L, λ ∈ R

)
⇒ (1− λ)y1 + λy2 ∈ ~L.

In particular, for y1 = 0, we get(
y ∈ ~L, λ ∈ R

)
⇒ λy ∈ ~L.

Now let µ ∈ R \ {0, 1} and let y, y′ ∈ ~L. Then y1 =
1

1− µ
y, y2 =

1

µ
y′ ∈ ~L

and thus

y + y′ = (1− µ)
1

1− µ
y + µ

1

µ
y′

= (1− µ)y1 + µy2 ∈ ~L.

Hence

y, y′ ∈ ~L ⇒ y + y′ ∈ ~L.

It follows that ~Y is a vector subspace of Rm. But L = p + ~L, which proves

the result. 2

This result can be easily generalized.
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� Exercise 141 Prove that a subset ∅ 6= L ⊆ Rm is a linear submanifold if and

only if (
x1, . . . , xm ∈ L, λ1, . . . , λm ∈ R,

m∑
i=1

λi = 1

)
⇒

m∑
i=1

λixi ∈ L.

Note : A linear combination
∑
λixi where the coefficients λi satisfy the condition∑

λi = 1 is called an affine combination. A linear submanifold can be characterized

by the condition that it contains all the affine combinations of any (finite collection) of

its elements; such special subsets (of some “affine space”) are called affine subspaces.

So linear submanifolds are just affine subspaces of Rm.

In general, the union of two linear submanifolds is not a linear submanifold.

Let L1 and L2 be two linear submanifolds of Euclidean m-space Rm. Then

the set L1 ∪ L2 does generate a linear submanifold, denoted by L1 ∨ L2, by

taking the intersection of all linear submanifolds of Rm that contain L1 ∪L2.

Thus

L1 ∨ L2 : =
⋂

L1∪L2⊆L
L ⊆ Rm.

Note : L1 ∨ L2 is the smallest linear submanifold that contains (as subsets) L1

and L2. It is sometimes referred to as the affine span of L1 ∪ L2. It turns out that

for Li = pi + ~Li, i = 1, 2 one has

L1 ∨ L2 = p1 + ~L1 + ~L2 + span {p2 − p1}.

(Here L1 + L2 denotes the sum of the vector subspaces L1 and L2.)

� Exercise 142 Given linear submanifolds Li = pi + ~Li, i = 1, 2, show that

L1 ∩ L2 6= ∅ ⇐⇒ span {p2 − p1} ⊆ ~L1 + ~L2.

Hence deduce that if p ∈ L1 ∩ L2, then

L1 ∩ L2 = p+ ~L1 ∩ ~L2

L1 ∨ L2 = p+ ~L1 + ~L2.

3.2.8 Theorem. (Dimension Theorem) Let Li = pi + ~Li, i = 1, 2 be

linear submanifolds.
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(a) If L1 ∩ L2 6= ∅, then

dim(L1 ∨ L2) = dimL1 + dimL2 − dim(L1 ∩ L2).

(b) If L1 ∩ L2 = ∅, then

dim(L1 ∨ L2) = dim
(
~L1 + ~L2

)
+ 1.

Proof : (a) We have (see Exercise 142)

dim(L1 ∨ L2) = dim
(
~L1 + ~L2

)
dim(L1 ∩ L2) = dim

(
~L1 ∩ ~L2

)
.

But

dim
(
~L1 + ~L2

)
= dim ~L1 + dim ~L2 − dim

(
~L1 ∩ ~L2

)
and the first result follows.

(b) We have

dim(L1 ∨ L2) = dim
(
~L1 + ~L2 + span {p2 − p1}

)
= dim

(
~L1 + ~L2

)
+ 1.

2

3.2.9 Example. The linear submanifold L1 ∨ L2 generated by the lines

L1 and L2

• is a plane if L1 ∩ L2 = {p}.

• is a plane if L1 ∩ L2 = ∅ and ~L1 = ~L2.

• has dimension 3 (i.e., is a 3-flat) if L1 ∩ L2 = ∅ and ~L1 6= ~L2.

� Exercise 143 In Euclidean 4-space R4, write (parametric) equations for the

linear submanifold generated by te lines

x1

2
=
x2 − 1

1
=
x3 + 1

−1
=
x4

3

and
x1 − 1

3
=
x2

2
=
x3

1
=
x4 − 2

−1
·
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Consider an affine map

F : Rm → Rn, x 7→ Ax+ c.

(Here A is an n×m matrix and c a column n-matrix, both with real entries.)

We can see that such a map preserves affine combinations of points.

3.2.10 Proposition. Let L = p+~L be a linear submanifold of Rm. Then

the image of L under the affine map F, x 7→ Ax+ c is also a linear subman-

ifold (of Rn).

Proof : We shall show that

F (L) = F (p) +A(~L).

Let y = F (x), x ∈ L; then x− p ∈ ~L and hence

y − F (p) = F (x)− F (p)

= A(x− p) ∈ A(~L).

Thus F (L) ⊆ F (p) +A(~L).

Conversely, let y − F (p) ∈ A(~L). Then

y − F (p) = A(x− p)

for some x ∈ L. This implies y = F (x) and thus F (L) ⊇ F (p) + A(~L). The

result now follows. 2

� Exercise 144 Given a linear submanifold L = p + ~L of Rm and an affine

map F : Rm → Rn, x 7→ Ax+ c, show that the inverse image of any y ∈ F (L) under

F is a linear submanifold. (The direction subspace of F−1(y) is ker (A) ⊆ ~L.)

Note : The linear submanifold F−1(y), y ∈ F (Rm) = im (F ) may be referred

to as the fibre of (the affine map) F over (the point) y. All the fibres of F have

the same direction subspace. So the space Rm decomposes into a family of parallel

submanifolds of the same dimension :

Rm =
⋃

y∈im (F )

F−1(y), dimF−1(y) = dim ker (A).
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Recall that, for an n×m matrix A, the following basic relation holds :

dim ker (A) + dim im (A) = m

(the rank-nullity formula). Geometrically, this means that, for the linear map x 7→
Ax, the nullity of A (= dim ker (A)) counts for the number of dimensions that col-

lapse as we perform A and the rank of A (= dim im (A)) counts for the number of

dimensions that survive after we perform A.

It follows that the dimension of any of the fibres of the affine map F, x 7→ Ax+c

is m− rank (A).

A function f : Rm → R of the form

x = (x1, x2, . . . , xm) 7→ a1x1 + a2x2 + · · ·+ amxm + c

is called an affine functional on Rm. We shall find it convenient to assume

that not all the coefficients a1, . . . , am are zero; so, in other words, we rule

out the constant function x 7→ c.

Note : A nonconstant affine functional is an affine map (function)

f : Rm → R, x 7→ Ax+ c

with

rank (A) = rank
[
a1 a2 · · · am

]
= 1.

Hence the fibres of f are linear submanifolds (of Rm) of dimension m − 1 (i.e.,

hyperplanes).

The Cartesian equation

a1x1 + a2x2 + · · ·+ amxm + c = 0 with rank
[
a1 · · · am

]
= 1

represents the hyperplane f−1(0) ⊆ Rm.

� Exercise 145 Show that any nonconstant affine functional f : Rm → R is

surjective.

Note : A system of linear equations (in unknowns x1, x2, . . . , xm )

a11x1 + a12x2 + · · · + a1mxm = b1

a21x1 + a22x2 + · · · + a2mxm = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am−`,1x1 + am−`,2x2 + · · · + am−`,mxm = bm−`
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with

rank (A) = rank


a11 . . . a1m

...
...

am−`,1 . . . am−`,m

 = m− `

represents (geometrically) the intersection of m− ` hyperplanes in Rm.

Let

L = p+ ~L = p+ span{v1, v2, . . . , v`}

be a linear submanifold of dimension `. (It is assumed, of course, that the

vectors v1, v2, . . . , v` are linearly independent.) Then we can write

L = {p+ λ1v1 + · · ·+ λ`v` |λ1, . . . , λ` ∈ R}

and refer to the equation

x = p+ λ1v1 + · · ·+ λ`v`, λ1, . . . , λ` ∈ R

as the vector equation of the linear submanifold.

Equivalently, we can express (in coordinates) the linear submanifold L by

the following set of m scalar equations

x1 = p1 + λ1v11 + λ2v12 + · · ·+ λ`v1`

x2 = p2 + λ1v21 + λ2v22 + · · ·+ λ`v2`

...

xm = pm + λ1vm1 + λ2vm2 + · · ·+ λ`vm`, λ1, . . . , λ` ∈ R

called parametric equations for L. (Here vi =


v1i

...

vmi

 , i = 1, 2, . . . , `.)

Alternatively, the linear submanifold L can be viewed as the image set of the

following affine mapping

(t1, . . . , t`) 7→ (p1 + t1v11 + · · ·+ t`v1l, . . . , pm + t1vm1 + · · ·+ t`vm`) .

Note : Linear submanifolds are in fact solution sets for (consistent) systems of

linear equations. More precisely, let Ax = b (where A ∈ Rn×m and b ∈ Rn×1) be a
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system of n linear equations in m unknows x1, x2, . . . , xn. Suppose that rank (A) =

k with 0 < k ≤ min{m,n}. The system is consistent (i.e., it has at least one solution)

if and only if the rank of the augmented matrix of the system equals the rank of the

coefficient matrix (Kronecker-Capelli) :

rank
[
A b

]
= rank (A).

(When b = 0, the system is said to be homogeneous and, clearly, it is consistent. A

homogeneous system possesses a unique solution - the trivial solution - if and only if

rank (A) = m.) Reducing the matrix
[
A b

]
to a row echelon form using Gaussian

elimination and then solving for the basic variables in terms of the free variables leads

to the general solution

x = p+ λ1v1 + λ2v2 + · · ·+ λm−kvm−k.

As the free variables λi range over all possible values, this general solution generates

all possible solutions of the system. (p is a particular solution of the nonhomogeneous

system, whereas the expression λ1v1 + · · ·+ λm−kvm−k is the general solution of the

associated homogeneous system.) We see that the solution set S of the system

(assumed to be consistent) is a linear submanifold of dimension m− k :

S = p+ span{v1, . . . , vm−k} ⊂ Rm.

(The basic vectors form a basis of the direction subspace of S.) This algebraic view-

point makes it clear that linear submanifolds can be studied, at least in principle,

only by (linear) algebraic means. On the other hand, the alternative geometric view-

point offers a broader perspective : linear submanifolds are simple, special cases of

nonlinear objects/subspaces, the so-called smooth submanifolds; these are the natural

higher-dimensional analogues of regular curves.

We can interpret the parametric equations for (the linear `-submanifold)

L as the general solution of a system of linear equations (in unknowns x1, x2, . . . , xm).

If we write down one such system (i.e., if we eliminate the parameters λ1, . . . , λ`)

we get Cartesian equations for L :

a11x1 + a12x2 + · · · + a1mxm + c1 = 0

a21x1 + a22x2 + · · · + a2mxm + c2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am−`,1x1 + am−`,2x2 + · · · + am−`,mxm + cm−` = 0
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with

rank


a11 . . . a1m

...
...

am−`,1 . . . am−`,m

 = m− `.

(The linear `-submanifold L is represented as an intersection of m−` distinct

hyperplanes.)

We can summarize all these characterizations of a linear submanifold in

the following

3.2.11 Theorem. Let ∅ 6= L be a subset of Rm and assume 0 ≤ ` ≤ m.

The following statements are equivalent.

(i) L is a linear `-submanifold of Rm.

(ii) There exist linearly independent affine functions

fi : Rm → R, (x1, . . . , xm) 7→ ai1x1+· · ·+aimxm+ci (i = 1, 2, . . . ,m−`)

(i.e., the row matrices ai =
[
ai1 · · · aim

]
, i = 1, 2, . . . ,m − ` are

linearly independent) such that

L =

m−`⋂
i=1

f−1
i (0).

(iii) There exists an affine mapping

F : Rm → Rm−`, x 7→ Ax+ c

with rank (A) = m− ` such that

L = F−1(0).

(iv) There exist affine functions

hi : Rm−` → R, i = 1, 2, . . . ,m− `

such that (possibly after a permutation of coordinates) L is the graph of

the mapping

H = (h1, . . . , hm−`) : Rm−` → Rm−` ⊆ Rm

(under the canonical isomorphism).
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(v) There exists an affine mapping

G : Rm−` → Rm, t = (t1, . . . , tm−`) 7→ Bt+ d

with rank (B) = m− ` such that L is the image set of G.

Note : In (ii) we think of a linear submanifold as an intersection of hyperplanes,

in (iii) as the zero-set of a certain affine mapping, in (iv) as a graph, and in (v) as the

image set of a certain affine mapping (i.e., a parametrized set).

Parallelism and orthogonality

Let Li = pi + ~Li, i = 1, 2 be linear submanifolds of Rm.

3.2.12 Definition. We say that L1 and L2 are parallel, denoted L1 ‖
L2, provided ~L1 ⊆ ~L2 or ~L2 ⊆ ~L1.

� Exercise 146 Show that if L1 ‖ L2, then either L1 ⊆ L2 or L2 ⊆ L1 or

L1 ∩ L2 = ∅.

� Exercise 147 Given two planes

(P ) a1x1 + a2x2 + a3x3 + c = 0

(P ′) a′1x1 + a′2x2 + a′3x3 + c′ = 0

in Euclidean 3-space R3, show that a necessary and sufficient condition for them to

be parallel is
a1

a′1
=
a2

a′2
=
a3

a′3
·

(The convention is made that if a denominator is zero, the corresponding numerator

is also zero.)

� Exercise 148 Show that a necessary and sufficient condition for the plane

a1x1 + a2x2 + a3x3 + c = 0

and the line

x1 = p1 + tu1

x2 = p2 + tu2

x3 = p3 + tu3, t ∈ R
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to be parallel is

a1u1 + a2u2 + a3u3 = 0.

3.2.13 Proposition. Let L and H be an arbitrary linear submanifold an

a hyperplane (i.e., a linear submanifold of codimension 1), respectively. If

L ∩H = ∅, then L ‖ H.

Proof : Let L = p+ ~L and H = q + ~H. It is clear that

dim(L ∨H) = m.

Since

dim(L ∨H) = dim
(
~L+ ~H

)
+ 1,

it follows that

dim
(
~L+ ~H

)
= m− 1 = dim ~H.

We have ~H ⊆ ~L+ ~H and thus

~H = ~L+ ~H.

Hence ~L ⊆ ~H. This shows that L ‖ H. 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 The Inverse Mapping Theorem

One of the most important results of differential calculus is the so-called in-

verse mapping theorem. (Another fundamental result is the existence theorem

for ordinary differential equations.) In order to simplify the terminology of

this and later sections we introduce first the notion of diffeomorphism (or

differentiable homeomorphism) between two spaces.

Note : This concept can have no meaning unless the spaces are such that differen-

tiability is defined, which – at the present moment – means that they must be subsets

of Euclidean spaces.
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Let U ⊆ Rm and V ⊆ Rn be open sets. We say that a mapping F : U →
V is a Cr diffeomorphism (1 ≤ r ≤ ∞) if F is a homeomorphism and both

F and F−1 are of class Cr. (When r = 1 we simply say diffeomorphism.)

Note : A diffeomorphism is thus necessarily bijective, but a differentiable bijective

mapping may not be a diffeomorphism. For example, the function f : R→ R, t 7→ t3

is a homeomorphism and f is differentiable (in fact, smooth), but f−1 : R→ R, s 7→
3
√
s is not differentiable (since it has no derivative at s = 0).

� Exercise 149 Let A be an n ×m matrix and B an m × n matrix. Prove

that if BA = Im and AB = In, then m = n and A is invertible with inverse B.

(Hint : Show that if BA = Im, then rank (A) = rank (B) = m.)

3.3.1 Proposition. If F : U → V is a diffeomorphism (of an open subset

of Rm onto an open subset of Rn ) and p ∈ U , then the derivative DF (p) :

Rm = TpRm → Rn = TF (p)Rn is a linear isomorphism. In particular, m = n.

Proof : Since

F−1 ◦ F = idU = idRm |U

(idRm is a linear mapping), we have

D(F−1 ◦ F )(p) = idRm

or, by the general chain rule,

DF−1(F (p)) ◦DF (p) = idRm .

Likewise,

DF (p) ◦DF−1(F (p)) = idRn .

(It is safe to identify

TpU = TpRm = Rm and TF (p)V = TF (p)Rn = Rn.)

It follows that the linear mapping DF (p) is invertible with inverse

D(F−1)(F (p)). 2
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Note : It would not be possible to have a diffeomorphism between open subsets

of Euclidean spaces of different dimensions; indeed, a famous (and deep) result of

algebraic topology – Brouwer’s theorem on invariance of domain – asserts that even

homeomorphisms between open subsets of Euclidean spaces of different dimensions

is impossible. (In fact, the result says that if U ⊆ Rm is open and f : U → Rn is

continuous and one-to-one, then f(U) is open. It is then easy to derive the fact that

if U ⊆ Rm and V ⊆ Rn are open subsets such that U is homeomorphic to V , then

m = n.)

We have seen that if the mapping F : U → V is a diffeomorphism be-

tween open subsets of Rm, then the Jacobian matrix ∂F
∂x (p) is nonsingular (or,

equivalently, the Jacobian JF (p) 6= 0) for every p ∈ U . While the converse is

not exactly true, it is true locally. The following fundamental result holds.

3.3.2 Theorem. (Inverse Mapping Theorem) Let U ⊆ Rm be an open

set and let F : U → Rm be of class Cr (1 ≤ r ≤ ∞). Let p ∈ U and suppose

that DF (p) is a linear isomorphism (i.e., the Jacobian matrix ∂F
∂x (p) is non-

singular). Then there exists an open neighborhood W of p in U such that

F |W : W → F (W ) is a Cr diffeomorphism. Moreover, for y ∈ F (W ) we

have the following formula for the derivatives of F−1 at y :

DF−1(y) = (DF (x))−1 , where y = F (x).

This is a remarkable result. From a single piece of linear information at

one point, it concludes to information in a whole neighborhood of that point.

The proof is quite involved and will be omitted.

Note : The following two results are consequences of the inverse mapping theorem

:

• If DF is invertible at every point of U , then F is an open mapping (i.e., it

carries U and open subsets of Rm contained in U into open subsets of Rm).

• A necessary and sufficient condition for the C1 mapping F to be a diffeomor-

phism (from U to F (U)) is that it be one-to-one and DF be invertible at

every point of U .

� Exercise 150 Let F : R2 → R2 be given by

F (x1, x2) = (ex1 cosx2, e
x1 sinx2) .
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Show that the (smooth) mapping F is locally invertible, but not invertible.

� Exercise 151 Show that the system

y1 = x3
1x2 + x2

2

y2 = ln(x1 + x2)

has a unique solution x1 = f(y1, y2), x2 = g(y1, y2) in a neighborhood of (6, ln 3)

with f(6, ln 3) = 1 and g(6, ln 3) = 2. Find

∂f

∂y1
,
∂f

∂y2
,
∂g

∂y1
, and

∂g

∂y2
·

There is a generalization of Theorem 3.3.2, called the constant rank the-

orem, which is actually equivalent to the inverse function theorem.

A C1 mapping F : U ⊆ Rm → Rn has constant rank k if the rank of the

linear mapping DF (x) : Rm = TxRm → Rn = TF (x)Rn is k at every point

x ∈ U . Equivalently, the Jacobian matrix ∂F
∂x has constant rank k on U .

Note : In linear algebra, the rank of a matrix A ∈ Rn×m is defined in three

equivalent ways : (i) the dimension of the subspace of Rm spanned by the rows, (ii)

the dimension of the subspace of Rn spanned by the columns, or (iii) the maximum

order of any nonvanishing minor determinant. We see at once from (i) and (ii) that

rank (A) ≤ m,n.

The rank of a linear mapping is defined to be the dimension of the image, and one

proves that this is the rank of any matrix which represents the mapping. From this

it follows that, if P and Q are nonsingular matrices, then rank (PAQ) = rank (A).

When F : U ⊆ Rm → Rn is a C1 mapping, then the linear mapping DF (x) has a

rank at each x ∈ U . Because the value of the determinant is a continuous function of

its entries, we see from (iii) that if rank (DF (p)) = k, then for some neighborhood

V of p, rank (DF (x)) ≥ k; and, if k = min {m,n}, then rank (DF (x)) = k on V .

We shall refer to the rank of DF (x) as the rank of F at x.

If we compose F with diffeomorphisms, then the facts cited and the general chain

rule imply that the rank of the composition is the rank of F , since diffeomorphisms

have nonsingular Jacobian matrices.

3.3.3 Example. Consider the composition

Rk × Rm−k π−→ Rk i−→ Rn (1 ≤ k < m,n)
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where

π(x1, . . . , xk, y1, . . . , ym−k) = (x1, . . . , xk)

i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

The Jacobian matrix of i ◦ π is constantly the matrix[
Ik 0

0 0

]
∈ Rn×m.

The rank is constantly k.

The constant rank theorem asserts that, in a certain precise sense, map-

pings of constant rank k locally “look like” the above example.

3.3.4 Theorem. (Constant Rank Theorem) Let U ⊆ Rm and V ⊆
Rn be open sets and let F : U → V be of class Cr (1 ≤ r ≤ ∞). Let p ∈ U
and suppose that, in some neighborhood of p, F has constant rank k. Then

there are open neighborhoods W of p in U and Z ⊇ F (W ) of F (p) in V ,

respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(z1, . . . , zm) = (z1, . . . , zk, 0, . . . , 0).

Note : The diffeomorphisms G : W → W̃ and H : Z → Z̃ should be thought of

as changes of coordinates in these open sets. For instance, one could write

z1 = g1(x1, . . . , xm)

z2 = g2(x1, . . . , xm)

...

zm = gm(x1, . . . , xm)

viewing (z1, . . . , zm) as new coordinates of the point (x1, . . . , xm). The new coor-

dinates depend differentiably on the original ones and, G being a diffeomorphism,
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the original coordinates depend differentiably on the new ones. Thus, all of calculus,

formulated in the coordinates xi has a completely equivalent formulation in the co-

ordinates zi. (The specific formulas change, but the “realities” they express do not.)

According to this philosophy, the point of the constant rank theorem is that the most

general mapping of constant rank can be expressed locally using the same formula as

the simple Example 3.3.3, provided the coordinates in the domain and the range

are suitably changed.

The immersion and submersion theorems

There are two important special cases of Theorem 3.3.4, the immersion

theorem and the submersion theorem. A Cr mapping F : U ⊆ Rm → V ⊆ Rn

is

• an immersion if it has constant rank m

• a submersion if it has constant rank n

on U .

Note : If F is an immersion, then m ≤ n. If it is a submersion, then m ≥ n. If it is

both an immersion and a submersion, then n = m and F is locally a diffeomorphism

(such a mapping is also said to be regular).

� Exercise 152 Let F : U ⊆ Rm → V ⊆ Rn be a Cr mapping (between open

sets), and m ≤ n. Show that F is an immersion if and only if the derivative DF (x)

is one-to-one at every point x ∈ U .

When m = 1, let U be an open interval J ⊆ R. In this case, the mapping

F : J → Rn is a parametrized curve in the Euclidean space Rn. To verify that

F is an immersion it is necessary to check that the Jacobian matrix of F has

rank 1 (i.e., one of the derivatives, with respect to t, of the components of

F differs from zero for every t ∈ J).

� Exercise 153 Verify that the following mappings are immersions.

(a) F1 : R→ R3, t 7→ (cos t, sin t, t).

(The image of F1 is a circular helix.)
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(b) F2 : R→ R2, t 7→ (cos t, sin t).

(The image of F2 is the unit circle S1.)

(c) F3 : (1,∞)→ R2, t 7→
(

1
t cos(2πt), 1

t sin(2πt)
)
.

(The image of F3 is a curve spiraling to the origin as t→∞ and tending

to the point (1, 0) as t→ 1.)

3.3.5 Corollary. (Immersion Theorem) Let F : U → V be a Cr

immersion. Then there are open neighborhoods W of p in U and Z ⊇ F (W )

of F (p) in V , respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(y1, . . . , ym) = (y1, . . . , ym, 0, . . . , 0).

An immersion is locally – but not necessarily globally – one-to-one. For

instance, the standard parametrization of the unit circle is an immersion which

is clearly not one-to-one. Two more instructive examples are given below.

3.3.6 Example. Consider the mapping

F : R→ R2, t 7→
(

2 cos
(
t− π

2

)
, sin 2

(
t− π

2

))
.

It is easy to check that F is an immersion which is not one-to-one. The image

of F is a “figure eight” (a self-intersecting geometric curve) with the image

point making a complete circuit starting at the origin as t goes from 0 to 2π.

3.3.7 Example. The mapping

G : R→ R2, t 7→ F (g(t)) =
(

2 cos
(
g(t)− π

2

)
, sin 2

(
g(t)− π

2

))
where g(t) = π + 2 arctan t, is again an immersion. The image is the “eight

figure” as in the previous example, but with an important difference : the

image point passes through the origin only once, when t = 0; for t → −∞
and t→∞ it only approaches the origin as limit. Hence G is an one-to-one

immersion.
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� Exercise 154 Is the mapping

F : R→ R2, t 7→ (t2, t3)

an immersion ? What about the restriction F |U of F to U = R \ {0} ? Investigate

for injectivity this restriction.

Note : An immersion F : U ⊆ R` → Rm is said to be an embedding if, in

addition,

– F is injective. (Observe that the induced mapping F : U → F(U) is

bijective.)

– F−1 : F (U)→ U is continuous.

In particular, the mapping F : U → F (U) is bijective, continuous, and possesses a

continuous inverse; hence, is is a homeomorphism. Accordingly, an embedding is an

immersion which is also a homeomorphism onto its image.

3.3.8 Example. The mapping

F : R→ R2, t 7→ (cos t, sin t)

is a smooth immersion (see Exercise 153). Its image set is the unit circle

S1 =
{
x ∈ R2 | ‖x‖ = 1

}
.

We can see that F is not one-to-one. However, we can make it so by restricting

F to the open interval J0 = (0, 2π) (or, more generally, to an interval of the

form Ja = (a, a+ 2π) with a ∈ R). The image of this interval under F is a

circle with one point left out (a punctured circle) :

F (J0) = S1 \ {(1, 0)}.

The maping

F−1 : F (J0)→ J0

is continuous. Consequently, F : J0 → R2 is a smooth embedding.
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3.3.9 Example. The mapping

F̃ : R→ R2, t 7→ (t2 − 1, t3 − t)

is a smooth immersion. One has

F̃ (s) = F̃ (t) ⇐⇒ t = s or s, t ∈ {−1, 1}.

This makes the restriction F : = F̃
∣∣∣
(−∞,1)

one-to-one. But it does not make

F an embedding.

� Exercise 155 Show that the mapping

F−1 : F ((−∞, 1))→ (−∞, 1)

is not continuous at the point (0, 0).

� Exercise 156 Let F : U ⊆ Rm → V ⊆ Rn be a Cr mapping (between open

sets), and m ≥ n. Show that F is a submersion if and only if the derivative DF (x)

is onto at every point x ∈ U .

When n = 1, the mapping F = f : U ⊆ Rm → R is a (differentiable)

function defined on the open set U . To verify that f is a submersion it is

necessary to check that the Jacobian matrix of f has rank 1 (i.e., one of the

partial derivatives of f differs from zero for every t ∈ U).

� Exercise 157 Verify that the following functions are submersions.

(a) f1 : Rm → R, x 7→ a1x1 + · · ·+ amxm + c (a2
1 + · · ·+ a2

m 6= 0).

(The inverse image of the origin under f1 is a hyperplane.)

(b) f2 : Rm \ {0} → R, x 7→ x2
1 + · · ·+ x2

m − 1.

(The inverse image of the origin under f2 is the unit sphere Sm−1.)

3.3.10 Corollary. (Submersion Theorem) Let F : U → V be a Cr

submersion. Then there are open neighborhoods W of p in U and Z ⊇
F (W ) of F (p) in V , respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(y1, . . . , ym) = (y1, . . . , yn).
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3.3.11 Example. Let GL (n,R) denote the set (group) of all invertible

(i.e., nonsingular) n × n matrices with real entries. (It can be shown that

GL (n,R) may be viewed as an open subset of Euclidean space Rn2
.) The

map

det : GL (n,R)→ R×, A 7→ det(A)

is differentiable (in fact, smooth) and its derivative is given by

D det (A) ·B = (detA) tr
(
A−1B

)
.

The differentiability of det is clear from its formula in terms of matrix ele-

ments. Now

det (In + λC) = 1 + λtrC + · · ·+ λndetC

implies
d

dλ
det (In + λC)

∣∣∣∣
λ=0

= trC

and hence

D det (A) ·B =
d

dλ
det (A+ λB)

∣∣∣∣
λ=0

=
d

dλ

[
(detA) det (In + λA−1B)

]
λ=0

= (detA) (tr (A−1B)).

In particular (for A = In),

D det (In) ·B = trB.

The map tr is onto, and so the function det is a (smooth) submersion.

� Exercise 158 Let Sym (n) denote the set (vector space) of all symmetric

n× n matrices with real entries, and consider the mapping

Ψ : GL (n,R)→ Sym (n), A 7→ AAT .

Show that Ψ is differentiable (in fact, smooth) and its derivative is given by

DΨ(A) ·B = ABT +BAT .

Hence derive that Ψ is a (smooth) submersion.
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The Implicit Mapping Theorem

The following result follows easily from the Inverse Mapping Theorem.

3.3.12 Proposition. Let U ⊆ Rk × Rm−k be an open set and let F :

U → Rm−k be of class Cr (1 ≤ r ≤ ∞). Let (p, q) ∈ U and suppose

that F (p, q) = 0 and the matrix ∂F
∂y (p, q) ∈ R(m−k)×(m−k) is nonsingular.

Then there exist an open neighborhood W ⊆ Rk of p, an open neighborhood

W ′ ⊆ Rm−k of q and a unique Cr mapping Φ : W →W ′ such that Φ(p) = q,

and for all x ∈W , (x,Φ(x)) ∈ U and

F (x,Φ(x)) = 0.

Note : This result is the so-called Implicit Mapping Theorem. It gives suffi-

cient conditions for local solvability of a system of equations of the form

f1(x1, . . . , xk, y1, . . . , ym−k) = 0

f2(x1, . . . , xk, y1, . . . , ym−k) = 0

...

fm−k(x1, . . . , xk, y1, . . . , ym−k) = 0

where the functions fi are differentiable. (We want to solve for these m−k unknown

y1, . . . , ym−k in the m− k equations in terms of x1, . . . , xk.)

Proof : Define the mapping F̃ : U → Rk × Rm−k = Rm by

F̃ (x, y) : = (x, F (x, y))

and observe that F̃ satisfies the hypotheses of the Inverse Mapping Theorem: F̃ ∈
Cr(U,Rm) and J

F̃
(p, q) =

∣∣∣∂F∂y (p, q)
∣∣∣ 6= 0. Thus there is an open neighborhood

W̃ = W ′0×W ′ of (p, q) and an open neighborhood W×W0 of F̃ (p, q) = (p, 0)

such that F̃ : W ′0×W ′ →W×W0 has a Cr inverse F̃−1 : W×W0 →W ′0×W ′;
clearly, F̃−1 is of the form F̃−1(x, y) = (x,H(x, y)). Now define

Φ : W →W ′, Φ(x) : = H(x, 0).

Then Φ ∈ Cr(W,Rm−k) and

(p,Φ(p)) = (p,H(p, 0) = F̃−1(p, 0) = (p, q)



C.C. Remsing 143

which implies Φ(p) = q. For x ∈W , (x,Φ(x)) ∈ U and

F (x,Φ(x)) =
(
F ◦ F̃−1

)
(x, 0) =

(
pr2 ◦ F̃ ◦ F̃−1

)
(x, 0) = pr2(x, 0) = 0.

2

� Exercise 159 Show that (in Proposition 3.3.10) when m− k = 1 we get

∂Φ

∂xj
= −

∂F

∂xj
∂F

∂y

(j = 1, 2, . . . , k).

Note : More generally, the partial derivatives
∂Φi
∂xj

are given by


∂Φ1
∂x1

· · · ∂Φ1
∂xk

...
...

∂Φm−k
∂x1

· · · ∂Φm−k
∂xk

 = −


∂f1
∂y1

· · · ∂f1
∂ym−k

...
...

∂fm−k
∂y1

· · · ∂fm−k
∂ym−k


−1 

∂f1
∂x1

· · · ∂f1
∂xk

...
...

∂fm−k
∂x1

· · · ∂fm−k
∂xk

 .
� Exercise 160 Show that the equations

x+ y + t = 0

xyt+ sin(xyt) = 0

define x and y implicitly as functions of t in an open neighborhood of the point

(t, x, y) = (−1, 0, 1). Calculate the derivatives x′(−1) and y′(−1).

3.4 Smooth Submanifolds

Linear submanifolds (of some Euclidean space Rm) are a generalization of

the notion of line; they are higher-dimensional geometrical objects (subsets)

which can be studied rather easily because of their simple algebraic structure :

linear submanifolds are “linear” ! The natural “non-linear” analogues are the

smooth submanifolds; smooth submanifolds are a significant generalization of

the notion of smooth curve.

Note : All the results proven so far are valid for Cr mappings (or functions).

However, the class Cr is not strong enough for some purposes. For this reason, and
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since it is very convenient to know that we do not lose differentiability as a result of

taking derivatives (the derivatives of a smooth mapping are also smooth). C∞ is the

preferred differentiability class in much of (differentiable) manifold theory. Henceforth

we will be concerned almost exclusively with smooth mappings (or functions).

We make the following definition.

3.4.1 Definition. A (nonempty) subset S of Rm is said to be a smooth

submanifold if, for every x ∈ S, there exist an open neighborhood U of x

in Rm and a smooth diffeomorphism φ : U → Ũ ⊆ Rm such that

φ(S ∩ U) = Ũ ∩ R`,

where 0 ≤ ` ≤ m.

We say that S is a smooth submanifold of dimension ` (or, simply, an

`-submanifold). The codimension of S is m− `.

Note : Roughly speaking, the condition

S ∩ U = φ−1(Ũ ∩ R`)

says that the set S looks like R` and is “flat” in Rm. We may assume, without any

loss of generality, that φ(x) = o (the origin).

3.4.2 Theorem. Let ∅ 6= S be a subset of Rm and suppose 0 ≤ ` ≤ m.

The following statements are equivalent.

(i) S is an `-submanifold of Rm.

(ii) For every x ∈ S there exist an open neighborhood U of x in Rm and

smooth functions fi : U → R, i = 1, 2, . . . ,m − ` such that the linear

functionals Dfi(x) are linearly independent and

S ∩ U =

m−`⋂
i=1

f−1
i (0).

(iii) For every x ∈ S there exist an open neighborhood U of x in Rm and

a smooth submersion F : U → Rm−` such that

S ∩ U = F−1(0).
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(iv) For every x ∈ S there exist an open neighborhood U of x = (x1, . . . , xm)

in Rm, an open neighborhood U ′ of x′ = (x1, . . . , x`) in R` and smooth

functions hi : U ′ → R, i = 1, 2, . . . ,m − ` such that, possibly after a

permutation of coordinates, the intersection S ∩ U is the graph of the

mapping H : = (h1, . . . , hm−`) : U ′ → Rm−` (under the canonical iso-

morphism):

S ∩ U = graph (H).

(v) For every x ∈ S there exist an open neighborhood U of x in Rm, an

open neighborhood V of 0 in R` and a smooth embedding Φ : V → Rm

such that Φ(0) = x and

S ∩ U = im Φ : = {Φ(y) | y ∈ V }.

Note : In (ii) we think of a smooth submanifold as an intersection of hypersurfaces

(i.e., codimension-1 smooth submanifolds) defined by local equations, in (iii) as the

zero-set of a smooth submersion, in (iv) as a graph, and in (v) as the image set of

a smooth embedding (i.e., a parametrized set). All these are local descriptions. (In

(v) it is sufficient to assume that the smooth mapping Φ is an embedding only at

the origin because if DG(0) is injective, so is DG(x) for x close enough to o.)

Proof : We shall show that

(iii) ⇒ (i) ⇒ (v) ⇒ (iv) ⇒ (ii) ⇒ (iii).

(iii) ⇒ (i). This is just the Submersion Theorem.

(i) ⇒ (v). We may assume (by using a translation, if necessary) that

φ(x) = 0. Take V = φ(S ∩ U) and Φ = φ−1 ◦ i, where i : R` → Rm is the

canonical inclusion.

(v) ⇒ (iv). After permuting indices, if necessary, we may assume that

DΦ(0)(R`) ∩ Rm−` = 0. Let pr1 : Rm = R` × Rm−` → R` be the projection

on the first factor. From DΦ(0)(R`) ∩ Rm−` = 0 we deduce that

D(pr1 ◦ Φ)(0)(R`) = R`.
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In other words, the mapping pr1◦Φ is regular at 0. By the Inverse Mapping

Theorem, there exists an open neighborhood V ′ of 0 such that pr1 ◦ Φ is

a (smooth) diffeomorphism between V ′ and U ′ = pr1(Φ(V ′)) ⊆ R`. Thus

(iv) is satisfied if we take this U ′ and h1, . . . , hm−` equal to the m− ` last

component functions of the mapping H = Φ ◦ (pr1 ◦ Φ)−1 ∈ C∞(U ′,Rm). In

fact, H(U ′) = Φ(V ′) by assumption, and so there exists an open set U ′′ ⊆ Rm

(containing U) such that

Φ(V ′) = H(U ′) = U ′′ ∩ V.

Thus U ′′ ∩ V is the graph of (h1, . . . , hm−`) = H.

(iv) ⇒ (ii). Just set

fi(x1, . . . , xm) = hi(x1, . . . , x`)− xi+`

for i = 1, 2, . . . ,m− `.

(ii) ⇒ (iii). The mapping F : U → Rm−` with component functions

f1, . . . , fm−` is a smooth submersion at x, and remains a submersion on an

open neighborhood of x, since the determinant is a continuous function.

2

The following result follows easily from the Constant Rank Theorem.

3.4.3 Proposition. Let U ⊆ Rm and V ⊆ Rn be open sets and let F :

U → V be a smooth mapping of constant rank k. Let q ∈ F (U) ⊆ V . Then

F−1(q) is a smooth submanifold of U of dimension m− k.

Proof : Let x ∈ F−1(q). Choose a neighborhood of x as in the Constant

Rank Theorem. Without loss of generality, we can replace W with W̃ and

F |W with H ◦ F ◦ G−1 on W̃ , all as in that theorem. That is, on W , we

assume that

F (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Thus q = (a1, . . . , ak, 0, . . . , 0) and W ∩ F−1(q) is the set of all points in W

of the form

(a1, . . . , ak, xk+1, . . . , xm).
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The desired diffeomorphism φ : W → φ(W ) ⊆ Rm will be

φ(x1, . . . , xm) = (xk+1, . . . , xm, x1 − a1, . . . , xk − ak).

2

Examples of smooth submanifolds

3.4.4 Example. 0-submanifolds of Rm are exactly sets of isolated points.

� Exercise 161 Show that linear submanifolds are smooth submanifolds.

3.4.5 Example. A parametrized curve in Rm is a smooth mapping

α : J → Rm,

where J ⊆ R is an open interval. If the mapping α is an immersion (i.e.,

α̇(t) 6= 0 for all t ∈ J), we say that the curve is regular. In this case, one can

show that every t ∈ J has a neighborhood W such that α(W ) ⊆ Rm is a

1-submanifold of Rm.

Note : In general, the trace α(J) of a regular curve is not a submanifold, even if

the mapping α is one-to-one. For instance, neither the “figure eight” (see Example

3.3.6) nor its variation, without self-intersection (see Example 3.3.7) are submani-

folds of R2. Both these geometric curves are images of a smooth submanifold – the

open interval J – under some smooth immersion.

We have just seen that, in general, the image of a submanifold under an

immersion (even a one-to-one immersion) is not a submanifold. However, the

inverse image of a point (i.e., a connected 0-dimensional submanifold) under

a submersion is either the empty set or a submanifold. (This is a special case

of Proposition 3.4.3.)

3.4.6 Example. The sphere

Sm−1 : = {x ∈ Rm | ‖x‖ = 1}

is a compact, (m − 1)-submanifold of Rm. (S1 is the unit circle; S0 is equal

to two points.)
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To see this, write

Sm−1 = {x = (x1, . . . , xm) |x2
1 + · · ·+ x2

m = 1}.

Thus the sphere Sm−1 is the zero-set of the smooth function

f : Rm → R, (x1, . . . , xm) 7→ x2
1 + · · ·+ x2

m − 1.

That is, Sm−1 = f−1(0). Since the function f is a smooth submersion, the

result follows.

3.4.7 Example. A smooth submanifold of codimension one is usually re-

ferred to as a (smooth) hypersurface. Hyperplanes and spheres are simple

examples of hypersurfaces. More generally, (nonempty) subsets of the form

S = {x = (x1, . . . , xm) ∈ Rm | f(x1, . . . , xm) = 0} ,

where f : Rm → R is a smooth submersion, are hypersurfaces (of Rm).

Another simple way of constructing smooth submanifolds is given now.

3.4.8 Proposition. Let S1 be an `1-submanifold of Rm and S2 an `2-

submanifold of Rn. Then S1 × S2 is an (`1 + `2)-submanifold of Rm+n.

Proof : Theorem 3.4.2, applied to x ∈ S1, and y ∈ S2, gives n +

m − (`1 + `2) (smooth) functions fi defined on an open neighborhood U =

U1 × U2 ⊆ Rm+n of (x, y) and satisfying condition (ii) for S1 × S2. 2

3.4.9 Example. The k-torus

Tk : = S1 × · · · × S1 ⊆ R2 × · · · × R2 = R2k

is a compact, k-submanifold of R2k.

3.4.10 Example. m-submanifolds of Rm are exactly open subsets of Rm.

We shall see that the set (group) GL (n,R) of all invertible n × n matrices

with real entries - the so-called (real) general linear group - is an open subset

of Euclidean space Rn2
. Hence the general linear group GL (n,R) is a smooth

submanifold (of Rn2
).
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Note : Any closed subgroup of GL (n,R) turns out to be a smooth submanifold

(of Rn2

). This result (by no means obvious) will be proved in the chapter devoted to

(abstract) Lie groups.

� Exercise 162 Prove that

(a) each of the following sets is a smooth submanifold of R2 (of dimension

1 ):

i. {x ∈ R2 |x2 = x3
1};

ii. {x ∈ R2 |x1 = x3
2};

iii. {x ∈ R2 |x1x2 = 1}.

(b) none of the following sets is a smooth submanifold of R2 :

i. {x ∈ R2 |x2 = |x1|};
ii. {x ∈ R2 | (x1x2 − 1)(x2

1 + x2
2 − 2) = 0};

iii. {x ∈ R2 |x2 = −x2
1 for x1 ≤ 0; x2 = x2

1 for x1 ≥ 0}.

� Exercise 163 Why is that

{x ∈ R2 | ‖x‖ < 1} and {x ∈ R2 | |x1| < 1, |x2| < 1}

are submanifolds of R2, but not

{x ∈ R2 | ‖x‖ ≤ 1} ?

� Exercise 164 Which of the following sets are smooth submanifolds (of some

appropriate Euclidean space Rm) ?

(a)
{

(t2, t3) | t ∈ R
}

;

(b)
{

(x1, x2) ∈ R2 |x1 = 0 or x2 = 0
}

;

(c)
{

(t, t2) | t < 0
}
∪
{

(t,−t2) | t > 0
}

;

(d) {(cos t, sin t, t) | t ∈ R};

(e)
{

(x1, x2, x3) ∈ R3 |x3
1 + x3

2 + x3
3 − 3x1x2x3 = 1

}
;

(f)
{

(x1, x2, x3) ∈ R3 |x2
1 + x2

2 + x2
3 = 1 and x1 + x2 − x3 = 0

}
.

� Exercise 165 Define

f : R2 → R, x 7→ x3
1 − x3

2.
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(a) Prove that f is a surjective smooth function.

(b) Prove that f is a smooth submersion at every point x ∈ R2 \ {0}.

(c) Prove that for all c ∈ R the set

{x ∈ R2 | f(x) = c}

is a submanifold of R2 of dimension 1.

� Exercise 166 Define

g : R3 → R, x 7→ x2
1 + x2

2 − x2
2.

(a) Prove that g is a surjective smooth function.

(b) Prove that g is a smooth submersion at every point x ∈ R3 \ {0}.

(c) Prove that the two sheets of the cone

g−1(0) \ {0} = {x ∈ R3 \ {0} |x2
1 + x2

2 = x2
3}

form a submanifold of R3 of dimension 2.

� Exercise 167 A nondegenerate quadric in Rm is a set of the form

Q : = {x ∈ Rm | (Ax) • x+ b • x+ c = 0}

= {x ∈ Rm |x>Ax+ b>x+ c = 0},

where A is a symmetric (i.e., A> = A ) invertible m ×m matrix with real entries,

b is a column m-matrix with real entries, and c ∈ R. Introduce the discriminant

∆ : = b>A−1b− 4c ∈ R.

(a) Show that Q is a smooth hypersurface (i.e., a smooth submanifold of

dimension m− 1) of Rm.

(b) Suppose ∆ = 0. Verify that p : = − 1
2A
−1b ∈ Q and then show that

S = Q \ {p} is also a smooth hypersurface of Rm.

Tangent spaces

Let S be an `-submanifold of Euclidean space Rm and let p ∈ S. We

want to define the (geometric) tangent space to S at the point p; this is,

locally at p, the “best” approximation of S by a linear `-submanifold.
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We shall base our definition of tangent space on the concept of (geometric)

tangent vector to a curve in Rm.

Let γ : J → Rm be a parametrized curve in Rm. (This means that J is an

open interval of R and γ is a smooth mapping. Also, recall that the image

set γ(J) ⊆ Rm, the so-called trace of γ, is generally not a submanifold of

Rm.) The (geometric) tangent vector to γ at (the point) γ(t) is the element

γ̇(t) =

(
dγ1

dt
(t), · · · , dγm

dt
(t)

)
∈ Rm = Tγ(t)Rm,

where γi : J → R, i = 1, 2, . . . ,m are the component functions of γ.

3.4.11 Definition. Let S be an `-submanifold of Rm and let p ∈ S. A

tangent vector v ∈ Rm = TpRm is said to be a geometric tangent vector

of S at p if there exist a parametrized curve γ : J → Rm and t0 ∈ J such

that

(GTV1) γ(t) ∈ S for all t ∈ J ;

(GTV2) γ(t0) = p;

(GTV3) γ̇(t0) = v.

Note : We are dealing with two kinds of tangent vectors : those that are “tangent”

to the whole space (i.e., the Euclidean space Rm) and those that are tangent to a

specific submanifold; the latter will be referred to as geometric tangent vectors in

order to avoid ambiguity.

The set of all geometric tangent vectors of S at p is denoted by TpS and

is called the tangent space to S at p.

Note : By definition, TpS is a subset of (the vector space) TpRm = Rm. It turns

out that it is, in fact, a vector subspace of the tangent space TpRm. When regarded

as a subset of (Euclidean space) Rm, the tangent space TpS is better viewed as a

linear submanifold which is tangent to (i.e., has a contact of order one with) the

smooth submanifold S at the point p. It is common to refer to p + TpS, as the

geometric tangent space of S at p. (Obviously, the point p plays an important

role in this linear submanifold. By choosing the point p as the origin, one obtains the

identification of the geometric tangent space with the vector space TpS.) Experience
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shows that is convenient to regard the tangent space to S at p as a vector space

(i.e., to identify the linear submanifold p+ TpS with its direction space TpS).

Let v ∈ TpS and λ ∈ R. Then λv ∈ TpS. Indeed, we may assume that

γ(t) ∈ S for al t ∈ J with γ(0) = p and γ̇(0) = v. Consider the parametrized

curve γλ : t 7→ γ(λt). One has, for sufficiently small t, γλ(t) ∈ S. Also

γλ(0) = p and γ̇λ(0) = λv.

Hence λv ∈ TpS. It is less obvious that if v, w ∈ TpS, then v + w ∈ TpS.

3.4.12 Theorem. Let S be an `-submanifold of Rm and let p ∈ S. As-

sume that, locally at p, S is described as in Theorem 3.4.2. Then

TpS = ker (DF (p))

= graph (DH(z))

= im (DΦ(0)).

In particular, TpS is an `-dimensional vector subspace of Rm = TpRm.

Proof : Since S is an `-submanifold of Rm and p ∈ S, there exists an

open neighborhood U of p in Rm such that we can write

• S ∩ U = F−1(0), where F : U → Rm−` is a smooth submersion;

• S ∩ U = graph (H), where H : W ⊆ R` → Rm−` is a smooth

mapping;

• S ∩ U = im (Φ), where Φ : V ⊆ R` → Rm is a smooth embedding.

In particular, we assume that

p = (z,H(z)) , z ∈W ⊆ R`

= Φ(y), y ∈ V ⊆ R`

and

F (p) = 0 ∈ Rm−`.

Let h ∈ R`. Then there exists an ε > 0 such that z + th ∈W for all |t| < ε.

Consequently,

γ : t 7→ (z + th,H(z + th)) , |t| < ε

is a smooth curve in Rm such that
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– γ(t) ∈ V ;

– γ(0) = (z,H(z)) = p ;

– γ̇(0) = (h,DH(z) · h).

This implies

graph (H) ⊂ TpS.

It is equally true that

im (DΦ(y)) ⊂ TpS.

Hence

graph (H) ∪ im (DΦ(y)) ⊂ TpS. (∗)

Now let v ∈ TpS and assume v = γ̇(t0). Then we have (F ◦ γ)(t) = 0, t ∈ J
and hence (by differentiation)

0 = D(F ◦ γ)(t0) = DF (p) ◦ γ̇(t0) = DF (p) · v.

Therefore

TpS ⊂ ker (DF (p)) . (∗∗)

Since the linear mappings h 7→ (h,DH(z) · h) and DΦ(p) are injective and

surjective, respectively, from (∗) and (∗) it follows that

dim graph (DH(z)) = dim im (DΦ(y)) = dim ker(DF (p)) = `.

This proves the result. 2

� Exercise 168 Let S be an `-submanifold of Rm and let p ∈ S. Assume

that, locally at p, S is described as in Theorem 3.4.2 (i). Prove that

TpS = (Dφ−1(0))(R`).

3.4.13 Example. Let H = (h1, h2) : dom (H) ⊆ R → R2 be a smooth

mapping. The submanifold

S = {(t, h1(t), h2(t)) ∈ R3 | t ∈ dom (H)}

is the (geometric) curve in R3 given as the graph of H.
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Then

graph (DH(t)) = R (1, ḣ1(t), ḣ2(t)).

A parametric representation of the geometric tangent line of S at (t,H(t))

(with t ∈ R fixed) is

x = (t, h1(t), h2(t)) + λ
(

1, ḣ1(t), ḣ2(t)
)
, λ ∈ R.

3.4.14 Example. Let S ⊂ R3 be the (geometric) helix such that

S ⊂ {x ∈ R3 |x2
1 + x2

2 = 1} and

S ∩ {x ∈ R3 |x3 = 2kπ} = {(1, 0, 2kπ)}, k ∈ Z.

Then S is the graph of the smooth mapping

H : R→ R2, t 7→ (cos t, sin t).

That is,

S = {(cos t, sin t, t) | t ∈ R}.

It follows that S is a smooth submanifold of R3 of dimension 1. Moreover,

S is a zero-set. Indeed, we have

x ∈ S ⇐⇒ F (x) = (x1 − cosx3, x2 − sinx3) = 0.

For x = (H(t), t) we obtain

TxS = graph (DH(t)) = R (− sin t, cos t, 1)

= R (−x2, x1, 1),

DF (x) =

[
1 0 sinx3

0 1 − cosx3

]
.

The parametric representation of the geometric tangent line of S at x =

(H(t), t) is

(cos t, sin t, t) + λ(− sin t, cos t, 1), λ ∈ R.
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3.4.15 Example. The submanifold S ⊂ R3 is given by a smooth embed-

ding Φ : dom (Φ) ⊆ R2 → R3. That is,

S =
{

Φ(y) ∈ R3 | y ∈ dom (Φ)
}
.

Then

DΦ(y) =
[
∂Φ
∂y1

(y) ∂Φ
∂y2

(y)
]

=


∂Φ1
∂y1

(y) ∂Φ1
∂y2

(y)

∂Φ2
∂y1

(y) ∂Φ2
∂y2

(y)

∂Φ3
∂y1

(y) ∂Φ3
∂y2

(y)

 .
The tangent space TxS, with x = Φ(y), is spanned by the (tangent) vectors

∂Φ

∂y1
(y) and

∂Φ

∂y2
(y)·

Therefore, a parametric representation of the geometric tangent plane of S

at Φ(y) is

u1 = Φ1(y) + λ1
∂Φ1

∂y1
(y) + λ2

∂Φ1

∂y2
(y)

u2 = Φ2(y) + λ1
∂Φ2

∂y1
(y) + λ2

∂Φ2

∂y2
(y)

u3 = Φ3(y) + λ1
∂Φ3

∂y1
(y) + λ2

∂Φ3

∂y2
(y), λ ∈ R2.

It turns out that

TxS =

{
h ∈ R3 |h • ∂Φ

∂y1
(y)× ∂Φ

∂y2
(y) = 0

}
.

3.4.16 Example. The submanifold S ⊂ R3 is the (geometric) curve in

R3 given as a zero-set of a smooth submersion F : dom (F ) ⊆ R3 → R2. That

is,

x ∈ S ⇐⇒ F (x) = (f1(x), f2(x)) = 0.

Then

DF (x) =

[
∂f1
∂x (x)

∂f2
∂x (x)

]



156 M4.3 - Geometry

and thus

ker (DF (x)) =
{
h ∈ R3 | grad f1(x) • h = grad f2(x) • h = 0

}
.

The tangent space TxS is seen to be the line in R3 through the origin, formed

by intersection of two planes

{h ∈ R3 | grad f1(x) • h = 0} and {h ∈ R3 | grad f2(x) • h = 0}.

� Exercise 169 Let S be the hyperboloid of two sheets

S = {(a sinh y1 cos y2, b sinh y1 sin y2, c cosh y1) | y = (y1, y2) ∈ R2}, a, b, c > 0.

(a) Show that S is a smooth submanifold of R3 of dimension 2.

(b) Determine the geometric tangent space of S at an arbitrary point p of S

in three ways, by successively considering S as a zero-set, a parametrized

set and a graph.

� Exercise 170 Let Q ⊂ Rm be a nondegenerate quadric given by

Q = {x ∈ Rm |x>Ax+ b>x+ c = 0}.

Let x ∈ Q \
{
− 1

2A
−1b
}

.

(a) Prove that

TxQ = {h ∈ Rm | (2Ax+ b) • h = 0}.

(b) Prove that

x+ TxQ = {h ∈ Rm | (2Ax+ b) • (x− h) = 0}

= {h ∈ Rm | (Ax) • h+
1

2
b • (x+ h) + c = 0}.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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4.1 Real and Complex Matrix Groups

Throughout, we shall denote by k either the field R of real numbers or the

field C of complex numbers.

The algebra of n× n matrices over k

Let km be the set of all m-tuples of elements of k. Under the usual

addition and scalar multiplication, km is a vector space over k. The set

Hom (kn,km) of all linear mappings from kn to km (i.e., mappings L : kn →
km such that L(λx+µy) = λL(x) +µL(y) for every x, y ∈ kn and λ, µ ∈ k)

is also a vector space over k.

� Exercise 171 Determine the dimension of the vector space Hom (kn,km).

Let km×n be the set of all m × n matrices with elements (entries) from

k. It is convenient to identify

the m-tuple (a1, a2, . . . , am) ∈ km with the column m-matrix


a1

a2

...

am

 ∈ km×1.

� Exercise 172 Give reasons why the identification of km with km×1 is legit-

imate.

Under the usual matrix addition and multiplication, km×n is a vector space

over k. There is a natural one-to-one correspondence

A 7→ LA (: x 7→ Ax)

between the m × n matrices with elements from k and the linear mappings

from kn to km.

� Exercise 173 Show that the vector spaces km×n and Hom (kn,km) are iso-

morphic. Observe that, in particular, the vector spaces k1×n and Hom (kn,k) =

(kn)∗ (the dual of kn ) are isomorphic.
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Note : We do not identify the row n-matrix
[
a1 a2 . . . an

]
with the n-tuple

(a1, a2, . . . , an) but rather with the linear mapping (functional)

(x1, x2, . . . , xn) 7→ a1x1 + a2x2 + · · ·+ anxn.

Any matrix A ∈ km×n can be interpreted as a linear mapping LA ∈
Hom (kn,km), whereas any linear mapping L ∈ Hom (kn,km) can be realized

as a matrix A ∈ km×n. Henceforth we shall not distinguish notationwise

between a matrix A and its corresponding linear mapping x 7→ Ax.

Note : A matrix (or linear mapping, if one prefers) A ∈ kn×n can be viewed

as a vector field (on kn) : A associates to each point p in kn the tangent vector

A(p) = Ap ∈ kn. We may think of a fluid in motion, so that the velocity of the fluid

particles passing through p is always A(p). The vector field is then the current of

the flow and the paths of the fluid particles are the trajectories. This kind of flow is,

of course, very special : A(p) is independent of time, and depends linearly on p.

Notice that kn×n is not just a vector space. It also has a multiplication

which is associative and distributes over addition (on either side). In other

words, under the usual addition and multiplication, kn×n is a ring (in general

not commutative), with identity In. Moreover, for all A,B ∈ kn×n and λ ∈ k,

λ(AB) = (λA)B = A(λB).

Such a structure is called an (associative) algebra over k.

� Exercise 174 Give the definition of an algebra over (the field) k. Write down

all the axioms.

The topology of kn×n

For x ∈ kn
(
= kn×1

)
, let

‖x‖2 : =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

be the 2-norm (or Euclidean norm) on kn.

Note : For r ≥ 1, the r-norm of x ∈ kn is defined as

‖x‖r : = (|x1|r + |x2|r + · · ·+ |xn|r)1/r
.

The following properties hold (for x, y ∈ kn and λ ∈ k) :
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‖x‖r ≥ 0, and ‖x‖r = 0 ⇐⇒ x = 0 ;

‖λx‖r = |λ| ‖x‖r ;

‖x+ y‖r ≤ ‖x‖r + ‖y‖r.

In practice, only three of the r-norms are used, and they are :

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (the grid norm);

‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2 (the Euclidean norm);

‖x‖∞ = lim
r→∞

‖x‖r = max{|x1|, |x2|, . . . , |xn|} (the max norm).

For x ∈ kn, we have

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n · ‖x‖2 ≤ n · ‖x‖∞

and so any two of these norms are equivalent (i.e., the associated metric topologies

are identical). In fact, all norms on a finite dimensional vector space (over k ) are

equivalent.

The metric topology induced by (the Euclidean distance)

(x, y) 7→ ‖x− y‖2

is the natural topology on the set (vector space) kn.

� Exercise 175 Show that, for x, y ∈ kn,

| ‖x‖2 − ‖y‖2 | ≤ ‖x− y‖2.

Hence deduce that the function

‖ · ‖2 : kn → R, x 7→ ‖x‖2

is continuous (with respect to the natural topologies on kn and R).

� Exercise 176 Given A ∈ kn×n, show that the linear mapping (on kn) x 7→
Ax is continuous (with respect to the natural topology on kn).

Let A ∈ kn×n. The 2-norm ‖ · ‖2 on kn×1 induces a (matrix) norm on

kn×n by setting

‖A‖ : = max
‖x‖2=1

‖Ax‖2.
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The subset K = {x ∈ kn | ‖x‖2 = 1} ⊂ kn is closed and bounded, and so is

compact. [A subset of the metric space kn is compact if and only if it is closed

and bounded.] On the other hand, the function f : K → R, x 7→ ‖Ax‖2 is

continuous. [The composition of two continuous maps is a continuous map.]

Hence the maximum value maxx∈K ‖Ax‖2 must exist.

Note : The following topological result holds : If K ⊂ kn is a (nonempty) compact

set, then any continuous function f : K → R is bounded; that is, the image set

f(K) = {f(x) |x ∈ K} ⊆ R is bounded. Moreover, f has a global maximum (and a

global minimum).

� Exercise 177 Show that the induced norm ‖ · ‖ is compatible with its under-

lying norm ‖ · ‖2; that is (for A ∈ kn×n and x ∈ kn),

‖Ax‖2 ≤ ‖A‖ ‖x‖2.

‖ · ‖ is a matrix norm on kn×n, called the operator norm; that is, it has the

following four properties (for A,B ∈ kn×n and λ ∈ k) :

(MN1) ‖A‖ ≥ 0, and ‖A‖ = 0 ⇐⇒ A = 0 ;

(MN2) ‖λA‖ = |λ| ‖A‖ ;

(MN3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ ;

(MN4) ‖AB‖ ≤ ‖A‖ ‖B‖.

Note : There is a simple procedure (well-known in numerical linear algebra) for

calculating the operator norm of an n× n matrix A . This is

‖A‖ =
√
λmax,

where λmax is the largest eigenvalue of the matrix A∗A. Here A∗ denotes the

Hermitian conjugate (i.e., the conjugate transpose) matrix of A; in the case k = R,

A∗ = A>.

We define a metric ρ on (the algebra) kn×n by

ρ(A,B) : = ‖A−B‖.
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Associated to this metric is a natural topology on kn×n. Hence fundamental

topological concepts, like open sets, closed sets, compactness, connectedness, as

well as continuity, can be introduced. In particular, we can speak of continuous

functions from kn×n into k.

� Exercise 178 For 1 ≤ i, j ≤ n, show that the coordinate function

coordij : kn×n → k, A 7→ aij

is continuous. [Hint : Show first that |aij | ≤ ‖A‖ and then verify the defining

condition for continuity.]

It follows immediately that if f : kn2 → k is continuous, then the associ-

ated function

f̃ = f ◦ (coordij) : kn×n → k, A 7→ f((aij))

is also continuous. Here (aij) = (a11, a12, . . . , a1n, a21, . . . , ann) ∈ kn2
.

� Exercise 179 Show that the determinant function

det : kn×n → k, A 7→ detA : =
∑
σ∈Sn

(−1)|σ|a1σ(1)a2σ(2) · · · anσ(n)

and the trace function

tr : kn×n → k, A 7→ trA : =

n∑
i=1

aii

are continuous.

The metric space (kn×n, ρ) is complete. This means that every Cauchy

sequence (Ar)r≥0 in kn×n has a unique limit lim
r→∞

Ar. Furthermore,(
lim
r→∞

Ar

)
ij

= lim
r→∞

(Ar)ij .

Indeed, the limit on the RHS exists, so it is sufficient to check that the re-

quired matrix limit is the matrix A with aij = lim
r→∞

(Ar)ij . The sequence

(Ar −A)r≥0 satisfies

‖Ar −A‖ ≤
n∑

i,j=1

|(Ar)ij − aij | → 0 as r →∞

and so Ar → A.
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Groups of matrices

Let GL (n, k) be the set of all invertible n×n matrices over k (or, equiv-

alently, the set of all linear transformations on kn). So

GL (n, k) : = {A ∈ kn×n |detA 6= 0}.

� Exercise 180 Verify that the set GL (n,k) is a group under matrix multipli-

cation.

GL (n,k) is called the general linear group over k. We will refer to

GL (n,R) and GL (n,C) as the real and complex general linear group, respec-

tively.

A 1× 1 matrix over k is just an element of k and matrix multiplication

of two such elements is just multiplication in k. So we see that

GL (1, k) = k× (the multiplicative group of k \ {0}) .

4.1.1 Proposition. GL (n, k) is an open subset of kn×n.

Proof : We have seen that the function det : kn×n → k is continuous (see

Exercise 179). Then observe that

GL (n, k) = kn×n \ det−1(0).

Since the set {0} is closed (in k), it follows that det−1(0) = det−1({0}) ⊂
kn×n is also closed. [The preimage of a closed set under a continuous map is

a closed set.] Hence GL (n,k) is open. [The complement of a closed set is an

open set.] 2

Let G be a subgroup of the general linear group GL (n, k). If G is also a

closed subspace of GL (n, k), we say that G is a closed subgroup.

4.1.2 Definition. A closed subgroup of GL (n,k) is called a matrix group

over k (or a matrix subgroup of GL (n,k)).

Matrix groups are also known as linear groups or even as matrix Lie

groups. This latter terminology emphasizes the remarkable fact that every

matrix group is a Lie group.
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Note : The condition that the group of matrices G ⊆ GL (n, k) is a closed subset

of (the metric space) GL (n, k) means that the following condition is satisfied : if

(Ar)r≥0 is any sequence of matrices in G and Ar → A, then either A ∈ G or A is

not invertible (i.e. A 6∈ GL (n, k)).

The condition that G be a closed subgroup, as opposed to merely a subgroup,

should be regarded as a “technicality” since most of the interesting subgroups of

GL (n,k) have this property. Almost all of the matrix groups we will consider have

the stronger property that if (Ar)r≥0 is any sequence of matrices in G converging

to some matrix A, then A ∈ G.

We will often use the notation G ≤ GL (n,k) to indicate that G is a

(matrix) subgroup of GL (n,k).

4.1.3 Example. The general linear group GL (n, k) is a matrix group (over

k).

4.1.4 Example. An example of a group of matrices which is not a matrix

group is the set of all n×n invertible matrices all of whose entries are rational

numbers. This is in fact a subgroup of GL (n,C) but not a closed subgroup;

that is, one can (easily) have a sequence of invertible matrices with rational

entries converging to an invertible matrix with some irrational entries.

� Exercise 181 ∗ Let a ∈ R \Q. Show that

G =

{[
eit 0

0 eiat

]
| t ∈ R

}
is a subgroup of GL (2,C), and then find a sequence of matrices in G which converges

to −I2 6∈ G. This means that G is not a matrix group. [Hint : By taking t =

(2n + 1)π for a suitably chosen n ∈ Z, we can make ta arbitrarily close to an odd

integer multiple of π, (2m + 1)π say. It is sufficient to show that for any positive

integer N , there exist n,m ∈ Z such that |(2n+ 1)a− (2m+ 1)| < 1
N ·]

Note : The closure of G (in GL (2,C) ) can be thought of as (the direct product)

S1 × S1 and so is a matrix group (see Exercise 195).

4.1.5 Proposition. Let G be a matrix group over k and H a closed

subgroup of G. Then H is a matrix group over k.
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Proof : Every sequence (Ar)r≥0 in H with a limit in GL (n, k) actually

has its limit in G since each Ar ∈ H ⊆ G and G is closed in GL (n,k). Since

H is closed in G, this means that (Ar)r≥0 has a limit in H. So H is closed

in GL (n, k), showing it is a matrix group over k. 2

� Exercise 182 Prove that any intersection of matrix groups (over k) is a ma-

trix group.

4.1.6 Example. Denote by SL (n, k) the set of all n×n matrices over k,

having determinant one. So

SL (n, k) : = {A ∈ kn×n | detA = 1} ⊆ GL (n, k).

� Exercise 183 Show that SL (n, k) is a closed subgroup of GL (n, k) and hence

is a matrix group over k.

SL (n,k) is called the special linear group over k. We will refer to SL (n,R)

and SL (n,C) as the real and complex special linear groups, respectively.

4.1.7 Definition. A closed subgroup of a matrix group G is called a

matrix subgroup of G.

4.1.8 Example. We can consider GL (n,k) as a subgroup of GL (n+ 1,k)

by identifying the n× n matrix A =
[
aij

]
with

[
1 0

0 A

]
=



1 0 . . . 0

0 a11 . . . a1n

0 a21 . . . a2n

...
...

...

0 an1 . . . ann


.

It is easy to verify that GL (n,k) is closed in GL (n+1,k) and hence GL (n,k)

is a matrix subgroup of GL (n+ 1, k).

� Exercise 184 Show that SL (n, k) is a matrix subgroup of SL (n+ 1,k).
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4.2 Examples of Matrix Groups

The vector space kn×n over k can be considered to be a real vector space, of

dimension n2 or 2n2, respectively. Explicitly, Rn×n is (isomorphic to) Rn2
,

and Cn×n is (isomorphic to) Cn2
= R2n2

. Hence we may assume, without

any loss of generality, that kn×n is some Euclidean space Rm.

The real general linear group GL (n,R)

We showed that GL (n,R) is a matrix group and that it is an open subset

of the vector space Rn×n
(

= Rn2
)

. Since the set GL (n,R) is not closed, it is

not compact. [Any compact set is a closed set.]

The determinant function det : GL (n,R) → R is continuous (in fact,

smooth) and maps GL (n,R) onto the two components of R×. Thus GL (n,R)

is not connected. [The image of a connected set under a continuous map is a

connected set.]

Note : A matrix group G is said to be connected if given any two matrices

A,B ∈ G, there exists a continuous path γ : [a, b]→ G with γ(a) = A and γ(b) = B.

This property is what is called path-connectedness in topology, which is not (in

general) the same as connectedness. However, it is a fact (not particularly obvious at

the moment) that a matrix group is connected if and only if it is path-connected. So

in a slight abuse of terminology we shall continue to refer to the above property as

connectedness.

A matrix group G which is not connected can be decomposed (uniquely) as a

union of several pieces, called components, such that two elements of the same com-

ponent can be joined by a continuous path, but two elements of different components

cannot. The component of G containing the identity is a closed subgroup of G (and

hence a connected matrix group).

Consider the sets

GL+ (n,R) : = {A ∈ GL (n,R) |detA > 0}

GL− (n,R) : = {B ∈ GL (n,R) |detB < 0}.

These two disjoint subsets of GL (n,R) are open and such that

GL+ (n,R) ∪ GL− (n,R) = GL (n,R).
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[The preimage of an open set under a continuous map is an open set.]

� Exercise 185 Show that GL+ (n,R) is a matrix subgroup of GL (n,R) but

GL− (n,R) is not.

The mapping

A ∈ GL+ (n,R) 7→ SA ∈ GL− (n,R)

where S = diag (1, 1, . . . , 1,−1), is a bijection (in fact, a diffeomorphism). The

transformation x 7→ Sx may be thought of as a reflection in the hyperplane

Rn−1 = Rn−1 × {0} ⊂ Rn.

Note : The group GL+ (n,R) is connected, which proves that GL+ (n,R) is the

connected component of the identity in GL (n,R) and that GL (n,R) has two (con-

nected) components.

The real special linear group SL (n,R)

Recall that

SL (n,R) : = {A ∈ GL (n,R) |detA = 1} = det−1(1).

It follows that SL (n,R) is a closed subgroup of GL (n,R) and hence is a

matrix group. [The preimage of a closed set under a continuous map is a

closed set.] We introduce a new matrix norm on Rn×n, called the Frobenius

norm, as follows :

‖A‖F : =
√

tr (A>A) =

√√√√ n∑
i,j=1

a2
ij .

Note : The Frobenius norm coincides with the Euclidean norm on Rn2

, and is

much easier to compute than the operator norm. However, all matrix norms on

Rn×n are equivalent (i.e., they generate the same metric topology).
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We shall use this (matrix) norm to show that SL (n,R) is not compact.

Indeed, all matrices of the form
1 0 . . . t

0 1 . . . 0
...

...
...

0 0 . . . 1


are elements of SL (n,R) whose norm equals

√
n+ t2 for any t ∈ R. Thus

SL (n,R) is not a bounded subset of Rn×n and hence is not compact. [In a

metric space, any compact set is bounded.]

Note : The special linear group SL (n,R) is connected.

More on SL (2,R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The orthogonal and special orthogonal groups O (n) and SO (n)

The set

O (n) : = {A ∈ Rn×n |A>A = In}

is the orthogonal group. Clearly, every orthogonal matrix A ∈ O (n) has

an inverse, namely A>. Hence O (n) ⊆ GL (n,R).

� Exercise 186 Verify that O (n) is a subgroup of the general linear group

GL (n,R).

The single matrix equation A>A = In is equivalent to n2 equations for

the n2 real numbers aij , i, j = 1, 2, . . . , n :

n∑
k=1

akiakj = δij .

This means that O (n) is a closed subset of Rn×n and hence of GL (n,R).

� Exercise 187 Prove that O (n) is a closed subset of Rn2

.
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Thus O (n) is a matrix group. The group O (n) is also bounded in Rn×n.

Indeed, the (Frobenius) norm of A ∈ O (n) is

‖A‖F =
√

tr (A>A) =
√

tr In =
√
n.

Hence the group O (n) is compact. [A subset of Rn×n is compact if and only

if it is closed and bounded.]

Let us consider the determinant function (restricted to O (n)), det : O (n)→
R×. Then for A ∈ O (n)

det In = det (A>A) = detA> · detA = (detA)2.

Hence detA = ±1. So we have

O (n) = O+ (n) ∪ O− (n)

where

O+ (n) : = {A ∈ O (n) |detA = 1} and O− (n) : = {A ∈ O (n) | detA = −1}.

Note : The group O+ (n) is connected, which proves that O+ (n) is the connected

component of the identity in O (n).

The special orthogonal group is defined as

SO (n) : = O (n) ∩ SL (n,R).

That is,

SO (n) = {A ∈ O (n) |detA = 1} = O+ (n).

It follows that SO (n) is a closed subset of O (n) and hence is compact. [A

closed subset of a compact set is compact.]

Note : One of the main reasons for the study of these groups O (n),SO (n) is

their relationship with isometries (i.e., distance-preserving transformations on the

Euclidean space Rn). If such an isometry fixes the origin, then it is actually a linear

transformation and so – with respect to the standard basis – corresponds to a matrix

A. The isometry condition is equivalent to the fact that (for all x, y ∈ Rn)

Ax •Ay = x • y,
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which in turn is equivalent to the condition that A>A = In (i.e., A is orthogonal).

Elements of SO (n) are (identified with) rotations (or direct isometries); elements of

O− (n) are sometimes referred to as indirect isometries.

The Lorentz group Lor (1, n)

Consider the inner-product (i.e., nondegenerate symmetric bilinear form)

� on (the vector space) Rn+1 given by (for x, y ∈ Rn+1)

x� y : = −x1y1 +
n+1∑
i=2

xiyi

(the so-called Minkowski product). It is standard to denote this inner-product

space by R1,n.

� Exercise 188 Show that the group of all linear isometries (i.e., linear trans-

formations on R1,n that preserve the Minkowski product) is isomorphic to the matrix

group

O(1, n) : =
{
A ∈ GL(n+ 1,R) |A>SA = S

}
where

S = diag (−1, 1, 1, . . . , 1) =

[
−1 0

0 In

]
∈ GL (n+ 1,R).

In a similar fashion, one can define more general matrix groups

O (k, `) ≤ GL (k + `,R) and SO (k, `) ≤ SL (k + `,R)

usually called “pseudo-orthogonal” groups.

� Exercise 189 Define the inner-product 〈·, ·〉k,` on Rk+` by the formula

〈x, y〉k,` : = −x1y1 − · · · − xkyk + xk+1yk+1 + · · ·+ xk+`yk+`.

The pseudo-orthogonal group O (k, `) consists of all matrices A ∈ GL (k+`,R) which

preserve this inner-product (i.e., such that 〈Ax,Ay〉k,` = 〈x, y〉k,` for all x, y ∈ Rk+`).

(a) Verify that O (k, `) is a matrix subgroup of GL (k + `,R).
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(b) Let

Q = diag (−1, . . . ,−1, 1, . . . , 1) =

[
−Ik 0

0 I`

]
.

Prove that a matrix A ∈ GL (k+`,R) is in O (k, `) if and only if A>QA =

Q. Hence deduce that detA = ±1.

(c) Verify that SO (k, `) : = O (k, `) ∩ SL (k + `,R) is a matrix subgroup of

SL (k + `,R).

Note : Since O (k, `) and O (`, k) are essentially the same group, we may assume

(without any loss of generality) that 1 ≤ k ≤ `. The pseudo-orthogonal groups are

neither compact nor connected. The groups O (k, `) have four (connected) compo-

nents, whereas SO (k, `) have two components.

For each positive number ρ > 0, the hyperboloid

H1,n(ρ) : =
{
x ∈ R1,n | 〈x, x〉 = −ρ

}
has two (connected) components

H+
1,n(ρ) = {x ∈ H1,n(ρ) |x1 > 0} and H−1,n(ρ) = {x ∈ H1,n(ρ) |x1 < 0} .

We define the Lorentz group Lor (1, n) to be the (closed) subgroup of

SO (1, n) preserving each of the connected sets H±1,n(1). Thus

Lor (1, n) : =
{
A ∈ SO (1, n) |AH±1,n(1) = H±1,n(1)

}
≤ SO (1, n).

It turns out that A ∈ Lor (1, n) if and only if it preserves the hyperboloids

H±1,n(ρ), ρ > 0 and the “light cones” H±1,n(0).

Note : The Lorentz group Lor (1, n) is connected .

Of particular interest in physics is the Lorentz group Lor = Lor (1, 3). That

is,

Lor =
{
L ∈ SO (1, 3) |LH±1,3(ρ) = H±1,3(ρ), ρ ≥ 0

}
≤ SO (1, 3).

� Exercise 190 Show that

(a) The matrix A =

[
cosh t sinh t

sinh t cosh t

]
is in SO (1, 1).
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(b) For every s, t ∈ R[
cosh s sinh s

sinh s cosh s

][
cosh t sinh t

sinh t cosh t

]
=

[
cosh(s+ t) sinh(s+ t)

sinh(s+ t) cosh(s+ t)

]
.

(c) Every element (matrix) of O (1, 1) can be written in one of the four forms[
cosh t sinh t

sinh t cosh t

]
,

[
− cosh t sinh t

sinh t − cosh t

]
,

[
cosh t − sinh t

sinh t − cosh t

]
,

[
− cosh t − sinh t

sinh t cosh t

]
.

(Since cosh t is always positive, there is no overlap among the four cases. Matrices

of the first two forms have determinant one; matrices of the last two forms have

determinant minus one.)

Note : We can write

SO (1, 1) = Lor (1, 1) ∪

[
−1 0

0 −1

]
Lor (1, 1)

O (1, 1) = SO (1, 1) ∪

[
1 0

0 −1

]
SO (1, 1).

More on Lor (1, 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The real symplectic group Sp (2n,R)

Let

J : =

[
0 In

−In 0

]
∈ SL (2n,R).

A matrix A ∈ R2n×2n is called symplectic if

A>JA = J.

Note : The word symplectic was invented by Hermann Weyl (1885-1955), who

substituted Greek for Latin roots in the word complex to obtain a term which would

describe a group (related to “line complexes” but which would not be confused with

complex numbers).
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Let Sp (2n,R) be the set of all 2n × 2n symplectic matrices. Taking

determinants of the condition A>JA = J gives

1 = det J = (detA>) · (det J) · (detA) = (detA)2.

Hence detA = ±1, and so A ∈ GL (2n,R). Furthermore, if A,B ∈ Sp (2n,R),

then

(AB)>J(AB) = B>A>JAB = J.

Hence AB ∈ Sp (2n,R). Now, if A>JA = J, then

JA = (A>)−1J = (A−1)>J

so

J = (A−1)>JA−1.

It follows that A−1 ∈ Sp (2n,R) and hence Sp (2n,R) is a group. In fact, it

is a closed subgroup of GL (2n,R), and thus a matrix group.

Note : The symplectic group Sp (2n,R) is connected. (It turns out that the de-

terminant of a symplectic matrix must be positive; this fact is by no means obvious.

� Exercise 191 Check that Sp (2,R) = SL (2,R). (In general, it is not true that

Sp (2n,R) = SL (2n,R).)

� Exercise 192 Given A =

[
a b

c d

]
∈ GL (2n,R), show that A ∈ Sp (2n,R) if

and only if a>c and b>d are symmetric and a>d− c>b = In.

All matrices of the form [
In 0

tIn In

]
are symplectic. However, the (Frobenius) norm of such a matrix is equal

to
√

2n+ t2n, which is unbounded if t ∈ R. Therefore, Sp (2n,R) is not a

bounded subset of R2n×2n and hence is not compact.

� Exercise 193 Consider the skew-symmetric bilinear form on (the vector space)

R2n defined by

Ω(x, y) : =

n∑
i=1

(xiyn+i − xn+iyi)
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(the standard symplectic form or the “canonical” symplectic structure). Show that

a linear transformation (on R2n ) x 7→ Ax preserves the symplectic form Ω if and

only if A>JA = J (i.e., the matrix A is symplectic). Such a structure-preserving

transformation is called a symplectic transformation.

The group of all symplectic transformations on R2n (equipped with the

symplectic form Ω ) is isomorphic to (the matrix group) Sp (2n,R).

Note : The symplectic group is related to classical mechanics. Consider a particle

of mass m moving in a potential field V . Newton’s second law states that the

particle moves along a curve t 7→ x(t) in in Cartesian 3-space R3) in such a way that

mẍ = −gradV (x). Introduce the conjugate momenta pi = mẋi, i = 1, 2, 3 and the

energy (Hamiltonian)

H(x, p) : =
1

2m

3∑
i=1

p2
i + V (x).

Then
∂H

∂xi
=
∂V

∂xi
= −mẍi = −ṗi and

∂H

∂pi
=

1

m
pi = ẋi

and hence Newton’s law F = ma is equivalent to Hamilton’s equations

ẋi =
∂H

∂pi
and ṗi = −∂H

∂xi
(i = 1, 2, 3).

Writing z = (x, p),

J · gradH(z) =

[
0 I3

−I3 0

]
∂H
∂x

∂H
∂p

 = (ẋ, ṗ) = ż

so Hamilton equations read ż = J · gradH(z). Now let

F : R3 × R3 → R3 × R3

and write w(t) = F (z(t)). If z(t) satisfies Hamilton’s equations

ż = J · gradH(z)

then w(t) = F (z(t)) satisfies ẇ = A>ż, where A> = [∂wi/∂zj ] is the Jacobian

matrix of f . By the chain rule,

ẇ = A>J gradzH(z) = A>JA gradwH(z(w)).
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Thus, the equations for w(t) have the form of Hamilton’s equations with energy

K(w) = H(z(w)) if and only if A>JA = J; that is, if and only if A is symplec-

tic. A nonlinear transformation F is canonical if and only if its Jacobian matrix is

symplectic (or, if one prefers, its tangent mapping is a symplectic transformation).

As a special case, consider a (linear transformation) A ∈ Sp (2n,R) and let

w = Az. Suppose H is quadratic (i.e., of the form H(z) = 1
2z
>Bz where B is a

symmetric matrix). Then gradH(z) = Bz and thus the equations of motion become

the linear equations ż = JBz. Now

ẇ = Aż = AJBz = J(A>)−1Bz = J(A>)−1BA−1Az = JB′w

where B′ = (A>)−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) =
1

2
w>(A>)−1BA−1w =

1

2
(A−1w)>BA−1w

= H(A−1w) = H(z).

Thus Sp (2n,R) is the linear invariance group of classical mechanics.

The complex general linear group GL (n,C)

Many important matrix groups involve complex matrices. As in the real

case,

GL (n,C) : = {A ∈ Cn×n | detA 6= 0}

is an open subset of Cn×n, and hence is not compact. Clearly GL (n,C) is a

group under matrix multiplication.

Note : The general linear group GL (n,C) is connected. This is in contrast with

the fact that GL (n,R) has two components.

The complex special linear group SL (n,C)

This group is defined by

SL (n,C) : = {A ∈ GL (n,C) | detA = 1}

and is treated as in the real case. The matrix group SL (n,C) is not compact

but connected.

The unitary and special unitary groups U (n) and SU (n)
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For A =
[
aij

]
∈ Cn×n,

A∗ : = Ā> = A>

is the Hermitian conjugate (i.e., the conjugate transpose) matrix of A; thus,

(A∗)ij = āji. The unitary group is defined as

U (n) : = {A ∈ GL (n,C) |A∗A = In}.

� Exercise 194 Verify that U (n) is a subgroup of the general linear group

GL (n,C).

The unitary condition amounts to n2 equations for the n2 complex num-

bers aij , i, j = 1, 2, . . . , n
n∑
k=1

ākiakj = δij .

By taking real and imaginary parts, these equations actually give 2n2 equa-

tions in the 2n2 real and imaginary parts of the aij (although there is some

redundancy). This means that U (n) is a closed subset of Cn×n = R2n2
and

hence of GL (n,C). Thus U (n) is a complex matrix group.

Note : The unitary group U(n) is compact and connected.

Let A ∈ U (n). From |detA| = 1, we see that the determinant function

det : GL (n,C)→ C maps U (n) onto the unit circle S1 = {z ∈ C | |z| = 1}.

Note : In the special case n = 1, a complex linear mapping φ : C → C is

multiplication by some complex number z, and φ is an isometry if and only if |z| = 1.

In this way, the unitary group U (1) is identified with the unit circle S1. The group

U (1) is more commonly known as the circle group or the 1-dimensional torus, and is

also denoted by T1.

The dot product on Rn can be extended to Cn by setting (for x, y ∈
Cn×1 )

x • y : = x∗y = x̄1y1 + x̄2y2 + · · ·+ x̄nyn.

Note : This is not C-linear but satisfies (for x, y ∈ Cn×1 and u, v ∈ C)

(ux) • (vy) = ūv(x • y).
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This dot product allows us to define the length (or norm) of a complex vector

x ∈ Cn×1 by

‖x‖ : =
√
x • x.

Then a matrix A ∈ Cn×n is unitary if and only if (for x, y ∈ Cn)

Ax •Ay = x • y.

� Exercise 195 If Gi ≤ GL (ni,k), i = 1, 2 are matrix groups, show that their

(direct) product G1 × G2 is also a matrix group (in GL (n1 + n2,k)). Observe, in

particular, that the k-dimensional torus

Tk : = T1 × T1 × · · · × T1

is a matrix group (in GL (k,C)). These groups are compact connected Abelian matrix

groups. In fact, they are the only matrix groups with these properties.

The special unitary group

SU (n) : = {A ∈ U (n) | detA = 1}

is a closed subgroup of U (n) and hence a complex matrix group.

Note : The matrix group SU (n) is compact and connected. In the special case

n = 2, SU (2) is diffeomorphic to the unit sphere S3 in C2 (or R4). The group

SU (2) is used in the construction of the gauge group for the Young-Mills equations

in elementary particle physics. Also, there is a 2 to 1 surjection (in fact, a surjective

submersion)

π : SU (2)→ SO (3)

which is of crucial importance in computational mechanics (it is related to the quater-

nionic representation of rotations in Euclidean 3-space).

The complex orthogonal groups O (n,C) and SO (n,C)

Consider the bilinear form on (the vector space) Cn defined by (for x, y ∈
Cn)

(x, y) : = x1y1 + x2y2 + · · ·+ xnyn.

This form is not an inner product because of the lack of complex conjugation

in the definition. The set of all complex n × n matrices which preserve this
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form (i.e., such that (Ax,Ay) = (x, y) for all x, y ∈ Cn) is the complex

orthogonal group O (n,C). Thus

O (n,C) : =
{
A ∈ GL (n,C) |A>A = In

}
⊆ GL (n,C).

It is easy to show that O (n,C) is a matrix group, and that detA = ±1 for all

O (n,C).

Note : The matrix group O (n,C) is not the same as the unitary group U (n).

The complex special orthogonal group

SO (n,C) : = {A ∈ O (n,C) | detA = 1}

is also a matrix group.

The unipotent group UTu (n,k)

A matrix A =
[
aij

]
∈ kn×n is upper triangular if all the entries bellow

the main diagonal are equal to 0. Let UT (n,k) denote the set of all n × n
invertible upper triangular matrices (over k). Thus

UT (n, k) : = {A ∈ GL (n, k) | aij = 0 for i > j}.

� Exercise 196 Show that UT (n, k) is a closed subgroup of the general linear

group GL (n, k) (and hence a matrix group).

The group UT (n,k) is called the (real or complex) upper triangular group.

This group is not compact.

Note : Likewise, one can define the lower triangular group

LT (n, k) : = {A ∈ GL (n, k) | aij = 0 for i < j}.

Clearly, A ∈ LT (n,k) if and only if A> ∈ UT (n, k). The matrix groups UT (n, k)

and LT (n, k) are isomorphic and there is no need to distinguish between them.

� Exercise 197 Show that the diagonal group

D (n, k) : = {A ∈ GL (n, k) | aij = 0 for i 6= j}

is a closed subgroup of UT (n, k) (and hence a matrix group).
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� Exercise 198 For k ≤ n, let P (k) denote the group of all linear transfor-

mations (i.e., invertible linear mappings) on Rn that preserve the subspace Rk =

Rk × {0} ⊆ Rn. Show that P (k) is (isomorphic to) the matrix group{[
A X

0 B

]
|A ∈ GL (k,R), B ∈ GL (n− k,R), X ∈ Rk×(n−k)

}
.

An upper triangular matrix A =
[
aij

]
is unipotent if it has all diagonal

entries equal to 1. The (real or complex) unipotent group is (the subgroup

of GL (n,k))

UTu (n, k) : = {A ∈ GL (n,k) | aij = 0 for i > j and aii = 1}

(see also Exercise 194). It is easy to see that the unipotent group UTu (n, k)

is a closed subgroup of GL (n,k) and hence a matrix group.

Note : UTu (n, k) is a closed subgroup of UT (n,k).

For the case

UTu (2,k) =

{[
1 t

0 1

]
∈ GL (n, k) | t ∈ k

}

the mapping

θ : k→ UTu (2, k), t 7→

[
1 t

0 1

]
is a continuous group homomorphism which is an isomorphism with continuous

inverse. This allows us to view k as a matrix group.

Note : Given two matrix groups G and H, a group homomorphism θ : G → H

is a continuous homomorphism if it is continuous and its image θ(G) ≤ H is a closed

subset of H. For instance,

θ : UTu (2,R)→ U (1),

[
1 t

0 1

]
7→ e2πti

is a continuous homomorphism of matrix groups, but (for a ∈ R \Q)

θ′ : G =

{[
1 k

0 1

]
∈ SUT (2,R) | k ∈ Z

}
→ U (1),

[
1 k

0 1

]
7→ e2πkai
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is not (since its image is a dense proper subset of U (1)). Whenever we have a

continuous homomorphism of matrix groups θ : G → H which is a homeomorphism

(i.e., a continuous bijection with continuous inverse) we say that θ is a continuous

isomorphism and regard G and H as “identical” (as matrix groups).

The unipotent group UTu (3,R) is the Heisenberg group

Heis : =


1 a b

0 1 c

0 0 1

 | a, b, c ∈ R


which is particularly important in quantum physics; the Lie algebra of Heis

gives a realization of the Heisenberg commutation relations of quantum me-

chanics.

� Exercise 199 Verify that the 4× 4 unipotent matrices A of the form

A =


1 a2 a3 a4

0 1 a1
a21
2

0 0 1 a1

0 0 0 1


form a closed subgroup of UTu (4,R) (and hence a matrix group). Generalize.

Several other matrix groups are of great interest. We describe briefly some of

them.

The general affine group GA (n, k)

The general affine group (over k ) is the group

GA (n, k) : =

{[
1 0

c A

]
∈ GL (n+ 1, k) | c ∈ kn×1 and A ∈ GL (n, k)

}
.

This is clearly a closed subgroup of the general linear group GL (n+1,k) (and

hence a matrix group). The general affine group GA (n,k) is not compact.

Likewise the case of the general linear group, the matrix group GA (n,C) is

connected but GA (n,R) is not.
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Note : If we identify the element x ∈ kn with

[
1

x

]
∈ k(n+1)×1, then since

[
1 0

c A

][
1

x

]
=

[
1

Ax+ c

]

we obtain an action of the group GA (n, k) on (the vector space) kn. Transformations

on kn having the form x 7→ Ax + c (with A invertible) are called affine transfor-

mations and they preserve lines (i.e., translates of 1-dimensional subspaces of the

vector space kn). The associated geometry is affine geometry that has GA (n, k) as

its symmetry group.

The (additive group of the) vector space kn (in fact, kn×1 ) can be viewed as

(and identified with) the translation subgroup of GA (n,k){[
1 0

c In

]
∈ GL (n+ 1,k) | c ∈ kn×1

}
≤ GA (n, k)

and this is a closed subgroup.

The identity component of the (real) general affine group GA (n,R) is (the

matrix group)

GA+ (n,R) =

{[
1 0

c A

]
| c ∈ kn×1 and A ∈ GL+ (n,R)

}
.

In particular,

GA+ (1,R) =

{[
1 0

c ea

]
| a, c ∈ R

}
is a connected matrix group (of “dimension” 2). Its elements are (in fact,

can be identified with) transformations on (the real line) R having the form

x 7→ bx+ c (with b, c ∈ R and b > 0).

The Euclidean group E (n)

This is the matrix group

E (n) : =

{[
1 0

c A

]
∈ GL (n+ 1,R) | c ∈ Rn×1 and A ∈ O (n)

}
.
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The Euclidean group E (n) is a closed subgroup of the general affine group

GA (n,R) and also is neither compact nor connected. It can be viewed as (and

thus identified with) the group of all isometries (i.e., rigid motions) on the

Euclidean n-space Rn.

The special Euclidean group SE (n)

The special Euclidean group SE (n) is (the matrix group) defined by

SE (n) : =

{[
1 0

c R

]
∈ GL (n+ 1,R) | c ∈ Rn×1 and R ∈ SO (n)

}
.

This group is isomorphic to the group of all orientation-preserving isometries

(i.e., proper rigid motions) on the Euclidean n-space Rn. It is not compact

but connected.

Some other groups

Several important groups which are not naturally groups of matrices can

be viewed as matrix groups. We have seen that the multiplicative groups

R× and C× (of non-zero real numbers and complex numbers, respectively)

are isomorphic to the matrix groups GL (1,R) and GL (1,C), respectively.

Also, the circle group S1 (of complex numbers with absolute value one) is

isomorphic to U (1). The n-torus (the direct product of n copies of S1)

Tn = S1 × · · · × S1 ≤ GL (n,C)

is isomorphic to the matrix group of n × n diagonal matrices with complex

entries of modulus one. (Tn can also be realized as the quotient group Rn/Zn :

an element (θ1, . . . , θn) mod Zn of Rn/Zn can be identified with the diagonal

matrix diag
(
e2πiθ1 , . . . , e2πiθn

)
.)

Note : If θ : G → H is a continuous homomorphism of matrix groups, then

its kernel ker θ ≤ G is a matrix group. Moreover, the quotient group G/ker θ can

be identified with the matrix group θ(G) by the usual quotient isomorphism θ̃ :

G/ker θ → θ(G).

However, it is important to realize that not every normal matrix subgroup N of

the matrix group G gives rise to a matrix group G/N ; there are examples for which
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G/N is a Lie group but not a matrix group. (We shall see later that every matrix

group is a Lie group.)

Recall that the additive groups R and C are isomorphic to the unipotent

groups UTu (2,R) and UTu (2,C), respectively.

� Exercise 200 Verify that the map

x ∈ R 7→ [ex] ∈ GL+ (1,R)

is a continuous isomorphism of matrix groups, and then show that the additive group

Rn is isomorphic to the matrix group of all n × n diagonal matrices with positive

entries.

� Exercise 201 Let Zn ≤ Rn be the discrete subgroup of vectors with integer

entries and set

GL (n,Z) : = {A ∈ GL (n,R) |A(Zn) = Zn} .

Show that GL (n,Z) is a matrix group. (This matrix group consists of n×n matrices

over (the ring) Z with determinant ± 1.)

The symmetric group Sn of all permutations on n elements may be con-

sidered as well as a matrix group. Indeed, we can make Sn to act (from the

right) on kn by linear transformations :
x1

x2

...

xn

 · σ =


xσ−1(1)

xσ−1(2)
...

xσ−1(n)

 .

Thus (for the standard unit vectors e1, e2, . . . , en) ei·σ = eσ(i), i = 1, 2, . . . , n.

The matrix [σ] of the linear transformation induced by σ ∈ Sn (with

respect to the standard basis) has all its entries 0 or 1, with exactly one 1 in

each row and column. Such a matrix is usually called a permutation matrix.

� Exercise 202 Write down the permutations matrices induces by the elements

(permutations) of S3.
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When k = R each of these permutation matrices is orthogonal, while

when k = C it is unitary. So, for a given n ≥ 1, the symmetric group Sn is

(isomorphic to) a closed subgroup of O (n) or U (n).

Note : Any finite group is (isomorphic to) a matrix subgroup of some orthogonal

group O (n).

The following table lists some interesting matrix groups, indicates whether

or not the group is compact and/or connected, and gives the number of (con-

nected) components.

Group Compact ? Connected ? Components

GL (n,C) no yes one

SL (n,C) no yes one

GL (n,R) no no two

GL+ (n,R) no yes one

SL (n,R) no yes one

U (n) yes yes one

SU (n) yes yes one

O (n) yes no two

SO (n) yes yes one

O (1, n) no no four

SO (1, n) no no two

Lor (1, n) no yes one

Sp (2n,R) no yes one

UTu (n, k) no yes one

GA (n, k) no no two

GA+ (n,k) no yes one

E (n) no no two

SE (n) no yes one

Rn no yes one

Tn yes yes one

Note : There are more interesting matrix groups, e.g., the quaternionic matrix

groups (in particular, the quaternionic symplectic group Sp (n)), associated with the
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division algebra H of quaternions, as well as the spinor groups Spin (n) and the pinor

groups Pin (n), associated with (real) Clifford algebras.

Complex matrix groups as real matrix groups

Recall that the (complex) vector space C can be viewed as a real 2-dimensional

vector space (with basis {1, i}, for example).

� Exercise 203 Show that the mapping

ρ : C→ R2×2, z = x+ iy 7→

[
x −y
y x

]

is an injective ring homomorphism (i.e., a one-to-one mapping such that, for z, z′ ∈ C,

ρ(z + z′) = ρ(z) + ρ(z′) and ρ(zz′) = ρ(z)ρ(z′).)

We can view C as a subring of R2×2. In other words, we can identify the

complex number z = x+ iy with the 2× 2 real matrix ρ(z).

Note : This can also be expressed as

ρ(x+ iy) = xI2 − yJ2, where J2 : =

[
0 1

−1 0

]
.

Also, for z ∈ C,

ρ(z̄) = ρ(z)T

(complex conjugation corresponds to transposition).

More generally, given Z =
[
zrs

]
∈ Cn×n with zrs = xrs + iyrs, we can

write

Z = X + iY,

where X =
[
xrs

]
, Y =

[
yrs

]
∈ Rn×n.

� Exercise 204 Show that the mapping

ρn : Cn×n → R2n×2n, Z = X + iY 7→

[
X −Y
Y X

]

is an injective ring homomorphism.
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Hence we can identify the complex matrix Z = X + iY with the 2n× 2n

real matrix ρn(Z). Let

J = J2n : =

[
0 In

−In 0

]
∈ SL (2n,R).

Then we can write

ρn(Z) = ρn(X + iY ) =

[
X 0

0 X

]
−

[
Y 0

0 Y

]
J.

� Exercise 205 First verify that

J2 = −I2n and J> = −J

and then show that, for Z ∈ Cn×n,

ρn(Z̄) = ρn(Z)> ⇐⇒ X = X> and Y = Y >.

We see that ρn(GL (n,C)) is a closed subgroup of GL (2n,R), so any matrix

subgroup G of GL (n,C) can be viewed as a matrix subgroup of GL (2n,R) (by

identifying it with its image ρn(G) under ρn). The following characterizations

are sometimes useful :

ρn(Cn×n) =
{
A ∈ Rn×n |AJ = JA

}
ρn(GL (n,C)) = {A ∈ GL (2n,R) |AJ = JA} .

� Exercise 206 Verify the folowing set of equalities :

ρn(U (n)) = O (n) ∩ ρn(GL (n,C))

= O (n) ∩ Sp (2n,R)

= ρn(GL (n,C)) ∩ Sp (2n,R).

Note : In a slight abuse of notation, the real symplectic group Sp (2n,R) is related

to the unitary group U (n) by

Sp (2n,R) ∩ O (2n) = U (n).
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4.3 The Exponential Mapping

Let A ∈ kn×n and consider the matrix series∑
k≥0

1

k!
Ak = In +A+

1

2!
A2 +

1

3!
A3 + · · ·

Note : This matrix series is a series in the complete normed vector space (in fact,

algebra) (kn×n, ‖ · ‖), where ‖ · ‖ is the operator norm (induced by the Euclidean

norm on kn). In a complete normed vector space, an absolutely convergent series∑
k≥0

ak (i.e., such that the series
∑
k≥0

‖ak‖ is convergent) is convergent, and

∥∥∥∥∥
∞∑
k=0

ak

∥∥∥∥∥ ≤
∞∑
k=0

‖ak‖.

(The converse is not true.) Also, every rearrangement of an absolutely convergent

series is absolutely convergent, with same sum. Given two absolutely convergent series∑
k≥0

ak and
∑
k≥0

bk (in a complete normed algebra), their Cauchy product
∑
k≥0

ck, where

ck =
∑
i+j=k

aibj = a0bk + a1bk−1 + · · ·+ akb0 is also absolutely convergent, and

∞∑
k=0

ck =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
.

� Exercise 207 Show that the matrix series
∑
k≥0

1

k!
Ak is absolutely convergent

(and hence convergent).

Let

∞∑
k=0

1

k!
Ak denote the sum of the (absolutely) convergent matrix series∑

k≥0

1

k!
Ak. We set

eA = exp (A) : =
∞∑
k=0

1

k!
Ak.

This matrix is called the matrix exponential of A. It follows that

‖ exp (A)‖ ≤ ‖In‖+ ‖A‖+
1

2!
‖A‖2 + · · · = e‖A‖

and also ‖ exp (A)− In‖ ≤ e‖A‖ − 1.
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� Exercise 208 Show that (for λ, µ ∈ k)

exp ((λ+ µ)A) = exp (λA) exp (µA).

[Hint : These series are absolutely convergent. Think of the Cauchy product.]

It follows that

In = exp (O) = exp ((1 + (−1))A) = exp (A) exp (−A)

and hence exp (A) is invertible with inverse exp (−A). So exp (A) ∈ GL (n,k).

Note : The “group property” exp ((λ+µ)A) = exp (λA) exp (µA) may be rephrased

by saying that, for fixed A ∈ kn×n, the mapping λ 7→ exp (λA) is a (continuous)

homomorphism from the additive group of scalars k into the general linear group

GL (n,k).

4.3.1 Definition. The mapping

exp : kn×n → GL (n, k), A 7→ exp (A)

is called the exponential mapping.

4.3.2 Proposition. If A,B ∈ kn×n commute, then

exp (A+B) = exp (A) exp (B).

Proof : We expand the series and perform a sequence of manipulations that
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are legitimate since these series are absolutely convergent :

exp (A) exp (B) =

( ∞∑
r=0

1

r!
Ar

)( ∞∑
s=0

1

s!
Bs

)

=
∞∑

r,s=0

1

r!s!
ArBs

=

∞∑
k=0

(
k∑
r=0

1

r!(k − r)!
ArBk−r

)

=

∞∑
k=0

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)

=

∞∑
k=0

1

k!
(A+B)k

= exp (A+B).

2

Note : We have made crucial use of the commutativity of A and B in the identity

k∑
r=0

(
k

r

)
ArBk−r = (A+B)k.

In particular, for the (commuting) matrices λA and µA, we reobtain the property

exp ((λ + µ)A) = exp (λA) exp (µA). It is important to realize that, in fact, the

following statements are equivalent (for A,B ∈ kn×n) :

(i) AB = BA.

(ii) exp (λA) exp (µB) = exp (µB) exp (λA) for all λ, µ ∈ k.

(iii) exp (λA+ µB) = exp (λA) exp (µB) for all λ, µ ∈ k.

� Exercise 209 Compute (for a, b ∈ R)

exp

([
a 0

0 a

])
, exp

([
a −b
b a

])
, exp

([
a b

b a

])
, exp

([
a b

0 a

])
.

Note : Every real 2× 2 matrix is conjugate to exactly one of the following types

(with a, b ∈ R, b 6= 0 ) :
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• a

[
1 0

0 1

]
(scalar).

• a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]
(elliptic).

• a

[
1 0

0 1

]
+ b

[
0 1

1 0

]
(hyperbolic).

• a

[
1 0

0 1

]
+ b

[
0 1

0 0

]
(parabolic).

Hermitian and skew-Hermitian matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� Exercise 210

(a) Show that if A ∈ Rn×n is skew-symmetric, then exp (A) is orthogonal.

(b) Show that if A ∈ Cn×n is skew-Hermitian, then exp (A) is unitary.

� Exercise 211 Let A ∈ kn×n and B ∈ GL (n, k). Show that

exp (BAB−1) = B exp (A)B−1.

Deduce that if B−1AB = diag (λ1, λ2, . . . , λn), then

exp (A) = B diag
(
eλ1 , eλ2 , . . . , eλn

)
B−1.

� Exercise 212 A matrix A ∈ kn×n is nilpotent if Ak = O for some k ≥ 1.

(a) Prove that a nilpotent matrix is singular.

(b) Prove that a strictly upper triangular matrix A =
[
aij

]
(i.e. with aij = 0

whenever i ≥ j ) is nilpotent.

(c) Find two nilpotent matrices whose product is not nilpotent.

� Exercise 213 Suppose that A ∈ kn×n and ‖A‖ < 1.

(a) Show that the matrix series∑
k≥0

Ak = In +A+A2 +A3 + · · ·

converges (in kn×n).

(b) Show that the matrix In − A is invertible and find a formula for (In −
A)−1.
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(c) If A is nilpotent, determine (In −A)−1 and exp (A).

� Exercise 214 Show (for λ ∈ R)

exp



λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
...

...

0 0 0 . . . λ


 =


eλ eλ 1

2!e
λ . . . 1

(n−1)!e
λ

0 eλ eλ . . . 1
(n−2)!e

λ

...
...

...
...

0 0 0 . . . eλ

 .

Note : When the matrix A ∈ kn×n is diagonalizable over C (i.e., A =

C diag (λ1, λ2, . . . , λn)C−1 for some C ∈ GL (n,C)), we have

exp (A) = C diag
(
eλ1 , eλ2 , . . . , eλn

)
C−1.

This means that the problem of calculating the exponential of a diagonalizable matrix

is solved once an explicit diagonalization is found. Many important types of matri-

ces are indeed diagonalizable (over C), including skew-symmetric, skew-Hermitian,

orthogonal, and unitary matrices. However, there are also many non-diagonalizable

matrices. If Ak = O for some positive integer k, then A` = O for all ` ≥ k. In

this case the matrix series which defines exp (A) terminates after the first k terms,

and so can be computed explicitly. A general matrix A may be neither nilpotent

nor diagonalizable. This situation is best discussed in terms of the Jordan canonical

form.

For λ ∈ C and r ≥ 1, we have the Jordan block matrix

J(λ, r) : =



λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ

 ∈ Cr×r.

The characteristic polynomial of J(λ, r) is

charJ(λ,r)(s) : = det (sIr − J(λ, r)) = (s− λ)r

and by the Cayley-Hamilton Theorem, (J(λ, r)− λIr)r = O, which implies that

(J(λ, r)− λIr)r−1 6= O (and hence charJ(λ,r)(s) = minJ(λ,r)(s) ∈ C[s]). The main

result on Jordan form is the following : Given A ∈ Cn×n, there exists a matrix
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P ∈ GL (n,C) such that

P−1AP =


J(λ1, r1) O . . . O

O J(λ2, r2) . . . O
...

...
...

O O . . . J(λm, rm)

 ∈ Cn×n.

This form is unique except for the order in which the Jordan blocks J(λi, ri) ∈ Cri×ri

occur. (The elements λ1, λ2, . . . , λm are the eigenvalues of A and in fact charA(s) =

(s− λ1)r1(s− λ2)r2 · · · (s− λm)rm .)

Using the Jordan canonical form we can see that every matrix A ∈ Cn×n

can be written as A = S + N , where S is diagonalizable (over C), N is

nilpotent, and SN = NS.

� Exercise 215 Let A ∈ kn×n.

(a) Prove that A is nilpotent if and only if all its eigenvalues are equal to

zero.

(b) The matrix A is called unipotent if In−A is nilpotent (i.e. (In−A)k =

O for some k ≥ 1). Prove that A is unipotent if and only if all its

eigenvalues are equal to 1.

(c) If A is a strictly upper triangular matrix, show that exp (A) is unipotent.

� Exercise 216 Compute

exp


λ a b

0 λ c

0 0 λ


 .

� Exercise 217 The power series∑
k≥1

(−1)k+1 (z − 1)k

k
= z − 1− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+ · · · , z ∈ C

has radius of convergence 1 and hence defines a complex analytic function

z 7→ log z : =

∞∑
k=1

(−1)k+1 (z − 1)k

k

on the set {z | |z− 1| < 1}. (This function coincides with the usual logarithm for real

z on the interval (0, 2).) Show that
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(a) For all z with |z − 1| < 1,

elog z = z.

(b) For all w with |w| < ln 2, |ew − 1| < 1 and

log (ew) = w.

Let A ∈ kn×n. The matrix series∑
k≥1

(−1)k+1

k
Ak = A− 1

2
A+

1

3
A3 − 1

4
A4 + · · ·

converges (absolutely) for ‖A‖ < 1. We define the logarithm mapping

log : B kn×n(In, 1)→ kn×n, A 7→ log (A) : =

∞∑
k=1

(−1)k+1

k
(A− In)k.

(The notation B kn×n(A, ρ) stands for the open ball of radius ρ around A in

the metric space kn×n; that is,

B kn×n(A, ρ) : =
{
A′ ∈ kn×n | ‖A′ −A‖ < ρ

}
.)

Note : Defining a logarithm for matrices turns out to be at least as difficult as

defining a logarithm for complex numbers, and so we cannot hope to define the matrix

logarithm for all matrices, or even for all invertible matrices. We content ourselves

with defining the logarithm in a neighborhood of the identity matrix. The logarithm

mapping is continuous (on the set of all n× n matrices A with ‖A− In‖ < 1 ) and

log (A) is real if A is real.

� Exercise 218 Show that

(a) For all A with ‖A− In‖ < 1,

exp (log (A)) = A.

(b) For all B with ‖B‖ < ln 2, ‖ exp (B)− In‖ < 1 and

log (exp (B)) = B.
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The exponential and logarithm mappings

exp : kn×n → GL (n,k), and log : B kn×n(In, 1)→ kn×n

are continuous (in fact, infinitely differentiable). Indeed, since any power Ak

is a continuous mapping of A, the sequence of partial sums
(∑r

k=0
1
k!A

k
)
r≥0

consists of continuous mappings. But (it is easy to see that) the matrix series

(defining the exponential matrix) converges uniformly on each set of the form

{A | ‖A‖ ≤ ρ}, and so the sum (i.e., the limit of its sequence of partial sums)

is again continuous. (A similar argument works in the case of the logarithm

mapping.)

By continuity (of the exponential mapping at the origin O), there is a

number δ > 0 such that

B kn×n(O, δ) ⊆ exp−1
(
BGL (n,k)(In, 1)

)
.

In fact we can actually take δ = ln 2 since

exp (B kn×n(O, δ)) ⊆ B kn×n
(
In, e

δ − 1
)
.

Hence we have the following result

4.3.3 Proposition. The exponential mapping exp is injective when re-

stricted to the open subset B kn×n(O, ln 2). (Hence it is locally a diffeomor-

phism at the origin O with local inverse log.)

Let A ∈ kn×n. For every t ∈ R, the matrix series
∑
k≥0

tk

k!
Ak is (absolutely)

convergent and we have

∞∑
k=0

tk

k!
Ak =

∞∑
k=0

1

k!
(tA)k = exp(tA).

So the mapping

α : R→ kn×n, t 7→ exp(tA)

is defined and differentiable with

α̇(t) =

∞∑
k=1

tk−1

(k − 1)!
Ak = exp (tA)A = A exp (tA).
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Note : This mapping can be viewed as a curve in kn×n. The curve is in fact

smooth (i.e., infinitely differentiable) and satisfies the differential equation (in matri-

ces) α̇(t) = α(t)A with initial condition α(0) = In. Also (for t, s ∈ R),

α(t+ s) = α(t)α(s).

In particular, this shows that α(t) is always invertible with α(t)−1 = α(−t).

� Exercise 219 Let A,C ∈ kn×n. Show that the differential equation (in matri-

ces) α̇ = αA has a unique differentiable solution α : R→ kn×n for which α(0) = C.

(This solution is α(t) = C exp (tA).) Furthermore, if C is invertible, then so is α(t)

for t ∈ R, hence α : R→ GL (n, k).

� Exercise 220 Let A ∈ kn×n. Show that the functional equation (in matrices)

α(t + s) = α(t)α(s) has a unique differentiable solution α : R → kn×n for which

α(0) = In and α̇(0) = A. (This solution is α(t) = exp (tA).)

� Exercise 221 If A,B ∈ kn×n commute, show that

d

dt
exp (A+ tB)

∣∣∣∣
t=0

= exp (A)B = B exp (A).

(This is a formula for the derivative of the exponential mapping exp at an arbitrary

A, evaluated only at those B such that AB = BA. The general situation is more

complicated.)

4.4 Lie Algebras for Matrix Groups

One-parameter subgroups

Let G ≤ GL (n, k) be a matrix group and let I denote the identity matrix.

Note : The matrix I is the neutral element of the group G. When k = R, then

I = In whereas when k = C and G ≤ GL (2n,R), then I = I2n =

[
In 0

0 In

]
.

4.4.1 Definition. A one-parameter subgroup of G is a continuous

mapping

γ : R→ G
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which is differentiable at 0 and satisfies (for t, s ∈ R)

γ(s+ t) = γ(s)γ(t).

We refer to the last condition as the homomorphism property.

Note : Recall that R and G can be viewed as matrix groups (isomorphic to

UTu (2,R) and to a subgroup of either GL (n,R) or GL (2n,R), respectively). Hence,

γ is a continuous homomorphism of matrix groups.

It suffices to know γ on some open neighborhood (−ε, ε) of 0 in R. In-

deed, let t ∈ R. Then for some (large enough) natural number m, t
m ∈ (−ε, ε).

Hence

γ

(
t

m

)
,

(
γ

(
t

m

))m
∈ G.

� Exercise 222 Show that (for m,n ∈ N such that t
m ,

t
n ∈ (−ε, ε) )(

γ

(
t

n

))n
=

(
γ

(
t

m

))m
.

The element
(
γ
(
t
m

))m ∈ G is well defined (for every t ∈ R), and so

γ(t) = γ

(
t

m
+

t

m
+ · · ·+ t

m

)
=

(
γ

(
t

m

))m
.

Note : A one-parameter subgroup γ : R → G can be viewed as a collection

(γ(t))t∈R of linear transformations on kn such that (for t, s ∈ R)

• γ(0) = id kn ( = I).

• γ(s+ t) = γ(s)γ(t).

• γ(t) ∈ G depends continuously on t.

Moreover, the curve γ : R→ G in G ⊆ kn×n has a tangent vector γ̇(0) (at γ(0) = I).

4.4.2 Proposition. Let γ : R → G be a one-parameter subgroup of G.

Then γ is differentiable at every t ∈ R and

γ̇(t) = γ̇(0)γ(t) = γ(t)γ̇(0).
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Proof : We have (for t, h ∈ R)

γ̇(t) = lim
h→0

1

h
(γ(t+ h)− γ(t))

= lim
h→0

1

h
(γ(h)γ(t)− γ(t))

=

(
lim
h→0

1

h
(γ(h)− I)

)
γ(t)

= γ̇(0)γ(t)

and similarly

γ̇(t) = γ(t)γ̇(0).

2

We can now determine the form of all one-parameter subgroups of G.

4.4.3 Theorem. Let γ : R→ G be a one-parameter subgroup of G. Then

it has the form

γ(t) = exp(tA)

for some A ∈ kn×n.

Proof : Let A = γ̇(0). This means that γ satisfies (the differential equa-

tion)

γ̇(t) = Aγ(t)

and is subject to (the initial condition)

γ(0) = I.

This initial value problem (IVP) has the unique solution γ(t) = exp(tA). 2

We cannot yet reverse this process and decide for which A ∈ kn×n the

one-parameter subgroup

γ : R→ GL (n,k), t 7→ exp(tA)

actually takes values in G. The answer involves the Lie algebra of G.

Note : We have a curious phenomenon in the fact that although the definition

of a one-parameter group only involves first order differentiability, the general form
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exp (tA) is always infinitely differentiable (and indeed analytic) as a function of t.

This is an important characteristic of much of the Lie theory, namely that condi-

tions of first order diferentiability (and even continuity) often lead to much stronger

conditions.

Lie algebras

Let G ≤ GL (n,k) be a matrix group. Recall that kn×n may be considered

to be some Euclidean space Rm.

4.4.4 Definition. A curve in G is a differentiable mapping

γ : (a, b) ⊆ R→ kn×n

such that (for t ∈ (a, b))

γ(t) ∈ G.

The derivative

γ̇(t) : = lim
h→0

1

h
(γ(t+ h)− γ(t)) ∈ kn×n

is called the tangent vector to γ at γ(t). We will usually assume that

a < 0 < b.

� Exercise 223 Given two curves γ, σ : (a, b)→ G, we define a new curve, the

product curve, by

(γσ)(t) : = γ(t)σ(t).

Show that (for t ∈ (a, b))

(γσ)·(t) = γ(t)σ̇(t) + γ̇(t)σ(t).

� Exercise 224

(a) Let γ : (−1, 1)→ R3×3 be given by

γ(t) : =

1 0 0

0 cos t sin t

0 − sin t cos t

 .
Show that γ is a curve in SO (3) and find γ̇(0). Show that

(γ2)·(0) = 2γ̇(0).
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(b) Let σ : (−1, 1)→ R3×3 be given by

σ(t) : =

0 0 0

0 cos t sin t

0 − sin t cos t

 .
Calculate σ̇(0). Write the matrix γ(t)σ(t) and verify that

(γσ)·(0) = γ̇(0) + σ̇(0).

� Exercise 225 Let α : (−1, 1)→ Cn×n be given by

α(t) : =

eiπt 0

0 ei
πt
2 0

0 0 ei
πt
2

 .
Show that α is a curve in U (3). Calculate α̇(0).

4.4.5 Definition. The tangent space to (the matrix group) G at A ∈ G
is the set

TAG : = {γ̇(0) ∈ kn×n | γ is a curve in G with γ(0) = A}.

4.4.6 Proposition. The set TAG is a real vector subspace of kn×n.

Proof : Let α, β : (a, b) → kn×n be two curves in G through A (i.e.,

α(0) = β(0) = A). Then

γ : (a, b)→ kn×n, t 7→ α(t)A−1β(t)

is also a curve in G with γ(0) = A. We have

γ̇(t) = α̇(t)A−1β(t) + α(t)A−1β̇(t)

and hence

γ̇(0) = α̇(0)A−1β(0) + α(0)A−1β̇(0) = α̇(0) + β̇(0)

which shows that TAG is closed under (vector) addition.

Similarly, if λ ∈ R and α : (a, b)→ kn×n is a curve in G with α(0) = A,

then

η : (a, b)→ kn×n, t 7→ α(λt)
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is another such curve. Since

η̇(0) = λα̇(0)

we see that TAG is closed under (real) scalar multiplication. So TAG is a

(real) vector subspace of kn×n. 2

Note : Since the vector space kn×n is finite dimensional, so is (the tangent space)

TAG.

4.4.7 Definition. If G ≤ GL(n,k) is a matrix group, its dimension is

the dimension of the (real) vector space TIG ( I is the identity matrix). So

dimG : = dimR TIG.

Note : If the matrix group G is complex, then its complex dimension is

dimCG : = dimC TIG.

� Exercise 226 Show that the matrix group U (1) has dimension 1.

Note : The only connected matrix groups (up to isomorphism) of dimension 1

are T1 = U (1) and R, and of dimension 2 are R2,T1 × R,T2, and GA+ (1,R).

4.4.8 Example. The real general linear group GL (n,R) has dimension

n2.

The determinant function det : Rn×n → R is continuous and det (I) = 1.

So there is some ε-ball about I in Rn×n such that for each A in this ball

det (A) 6= 0 (i.e., A ∈ GL (n,R)). If B ∈ Rn×n, then define a curve σ in

Rn×n by

σ(t) : = tB + I.

Then σ(0) = I and σ̇(0) = B, and (for small t) σ(t) ∈ GL (n,R). Hence the

tangent space TIGL (n,R) is all of Rn×n which has dimension n2. So

dimGL (n,R) = n2.

� Exercise 227 Show that the dimension of the complex general linear group

GL (n,C) is 2n2.
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4.4.9 Proposition. Let Sk-sym (n) denote the set of all skew-symmetric

matrices in Rn×n. Then Sk-sym (n) is a linear subspace of Rn×n and its

dimension is n(n−1)
2 ·

Proof : If A,B ∈ Sk-sym (n), then

(A+B)> + (A+B) = A> +A+B> +B = 0

so that Sk-sym (n) is closed under (vector) addition.

It is also closed under scalar multiplication, for if A ∈ Sk-sym (n) and

λ ∈ R, then (λA)> = λA> so that

(λA)> + λA = λ(A> +A) = 0.

To check the dimension of Sk-sym (n) we construct a basis. Let Eij denote

the matrix whose entries are all zero except the ij-entry, which is 1, and the

ji-entry, which is −1. If we define these Eij only for i < j, we can see that

they form a basis for Sk-sym (n).

It is easy to compute that there are

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2

of them. 2

� Exercise 228 Show that if σ is a curve through the identity (i.e., σ(0) = I)

in the orthogonal group O (n), then σ̇(0) is skew-symmetric.

Note : It follows that dim O (n) ≤ n(n−1)
2 · Later we will show that this evaluation

is an equality.

� Exercise 229 A matrix A ∈ Cn×n is called skew-Hermitian if A∗ +A = 0.

(a) Show that the diagonal terms of a skew-Hermitian matrix are purely imag-

inary and hence deduce that the set Sk-Herm (n) of all skew-Hermitian

matrices in Cn×n is not a vector space over C.

(b) Prove that Sk-Herm (n) is a real vector space of dimension

n+ 2
n(n− 1)

2
= n2.
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(c) If σ is a curve through the identity in U (n), show that σ̇(0) is skew-

Hermitian an hence

dim U (n) ≤ n2.

We will adopt the notation g : = TIG for this real vector subspace of

kn×n. In fact, g has a more interesting algebraic structure, namely that of a

Lie algebra.

Note : It is customary to use lower case Gothic (Fraktur) characters (such as a, g

and h ) to refer to Lie algebras.

4.4.10 Definition. A (real) Lie algebra a is a real vector space equipped

with a product

[·, ·] : a× a→ a, (x, y) 7→ [x, y]

such that (for λ, µ ∈ R and x, y, z ∈ a)

(LA1) [x, y] = −[y, x].

(LA2) [λx+ µy, z] = λ[x, z] + µ[y, z].

(LA3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The product [·, ·] is called the Lie bracket of the Lie algebra a.

Note : (1) Condition (LA3) is called the Jacobi identity. So the Lie bracket [·, ·]
of (the Lie algebra) a is a skew-symmetric bilinear mapping (on a ) which satisfies

the Jacobi identity. Hence Lie algebras are nonassociative algebras. The Lie bracket

plays for Lie algebras the same role that the associative law plays for associative

algebras.

(2) While we can define complex Lie algebras (or, more generally, Lie algebras over

any field), we shall only consider Lie algebras over the real field R.

4.4.11 Example. Let a = Rn and set (for all x, y ∈ Rn)

[x, y] : = 0.

The trivial product is a skew-symmetric bilinear multiplication (on Rn) which

satisfies the Jacobi identity and hence is a Lie bracket. Rn equipped with this

product (Lie bracket) is a Lie algebra. Such a Lie algebra is called an Abelian

Lie algebra.
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� Exercise 230 Show that the only Lie algebra structure on (the vector space)

R is the trivial one.

4.4.12 Example. Let a = R3 and set (for x, y ∈ R3)

[x, y] : = x× y (the cross product).

For the standard unit vectors e1, e2, e3 we have

[e1, e2] = −[e2, e1] = e3, [e2, e3] = −[e3, e2] = e1, [e3, e1] = −[e1, e3] = e2.

Then R3 equipped with this bracket operation is a Lie algebra. In fact, as we

will see later, this is the Lie algebra of (the matrix group) SO (3) and also of

SU (2) in disguise.

Given two matrices A,B ∈ kn×n, their commutator is

[A,B] : = AB −BA.

A and B commute (i.e., AB = BA ) if and only if [A,B] = 0. The commu-

tator [·, ·] is a product on kn×n satisfying conditions (LA1)-(LA3).

� Exercise 231 Verify the Jacobi identity for the commutator [·, ·].

The real vector space kn×n equipped with the commutator [·, ·] is a Lie

algebra.

Note : The procedure to give kn×n a Lie algebra structure can be extended to any

associative algebra. A Lie product (bracket) can be defined in any associative algebra

by the comutator [x, y] = xy− yx, making it a Lie algebra. Here the skew-symmetry

condition (axiom) is clearly satisfied, and one can check easily that in this case the

Jacobi identity for the commutator follows from the associtivity law for the ordinary

product.

There is another way in which Lie algebras arise in the study of algebras. A

derivation d of a nonassociative algebra A (i.e., a vector space endowed with a

bilinear mapping A × A → A) is a linear mapping A → A satisfying the formal

analogue of the Leibniz rule for differentiating a product (for all x, y ∈ A )

d(xy) = (dx)y + x(dy).
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(The concept of a derivation is an abstraction of the idea of a first order differential

operator.) The set of all derivations on A is clearly a vector subspace of the algebra

End (A) of all linear mappings A → A. Although the product of derivations is in

general not a derivation, the commutator d1d2 − d2d1 of two derivations is again a

derivation. Thus the set of all derivations of a nonassociative algebra is a Lie algebra,

called the derivation algebra of the given nonassociative algebra.

Suppose that a is a vector subspace of the Lie algebra kn×n. Then a is

a Lie subalgebra of kn×n if it is closed under taking commutators of pairs of

alements in a; that is,

A,B ∈ a ⇒ [A,B] ∈ a.

Of course, kn×n is a Lie subalgebra of itself.

4.4.13 Theorem. If G ≤ GL (n, k) is a matrix group, then the tangent

space g = TIG (at the identity) is a Lie subalgebra of kn×n.

Proof : We will show that two curves α, β in G with α(0) = β(0) = I,

there is such a curve γ with γ̇(0) = [α̇(0), β̇(0)].

Consider the mapping

F : (s, t) 7→ F (s, t) : = α(s)β(t)α(s)−1.

This is clearly (continuous and) differentiable with respect to each of the vari-

ables s, t. For each s (in the domain of α), F (s, ·) is a curve in G with

F (s, 0) = I. Differentiating gives

d

dt
F (s, t)

∣∣∣∣
t=0

= α(s)β̇(0)α(s)−1

and so

α(s)β̇(0)α(s)−1 ∈ g.

Since g is a closed subspace of kn×n (Any vector subspace is an intersection

of hyperplanes), whenever this limit exists we also have

lim
s→0

1

s

(
α(s)β̇(0)α(s)−1 − β̇(0)

)
∈ g.
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� Exercise 232 Verify the following (matrix version of the) usual rule for dif-

ferentiating an inverse :

d

dt

(
α(t)−1

)
= −α(t)−1α̇(t)α(t)−1.

We have

lim
s→0

1

s

(
α(s)β̇(0)α(s)−1 − β̇(0)

)
=

d

ds
α(s)β̇(0)α(s)−1

∣∣∣∣
s=0

= α̇(0)β̇(0)α(0)− α(0)β̇(0)α(0)−1α̇(0)α(0)−1

= α̇(0)β̇(0)α(0)− α(0)β̇(0)α̇(0)

= α̇(0)β̇(0)− β̇(0)α̇(0)

= [α̇(0), β̇(0)].

This shows that [α̇(0), β̇(0)] ∈ g, hence it must be of the form γ̇(0) for some

curve.

2

So for each matrix group G there is a Lie algebra g = TIG. We call g

the Lie algebra of G.

Note : The essential phenomenon behind Lie theory is that one may associate

in a natural way to a matrix group G its Lie algebra g. The Lie algebra is first

of all a (real) vector space and secondly is endowed with a skew-symmetric bilinear

product (called the Lie bracket or commutator). Amazingly, the group G is almost

completely determined by g and its Lie bracket. Thus for many purposes one can

replace G with g. Since G is a complicated nonlinear object and g is just a vector

space, it is usually vastly simpler to work with g. Otherwise intractable computations

may become straightforward linear algebra. This is one source of the power of Lie

theory.

Homomorphisms of Lie algebras

A suitable type of homomorphism G → H between matrix groups gives

rise to a linear mapping g→ h respecting the Lie algebra structures.
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4.4.14 Definition. Let G ≤ GL (n, k), H ≤ GL (m,k) be matrix groups

and let ϕ : G → H be a continuous mapping. Then ϕ is said to be dif-

ferentiable if for every (differentiable) curve γ : (a, b) → G, the composite

mapping ϕ ◦ γ : (a, b)→ H is a (differentiable) curve with derivative

(ϕ ◦ γ)·(t) =
d

dt
ϕ(γ(t))

and if whenever two (differentiable) curves α, β : (a, b)→ G both satisfy the

conditions

α(0) = β(0) and α̇(0) = β̇(0)

then

(ϕ ◦ α)·(0) = (ϕ ◦ β)·(0).

Such a mapping ϕ is a differentiable homomorphism if it is also a group

homomorphism. A continuous homomorphism of matrix groups that is also

differentiable is called a Lie homomorphism.

Note : The “technical restriction” in the definition of a Lie homomorphism is in

fact unnecessary.

If ϕ : G→ H is the restriction of a differentiable mapping Φ : GL (n,k)→
GL (m,k), then ϕ is also a differentiable mapping.

4.4.15 Proposition. Let G,H,K be matrix groups and ϕ : G → H,ψ :

H → K be differentiable homomorphisms.

(a) For each A ∈ G there is a linear mapping dϕA : TAG → Tϕ(A)H

given by

dϕA(γ̇(0)) = (ϕ ◦ γ)·(0).

(b) We have

dψϕ(A) ◦ dϕA = d(ψ ◦ ϕ)A.

(c) For the identity mapping idG : G→ G and A ∈ G,

d idG = idTAG.
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Proof : (a) The definition of dϕA makes sense since (by the definition of

differentiability), given X ∈ TAG, for any curve γ with

γ(0) = A and γ̇(0) = X

(ϕ ◦ γ)·(0) depends only on X and not on γ.

� Exercise 233 Verify that the maping dϕA : TAG→ Tϕ(A)H is linear.

The identities (b) and (c) are straightforward to verify. 2

If ϕ : G → H is a differentiable homomorphism, then (since ϕ(I) = I)

dϕI : TIG→ TIH is a linear mapping, called the derivative of ϕ and usually

denoted by

dϕ : g→ h.

4.4.16 Definition. Let g, h be Lie algebras. A linear mapping Φ : g→ h

is a homomorphism of Lie algebras if (for x, y ∈ g )

Φ([x, y]) = [Φ(x),Φ(y)].

4.4.17 Theorem. Let G,H be matrix groups and ϕ : G → H be a Lie

homomorphism. Then the derivative dϕ : g → h is a homomorphism of Lie

algebras.

Proof : Following ideas and notation in the proof of Theorem 4.4.13, for

curves α, β in G with α(0) = β(0) = I, we can use the composite mapping

ϕ ◦ F : (s, t) 7→ ϕ(F (s, t)) = ϕ(α(s))ϕ(β(t))ϕ(α(s))−1

to deduce

dϕ([α̇(0), β̇(0)]) = [dϕ(α̇(0)), dϕ(β̇(0))].

2

4.4.18 Corollary. Let G,H be matrix groups and ϕ : G → H be an

isomorphism of matrix groups. Then the derivative dϕ : g→ h is an isomor-

phism of Lie algebras.
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Proof : ϕ−1 ◦ ϕ is the identity, so

dϕ−1 ◦ dϕ : TIG→ TIG

is the identity. Thus dϕ−1 is surjective and dϕ is injective.

Likewise, ϕ◦ϕ−1 is the identity, so dϕ◦dϕ−1 is the identity. Thus dϕ−1

is injective, and dϕ is surjective. The result now follows. 2

Note : Isomorphic matrix groups have isomorphic Lie algebras. The converse (i.e.,

matrix groups with isomorphic Lie algebras are isomorphic) is false. For example, the

rotation group SO (2) and the diagonal group

D1 =

{[
1 0

0 ea

]
| a ∈ R

}
≤ GA+ (1,R)

have both Lie algebras isomorphic to R (the only Lie algebra structure on R), but

SO (2) is homeomorphic to a circle, while D1 is homeomorphic to R, so they are

certainly not isomorphic.

However, the converse is – in a sense – almost true, so that the bracket operation

on g almost determine G as a group. After the existence of the Lie algebra, this fact

is the most remarkable in Lie theory. Its precise formulation is known as Lie’s Third

Theorem.

4.5 More Properties of the Exponential Mapping

The following formula can be considered as another definition of the matrix

exponential.

4.5.1 Proposition. Let A ∈ kn×n. Then

exp (A) = lim
r→∞

(
I +

1

r
A

)r
.

Proof : Consider the difference

exp (A)−
(
I +

1

r
A

)r
=
∞∑
k=0

(
1

k!
− 1

rk

(
r

k

))
Ak.
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This matrix series converges since the series for the matrix exponential exp(A)

converges and
(
I + 1

rA
)r

is a polynomial. The coefficients in the rhs are

nonnegative since
1

k!
≥ r(r − 1) · · · (r − k + 1)

r · r · · · r
1

k!
·

Therefore, setting ‖A‖ = a, we get∥∥∥∥exp (A)−
(
I +

1

r
Ar
)r∥∥∥∥ ≤ ∞∑

k=0

(
1

k!
− 1

rk

(
r

k

))
ak = ea −

(
1 +

a

r

)r
where the expression on the right approaches zero (as r → ∞). The result

now follows. 2

4.5.2 Proposition. Let A ∈ kn×n and ε ∈ R. Then

det (I + εA) = 1 + ε trA+O(ε2) (as ε→ 0).

Proof : The determinant of I+εA equals the product of the eigenvalues of

the matrix. But the eigenvalues of I + εA (with due regard for multiplicity)

equal 1 + ε λi, where the λi are the eigenvalues of A. It follows that

det (I + εA) = (1 + ε λ1)(1 + ε λ2) · · · (1 + ε λn)

= 1 + ε (λ1 + λ2 + · · ·+ λn) +O(ε2)

= 1 + ε trA+O(ε2).

2

Note : Whenever we have a mapping Z from some (open) interval (a, b), a <

0 < b into a finite-dimensional normed vector space (e.g. kn×n ), then Z will often

be denoted by O(tk) if t 7→ 1
tk
Z(t) is bounded in an (open) neighborhood of the

origin 0 (i.e. there are constants C1 and C2 such that

‖Z(t)‖ ≤ C1|tk| for |t| < C2.)

Thus O(tk) may denote different mappings at different times. The big-O notation

was first introduced in 1892 by Paul G.H. Bachmann (1837-1920) in a book on

number theory, and is currently used in several areas of mathematics and computer

science (including mathematical analysis and the theory of algorithms).

The following result is useful.
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4.5.3 Lemma. Let α : (a, b)→ kn×n be a curve. Then

d

dt
det α(t)

∣∣∣∣
t=0

= tr α̇(0).

Proof : The operation ∂ : = d
dt

∣∣
t=0

has the derivation property

∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)∂γ2.

Put α(t) =
[
aij

]
and notice that (when t = 0) aij = δij . Write Cij for

the cofactor matrix obtained from α(t) by deleting the ith row and the jth

column. By expanding along the nth row we get

det α(t) =
n∑
j=1

(−1)n+janj det Cnj .

For t = 0 (since α(0) = I) we have

det Cnj = δnj .

Then

∂ det α(t) =
n∑
j=1

(−1)n+j((∂anj) det Cnj + anj(∂ det Cnj))

=
n∑
j=1

(−1)n+j((∂anj) det Cnj) + (∂ det Cnn)

= ∂ann + ∂ det Cnn.

We can repeat this calculation with the (n− 1)× (n− 1) matrix Cnn and so

on. This gives

∂ det α(t) = ∂ann + ∂an−1,n−1 + ∂ det Cn−1,n−1

...

= ∂ann + ∂an−1,n−1 + · · ·+ ∂a11

= tr α̇(0).

2
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We can now prove a remarkable (and very useful) result, known as Liou-

ville’s Formula. Three different proofs will be given.

4.5.4 Theorem. (Liouville’s Formula) For A ∈ kn×n we have

det exp (A) = etrA.

First solution (using the second definition of the exponential) : We have

det exp (A) = det lim
r→∞

(
I +

1

r
A

)r
= lim

r→∞
det

(
I +

1

r
A

)r
since the determinant function det : kn×n → k is continuous. Moreover, by

Proposition 4.5.2,

det

(
I +

1

r
A

)r
=

[
det

(
I +

1

r
A

)]r
=

[
1 +

1

r
trA+O

(
1

r2

)]r
(as r →∞).

It only remains to note that (for any a ∈ k)

lim
r→∞

[
1 +

a

r
+O

(
1

r2

)]r
= ea.

In particular, for a = trA, we get the desired result. 2

Second solution (using differential equations) : Consider the curve

γ : R→ GL (1,k) = k×, t 7→ det exp (tA).

Then (by Lemma 4.5.3 applied to the curve γ)

γ̇(t) = lim
h→0

1

h
[det exp ((t+ h)A)− det exp (tA)]

= det exp (tA) lim
h→0

1

h
[det exp (hA)− 1]

= det exp (tA) trA

= γ(t) trA.

So γ satisfies the same differential equation and initial condition as the curve

t 7→ et trA. By the uniqueness of the solution (see Exercise 219), it follows

that

γ(t) = det exp (tA) = et trA.
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In particular, for t = 1, we get the desired result. 2

Third solution (using Jordan canonical form) : If B ∈ GL (n, k), then (see

Exercise 221)

det exp (BAB−1) = det (B exp (A)B−1)

= det B · det exp(A) · det B−1

= det exp (A)

and

etr (BAB−1) = etrA.

So it suffices to prove the identity for BAB−1 for a suitably chosen invertible

matrix B. Using for example the theory of Jordan canonical forms, there is a

suitable choice of such a B for which

BAB−1 = D +N

with D diagonal and N strictly upper triangular (i.e., Nij = 0 for i ≥ j).

Then N is nilpotent (i.e., Nk = O for some k ≥ 1). We have

exp (BAB−1) =
∞∑
k=0

1

k!
(D +N)k

=
∞∑
k=0

1

k!
Dk +

∞∑
k=0

1

(k + 1)!

(
(D +N)k+1 −Dk+1

)
= exp (D) +

∞∑
k=0

1

(k + 1)!
N(Dk +Dk−1N + · · ·+Nk).

The matrix

N(Dk +Dk−1N + · · ·+Nk)

is strictly upper triangular, and so

exp (BAB−1) = exp (D) +N ′

where N ′ is strictly upper triangular. Now, if D = diag (λ1, λ2, . . . , λn), we
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have

det exp (A) = det exp (BAB−1)

= det exp (D)

= det diag (eλ1 , eλ2 , . . . , eλn)

= eλ1eλ2 · · · eλn

= eλ1+λ2+···+λn

= etrD

= etr (BAB−1)

= etrA.

2

The exponential mapping

exp : kn×n → GL (n, k)

is a basic link between the linear structure on kn×n and the multiplicative

structure on GL (n,k). Let G be a matrix subgroup of GL (n, k). Applying

Proposition 4.3.3, we may choose ρ ∈ R so that 0 < ρ ≤ 1
2 and if A,B ∈

B kn×n(O, ρ), then exp (A) exp (B) ∈ exp
(
B kn×n(O, 1

2)
)
. Since exp is one-to-

one on B kn×n(O, ρ), there is a unique matrix C ∈ kn×n for which

exp (A) exp (B) = exp (C).

Note : There is a beautiful formula, the Baker-Campbell-Hausdorff formula which

expresses C as a universal power series in A and B. To develop this completely would

take too long. Specifically, (one form of) the B-C-H formula says that if X and Y

are sufficiently small, then

exp(X) exp(Y ) = exp(Z) with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

It is not supposed to be evident at the moment what “. . . ” refers to. The only

important point is that all the terms (in the expansion of Z) are given in terms of X
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and Y , Lie brackets of X and Y , Lie brackets of Lie brackets involving X and Y ,

etc. Then it follows that the mapping φ : G→ GL (n,R) “defined” by the relation

φ (exp(X)) = exp (φ(X))

is such that on elements of the form exp(X), with X sufficiently small, is a group

homomorphism. Hence the B-C-H formula shows that all the information about the

group product, a least near the identity, is “encoded” in the Lie algebra.

An interesting special case is the following : If X,Y ∈ Cn×n and X,Y commute

with their commutator (i.e., [X, [X,Y ]] = [Y, [X,Y ] ), then

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

� Exercise 234 Show by direct computation that for

X,Y ∈ heis =


0 a b

0 0 c

0 0 0

 | a, b, c ∈ R


(the Lie algebra of the Heisenberg group Heis)

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

We set

R = C −A−B ∈ kn×n.

For X ∈ kn×n, we have

exp (X) = I +X +R1(X),

where the remainder term R1(X) is given by

R1(X) =
∞∑
k=2

1

k!
Xk.

Hence

‖R1(X)‖ ≤ ‖X‖2
∞∑
k=2

1

k!
‖X‖k−2

and therefore if ‖X‖ < 1, then

‖R1(X)‖ ≤ ‖X‖2
∞∑
k=2

1

k!
= ‖X‖2 (e− 2) < ‖X‖2.
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Now for X = C ∈ B kn×n(O, 1
2), we have

exp (C) = I + C +R1(C)

with

‖R1(C)‖ < ‖C‖2.

Similar considerations lead to

exp (C) = exp (A) exp (B) = I +A+B +R1(A,B),

where

R1(A,B) =

∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
.

This gives

‖R1(A,B)‖ ≤
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
‖A‖r‖B‖k−r

)

=
∞∑
k=0

1

k!
(‖A‖+ ‖B‖)k

= (‖A‖+ ‖B‖)2
∞∑
k=2

1

k!
(‖A‖+ ‖B‖)k−2

≤ (‖A‖+ ‖B‖)2

since ‖A‖+ ‖B‖ < 1.

Combining the two ways of writing exp (C) from above, we have

C = A+B +R1(C)−R1(A,B)

and so

‖C‖ ≤ ‖A‖+ ‖B‖+ ‖R1(A,B)‖+ ‖R1(C)‖

< ‖A‖+ ‖B‖+ (‖A‖+ ‖B‖)2 + ‖C‖2

≤ 2 (‖A‖+ ‖B‖) +
1

2
‖C‖

since ‖A‖, ‖B‖, ‖C‖ ≤ 1
2 . Finally this gives

‖C‖ ≤ 4 (‖A‖+ ‖B‖) .
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We also have

‖R‖ = ‖C −A−B‖ ≤ ‖R1(A,B)‖+ ‖R1(C)‖

≤ (‖A‖+ ‖B‖)2 + (4(‖A‖+ ‖B‖))2

= 17 (‖A‖+ ‖B‖)2 .

We have proved the following result.

4.5.5 Proposition. Let A,B,C ∈ B kn×n(O, 1
2) such that exp (A) exp (B) =

exp (C). Then C = A+B +R, where the remainder term R satisfies

‖R‖ ≤ 17 (‖A‖+ ‖B‖)2 .

We can refine this estimate (to second order). We only point out the

essential steps (details will be omitted). Set

S = C −A−B − 1

2
[A,B] ∈ kn×n

and write

exp (C) = I + C +
1

2
C2 +R2(C)

with

‖R2(C)‖ ≤ 1

3
‖C‖3.

Then

exp(C) = I +A+B +
1

2
[A,B] + S +

1

2
C2 +R2(C)

= I +A+B +
1

2
(A2 + 2AB +B2) + T,

where

T = S +
1

2
(C2 − (A+B)2) +R2(C).

Also

exp (A) exp (B) = I +A+B +
1

2
(A2 + 2AB +B2) +R2(A,B)

with

‖R2(A,B)‖ ≤ 1

3
(‖A‖+ ‖B‖)3 .
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We see that

S = R2(A,B) +
1

2
((A+B)2 − C2)−R2(C)

and by taking norms we get

‖S‖ ≤ ‖R2(A,B)‖+
1

2
‖(A+B)(A+B − C) + (A+B − C)C‖+ ‖R2(C)‖

≤ 1

3
(‖A‖+ ‖B‖)3 +

1

2
(‖A‖+ ‖B‖+ ‖C‖)‖A+B − C‖+

1

3
‖C‖3

≤ 65 (‖A‖+ ‖B‖)3 .

The following estimation holds.

4.5.6 Proposition. Let A,B,C ∈ B kn×n(O, 1
2) such that exp (A) exp (B) =

exp (C). Then C = A+B+ 1
2 [A,B]+S, where the remainder term S satisfies

‖S‖ ≤ 65 (‖A‖+ ‖B‖)3 .

We will derive two main consequences of Proposition 4.5.5 and Propo-

sition 4.5.6. These relate group operations in GL (n, k) to the linear opera-

tions in kn×n and are crucial ingredients in the proof that every matrix group

is a Lie group.

4.5.7 Theorem. (Lie-Trotter Product Formula) For U, V ∈ kn×n

we have

exp (U + V ) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
.

(This formula relates addition in kn×n to multiplication in GL (n, k).)

Proof : For large r we may take A = 1
rU and B = 1

rV and apply Propo-

sition 4.5.5 to give

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp (Cr)

with ∥∥∥∥Cr − 1

r
(U + V )

∥∥∥∥ ≤ 17 (‖U‖+ ‖V ‖)2

r2
·

As r →∞,

‖rCr − (U + V )‖ ≤ 17 (‖U‖+ ‖V ‖)2

r
→ 0
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and hence

rCr → U + V.

Since exp (rCr) = exp (Cr)
r, the Lie-Trotter product formula follows by con-

tinuity of the exponential mapping. 2

4.5.8 Theorem. (Commutator Formula) For U, V ∈ kn×n we have

exp([U, V ]) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

(This formula relates the Lie bracket - or commutator - in kn×n to the group

commutator in GL (n, k).)

Proof : For large r (as in the proof of Theorem 4.5.7) we have

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp(Cr)

with (as r →∞)

rCr → U + V.

We also have

Cr =
1

r
(U + V ) +

1

2r2
[U, V ] + Sr,

where

‖Sr‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Similarly (replacing U, V with −U,−V ) we obtain :

exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(C ′r),

where

C ′r = −1

r
(U + V ) +

1

2r2
[U, V ] + S′r

and

‖S′r‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Combining these we get

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(Cr) exp(C ′r)

= exp(Er),
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where

Er = Cr + C ′r +
1

2
[Cr, C

′
r] + Tr

=
1

r2
[U, V ] +

1

2
[Cr, C

′
r] + Sr + S′r + Tr.

� Exercise 235 Verify that

[Cr, C
′
r] =

1

r3
[U + V, [U, V ]] +

1

r
[U + V, Sr + S′r]

+
1

2r2
[[U, V ], S′r − Sr] + [Sr, S

′
r].

All four of these terms have norm bounded by an expression of the form
constant

r3
so the same is true of [Cr, C

′
r]. Also Sr, S

′
r, Tr have similarly bounded

norms. Setting

Qr : = r2Er − [U, V ]

we obtain (as r →∞)

‖Qr‖ = r2‖Er −
1

r2
[U, V ]‖ ≤ constant

r
→ 0

and hence

exp(Er)
r2 = exp ([U, V ] +Qr)→ exp([U, V ]).

The commutator formula now follows using continuity of the exponential map-

ping.

2

Note : If g, h are elements of a group, then the expression ghg−1h−1 is called

the group commutator of g and h.

There is one further concept involving the exponential mapping that is

basic in Lie theory. It involves conjugation, which is generally referred to as

the “adjoint action”. For g ∈ GL (n,k) and A ∈ kn×n, we can form the

conjugate

Adg(A) : = gAg−1.

� Exercise 236 Let A,B ∈ kn×n and g, h ∈ GL (n,k). Show that (for λ, µ ∈ k)

(a) Adg(λA+ µB) = λAdg(A) + µAdg(B).
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(b) Adg([A,B]) = [Adg(A),Adg(B)].

(c) Adgh(A) = Adg(Adh(A)).

In particular, Ad−1
g = Adg−1 .

Formulas (a) an (b) say that Adg is an automorphism of the Lie algebra

kn×n, and formula (c) says the mapping

Ad : GL (n, k)→ Aut (kn×n), g 7→ Adg

is a group homomorphism. The mapping Ad is called the adjoint represen-

tation of (the matrix group) GL (n, k).

Formula (c) implies in particular that if t 7→ exp (tA) is a one-parameter

subgroup of GL (n,k), then Ad exp (tA) is a one-parameter group (of linear

transformations) in kn×n. Observe that we can identify Aut (kn×n) with

GL (n2, k) (and thus view Aut (kn×n) as a matrix group). Then (by Theorem

4.4.3)

Ad exp (tA) = exp (tA)

for some A ∈ kn2×n2
= End (kn×n). Since

A(B) =
d

dt
Ad exp(tA)(B)

∣∣∣∣
t=0

=
d

dt
exp (tA)B exp (−tA)

∣∣∣∣
t=0

= [A,B]

by setting (for A,B ∈ kn×n)

adA(B) : = [A,B]

we have the following formula

Ad exp (tA) = exp (t adA).

Explicitly, the formula says that

exp (tA)B exp (−tA) =
∞∑
k=0

tk

k!
(adA)k B.
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(Here (adA)0 = A and (adA)k = ad(adA)k−1 for k ≥ 1.)

Note : The mapping

ad : kn×n → End (kn×n), X 7→ adX

is called the adjoint representation of (the Lie algebra) kn×n. From the Jacobi identity

for Lie algebras, we have

adX([Y,Z]) = [adX(Y ), Z] + [Y, adX(Z)].

That is, adX is a derivation of the Lie algebra kn×n. The formula above gives

the relation between the automorphism Ad exp (tX) of the Lie algebra kn×n and the

derivation adX of kn×n. One also has

exp (tAdg(X)) = g exp (tX)g−1.

Using this formula, we can see that [X,Y ] = 0 if and only if exp (tX) and exp (sY )

commute for arbitrary s, t ∈ R.

� Exercise 237 Let A,B ∈ kn×n.

(a) Verify that

ad [A,B] = adA adB − adB adA = [adA, adB] .

(This means that ad : kn×n → End (kn×n) is a Lie algebra homomor-

phism.)

(b) Show by induction that

(adA)
n

(B) =

n∑
k=0

(
n

k

)
AkB(−A)n−k.

(c) Show by direct computation that

exp (adA)(B) = Adexp (A)(B) = exp (A)B exp (−A).
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4.6 Examples of Lie Algebras of Matrix Groups

The Lie algebras of GL (n,R) and GL (n,C)

Let us start with the real general linear group GL (n,R) ⊆ Rn×n. We have

shown (see Example 4.4.8) that TIGL (n,R) = Rn×n. Hence the Lie algebra

gl(n,R) of GL (n,R) consists of all n × n matrices (with real entries), with

the commutator as the Lie bracket. Thus

gl(n,R) = Rn×n.

It follows that

dimGL (n,R) = dim gl(n,R) = n2.

Similarly, the Lie algebra of the complex general linear group GL (n,C) is

gl(n,C) = Cn×n

and

dimGL (n,C) = dimR gl(n,C) = 2n2.

The Lie algebras of SL (n,R) and SL (n,C)

For SL (n,R) ≤ GL (n,R), suppose that

α : (a, b)→ SL (n,R)

is a curve in SL (n,R) with α(0) = I. For t ∈ (a, b) we have det α(t) = 1

and so
d

dt
det α(t) = 0.

Using Lemma 4.5.3, it follows that

tr α̇(0) = 0

and thus

TISL (n,R) ⊆ ker tr : =
{
A ∈ Rn×n | trA = 0

}
.

If A ∈ ker tr ⊆ Rn×n, the curve

α : (a, b)→ Rn×n, t 7→ exp (tA)



C.C. Remsing 223

satisfies (the boundary conditions)

α(0) = I and α̇(0) = A.

Moreover, using Liouville’s Formula, we get

det α(t) = det exp (tA) = et trA = 1.

Hence the Lie algebra sl (n,R) of SL (n,R) consists of all n × n matrices

(with real entries) having trace zero, with the commutator as the Lie bracket.

Thus

sl (n,R) = TISL (n,R) = {A ∈ gl (n,R) | trA = 0} .

Since trA = 0 imposes one condition on A, it follows that

dimSL (n,R) = dimR sl(n,R) = n2 − 1.

Similarly, the Lie algebra of the complex special linear group SL (n,C) is

sl (n,C) = TISL (n,C) = {A ∈ gl (n,C) | trA = 0}

and

dimSL (n,C) = dimR sl (n,C) = 2(n2 − 1).

The Lie algebras of O (n) and SO (n)

First, consider the orthogonal group O (n); that is,

O (n) =
{
A ∈ GL (n,R) |A>A = I

}
≤ GL (n,R).

Given a curve α : (a, b)→ O (n) with α(0) = I, we have

d

dt
α(t)Tα(t) = 0

and so

α̇(t)Tα(t) + α(t)T α̇(t) = 0

which implies

α̇(0)T + α̇(0) = 0.
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Thus we must have α̇(0) ∈ Rn×n is skew-symmetric. So

TIO (n) ⊆ Sk-sym (n) =
{
A ∈ Rn×n |A> +A = 0

}
(the set of all n× n skew-symmetric matrices in Rn×n).

On the other hand, if A ∈ Sk-sym (n) ⊆ Rn×n, we consider the curve

α : (a, b)→ GL (n,R), t 7→ exp (tA).

Then

α(t)>α(t) = exp (tA)> exp (tA)

= exp (tA>) exp (tA)

= exp (−tA) exp (tA)

= I.

Hence we can view α as a curve in O (n). Since α̇(0) = A, this shows that

Sk-sym (n) ⊆ TIO (n)

and hence the Lie algebra o(n) of the orthogonal group O (n) consists of all

n×n skew-symmetric matrices, with the usual commutator as the Lie bracket.

Thus

o(n) = TIO (n) = Sk-sym (n) =
{
A ∈ Rn×n |A> +A = 0

}
.

It follows that (see Proposition 4.4.9)

dimO (n) = dim o(n) =
n(n− 1)

2
·

� Exercise 238 Show that if A ∈ Sk-sym (n), then trA = 0.

By Liouville’s Formula, we have

det α(t) = det exp (tA) = 1

and hence α : (a, b) → SO (n), where SO (n) is the special orthogonal group.

We have actually shown that the Lie algebra of the special orthogonal group

SO (n) is

so(n) = o(n) =
{
A ∈ Rn×n |A> +A = 0

}
.
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The Lie algebra of SO (3)

We will discuss the Lie algebra so(3) of the rotation group SO (3) in some

detail.

� Exercise 239 Show that

so(3) =


 0 −c b

c 0 −a
−b a 0

 ∈ R3×3 | a, b, c ∈ R

 .

The Lie algebra so(3) is a 3-dimensional real vector space. Consider the

rotations

R1(t) =

1 0 0

0 cos t − sin t

0 sin t cos t

 , R2(t) =

 cos t 0 sin t

0 1 0

− sin t 0 cos t

 , R3 =

cos t − sin t 0

sin t cos t 0

0 0 1

 .
Then the mappings

ρi : t 7→ Ri(t), i = 1, 2, 3

are curves in SO (3) and clearly ρi(0) = I. It follows that

ρ̇i(0) : = Ai ∈ so(3), i = 1, 2, 3.

These elements (matrices) are

A1 =

0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

0 −1 0

1 0 0

0 0 0

 .
� Exercise 240 Verify that the matrices A1, A2, A3 form a basis for so(3). We

shall refer to this basis as the standard basis.

� Exercise 241 Compute all the Lie brackets (commutators) [Ai, Aj ], i, j =

1, 2, 3 and then determine the coefficients ckij defined by

[Ai, Aj ] = c1ijA1 + c2ijA2 + c3ijA3, i, j = 1, 2, 3.

These coefficients are called the structure constants of the Lie algebra. They determine

completely the Lie bracket [·, ·].
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The Lie algebra so(3) may be identified with (the Lie algebra) R3 as

follows. We define the mapping

̂: R3 → so(3), x = (x1, x2, x3) 7→ x̂ : =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
This mapping is called the hat mapping.

� Exercise 242 Show that the hat mapping ̂: R3 → so(3) is an isomorphism

of vector spaces.

� Exercise 243 Show that (for x, y ∈ R3)

(a) x× y = x̂ y.

(b) x̂× y = [x̂, ŷ].

(c) x • y = − 1
2 tr (x̂ ŷ).

Formula (b) says that the hat mapping is in fact an isomorphism of Lie

algebras and so we can identify the Lie algebra so(3) with (the Lie algebra)

R3.

Note : For x ∈ R3 and t ∈ R, the matrix exponential exp (t x̂) is a rotation about

(the axis) x through the angle t‖x‖. The following explicit formula for exp (x̂) is

known as Rodrigues’ Formula :

exp (x̂) = I +
sin ‖x‖
‖x‖

x̂+
1

2

 sin
(
‖x‖
2

)
‖x‖
2

2

x̂2.

This result says that the exponential mapping

exp : so(3)→ SO (3)

is onto. Rodrigues’ Formula is useful in computational solid mechanics, along with

its quaternionic counterpart.
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The Lie algebras of U (n) and SU (n)

Consider the unitary group U (n); that is,

U (n) = {A ∈ GL (n,C) |A∗A = I} .

For a curve α in U (n) with α(0) = I, we obtain

α̇(0)∗ + α̇(0) = 0

and so α̇(0) ∈ Cn×n is skew-Hermitian. So

TIU (n) ⊆ Sk-Herm (n) =
{
A ∈ Cn×n |A∗ +A = 0

}
(the set of all n× n skew-Hermitian matrices in Cn×n ).

If H ∈ Sk-Herm (n), then the curve

α : (a, b)→ GL (n,C), t 7→ exp (tH)

satisfies

α(t)∗α(t) = exp (tH)∗ exp (tH)

= exp (tH∗) exp (tH)

= exp (−tH) exp (tH)

= I.

Hence we can view α as a curve in U (n). Since α̇(0) = H, this shows that

Sk-Herm (n) ⊆ TIU (n)

and hence the Lie algebra u(n) of the unitary group U (n) consists of all n×n
skew-Hermitian matrices, with the usual commutator as the Lie bracket. Thus

u(n) = TIU (n) = Sk-Herm (n) =
{
H ∈ Cn×n |H∗ +H = 0

}
.

It follows that (see Exercise 229)

dimU (n) = dimR u(n) = n2.
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The special unitary group SU (n) can be handled in a similar way. Again we

have

su(n) = TISU (n) ⊆ Sk-Herm (n).

But also if α : (a, b) → SU (n) is a curve with α(0) = I then, as in the

analysis for SL (n,R),

tr α̇(0) = 0.

Writing

Sk-Herm0 (n) : = {H ∈ Sk-Herm (n) | trH = 0}

this gives su(n) ⊆ Sk-Herm0 (n). On the other hand, if H ∈ Sk-Herm0 (n)

then the curve

α : (a, b)→ U (n), t 7→ exp (tH)

takes values in SU (n) and α̇(0) = H. Hence

su(n) = TISU (n) = Sk-Herm0 (n) =
{
H ∈ Cn×n |H∗ +H = 0 and trH = 0

}
.

Note : For a matrix group G ≤ GL (n,R) (with Lie algebra g ), the following are

true (and can be used in determining Lie algebras of matrix groups).

• The mapping

expG : g→ GL (n,R), X 7→ exp (X)

has image contained in G, expG (g) ⊆ G. We will normally write expG : g→ G

for the exponential mapping on G (and sometimes even just exp). In general,

the exponential mapping expG is neither one-to-one nor onto.

• If G is compact and connected, then expG is onto.

• The mapping expG maps a neighborhood of 0 in g bijectively onto a neigh-

borhood of I in G.

� Exercise 244 Verify that the exponential mapping

expU (1) : R→ U (1) = S1, t 7→ eit

is onto but not one-to-one.
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4.6.1 Example. The exponential mapping

expSL (2,R) : sl(2,R)→ SL (2,R)

is not onto. Let

A =

[
λ 0

0 1
λ

]
with λ < −1.

We see that A ∈ SL (2,R) and we shall show that A is not of the form

exp (X) with X ∈ sl(2,R). If A = exp (X), then the eigenvalues of A are

of the form ea and eb, where a and b are the eigenvalues of X. Suppose

λ = ea and 1
λ = eb. Then

a = −b+ 2kπ i, k ∈ Z.

However, since λ is negative, a is actually complex and therefore its conjugate

is also an eigenvalue; that is, b = ā. This gives a as pure imaginary. Then

1 = |ea| = |λ| = −λ

which contradicts the assumption that λ < −1.

The Lie algebra of SU (2)

We will discuss the Lie algebra su(2) in some detail.

� Exercise 245 Show that

su(2) =

{[
ci −b+ ai

b+ ai −ci

]
∈ C2×2 | a, b, c ∈ R

}
.

The Lie algebra su(2) is a 3-dimensional real vector space. Consider the

matrices

H1 =
1

2

[
0 i

i 0

]
, H2 =

1

2

[
0 −1

1 0

]
, H3 =

1

2

[
i 0

0 −i

]
.

Clearly,

Hi ∈ su(2), i = 1, 2, 3.
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� Exercise 246 Verify that the matrices H1, H2, H3 form a basis for su(2).

� Exercise 247 Compute all the Lie brackets (commutators) [Hi, Hj ], i, j =

1, 2, 3 and then determine the structure constants of (the Lie algebra) su(2).

Consider the mapping

φ : R3 → su(2), x = (x1, x2, x3) 7→ x1H1 + x2H2 + x3H3.

� Exercise 248 Show that the mapping φ : R3 → su(2) is an isomorphism of

Lie algebras.

Thus we can identify the Lie algebra su(2) with (the Lie algebra) R3.

Note : The Lie algebras su(2) and so(3) look the same algebraically (they are

isomorphic). An explicit isomorphism (of Lie algebras) is given by

ψ : x1H1 + x2H2 + x3H3 7→ x1A1 + x2A2 + x3A3.

This suggests that there might be a close relationship between the matrix groups

themselves. Indeed there is a (surjective) Lie homomorphism SU (2)→ SO (3) whose

derivative (at I ) is ψ. Recall the adjoint representation

Ad : SU (2)→ Aut (su(2)), A 7→ AdA (: U 7→ AUA∗).

Each AdA is a linear isomorphism of su(2). AdA is actually an orthogonal transfor-

mation on su(2) (the mapping (X,Y ) 7→ −tr (XY ) is an inner product on su(2))

and so AdA corresponds to an element of O (3) (in fact, SO (3)). The mapping

Ad : SU (2)→ SO (3), A 7→ AdA

turns out to be a continuous homomorphism of matrix groups that is differentiable

(i.e., a Lie homomorphism) and such that its derivative dAd : su(2)→ so(3) is ψ.

The Lie algebras of UT (n, k) and UTu (n,k)

Let α : (a, b) → UT (n, k) be a curve in UT (n,k) with α(0) = I. Then

α̇(0) is upper triangular. Moreover, using the argument for GL (n,k) we see

that given any upper triangular matrix A ∈ kn×n, there is a curve

σ : (−ε, ε)→ kn×n, t 7→ tA+ I
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such that σ(t) ∈ UT (n, k) and σ̇(0) = A. Hence the Lie algebra ut(n,k)

of UT (n, k) consists of all n × n upper triangular matrices, with the usual

commutator as the Lie bracket. Thus

ut(n, k) = TIUT (n,k) =
{
A ∈ kn×n | aij = 0 for i > j

}
.

It follows that

dimUT (n, k) = dimR ut(n, k) =
n(n+ 1)

2
dimR k.

An upper triangular matrix A ∈ kn×n is strictly upper triangular if all its di-

agonal entries are 0. Then the Lie algebra of the unipotent group UTu (n,k)

consists of all n × n strictly upper triangular matrices, with the usual com-

mutator as the Lie bracket. So

sut(n, k) = TIUT
u (n,k) =

{
A ∈ kn×n | aij = 0 for i ≥ j

}
.

� Exercise 249 Find dimR sut(n,k).

� Exercise 250 For each of the following matrix group G, determine its Lie

algebra g and hence its dimension.

(a) G =
{
A ∈ GL (2,R) |AQA> = Q

}
, where Q =

[
1 0

0 0

]
.

(b) G =
{
A ∈ GL (2,R) |AQA> = Q

}
, where Q =

[
1 0

0 −1

]
.

(c) G = GA (3,R).

(d) G = Heis.

(e) G = G4 ≤ UTu (4,R) from Exercise 199.

(f) G = E (n).

(g) G = SE (n).

� Exercise 251

(a) Show that the Lie algebra of the symplectic group Sp (2n,R) is

sp(2n,R) =
{
A ∈ R2n×2n |A>J + JA = 0

}
.
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(b) If

A =

[
a b

c d

]
∈ sl(2n,R)

show that A ∈ sp(2n,R) if and only if

d = −a>, c = c>, and b = b>.

(c) Calculate the dimension of sp(2n,R).

� Exercise 252 Show that the Lie algebra of the Lorentz group Lor is

lor =
{
A ∈ R4×4 |SA+A>S = 0

}
=




0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

a3 a5 a6 0

 | a1, a2, a3, a4, a5, a6 ∈ R

 .

� Exercise 253 Consider the matrix group k× = GL (1,k). (Its Lie algebra is

clearly k.)

(a) Show that the determinant function

det : GL (n, k)→ k×

is a Lie homomorphism (i.e. a continuous homomorphism of matrix

groups that is also differentiable; cf. Definition 4.4.14).

(b) Show that the induced homomorphism of Lie algebras (i.e. the derivative

of det) is the trace function

tr : kn×n → k.

(c) Derive from (b) that (for A,B ∈ kn×n )

tr (AB) = tr (BA).
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5.1 Manifolds: Definition and Examples

Submanifolds (in fact, immersed submanifolds) of Euclidean space Rm are a

generalization of the concept of regular curve in the Euclidean 3-space R3.

The major defect of the definition of a submanifold is its dependence of Rm.

Indeed, the natural idea of an `-dimensional smooth submanifold is of a set

which is `-dimensional (in a certain sense) and to which the differential cal-

culus of Rm can be applied ; the unnecessary presence of Rm is simply an

imposition of our physical nature.

Note : In his monograph on surface theory, published in 1827, Carl F. Gauss

(1777-1855) developed the geometry on a surface (based on its fundamental form);

the necessity of an abstract idea of surface – that is, without involving the ambi-

ent space – was already clear to him. This was generalized by Bernhard Rie-

mann (1826-1866) to m-dimensions in his inaugural lecture (Habilitationschrift)

at Göttingen, “On the Hypotheses which lie at the Foundation of Geometry” (1854),

marking the birth of modern (differential) geometry. However, it was nearly a century

before such an idea attained the definite form that we shall present here.

The concept of manifold is one of the most sophisticated basic concepts in

mathematics.

Definition (of a manifold) and examples

Let Rm denote the Euclidean m-space in the broad sense (i.e., the vec-

tor space Rm equipped with its canonical topology and natural differentiable

structure).

Let M be a set.

5.1.1 Definition. A (coordinate) chart on M is a pair (U, φ), where

U ⊆M and φ : U → Rm is a one-to-one mapping onto an open subset φ(U)

of Rm.

One often writes φ(p) = (φ1(p), . . . , φn(p)), viewing this as the coordinate

m-tuple of the point p ∈ U . The functions φi : U → R, i = 1, 2, . . . ,m are

called the coordinate functions associated with the chart (U, φ).
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Note : A chart is also called a (local) coordinate system (on M).

Relative to such a coordinatization, one can do calculus in the region U of

M . The problem is that the point p will generally belong to infinitely many

different coordinate charts and calculus in one of these coordinatizations about

p might not agree with calculus in another. One needs the coordinate systems

to be smoothly compatible in the following sense.

5.1.2 Definition. Two charts (U, φ) and (V, ψ) on M are said to be

C∞-related if either U ∩ V = ∅ or

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

is a smooth diffeomeorphism (between open subsets in Rm).

We think of ψ ◦ φ−1 as a smooth change of coordinates (on φ(U ∩ V )).

Thus, on U ∩ V , functions are smooth relative to one coordinate system if

and only if they are smooth relative to the other. Indeed, differential calculus

carried out in U ∩ V via the coordinates of φ(U ∩ V ) is equivalent to the

calculus carried out via the coordinates of ψ(U ∩ V ). (The explicit formulas

will, of course, change from the one coordinate system to the other.) Further-

more, piecing together these local calculi produces a global calculus on M .

The concept that allows us to make these remarks precise is that of a smooth

atlas.

5.1.3 Definition. A (smooth) atlas on M is a family A = {(Uα, φα)}α∈A
of charts (on M) such that

(AT1) M =
⋃
α∈A

Uα;

(AT2) (Uα, φα) is C∞-related to (Uβ, φβ) for every α, β ∈ A.

Two atlases A and A′ on M are compatible provided their union A∪A′

is also an atlas on M . Compatibility is an equivalence relation (on the set of

all atlases on M). Each atlas on M is equivalent to a unique maximal atlas

on M . Thus we arrive at the definition of a manifold.
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5.1.4 Definition. A maximal atlas A on M is called a smooth struc-

ture on M (also called a differentiable structure or a C∞ structure). An

n-dimensional smooth (or differentiable or C∞) manifold is a pair (M,A)

(i.e. a set equipped with a smooth structure).

By a typical abuse of notation, we usually write M for the smooth man-

ifold, the presence of the differentiable structure A being understood. An

admissible chart on (the smooth manifold) M is any chart belonging to

any (smooth) atlas in the differentiable structure of M .

Note : (1) We often refer to m-dimensional smooth manifolds simply as m-

manifolds.

(2) In practice one defines a manifold M by means of a single (smooth) atlas (not

necessarily maximal) on M which completely determines the differentiable structure.

We will now define on a manifold M a canonical topology, one that only

depends on the differentiable structure.

Note : One could also have started from a topological space M and required that

the domains Uα of the charts be open sets in M and that the mappings φα : Uα →
φα(Uα) be homeomorphisms.

5.1.5 Proposition. Let M be a (smooth) m-manifold. The collection of

unions of domains of admissible charts on M forms a topology (called the

canonical topology) on M .

Proof : Let O be the set thus defined. Clearly, M ∈ O and we have to

show that O satisfies the two axioms for a topology :

(O1) Every union of elements of O is an element of O.

(O2) Every finite intersection of elements of O is an element of O.

Clearly (O1) is satisfied, since a set is in O if and only if it is a union of

domains of charts. To show (O2), we just have to consider the intersection of

two elements of O. Let them be A = ∪α∈A1Uα and B = ∪β∈A2Uβ; then

A ∩B =
⋃

(α,β)∈A1×A2

(Uα ∩ Uβ).
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We have to show that each intersection Uα∩Uβ can be taken as the domain of

a chart compatible with the differentiable structure (i.e. an admissible chart on

M). Let (Uα, φα) be an admissible chart on M and set ψ : = φα|Uα∩Uβ ; we

claim that (Uα∩Uβ, ψ) is the desired admissible chart. Clearly ψ(Uα∩Uβ) =

φα(Uα∩Uβ) is open in Rm. If (U, φ) is any admissible chart, the composition

φ ◦ φ−1
α is a (smooth) diffeomorphism between (the open sets) φα(U ∩ Uα)

and φ(U ∩ Uα), so

φ ◦ ψ−1 = φ ◦ φ−1
α

∣∣
φα(Uα∩Uβ∩U)

is a (smooth) diffeomorphism between ψ(U∩(Uα∩Uβ)) and φ(U∩(Uα∩Uβ)).

Similarly, ψ ◦ φ−1 is a (smooth) diffeomorphism between φ(U ∩ (Uα ∩ Uβ))

and ψ(U ∩ (Uα ∩ Uβ)). This proves compatibility.

2

Note : Sometimes it is desirable to characterize the open sets in the canonical

topology of M in terms of a single atlas. One can prove that given an atlas A =

{(Uα, φα)}α∈A on an m-manifold M , a subset U ⊆ M is open if and only if the

set φα(U ∩ Uα) ⊆ Rm is open for every chart (Uα, φα) ∈ A. This result provides

another way of defining the (canonical) topology of a manifold : for every chart

(U, φ) on an m-manifold M , considered with its canonical topology, the mapping

φ : U → φ(U) ⊆ Rm is a homeomorphism.

The canonical topology of a manifold can be quite strange. In particular,

it can happen that one (or both) of the following conditions (axioms) not be

satisfied :

(A) Hausdorff Axiom : Given two distinct points of M , there exist

(open) neighborhoods of these points that do not intersect.

(B) Countable Basis Axiom : M can be covered by a countable number

of coordinate neighborhoods (i.e. domains of admissible charts on

M). We say then that M has a countable basis (or that M is

second countable).

Note : Axiom (A) is essential for the uniqueness of limits of convergent sequences

whereas Axiom (B) is essential for the existence of a (smooth) partition of unity, an
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almost indispensabil tool for the study of certain questions on manifolds. A topological

space which is locally compact (each point has at least one compact neighborhood),

Hausdorff, and has a countable basis (of open sets) is paracompact, and hence admits a

partition of the unity. For example, a partition of unity is required for piecing together

global functions and structures out of local ones, and conversely for representing

global structures as locally finite sums of local ones. The following result holds : A

(smooth) manifold M has a (smooth) partition of unity if and only if every connected

component of M is Hausdorff and has a countable basis.

For all practical purposes, we shall be interested in only (smooth) manifolds

that satisfy Axiom (A) and Axiom (B). Henceforth, we shall refer to such

objects, simply, as manifolds.

Note : (1) Manifolds are locally Euclidean spaces (A Hausdorff topological space

is said to be locally Euclidean of dimension m if each point p has an open neighbor-

hood homeomorphic to an open set of Rm). Second countable locally Euclidean spaces

are known as topological manifolds. A topological manifold is smoothable provides it

can be given a smooth structure. For m = 1, 2, 3 it is known that all topological

m-manifolds are smoothable. The first dimension in which there exist nonsmoothable

manifolds is m = 4.

(2) Manifolds are paracompact spaces (A Hausdorff space is called paracompact if

every open cover has a locally finite subcover). Moreover, manifolds are metrizable

spaces (A topological space is called metrizable if there exists a metric such that its

associated metric topology coincides with the space topology; any metrizable space is

paracompact).

(3) Any m-manifold admits a finite atlas consisting of m+ 1 (not necessarily con-

nected) charts. This is a consequence of topological dimension theory.

(4) A manifold is connected if and only if it is path-connected. (A path-connected

topological space is connected, but the converse is not true in general.)

(5) A natural question in the theory of (differentiable) manifolds is to know whether

a given manifold can be immersed (or even embedded) into some Euclidean space. A

fundamental result in this direction is the famous theorem of Hassler Whitney

(1907-1989) which states the following : Any m-manifold can be immersed in R2m

and embedded in R2m+1 (in fact, the theorem can be improved, for m ≥ 2, to R2m−1
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and R2m, respectively).

(6) A set M may have more than one inequivalent smooth structure. For instance,

the spheres from dimension 7 on have finitely many. A most surprising result is that

on R4 there are uncountably many pairwise inequivalent (exotic) smooth structures.

We give now some preliminary examples of manifolds.

5.1.6 Example. (Euclidean space) The standard smooth structure on the

Euclidean m-space Em is obtained by taking the atlas consisting of a single

(global) chart (Em, ι), where ι : Em → Rm is the identity mapping. (Many

examples will make it abundantly clear that manifolds in general can not be

covered by a single coordinate system nor are there preferred coordinates.)

Note : It is common practice to identify Em and Rm; however, we DO NOT

follow this custom. It is often better in thinking of the Euclidean space Em as

a “flat” Riemannian manifold (i.e. a “geometrical” model for classical geometry,

without coordinates; a Riemannian manifold is a manifold equipped with an additional

“geometrical” structure, called a Riemannian metric) and of the Cartesian space

Rm as a normed vector space (i.e. an “algebraic” model for classical geometry, with

coordinates). The additive group of Rm, also denoted by Rm, is a matrix group. This

group is isomorphic to (and customarily identified with) the group of all translations

on the Euclidean space Em.

5.1.7 Example. Let V be an m-dimensional vector space (over R). Then

V has a natural manifold structure. Indeed, if {v1, . . . , vm} is a basis in V ,

then the correspondence

φ : p = p1v1 + · · ·+ pmvm 7→ (p1, . . . , pm)

is a bijection (between V and the open set Rm). The pair (V, φ) is a (global)

chart on V and hence uniquely determines a smooth structure on V . This

smooth structure is independent of the choice of the basis, since different bases

give C∞-related charts. (In fact, the change of coordinates is given simply by

an m×m invertible matrix.)
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5.1.8 Example. (Open submanifolds) An open subset U of a manifold

M is itself a manifold. Indeed, if {(Uα, φα)}α∈A is the (maximal) atlas of

admissible charts on M , then the family of charts (atlas)

AU = {(U ∩ Uα, φα|U ∩ Uα) | (Uα, φα) ∈ A}

defines a smooth structure on U . Unless otherwise stated, open subsets of

manifolds will always be given this natural (induced) smooth structure.

More generally, any `-dimensional smooth submanifold of some Euclidean

space Em is a (smooth) `-manifold.

� Exercise 254 Let S be a (non-empty) subset of the Euclidean space Em

and assume that S satisfies the `-submanifold property (i.e. S is an ell-dimensional

submanifold of Em). Show that S is naturally endowed with a smooth structure,

hence it is an ell-manifold.

5.1.9 Example. (The general linear group) The general linear group GL (n,R)

is an open subset of the manifold En2
(we may identify Rn×n with the Carte-

sian space Rn2
). Hence GL (n,R) is a manifold.

5.1.10 Example. (The sphere) The n-sphere is the set

Sn : =
{
x ∈ En+1 |x2

1 + · · ·+ x2
n+1 = 1

}
.

(We have seen that Sn is an n-dimensional smooth submanifold of En+1.) Let

pN = (0, . . . , 0, 1) be the north pole and pS = (0, . . . , 0,−1) the south pole

of Sn. Define the mapping φ1 : U1 : = Sn \ {pN} → Rn that takes the point

p = (x1, . . . , xn+1) in U1 into the intersection of the hyperplane xn+1 = 0

with the line that passes through p and pN . This mapping is the so-called

stereographic projection from the north pole. In a similar manner one defines

the stereographic projection φ−1 : U−1 : = Sn \ {pS} → Rn from the south

pole.

� Exercise 255 Show that the stereographic projections (φ1 and φ−1 ) are

given by

φ±1(x1, . . . , xn+1) =

(
x1

1∓ xn+1
, · · · , xn

1∓ xn+1

)
.
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Clearly, the stereographic projections are one-to-one and hence the pairs

(U1, φ1) and (U−1, φ−1) are charts on Sn. The domains (coordinate neigh-

borhoods) of these two charts cover Sn and is not difficult to see that they

are C∞-related (and hence form a smooth atlas on the sphere). Indeed, the

change of coordinates

yi =
xi

1− xn+1
←→ y′i =

xi
1 + xn+1

(i = 1, 2, . . . , n)

is given by

y′i =
yi

y2
1 + · · ·+ y2

n

(here we use the fact that x2
1 + · · ·+ x2

n+1 = 1). Therefore, the n-sphere Sn

is an n-manifold.

5.1.11 Example. (Product manifolds) Let M and N be manifolds (of

dimension m and n, respectively). Suppose that A = {(Uα, φα)}α∈A and

B = {(Vβ, ψβ)}β∈B are the maximal atlases on M and N , respectively.

� Exercise 256 Show that the family (of charts)

{(Uα × Vβ , φα × ψβ) | (Uα, φα) ∈ A, (Vβ , ψβ) ∈ B}

where φα × ψβ(p, q) : = (φα(p), ψβ(q)) ∈ Rm × Rn, is a smooth atlas on M × N

(which determines a smooth structure).

With this smooth structure M × N is an (m + n)-manifold, called the

product manifold of M and N . An important example is the torus T2 =

S1 × S1, the product of two circles. More generally, the k-dimensional torus

Tk = S1 × · · · × S1 is a k-manifold obtained as a Cartesian product.

5.2 Smooth Functions and Mappings

On a topological space the concept of continuity has meaning; in an analo-

gous way, on a manifold we may define the concept of smooth (also called

differentiable or C∞) function. Let M be an m-manifold.
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5.2.1 Definition. A function f : M → R is said to be smooth if for any

point p ∈M there is an admissible chart (U, φ) on M such that p ∈ U and

the composite function

f ◦ φ−1 : φ(U) ⊆ Rm → R

is smooth.

Clearly, a smooth function is continuous. The set of all smooth functions

on M will be denoted by C∞(M). It is a consequence of the definition that

if f ∈ C∞(M) and W ⊆ M is an open set, then f |W is smooth (on the

manifold W ).

Note : The definition only requires us to be able to find some chart about each

point p ∈ M , but the following result assures us that all admissible charts will then

work : The function f : M → R is smooth if and only if f ◦φ−1 is smooth for every

admissible chart (U, φ) on M .

We think of f ◦φ−1 as a formula for f |U relative to the coordinate system

(U, φ). For x ∈ U , with coordinates φ(x) = (x1, . . . , xm), we can write

y = f(x)

= f ◦ φ−1(φ(x))

= f ◦ φ−1(x1, . . . , xm).

We shall refer to f ◦ φ−1 as the local representation of f with respect to

(U, φ).

5.2.2 Example. Among the smooth functions on M are the coordinate

functions of an admissible chart (U, φ). Indeed, for each i = 1, 2, . . . ,m, the

local representation of φi = pri ◦ φ is given by

y = φi(x)

= φi ◦ φ−1(x1, . . . , xm)

= pri ◦ φ ◦ φ−1(x1, . . . , xm)

= pri(x1, . . . , xm)

= xi
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which is clearly smooth (see also Exercise 120).

Just as in the case of (the manifold) En we proceed from definition of

smooth function to definition of smooth mapping. Suppose that M and N

are manifolds.

5.2.3 Definition. A mapping F : M → N is said to be smooth if for

any point p ∈M there is an admissible chart (U, φ) on M with p ∈ U and

an admissible chart (V, ψ) on N with F (p) ∈ V such that F (U) ⊆ V and

the composite mapping

ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V )

is smooth.

Smooth mappings are continuous; their restrictions to open subsets are

also smooth. The set of all smooth mappings from M into N will be denoted

by C∞(M,N).

Note : A smooth mapping is a more general notion than smooth function, the

latter being a mapping (from a manifold M) into N = R, which is, of course, the

same as (the manifold) E1.

The local representation of F with respect to (U, φ) and (V, ψ) is given

by

yi = ψ ◦ F ◦ φ−1(x1, . . . , xm), i = 1, 2, . . . , n.

� Exercise 257 Prove that a mapping F : M → N is smooth if and only if for

any smooth function f : N → R, the function f ◦ F is smooth (on M). (We write

F ∗f for the function f ◦ F , and shall refer to F ∗f as the pull-back of f under F .)

An open interval J of R is an open submanifold of R (in fact, the Eu-

clidean 1-space E1) and hence is a manifold. Then a curve σ : J → N is

smooth if and only if for any smooth function f on N , (the pull-back of f

under σ) σ∗f : J → R is a smooth function.

� Exercise 258 Let M and N be manifolds. Prove that the canonical projec-

tions

prM : M ×N →M and prN : M ×N → N
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are smooth mappings (between manifolds).

� Exercise 259 Let M,N , and P be manifolds. Prove that if F : M → N

and G : N → P are smooth mappings, then G ◦ F : M → P is also smooth.

� Exercise 260 Let M be a manifold. Show that the set C∞(M) of all smooth

functions on M is an algebra (over R) under the natural operations of addition, scalar

multiplication, and product.

5.3 The Tangent and Cotangent Spaces

The tangent space

There are several alternative ways in which we can define tangent vectors

(and hence tangent spaces) to a manifold, independent of any embedding in

some Euclidean space.

Note : The whole reason for introducing tangent vectors is to produce linear ap-

proximations to nonlinear problems.

An intuitive (and very useful) way to define tangent vectors is as equiva-

lence classes of curves. (Roughly speaking, two curves are equivalent if they

have the same velocity vector at some point.)

Let M be an m-manifold and let C(p) denote the set of all smooth curves

σ : (−ε, ε) → M such that σ(0) = p. Elements (curves) α and β in C(p)

are said to be infinitesimally equivalent at p and we write α ∼p β if

d

dt
φ(α(t))

∣∣∣∣
t=0

=
d

dt
φ(β(t))

∣∣∣∣
t=0

for any admissible chart (U, φ) on M .

� Exercise 261 Show that if (U, φ) and (V, ψ) are two admissible charts at p

(i.e. such that p ∈ U ∩ V ), then

d

dt
φ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
φ ◦ β(t)

∣∣∣∣
t=0

if and only if
d

dt
ψ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
ψ ◦ β(t)

∣∣∣∣
t=0

.

(The infinitesimal equivalence is well defined.)
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It is easy to check that ∼p is an equivalence relation on the set C(p).

The infinitesimal equivalence class of α in C(p) is denoted by [α]p and is

called an infinitesimal curve at p. An infinitesimal curve at p is also called a

tangent vector to M at p.

5.3.1 Definition. The (quotient) set TpM : = C(p)/∼p of all infinitesimal

curves at p is called the tangent space to M at p.

Let (U, φ) be any admissible chart on M such that p ∈ U . The mapping

φ̄ : TpM → Rm, [α]p 7→
d

dt
φ(α(t))

∣∣∣∣
t=0

is one-to-one and onto Rm. In fact, for any v ∈ Rm, α(t) : = φ−1 (φ(p) + tv)

is a curve such that φ̄([α]p) = v. We define the vector structure on TpM

so that φ̄ becomes a linear isomorphism. That is, for [α]p, [β]p ∈ TpM and

a ∈ R,

[α]p + [β]p : = φ̄−1
(
φ̄([α]p) + φ̄([β]p)

)
a[α]p : = φ̄−1

(
aφ̄([α]p)

)
.

Under the forgoing addition and scalar multiplication, the tangent space TpM

is an m-dimensional vector space over R.

Note : The linear structure of TpM is canonical in the sense that it is independent

of the choice of (local) coordinates. Indeed, let (U, φ) and (V, ψ) be two admissible

charts at p. Let φ̄([α]p) = v and let ψ̄([α]p) = w. It follows that

w =
d

dt
ψ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
ψ ◦ φ−1 ◦ φ ◦ α(t)

∣∣∣∣
t=0

.

Therefore the coordinates of v and w transform according to the following formula :

wi =
∂yi
∂x1

v1 + · · ·+ ∂yi
∂xm

vm

where yi = yi(x1, . . . , xm), i = 1, 2, . . . ,m denote the coordinate functions of the

mapping ψ◦φ−1. Hence the vector structure on TpM is independent of the particular

chart (used to define it).

The cotangent space
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Let M be an m-dimensional manifold and let F(p) denote the set of all

smooth functions f , defined in some (open) neighborhood of p ∈ M , that

satisfy f(p) = 0. F(p) will have a natural vector space structure (in fact,

associative algebra with unity) provided that functions that agree on a common

domain are regarded as equal. (The domains of elements of F(p) need not be

the same.)

Note : Actually, an element of (the algebra) F(p) is a certain set (equivalence

class) of smooth functions, commonly referred to as a function germ at p, which is

conveniently identified with any one of its representatives.

Elements (function germs) f and g in F(p) are said to be equivalent (at

p) and we write f ≈p g if

D
(
f ◦ φ−1

)
(φ(p)) = D

(
g ◦ φ−1

)
(φ(p))

for any admissible chart (U, φ) on M .

Note : We shall write, by a slight abuse of notation,

f ◦ φ−1(x1, . . . , xm) = f(x1, . . . , xm) and D(f ◦ φ−1) =
∂f

∂x
: =
[
∂f
∂x1

· · · ∂f
∂xm

]
.

Again, it is easy to check that ≈p is an equivalence relation on the set

F(p). The equivalence class of f in F(p) is denoted by [f ]p and is called a

tangent covector to M at p.

5.3.2 Definition. The (quotient) set T ∗pM : = F(p)/≈p is called the cotan-

gent space to M at p.

� Exercise 262 Let f, f̄ , g, ḡ ∈ F(p) and a ∈ R. Show that

(a) If f ≈p f̄ and g ≈p ḡ, then f + g ≈p f̄ + ḡ.

(b) If f ≈p f̄ , then af ≈p af̄ .

That is, for [f ]p, [g]p ∈ T ∗pM and a ∈ R, the following operations

[f ]p + [g]p : = [f + g]p

a[f ]p : = [af ]p



C.C. Remsing 247

are well-defined. Under the foregoing addition and scalar multiplication, the

cotangent space T ∗pM is a real vector space.

For each admissible chart (U, φ) on M such that p ∈ U , the mapping

φ : T ∗pM → (Rm)∗, [f ]p 7→ D
(
f ◦ φ−1

)
∈ R1×m

is a linear isomorphism. For each i, the (smooth) function

fi : U → R, x 7→ fi(x) : = φi(x)− φi(p)

is an element of F(p) and φ ([fi]p) =
[
δi1 · · · δim

]
∈ R1×m. So [f1]p, · · · , [fm]p

form a basis for (the vector space) T ∗pM .

Note : The linear structure of T ∗pM is canonical. Indeed, let (U, φ) and (V, ψ)

be two admissible charts at p which produce their own bases [f1]p, . . . , [fm]p and

[g1]p, . . . , [gm]p, respectively. Let [f ]p be an arbitrary element of T ∗pM . Then

[f ]p = v1[f1]p + · · ·+ vm[fm]p

= w1[g1]p + · · ·+ wm[gm]p.

It follows that the coordinates (w1, . . . , wm) are related to the coordinates (v1, . . . , vm)

via the following formula

vi =
∂y1

∂xi
w1 + · · ·+ ∂ym

∂xi
wm

where yi = yi(x1, . . . , xm), i = 1, 2, . . . ,m denote the coordinate functions of the

mapping ψ◦φ−1. Hence the vector structure of T ∗pM is independent of the particular

choice of admissible chart.

We shall show now the duality between the elements of TpM and those of

T ∗pM . For any f ∈ F(p) and any σ ∈ C(p), consider the pairing

〈[f ]p, [σ]p〉 : =
d

dt
f ◦ σ

∣∣∣∣
t=0

.

Because f ◦ σ = f ◦ φ−1 ◦ φ ◦ σ, it follows that the foregoing pairing is well

defined and is bilinear. More explicitly,

〈[f ]p, [σ]p〉 =
∂f

∂x1

dσ1

dt
+ · · ·+ ∂f

∂xm

dσm
dt
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with

D
(
f ◦ φ−1

)
=
[
∂f
∂x1

· · · ∂f
∂xm

]
and

d

dt
φ ◦ σ(t)

∣∣∣∣
t=0

=


dσ1
dt
...

dσm
dt

 .
Therefore, each element of T ∗pM is a linear functional on TpM , and hence

T ∗pM = (TpM)∗ .

Note : It is useful to think of tangent vectors as objects that act (linearly) on

functions and produce directional derivatives. Let M be a smooth manifold and let

F(p) be the algebra of function germs at p ∈M . A linear functional Xp : F(p)→ R
is called a derivation at p if (for every f, g ∈ F(p))

Xp(f · g) = f(p) ·Xp(g) + g(p) ·Xp(f) (Leibniz rule).

If f = 1 (i.e. f(x) = 1 for all x ∈ M), then Xp(f) = 2Xp(f), and therefore

Xp(f) = 0. Thus any derivation of a constant function is zero. It is easy to check

that the set of all derivations at p is in fact a vector space (over R). Moreover, this

vector space is isomorphic to (the tangent space) TpM . (In general, for manifolds

that are not smooth, the space of derivations is an infinite dimensional vector space

and so cannot be isomorphic to TpM .)

For each [α]p ∈ TpM and f ∈ F(p), let

〈f, [α]p〉 =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

Such action is well defined, for if α ∼p ᾱ, then

d

dt
f ◦ ᾱ(t)

∣∣∣∣
t=0

=
d

dt
f ◦ φ−1 ◦ φ ◦ ᾱ(t)

∣∣∣∣
t=0

=
d

dt
(f ◦ φ−1) ◦ φ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

[α]p acts linearly on F(p) and it follows that such an operation is a derivation. Let

D[α]p denote the derivation (at p) induced by the foregoing pairing. It can be shown

that for each derivation Xp at p, there exists an element (infinitesimal curve) [α]p
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in TpM such that Xp = D[α]p . (Given a fixed admissible chart (U, φ) at p, consider

the curves

αi : t 7→ αi(t) : = φ−1 (φ(p) + tei) , i = 1, 2, . . . ,m.

Then [α1], · · · , [αm]p form a basis for TpM and Xp = a1D[α1]p + · · ·+amD[αm]p for

some numbers a1, . . . , am.)

Following the usual practice, we shall write ∂
∂xi

∣∣∣
p

for D[αi]p . Then ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xm

∣∣∣
p

is a basis for the (vector space of) derivations at p, and each derivation is an expression

of the form

a1
∂

∂x1

∣∣∣∣
p

+ · · ·+ am
∂

∂xm

∣∣∣∣
p

.

We shall find it convenient to use two notations for the tangent vectors at

p, each of which is suggestive in its own way. If we think of TpM as the set

(vector space) of equivalence classes of curves at p, then we shall denote its

elements by
dα

dt

∣∣∣∣
t=0

and if we think of TpM as the (vector) space of derivations at p, then we

shall denote its elements as

a1
∂

∂x1

∣∣∣∣
p

+ · · ·+ am
∂

∂xm

∣∣∣∣
p

the meaning being that

dα

dt

∣∣∣∣
t=0

= a1
∂

∂x1

∣∣∣∣
p

+· · ·+am
∂

∂xm

∣∣∣∣
p

⇐⇒ D[α]p = a1D[α1]p+· · ·+amD[αm]p .

We shall adopt a similar convention with the elements of (the cotangent space)

T ∗pM : (df)p is the equivalence class of f in T ∗pM , with the understanding

that

(df)p ·
dα

dt

∣∣∣∣
t=0

= 〈[f ]p, [α]p〉 =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

In particular, then (dx1)p, · · · , (dxm)p denotes the dual basis of ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xm

∣∣∣
p
.

Note : The definition of the tangent space TpM uses only (the algebra) F(p), not

all M ; thus if U is any open subset of M containing p, then TpU and TpM are
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naturally identified. Also, recall that TpEm = {p} × Em is commonly identified with

(the vector space) Rm. We can write, for U ⊆ Em (open),

TpU = TpEm = {p} × Em = Rm.

� Exercise 263 Let U ⊆ Em be open and let f : U → R be a smooth function.

Compare Df(p) and (df)p for p ∈ U .

Tangent mappings (differentials)

For every smooth mapping F : Em → En between Euclidean spaces and

any point p ∈ Em, the derivative of F at p is a linear mapping DF (p) :

TpEm = Rm → TF (p)En = Rn. Now that we have tangent spaces to mani-

folds, we are ready to associate analogous (linear) mappings (between tangent

spaces) to smooth mappings (between manifolds).

Let M and N be smooth manifolds, and Φ : M → N a smooth mapping.

We have already mentioned that Φ pulls back smooth functions on N into

smooth functions on M . However, for smooth curves the situation is different

: for any smooth curve σ on M , Φ ◦ σ is a smooth curve on N . Thus Φ

pushes forward curves on M into curves on N . We shall write Φ∗σ for the

curve Φ ◦ σ. Both the push-forward Φ∗ and the pull-back Φ∗ induce linear

mappings between tangent spaces and cotangent spaces, respectively.

5.3.3 Definition. Suppose Φ : M → N is a smooth mapping between

manifolds and p ∈M . The tangent mapping Φ∗,p : TpM → TΦ(p)N (of Φ

at p) is defined by

Φ∗,p : [α]p 7→ [Φ∗α]Φ(p).

� Exercise 264 Show that the tangent mapping Φ∗,p is well-defined and is

linear.

It is immediate that if Φ : M → M is the identity, then Φ∗,p : TpM →
TpM is the identity isomorphism.



C.C. Remsing 251

� Exercise 265 Suppose that Φ : M → N and Ψ : N → P are smooth

mappings between manifolds and p ∈M . Verify that

(Ψ ◦ Φ)∗,p = Ψ∗,Φ(p) ◦ Φ∗,p.

Note : The linear mapping Φ∗,p : TpM → TΦ(p)N is often called the differential

of Φ at p. One frequently sees other notations for Φ∗,p , for example (dΦ)p,Φ
′(p),

or TpΦ. The ∗ is a subscript since the mapping is in the same “direction” as Φ (i.e.

from M to N).

Recall from linear algebra that every linear mapping Φ = Φ∗ : V → W

between vector spaces induces a dual (linear) mapping Φ∗ : W ∗ → V ∗ by the

prescription

(Φ∗λ) (v) = λ (Φ∗(v))

= λ ◦ Φ(v) for v ∈ V and λ ∈W ∗

(or, if one prefers, 〈Φ∗(λ), v〉 = 〈λ,Φ∗(v)〉).

Note : The definition of Φ∗ does not require the choice of a basis; therefore Φ∗

is naturally (or canonically) determined by Φ∗. The vector spaces V and V ∗ have

the same dimension, thus they must be isomorphic. There is no natural isomorphism;

however, we do have the following property : There is a natural isomorphism between

V and (V ∗)∗ given by v 7→ 〈·, v〉 (i.e. v is mapped to the linear functional on

V ∗ whose value on any λ ∈ V ∗ is λ(v) = 〈λ, v〉). Observe that the mapping

(v, λ) 7→ 〈λ, v〉 is bilinear (i.e. linear in each variable separately). This shows that

the dual of V ∗ is V itself, accounts for the name “dual” space, and validates the use

of the symmetric notation 〈λ, v〉 in preference to the functional notation λ(v).

We make the following definition.

5.3.4 Definition. Suppose Φ : M → N is a smooth mapping between

manifolds and p ∈ M . The cotangent mapping Φ∗p : T ∗Φ(p)N → T ∗pM

(of Φ at p) is the dual of the tangent mapping Φ∗,p : TpM → TΦ(p)N (i.e.

Φ∗p = (Φ∗,p)
∗).

The cotangent mapping Φ∗p : T ∗Φ(p)N → T ∗pM is defined by

Φ∗p : [f ]Φ(p) 7→ [Φ∗f ]p.
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Note : The foregoing mapping (between cotangent spaces) is well-defined and acts

like the dual of the tangent mapping (between tangent spaces).

� Exercise 266 Suppose that Φ : M → N and Ψ : N → P are smooth

mappings between manifolds and p ∈M . Verify that

(Ψ ◦ Φ)
∗
p = Ψ∗Φ(p) ◦ Φ∗p.

In terms of the admissible charts (U, φ) at p ∈M and (V, ψ) at Φ(p) ∈ N ,

we have the following formulas. Let

v =
d

dt
φ ◦ α(t)

∣∣∣∣
t=0

, w =
d

dt
ψ ◦ Φ ◦ α(t)

∣∣∣∣
t=0

and

φi(x1, . . . , xm) = ψi ◦ Φ ◦ φ−1(x1, . . . , xm), i = 1, 2, . . . , n.

Then the local representation of the tangent mapping Φ∗,p is

wi =
∂Φi

∂x1
v1 + · · ·+ ∂Φi

∂xm
vm, i = 1, 2, . . . , n.

We can write (in compact form)

w =


w1

...

wn

 =


∂Φ
∂x1

· · · ∂Φ
∂xm

...
...

∂Φ
∂x1

· · · ∂Φ
∂xm



v1

...

vm


=

∂Φ

∂x
v.

In order to get an analogous expression for the cotangent mapping, let f be

a smooth function on N at Φ(p), and g its pull-back Φ∗f . Denote

g(x1, . . . , xm) = Φ∗f◦φ−1(x1, . . . , xm) and f(y1, . . . , yn) = f◦ψ−1(y1, . . . , yn).

Then g(x1, . . . , xm) = f(Φ1(x), . . . ,Φn(x)), and hence

∂g

∂xi
=
∂Φ1

∂xi

∂f

∂y1
+ · · ·+ ∂Φn

∂xi

∂f

∂yn
, i = 1, 2, . . . ,m.
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Likewise, we can write (in compact form)

∂g

∂x
=
[
∂g
∂x1

· · · ∂g
∂xm

]
=

[
∂f
∂y1

· · · ∂f
∂yn

]
∂Φ
∂x1

· · · ∂Φ
∂xm

...
...

∂Φ
∂x1

· · · ∂Φ
∂xm


=

∂f

∂y

∂Φ

∂x
·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The tangent bundle and the cotangent bundle

It is natural to assemble all tangent spaces of a (smooth) manifold together

into a new structure – and conceivably, this set should again have a natural

manifold structure. (We will omit some of the more technical details of this

structure.) As discussed earlier, it is desirable to distinguish between tangent

vectors at different points.

Let M be a smooth n-manifold, and consider the set

TM : =

(p,Xp) ∈M ×
⋃
p∈M

TpM |Xp ∈ TpM


which is the (disjoint) union of all tangent spaces to M at all points p ∈M .

Let

π : TM →M, (p,Xp) 7→ p

be the projection onto M . The fibre over ∈ M is the preimage π−1(p) =

{p} × TpM . (Occasionally it is convenient to identify the fibre π−1(p) with

the tangent space TpM – technically, this includes a tacit projection onto the

second factor.) We call TM the tangent bundle of M .

Note : To illustrate the natural manifold structure of tangent bundles, consider the

example of M = S1. The naive collection of all tangent lines to the (embedded) circle

S1 ⊆ E2 is full of intersections. More suitable for our purposes is to embed the circle in

E3 as {x ∈ E3 |x2
1 +x2

2 = 1, x3 = 0} and attach at every point p ∈ S1 a vertical line,

yielding a cylinder. As a set, this cylinder is in bijection with the (disjoint) collection

of all tangent lines to the circle (embedded in the plane). It is clear that one can
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consistently choose an orientation of the lines (and even more a consistent scaling).

Intuitively, identify the naive tangent vector ((cos θ, sin θ), (−L sin θ, L cos θ)) with

the point (cos θ, sin θ, L) ∈ E3.

In complete analogy, we may intuitively think of the tangent bundle TR of the

real line R as R2. However, for dimensional reasons it is clear that these two examples

are the only tangent bundles amenable to such immediate visualization. How quickly

things get complicated becomes clear if one tries to think of TS2 as a sphere with a

(different) planes attached to each of its points. A vector field on the sphere simply

selects one point on each plane. However, from algebraic topology it is known that

there does not exist any continuous vector field on the sphere that vanish nowhere. In

our picture this means that it is impossible to continuously select one point on each

tangent plane avoiding the origin (zero vector) in each TpS2. Intuitively, TS2 must

be nontrivially twisted (when compared to e.g. TS1 which is the very tame cylinder)

and hence must be very different from the trivial Cartesian product S2 × R2.

The set TM has a canonical (smooth) manifold structure of dimension

2n.

Note : The key idea is that locally, above an admissible chart (U, φ), the tangent

bundle “looks like” Rm ×Rm = R2m. This observation is captured in the concept of

local triviality (compare the later short note on vector bundles). Thus the topology

and geometry of M are captured, in the global structure of the tangent bundle, by

how the trivial bundles are pieced together with twists.

Starting with a (smooth) atlas on M , we shall find it easy to obtain a

candidate (smooth) atlas on TM . This can be done as follows. Let (Uα, φα) ∈
{(Uα, φα)}α∈A be an admissible chart on M with p ∈ Uα, and consider the

set

TUα : = π−1(Uα)

= the (disjoint) union of all TxM with x ∈ Uα.

To any element (p, v) ∈ TUα ⊆ TM , where v = Xp ∈ TpM , we associate the

point (
φα(p), φ̄α(v)

)
∈ φα(Ua)× Rm ⊆ R2m
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where φ̄α : TpM → Rm is the linear isomorphism asoociated with (Uα, φα)

at p. The mapping

Tφα : TUα → R2m, (p, v) 7→
(
φα(p), φ̄α(v)

)
is one-to-one and onto an open subset φα(Uα)×Rm of R2m. We claim that the

family (of charts) {(TUα, Tφα)}α∈A is a smooth atlas on TM , determining a

smooth structure.

� Exercise 267 Verify the preceding statement.

The induced canonical topology on TM is such that all the coordinate

mappings Tφα : TUα → Tφα(TUα) ⊆ R2m are homeomorphisms (in fact, it

is the weakest topology on TM with this property).

Note : Alternatively, the canonical topology on the tangent bundle TM can be

characterized as the strongest topology under which the projection mapping π :

TM →M is continuous.

Recall that, in order for TM to qualify as a smooth manifold, we still

need that the (canonical) topology is reasonably nice – Hausdorff and second

countable. (It is easy to see that the topology is Hausdorff; however, the

second condition is rather tricky, and we shall skip the details.)

� Exercise 268 Show that (as a mapping between smooth manifolds) the pro-

jection mapping π : TM →M is smooth.

5.3.5 Example. If an m-dimensional vector space V is regarded as a

(smooth) manifold (see Example 4.2.7), then the tangent bundle TV is

isomorphic to V × V .

Note : It is often convenient to replace φα(Uα)×Rm with Uα ×Rm, identifying

Tφα with the mapping v 7→ (p, φ̄α(v)). (This minor abuse of notation turns out to

be a major convenience.) For each α ∈ A, we get a commutative diagram

TUα
Tφα−−−−→ Uα × Rm

π

y ypr1
Uα −−−−→

id
Uα
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where pr1 denotes projection on the first factor and Tφα is a diffeomorphism that

restricts to be a linear isomorphism TpM → {p}×Rm for every p ∈ Uα. Thus, TM

is “locally” a Cartesian product of M and Rm, the projection π being “locally” the

projection of the Cartesian product onto the first factor, and the fiber π−1(p) = TpM

has a canonical vector space structure, for every p ∈M .

Tangent bundles are examples of vector bundles. (Vector bundles play a

very important role in manifold theory.)

Note : Let M be a smooth m-manifold, E a smooth (m+ k)-dimensional man-

ifold, and π : E → M a smooth mapping. The triple (E,M, π) is called a vector

bundle over M (of fibre dimension k) if the following properties hold.

(VB1) For each p ∈ M , the fibre Ep : = π−1(p) has the structure of a (real)

k-dimensional vector space.

(VB2) For each p ∈ M , there exist an open neighborhood W and a (smooth)

diffeomorphism ζ : π−1(W )→W × Rk such the following diagram com-

mutes

π−1(W )
ζ−−−−→ W × Rk

π

y ypr1
W −−−−→

id
W

(Any such pair (π−1(W ), ζ) is called a (vector) bundle chart on (E,M, π).)

(VB3) For each p ∈W , the restriction

ζp = ζ|Ep : Ep → {p} × Rk

is a linear isomorphism.

We call E the total space, M the base space, and π the bundle projection. We shall

denote a vector bundle (over M), simply, π : E → M . An obvious example of a

vector bundle is given by pr1 : M × Rk →M . Here (M × Rk, id) is a global bundle

chart and the vector bundle is said to be trivial.

Given two vector bundles π1 : E1 → M and π2 : E2 → M over M , a (vector)

bundle isomorphism is a commutative diagram

E1
ϕ−−−−→ E2

π1

y yπ2

M −−−−→
id

M
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such that ϕ is a (smooth) diffeomorphism, and carries E1p isomorphically (as a

vector space) onto E2p, for every p ∈M .

So far, the only real eaxamples of vector bundles that we have seen are the tangent

bundles and trivial bundles. The following is the least complicated example of a

nontrivial vector bundle. We give an example of a “line” bundle (i.e. of fibre dimension

1) over the circle, known as the Möbius bundle. On R × R, define the equivalence

relation (s, t) ∼ (s + n, (−1)nt), n ∈ Z. Observe that t 7→ (−1)nt is a linear

automorphism of R. The projection (s, t) 7→ s passes to a well defined mapping

π : (R×R)/∼ → R/Z = S1. It should be clear, intuitively, that this is a vector bundle

over S1 of fibre dimension 1, but a rigorous proof of this involves checking many

details.

Beyond vector bundles are fibre bundles in which the fibres need not necessarily be

vector spaces. Arguably the most important such fibre bundle is the principal bundle

in which each fibre is a copy of the general linear group GL (k,R). (Differential

geometry may be described as the study of a connection on a principal bundle.)

In complete analogy to the tangent bundle we assemble all cotangent spaces

T ∗pM into the cotangent bundle, denoted T ∗M . It is a vector bundle (of

fibre dimension m) over the (smooth) m-manifold M with bundle projection

again denoted by π. The set (total space)

T ∗M : =

{
(p, ωp) ∈M ×

⋃
∈M

T ∗pM |ωp ∈ T ∗pM

}

has a (smooth) manifold structure of dimension 2m, given by the (smooth)

atlas {(T ∗Uα, T ∗φα)}α∈A where T ∗Uα = π−1(Uα) ⊆ T ∗M and

T ∗φα : (p, ω) 7→ (φα(p), φ
α
(ω)) ∈ φα(Uα)× (Rm)∗ ⊆ R2m

({(Uα, φα)}α∈A is an atlas on M).

5.3.6 Example. If an m-dimensional vector space V is regarded as a

(smooth) manifold, then the cotangent bundle T ∗V is isomorphic to V ×V ∗.

Note : One can show that the tangent and cotangent bundles are isomorphic, but

not canonically. We do not identify these (vector) bundles.
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5.4 Smooth Submanifolds

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Vector Fields

Vector fields and flows

Let M be a manifold and let TM be the corresponding tangent bundle.

5.5.1 Definition. A vector field X (on M) is a mapping from M into

TM such that for each p ∈M the natural projection π : TM →M projects

X(p) to p (i.e. the compositon π ◦X is the identity on M).

Rather than considering arbitrary such mappings, our interest is primarily

in those that vary smoothly. (In topological considerations continuity may

suffice.) Since a vector field is defined as a mapping between (smooth) mani-

folds M and TM , we already have a notion of smoothness : We say that X

is a smooth vector field provided X : M → TM is a smooth mapping. We

shall write X(M) for the set of all smooth vector fields on M .

Note : A section of the vector bundle π : E →M is a smooth mapping s : M →
E such that π ◦ s = idM . The set of all such sections is denoted by Γ∞(E). It is

easy to verify that the set Γ∞(E) is a C∞(M)-module under the natural (pointwise)

operations of addition and (function) multiplication.

Thus, X(M) = Γ∞(TM). In complete analogy (to the tangent bundle),

the C∞(M)-module of all smooth covector fields on M is

A1(M) : = Γ∞(T ∗M).

Covector fields are also (and more commonly) called differential 1-forms.

If ω ∈ A1(M), then ω : M → T ∗M is writen as

p 7→ ωp ∈ T ∗pM.

Note : Having defined these objects in an “intrinsic” way, let us now examine

their meaning in a more intuitive way. It is well known in physics that the position
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of a particle is a scalar-like quantity, and its velocity is a vector quantity. Therefore,

if t 7→ p(t) is a curve that describes the position, then the velocity dp
dt is a different

object, since it is a vector. These two objects “live” in different spaces. The manifolds

formalism clarifies this issue, and it provides a natural point of view from which

differential equations (systems) should be studied.

If ẋ = F (x) is a differential equation in Rm, then F cannot be viewed as a

mapping from Rm into Rm. Rather, it must be viewed as a mapping form Rm (in

fact, Em) into the tangent bundle of Rm, since F (x(t)) is equal to the tangent vector

of the curve x(·) at x(t). For equations in Rm, it is easy to confuse mappings and

vector fields (in much the same way as it is to confuse vectors with their duals). It

is only on arbitrary manifolds that the genuine differences of these objects become

apparent.

Each vector field X ∈ X(M) in some admissible chart (U, φ) becomes an

expression of the form

X1(x1, . . . , xm)
∂

∂x1
+X2(x1, . . . , xm)

∂

∂x2
+ · · ·+Xm(x1, . . . , xm)

∂

∂xm
·

The (smooth) functions X1, . . . , Xm are called the coordinate functions of

the vector field X. (Strictly speaking, X should be expressed in terms of

2m coordinates; however, because the first m coordinates contain redundant

information, they are suppressed.)

Let α : J = (a, b)→M be a smooth curve on the manifold M . Then the

tangent vector to α at t ∈ I is given by

α̇(t) : = α∗,t

(
d

dt

)
∈ Tα(t)M.

(Thus α̇ : J → TM is a smooth curve in TM , commonly referred to as the

lift of α.) Let X be a smooth vector field on M . A smooth curve α : J →M

is an integral curve of X provided the tangent vector to α at each t ∈ J

equals the value of X at α(t) (i.e. α̇(t) = X(α(t)) for each t ∈ J). Thus

the accompanying diagram

TM

MI α

α̇
X

-

6

�
�
�
��3
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is commutative. (The lift α̇ of α coincides with X ◦ α.)

Let (U, φ) be an admissible chart on M and let α : J → U ⊆ M be a

smooth curve as before.

� Exercise 269 Verify that (for t ∈ J)

α̇(t) =
dx1

dt
(t)

∂

∂x1

∣∣∣∣
α(t)

+ · · ·+ dxm
dt

(t)
∂

∂xm

∣∣∣∣
α(t)

where xi = φi ◦ α, i = 1, 2, . . . ,m.

Then α̇ = X ◦ α yields

dxi
dt

= Xi(x1, . . . , xm), i = 1, 2, . . . ,m.

This system of differential equations admits solution curves in the open set

φ(U). That is, through each point x0 in φ(U) there exists a solution curve

x(·) : J0 → φ(U) ⊆ Rm that passes through x0 at t = 0 (i.e. x(0) = x0).

Any two such solutions curves agree for values of t for which they are both

defined. It follows from the theory of differential equations that for each x0

there exist a maximum open interval Jmax (that contains 0 ) and a unique

solution curve x(·) : Jmax → Rm such that x(0) = x0. We shall refer to such

a solution curve as the solution curve through x0.

Any solution curve x(·) in φ(U) defines an integral curve

t 7→ p(t) = φ−1(x1(t), . . . , xm(t))

on M .

Note : Consider another admissible chart (V, ψ) on M such that p(t0) ∈ U ∩ V
for some t0. We denote by (y1, . . . , ym) the coordinates on V , and by Y1, . . . , Ym

the coordinate functions of X relative to (V, ψ). The curve t 7→ y(t) = ψ ◦ p(t)
is a (smooth) curve in ψ(V ) defined in some neighborhood of t0. Furthermore,

y(t) = ψ ◦ φ−1(x(t)) and

dyi
dt

=
∂yi
∂x1

(x(t))
dx1

dt
+ · · ·+ ∂yi

∂xm
(x(t))

dxm
dt

=
∂yi
∂x1

(x(t))X1(x(t)) + · · ·+ ∂yi
∂xm

(x(t))Xm(x(t)).
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Because (Y1, . . . , Ym) and (X1, . . . , Xm) are the coordinates of the same tangent

vector X(p), they are related through

Yi(y) =
∂yi
∂x1

X1(x) + · · ·+ ∂yi
∂xm

Xm(x), i = 1, 2, . . . ,m.

Therefore, y(·) is a solution curve of the system of differential equations

dyi
dt

= Yi(y1, . . . , ym), i = 1, 2, . . . ,m.

Let ȳ(·) be the solution curve of this differential system in ψ(V ) that passes through

y0 = ψ ◦ p(t0) at t = t0, and denote p̄(t) = ψ−1 ◦ ȳ(t). It then follows that the two

integral curves p(·) and p̄(·) on M agree at all values of t for which they are both

defined.

5.5.2 Definition. We say that an integral curve γ = γp of X ∈ X(M)

is the integral curve through p ∈ M provided γp(0) = p and the domain

Jp ⊆ R of γp is maximal.

That is, if α is any integral curve of X that satisfies α(0) = p, then its

domain can be extended to Jp so that α(t) = γp(t) for all t.

A (smooth) vector field X is called complete if the integral curves γp

through each point p ∈ M are defined for all values of t ∈ R. In such case,

X is said to define a flow Φ = ΦX on M .

Note : A flow on M is a smooth mapping Φ : R ×M → M such that (for all

t1, t2 ∈ R and all p ∈M)

(FL1) Φ(0, p) = p.

(FL2) Φ(t1 + t2, p) = Φ(t1,Φ(t2, p)).

(If we fix p and let t vary, we get a smooth curve Φ(·, p) in M ; thus as t varies

each point of M moves smoothly inside M , and various points move in a coherent

fashion, so that we can form a mental picture of them “flowing” through M , each

point along its individual path.) For each t ∈ R, the (smooth) mapping

ϕt : M →M, p 7→ Φ(t, p)

is a smooth diffeomorphism of M . We have ϕ0 = idM and (for all t1, t2 ∈ R)

ϕt1+t2 = ϕt1 ◦ ϕt2 .
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Hence the collection {ϕt | t ∈ R} forms a group under the composition of mappings.

Such a group is called a one-parameter group of diffeomorphisms of M (or a smooth

action of R on M) and is denoted by {ϕt} or, simply, by ϕt.

The flow ΦX (generated by the complete vector field X) is defined by

ΦX(t, p) : = γp(t).

We shall also use exp tX to denote the mapping (diffeomorphism) ϕt = ϕXt .

(Each notation is fairly standard, and each has different merits, depending on

the context.)

Each (smooth) flow Φ on M is generated by a vector field X, called the

infinitesimal generator of Φ. The relation between X and Φ is given by

X(p) =
d

dt
Φ(t, p)

∣∣∣∣
t=0

.

(X(p) ∈ TpM is the value of the lift of Φ(·, p) : R→M at t = 0.) Therefore,

there is a one-to-one correspondence between complete vector fields and flows.

Note : The support of a vector field X is the closure of the set {p ∈M |X(p) 6= 0}.
It can be shown that every vector field with compact support on M is complete. So

on a compact manifold M , each vector field is complete. If M is not compact and

of dimension ≥ 2 the set of complete vector fields is not even a vector space as the

following example (on E2) shows : the vector fields

X = x2
∂

∂x1
and Y =

x2
1

2

∂

∂x2

are complete, but X + Y is not.

� Exercise 270 Show that the (smooth) vector field

X = −x2
∂

∂x1
+ x1

∂

∂x2

is complete (on E2). Is the vector field

Y = e−x1
∂

∂x1
+

∂

∂x2

complete ?
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� Exercise 271 Consider the (smooth) vector field on E3 defined by

X = x2
∂

∂x1
+ x3

∂

∂x2
+ x1

∂

∂x3
·

Find the integral curve γ of X so that γ(0) = (−1, 1, 1).

We have seen that not every vector field is complete. If this is the case,

then X ∈ X(M) generates (only) a local flow on M .

5.5.3 Example. Let M = E2 and let (the flow) Φ : R × M → M be

defined by

(t, (x1, x2)) 7→ (x1 + t, x2).

Then the infinitesimal generator is X = ∂
∂x1
· Suppose now that we remove

the origin (0, 0) from E2; let M0 = E2 \ {(0, 0)}. For most points (the

diffeomorphism) ϕt is defined as before; however, we cannot obtain an action

of R on M0 by restriction of Φ to R×M0 since points of the (closed) set

{(t, (x1, 0)) |x1 + t = 0} = Φ−1((0, 0)) ⊆ R×M

are mapped by Φ to the origin. On the other hand, let W ⊆ R×M0 be the

open set defined by

W =

 ⋃
x2 6=0

R× {(x1, x2)}

 ∪ {(t, (x1, 0)) |x1(x1 + t) > 0}.

Then Φ = Φ|W maps W onto M0 and preserves many of the features of Φ

which we have used. For example, let p = (x1, x2) ∈M0. Then

• (0, p) ∈W and Φ(0, p) = p

• Φ(t1,Φ(t2, p)) = Φ(t1 + t2, p)

if all terms are defined, and the infinitesimal generator is again X = ∂
∂x1
·

Finally, we have orbits t 7→ Φ(t, p), which are the lines x2 = constant (as

before) when p = (x1, x2), x2 6= 0, and for p = (x1, 0) the portion of the

x1-axis minus the origin which contains p. This curve is not defined for all

values of t in the case of the orbit of a point on the x1-axis.
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Note : In order to define the local flow of a vector field at p ∈ M , it is first

necessary to define the escape times of the integral curve γp of X through p. The

positive escape time e+(p) is defined to be the supremum of t such that an integral

curve passing through p can be defined at t. The negative escape time e−(p) is

defined similarly. Let W : = {(t, p) | e−(p) < t, e+(p)}. Then W is an open subset of

R ×M and a neighborhood of {0} ×M . The local flow Φ of X is defined on W

and it satisfies the following :

• The mapping Φ : W ⊆ R×M →M is smooth

• Φ(0, p) = p for all p ∈W .

• Φ(t1 + t2, p) = Φ(t1,Φ(t2, p)) whenever each of (t1, p) and (t1,Φ(t2, p))

is contained in W .

• dΦ
dt (t, p) = X ◦ Φ(t, p).

5.5.4 Example. Let M = Em, and let

X : x 7→ a =


a1

...

am

 ∈ Rm
(

= Rm×1
)

be a constant (or parallel) vector field on M . Then (in the “derivation nota-

tion”)

X(x) = a1
∂

∂x1

∣∣∣∣
x

+ · · ·+ am
∂

∂xm

∣∣∣∣
x

.

The integral curves of X are parallel lines, all in the direction of a. For each

t, the mapping (diffeomorphism) ϕt : t 7→ Φ(t, x) is a translation of x by ta.

Hence {ϕt} is a one-parameter group of translations on Em.

5.5.5 Example. Let M = Em and A ∈ Rm×m. Let

X : x = (x1, . . . , xm) 7→ Ax : =


a11x1 + · · ·+ a1mxm

...

am1x1 + · · ·+ ammxm

 ∈ Rm
(

= Rm×1
)

be a linear vector field on M . So

X(x1, . . . , xm) = X1(x1, . . . , xm)
∂

∂x1

∣∣∣∣
x

+ · · ·+Xm(x1, . . . , xm)
∂

∂xm

∣∣∣∣
x
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with coordinate functions given by

Xi(x1, . . . , xm) = ai1x1 + · · ·+ aimxm, i = 1, 2, . . . ,m.

Each integral curve of X is of the form t 7→ exp(tA)x, where exp(tA) =
∞∑
k=0

tk

k!
Ak (the matrix exponential of tA). Thus ϕt(x) = exp(tA)x, and there-

fore (the one-parameter group of diffeomorphisms) {ϕt} is a subgroup of the

group of all linear transformations on Rn (i.e. a matrix group). Here are two

familiar cases (for n = 2):

• A =

[
0 1

−1 0

]
, exp(tA) =

[
cos t sin t

− sin t cos t

]
. (The one-parameter

group {ϕt} is the rotation group SO (2), and the integral curves

are concentric circles centered at the origin.)

• A =

[
0 1

1 0

]
, exp(tA) =

[
cosh t sinh t

sinh t cosh t

]
. (The one-parameter

group {ϕt} is a subgroup of SL (2,R), and the integral curves are

hyperbolas.)

5.5.6 Example. Let M = E3 and consider the vector field (on M)

X : x 7→ X(x) : = Ax+ a

where

A =

 0 1 0

−1 0 0

0 0 0

 and a =

0

0

1

 .
Then

Φ(t, x) = ϕt(x) = exp(tA)x+ ta

=

 cos t sin t 0

− sin t cos t 0

0 0 1

x+ t

0

0

1

 .
Integral curves are helices (with centers along the x3-axis).
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5.5.7 Example. Let M = GL+ (2,R). For A =

[
0 1

0 0

]
∈ R2×2, let X be

the vector field on M defined by p 7→ Ap. Then

Φ(t, p) =

[
1 t

0 1

]
p, p ∈M.

ϕt(p) is the matrix multiplication of p ∈M by exp(tA) from the left for each

t ∈ R.

Vector fields as differential operators

Let M be a manifold and let TM be the corresponding tangent bundle.

The algebra of smooth functions on M is denoted by C∞(M) (see Execise

224).

Recall that tangent vectors act on smooth functions and produce direc-

tional derivatives. Specifically, if Xp = dα
dt

∣∣
t=0
∈ TpM and f ∈ C∞(M),

then

Xpf =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

∈ R

is the directional derivative of f along Xp.

� Exercise 272 Given a mapping X : M → TM , show that the following

statements are logically equivalent :

(a) X is smooth (as a mapping between manifolds). In other words, X is a

smooth vector field on M .

(b) For each admissible chart (U, φ) on M , the coordinate functions Xi :

U → R of X are smooth.

(c) For each smooth function f : M → R, the function x 7→ X(x)f is also

smooth.

Smooth vector fields act as derivations on the space of smooth functions.

Indeed, let X ∈ X (M) and f ∈ C∞(M). Then Xf will denote the smooth

function

x 7→ (Xf)(x) : = X(x)f.
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The function Xf is often known as the Lie derivative of the function f

along the vector field X, and is then denoted LXf . In local coordinates, if

X is of the form

X = X1
∂

∂x1
+ · · ·+Xm

∂

∂xm
then

LXf =
∂f

∂x1
X1 + · · ·+ ∂f

∂xm
Xm

=
[
∂f
∂x1

· · · ∂f
∂xm

]
X1

...

Xm


=

∂f

∂x
X.

Note : One can also define the Lie derivative of a function by the formula

LXf : = lim
t→0

ϕ∗t f − f
t

where ϕt is the (local) flow of X. (It is then easy to see that LXf = Xf .)

� Exercise 273 Given X ∈ X (M), f, g ∈ C∞(M) and λ ∈ R, verify that

(D1) X(f + g) = Xf +Xg ;

(D2) X(λf) = λXf ;

(D3) X(f · g) = f ·Xg + g ·Xf .

This shows that the mapping f 7→ Xf (i.e. the Lie derivative LX : C∞(M) →
C∞(M)) is linear and satisfies the Leibniz rule, hence is a derivation of (the ring)

C∞(M).

Note : Derivations of C∞(M) are also called first order differential operators.

The set D (M) of all such derivations is a vector space (over R).

We have a natural inclusion (X 7→ LX )

X (M) ⊆ D (M)

(every smooth vector field is a derivation). One can prove that all derivations

of C∞(M) are smooth vector fields on M (i.e. the reverse inclusion D (M) ⊆
X (M) holds).
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Note : For this, we need to show that a derivation of C∞(M) can be localized

to a derivation of the algebra C∞(p) of function germs at each p ∈ M . (Caution :

For f ∈ C∞(p) we do not require that f(p) = 0. Such elements form a subalgebra

F(p) of C∞(p).) This is by no means evident. The “tricky” part is to show that (for

∆ ∈ D (M) and p ∈M) the mapping

∆p : C∞(p)→ R, f 7→ ∆(f)(p)

is well-defined (i.e. depends only on ∆ and the function germ f = 〈f〉p). Then it

follows that

∆̃ : p 7→ ∆p ∈ TpM

is a smooth section of (the tangent bundle) TM , hence a smooth vector field on M .

Henceforth, we shall regard a smooth vector field (on a given manifold)

either as a smooth section of the tangent bundle of the manifold or as a

derivation of the algebra of smooth functions on that manifold.

The Lie algebra of vector fields

Given a manifold M , the set of all smooth vector fields on M is denoted

by X (M). It is itself a vector space (over R ) since any linear combination

(with constant coefficients) of two smooth vector fields is also a smooth vector

field. More precisely, if X,Y ∈ X (M) and λ, µ ∈ R, then (for f ∈ C∞(M))

λX + µY : f 7→ (λX + µY )f : = λXf + µY f

is a derivation of C∞(M), hence a smooth vector field on M .

Note : As a vector space, X (M) is not finite-dimensional. In fact, X (M) is more

than just a vector space; it is a Lie algebra as we shall see.

Let X,Y ∈ X (M) (viewed as derivations of C∞(M)). Then, in general,

neither Y X nor XY is a derivation. However, oddly enough, the operator

Y X −XY is a derivation (of C∞(M)).

� Exercise 274 Given X,Y ∈ X (M), verify that the operator Y X − XY :

C∞(M) → C∞(M) is a derivation, hence is (identified with) a smooth vector field

on M .
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We make the following definition.

5.5.8 Definition. The smooth vector field [X,Y ] ∈ X (M), defined by

[X,Y ]f : = Y (Xf)−X(Y f)

is called the Lie bracket of X and Y .

It is easy to check that the Lie bracket [·, ·] : X (M)×X (M)→ X (M) has

the following properties (for λ, µ ∈ R and X,Y, Z ∈ X (M)) :

(LA1) [X,Y ] = −[Y,X] ;

(LA2) [X,λY + µZ] = λ[X,Y ] + µ[X,Z] ;

(LA3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

This means that the real vector space X (M) equipped with the Lie bracket

[·, ·] is a Lie algebra.

We may now derive the expression in local coordinates for [X,Y ]. Let

X = X1
∂

∂x1
+ · · ·+Xm

∂

∂xm
and Y = Y1

∂

∂x1
+ · · ·+ Ym

∂

∂xm

be local representations of X and Y , respectively (in an admissible chart

(U, φ) of M). Then

[X,Y ]f = Y (Xf)−X(Y f)

=

m∑
i,j=1

Yi
∂Xj

∂xi

∂f

∂xj
−

m∑
i,j=1

Xi
∂Yj
∂xi

∂f

∂xj

=

m∑
j=1

(
m∑
i=1

Yi
∂Xj

∂xi
−Xi

∂Yj
∂xi

)
∂f

∂xj
·

Thus

[X,Y ] =

m∑
j=1

(
m∑
i=1

Yi
∂Xj

∂xi
−Xi

∂Yj
∂xi

)
∂

∂xj

=


∂X1
∂x1

· · · ∂X1
∂xm

...
...

∂Xm
∂x1

· · · ∂Xm
∂xm



Y1

...

Ym

−

∂Y1
∂x1

· · · ∂Y1
∂xm

...
...

∂Ym
∂x1

· · · ∂Ym
∂xm



X1

...

Xm


=

∂X

∂x
Y − ∂Y

∂x
X.
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5.5.9 Example. For constant (or parallel) vector fields

X : x 7→ a =


a1

...

am

 and Y : x 7→ b =


b1
...

bm


on M = Em, we have [X,Y ] = 0.

5.5.10 Example. Let X,x 7→ Ax be a linear vector field and Y, x 7→ b

be a constant vector field on M = Em. Then

X = (a11x1 + · · ·+ a1mxm)
∂

∂x1
+ · · ·+ (am1x1 + · · ·+ ammxm)

∂

∂xm

Y = b1
∂

∂x1
+ · · ·+ bm

∂

∂xm

and so

[X,Y ] =
∂X

∂x
Y − ∂Y

∂x
X = Ab− 0 = Ab.

Therefore [X,Y ] is a constant vector field x 7→ c, with c = Ab.

5.5.11 Example. If X,x 7→ Ax and Y, x 7→ Bx are both linear vector

fields (on M = Em), then

[X,Y ] =
∂X

∂x
Y − ∂Y

∂x
X = ABx−BAx = (AB −BA)x.

Therefore [X,Y ] is also a linear vector field x 7→ Cx, with C = [A,B] (the

commutator of the matrices A and B).

We have seen that the set X (M) (of all smooth vector fields on M) has a

natural structure of Lie algebra. In addition to this structure, X (M) admits

another algebraic structure : for any f ∈ C∞(M) and any X ∈ X (M),

fX : p 7→ (fX)(p) : = f(p)X(p) ∈ TpM

is a smooth vector field on M . (Caution : do not confuse Xf and fX.) With

this operation, X (M) becomes a module over the ring C∞(M).

Note : The Lie bracket [·, ·] : C∞(M) × C∞(M) → C∞(M) is not C∞(M)-

bilinear. In fact (for g ∈ C∞(M)),

[X, gY ] = g[X,Y ]− (Xg)Y.
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� Exercise 275 Let X,Y ∈ X (M) and f, g ∈ C∞(M). Show that

[fX, gY ] = fg[X,Y ]− f(Xg)Y + g(Y f)X.

Use this formula to derive the formula for the components of [X,Y ] in local coordi-

nates.

Commutativity of vector fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Orbits of vector fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Differential Forms

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .



Chapter 6

Lie Groups

Topics :

1. Lie Groups: Definition and Examples

2. Invariant Vector Fields

3. The Exponential Mapping

4. Matrix Groups as Lie Groups

5. Hamiltonian Vector Fields

6. Lie-Poisson Reduction

Copyright c© Claudiu C. Remsing, 2006.

All rights reserved.

272



C.C. Remsing 273

6.1 Lie Groups: Definition and Examples

Lie groups form an important class of smooth (in fact, analytic) manifolds.

(Their prototype is any finite-dimensional group of linear transformations on

a vector space.) The key idea of a Lie group is that it is a group in the usual

sense, but with the additional property that it is also a smooth manifold, and

in such a way that the group operations are smooth. A good example is the

circle S1 = {z ∈ C | |z| = 1}.
Lie groups (and their Lie algebras) play a central role in geometry, topol-

ogy, and analysis, as well as in modern theoretical physics. The precise defi-

nition is given below.

6.1.1 Definition. A (real) Lie group is a smooth manifold G which is

also a group such that the operations

G×G→ G, (g1, g2) 7→ g1g2 and G→ G, g 7→ g−1

are smooth mapings.

6.1.2 Example. The vector space Rm, when equipped with its natural

smooth structure (i.e., viewed as the Euclidean space Rm in the broad sense),

is an m-dimensional (Abelian) Lie group.

6.1.3 Example. The general linear group GL (n,R) is evidently a Lie

group. It is an open subset of (the vector space) Rn×n (and hence a smooth

submanifold of Rn2
) and the group operations are given by rational functions

of the coordinates.

Note : Let V be an n-dimensional vector space (over R). Then the group GL (V )

of all linear transformations on V is an n2-manifold. Any choice of a basis in V

induces a linear isomorphism from GL (V ) onto GL (n,R) ⊆ Rn2

(an hence a global

chart on GL (V )). The coordinates of any product (composition) ST of elements in

GL (V ) are polynomial expressions of the coordinates of S and T , and the coordinates

of S−1 are rational functions of the coordinates of S. It therefore follows that both

group operations (S, T ) 7→ ST and S 7→ S−1 are smooth (in fact, real analytic)

mappings from GL (V )× GL (V ) and GL (V ), respectively, onto GL (V ).
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6.1.4 Example. The special linear group SL (n,R) and the orthogonal

group O (n) are clearly Lie groups. Both subgroups SL (n,R) and O (n)

are smooth submanifolds of (the Lie group) GL (n,R), hence smoothness of

the group operations on GL (n,R) implies smoothness of their restrictions to

SL (n,R) and O (n).

6.1.5 Example. The complex general linear group GL (n,C) ⊆ R2n2
is a

(real) Lie group. In particular, C× = GL (1,C) is a Lie group. The unit circle

S1 ⊆ C× is a subgroup and a (smoothly embedded) submanifold, hence also

a Lie group.

6.1.6 Example. If G1 and G2 are Lie groups, then G1 × G2 is a Lie

group under the usual Cartesian group operations and the smooth product

structure. In particular, the m-dimensional torus

Tm = S1 × · · · × S1

is a Lie group.

6.1.7 Example. Let H denote the division algebra of quaternions. The

nonzero quaternions H× form a multiplicative group and a (smooth) manifold

diffeomorphic to R4 \ {0}. It is clear that the group operations are smooth,

so H× is a Lie group. The 3-sphere S3 ⊆ H× consists of the unit length

quaternions, hence it is closed under multiplication and passing to inverses.

This gives a Lie group structure on S3.

Usually, the identity element of a Lie group will be denoted by e. (For

matrix groups, however, the customary symbol for the identity is I.)

Note : In most of the literature, Lie groups are defined to be real analytic. That

is, G is a manifold with a Cω (real analytic) atlas and the group operations are

real analytic. In fact, no generality is lost by this more restrictive definition. Smooth

Lie groups always support an analytic group structure, and something even stronger

is true. Hilbert’s Fifth problem was to show that if G is only assumed to be

a topological manifold with continuous group operations, then it is, in fact, a real

analytic Lie group. This was finally proven by the combined work of A. Gleason,

D. Montgomery, and L. Zippin (195?).
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6.2 Invariant Vector Fields

One of the most important features of a Lie group is the existence of an

associated Lie algebra that encodes many of the properties of the group. The

crucial property of a Lie group that enables this to occur is the existence of

the left and right translations on the group.

Let G be a Lie group. For any g ∈ G, the mappings

Lg : G→ G, x 7→ gx and Rg : G→ G, x 7→ xg

are called the left and right translation (by g), respectively. For each g ∈ G,

both Lg and Rg are smooth mappings on G.

� Exercise 276 Verify that (for every g1, g2, g, h ∈ G)

(a) Lg1 ◦ Lg2 = Lg1g2 .

(b) Rg1 ◦Rg2 = Rg2g1 .

(c) Le = Re = idG (e ∈ G denotes the identity element).

(d) (Lg)
−1 = Lg−1 and (Rg)

−1 = Rg−1 . (Hence Lg and Rg are diffeomor-

phisms.)

(e) Lg ◦Rh = Rh ◦ Lg.

Note : Given any admissible chart on G, one can construct an entire atlas on the

Lie group G by use of left (or right) translations. Suppose, for example, that (U, φ)

is an admissible chart with e ∈ U . Define a chart (Ug, φg) with g ∈ Ug by letting

Ug : = Lg(U) = {Lg(x) |x ∈ U}

and defining

φg : = φ ◦ Lg−1 : Ug → φ(U), x 7→ φ(g−1x).

The collection of charts {(Ug, φg)}g∈G forms a (smooth) atlas provided one can show

that the transition mappings

φg2 ◦ φ−1
g1 = φ ◦ Lg−1

2 g1
◦ φ−1 : φg1(Ug1 ∩ Ug2)→ φg2(Ug1 ∩ Ug2)

is smooth. But this follows from the smoothness of group multiplication and passing

to inverse.
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By the chain rule,(
Lg−1

)
∗,gh ◦ (Lg)∗,h =

(
Lg−1 ◦ Lg

)
∗,h = idG.

Thus the tangent mapping (Lg)∗,h is invertible and so, in particular,

(Lg)∗ = (Lg)∗,e : TeG→ TgG

is a linear isomorphism. Likewise, (Rg)∗,h is invertible.

6.2.1 Definition. A vector field X on G is called

• left-invariant if for every g ∈ G

(Lg)∗X(e) = X(g).

• right-invariant if for every g ∈ G

(Rg)∗X(e) = X(g).

It follows that a vector field (on G) that is either left- or right-invariant is

determined by its value at the identity.

Note : Recall that smooth vector fields act as derivations on the space of smooth

functions. (If X is a smooth vector field and f is a smooth function on M , then

Xf denotes the (smooth) function x 7→ X(x)f .) For any smooth vector fields X

and Y , their Lie bracket [X,Y ] defined by

[X,Y ]f = Y (Xf)−X(Y f)

is also a smooth vector field. The (vector) space X(M) of all smooth vector space

on M has the structure of a (real) Lie algebra, with the product given by the Lie

bracket.

The set of all left-invariant (respectively, right-invariant) vector fields on a

Lie group G is denoted XL(G) (respectively, XR(G)). Clearly, both XL(G)

and XR(G) are (real) vector spaces (under the pointwise vector addition and

scalar multiplication).

Note : We defined the push forward Φ∗,p : TpM → TΦ(p)N induced by the

(smooth) mapping Φ : M → N (the so-called tangent mapping of Φ at p ∈ M).
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This is a linear mapping between the vector spaces TpM and TΦ(p)N , and the ques-

tion arises of whether it is similarly possible to define an induced mapping between

the (vector) spaces of smooth vector fields X(M) and X(N). Given a vector field

X ∈ X(M) and a smooth mapping Φ : M → N , a natural choice for an induced

vector field Φ∗X ∈ X(N) might appear to be

Φ∗X(Φ(p)) = Φ∗,p(X(p))

but this may fail to be well-defined for two reasons :

• If there are points p1, p2 ∈ M such that Φ(p1) = Φ(p2) (i.e. the mapping

Φ is not one-to-one), then the “definition” above will be ambiguous when

Φ∗X(p1) 6= Φ∗X(p2).

• If Φ is not onto, then the defining equation does not specify the induced vector

field outside the range of Φ.

Observe that if Φ is a diffeomorphism from M to N , then neither of these objec-

tions apply and an induced vector field Φ∗X can be defined via the above equation.

However, it is possible that in certain cases the idea will work, even if Φ is not a dif-

feomeorphism, and this motivates the following definition : vector fields X ∈ X(M)

and Y ∈ X(N) are said to be Φ-related provided Φ∗X(p) = Y (Φ(p)) for all p ∈M .

We then write Φ∗X = Y . It is not difficult to see that if Φ∗X1 = Y1 and Φ∗X2 = Y2,

then [X1, X2] is Φ-related to [Y1, Y2] with

Φ∗[X1, X2] = [Φ∗X1,Φ∗X2].

6.2.2 Proposition. Let X and Y be any left-invariant (respectively, right-

invariant) vector fields. Then [X,Y ] is a left-invariant (respectively, right-

invariant) vector field.

Proof : Let X,Y ∈ XL(G) and g ∈ G. Then (and only then) (Lg)∗X = X

and (Lg)∗Y = Y . Hence

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

and so [X,Y ] ∈ XL(G). The case of right-invariant vector fields is similar. 2

Therefore, both XL(G) and XR(G) are Lie subalgebras of the (infinite

dimensional) Lie algebra X(G) of all smooth vector fields on G.



278 M4.3 - Geometry

For each A ∈ TeG, we define a (smooth) vector field XA on G by letting

XA(g) : = (Lg)∗,eA.

Then

(Lg)∗XA(e) = (Lg)∗ ((Le)∗A)

= (Lg)∗ ◦ (Le)∗A

= (Lge)∗,eA

= (Lg)∗,eA

= XA(g)

which shows that XA is left-invariant. Consider the mappings

ζ1 : XL(G)→ TeG, X 7→ X(e)

and

ζ2 : TeG→ XL(G), A 7→ XA.

� Exercise 277 Verify that ζ1 and ζ2 are linear mappings that satisfy

ζ1 ◦ ζ2 = idTe(G) and ζ2 ◦ ζ1 = idXL(G).

(It is clear that ζ2 is the inverse of ζ1, and hence for a left-invariant vector field X

(Lg)∗X(e) = X(g) and (Lg−1)∗XA(g) = A.)

Therefore, XL(G) and TeG are isomorphic (as vector spaces). It follows

that the dimension of the vector space XL(G) is equal to dimTeG = dimG.

Note : Since, by assumption, G is a (finite-dimensional) manifold it follows that

XL(G) is a finite-dimensional, nontrivial subalgebra of the Lie algebra of all (smoth)

vector fields on G.

For any A,B ∈ TeG, we define their Lie product (bracket) [A,B] by

[A,B] : = [XA, XB](e)

where [XA, XB] is the Lie bracket of vector fields. This makes TeG into a

Lie algebra. We say that this defines a Lie product in TeG via left extension.



C.C. Remsing 279

Note : By construction,

[XA, XB ] = X[A,B]

for all A,B ∈ TeG.

6.2.3 Definition. The vector space TeG with this Lie algebra structure

is called the Lie algebra of G and is denoted by g.

� Exercise 278 Let ϕ : G → H be a smooth homomorphism between the Lie

groups G and H. Show that the induced mapping

dϕ = ϕ∗,e : TeG = g→ TeH = h

is a homomorphism between the Lie algebras of the groups.

A similar construction to the above can be carried out with the Lie algebra

XR(G) of right-invariant vector fields on G. In this case, for each A ∈ TeG,

the corresponding right-invariant vector field is defined by

YA(g) : = (Rg)∗,eA.

We have (for A,B ∈ TeG)

[YA, YB](e) = −[XA, XB](e).

Therefore, the Lie product [·, ·]R in g defined by right extension of elements

of g :

[A,B]R : = [YA, YB](e)

is the negative of the one defined by left extension; that is,

[A,B]R = −[A,B].

Note : There is a natural isomorphism between the (Lie algebras) XL(G) and

XR(G). It is equal to the tangent mapping of Φ : G→ G, x 7→ x−1. In particular,

we have (for A ∈ g = TeG )

Φ∗XA = −YA.

Orbits of invariant vector fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.3 The Exponential Mapping

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4 Matrix Groups as Lie Groups

We have seen that the matrix groups GL (n,k), SL (n, k), and O (n) are all

Lie groups. These examples are typical of what happens for any matrix group

that is a Lie subgroup of GL (n,R). The following important result holds.

6.4.1 Theorem. Let G ≤ GL (n,R) be a matrix group. Then G is a Lie

subgroup of GL (n,R).

Note : In fact, a more general result also holds (but we will not give a proof) :

Every closed subgroup of a Lie group is a Lie subgroup.

Our aim in this section is to prove Theorem 4.5.1.

Let G ≤ GL (n,R) be a matrix group, and let g = TIG denote its Lie

algebra.

6.4.2 Proposition. Let

g̃ : = {A ∈ Rn×n | exp(tA) ∈ G for all t}.

Then g̃ is a Lie subalgebra of Rn×n.

Proof : By definition, g̃ is closed under (real) scalar multiplication. If

U, V ∈ g̃ and r ≥ 1, then the following are in G :

exp

(
1

r
U

)
exp

(
1

r
V

)
,

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
,

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
,(

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

For t ∈ R, by the Lie-Trotter Product Formula we have

exp(tU + tV ) = lim
r→∞

(
exp

(
1

r
tU

)
exp

(
1

r
tV

))r
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and by the Commutator Formula

exp(t[U, V ]) = exp([tU, V ])

= lim
r→∞

(
exp

(
1

r
tU

)
exp

(
1

r
V

)
exp

(
−1

r
tU

)
exp

(
−1

r
V

))r2
.

As these are both limits of elements of the closed subgroup G ≤ GL (n,R),

they are also in G. This shows that g̃ is a Lie subalgebra of gl (n,R) = Rn×n.

2

6.4.3 Corollary. g̃ is a Lie subalgebra of g.

Proof : Let U ∈ g̃. Then the curve

γ : R→ G, t 7→ exp(tU)

has γ(0) = I and γ̇(0) = U , hence U ∈ g. 2

Note : Eventually we will see that g̃ = g.

We will require a technical result.

6.4.4 Lemma. Let (Ar)r≥1 and (λr)r≥1 be sequences in exp−1(G) and

R, respectively. If ‖Ar‖ → 0 and λrAr → A ∈ Rn×n as r →∞, then A ∈ g̃.

Proof : Let t ∈ R. For each r, choose an integer mr ∈ Z so that |tλr −
mr| ≤ 1. Then

‖mrAr − tA‖ ≤ ‖(mr − tλr)Ar‖+ ‖tλrAr − tA‖

= |mr − tλr|‖Ar‖+ ‖tλrAr − tA‖

≤ ‖Ar‖+ |t|‖λrAr −A‖ → 0

as r → ∞, showing that mrAr → tA. Since exp(mrAr) = exp(Ar)
mr ∈ G

and G is closed in GL (n,R), we have

exp(tA) = lim
r→∞

exp(mrAr) ∈ G.

Thus every scalar multiple tA is in exp−1(G), showing that A ∈ g̃. 2
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Proof of Theorem 4.5.1 : Choose a complementary R-subspace w to

g̃ in Rn×n; that is, any vector subspace such that

g̃ + w = Rn×n

dim g̃ + dimw = dimRn×n = n2.

(The second of these conditions is equivalent to g̃ ∩ w = 0.) This gives a a

direct sum decomposition of Rn×n, so every element X ∈ Rn×n has a unique

decomposition of the form

X = U + V (U ∈ g̃, V ∈ w).

Consider the mapping

Φ : Rn×n → GL (n,R), U + V 7→ exp(U) exp(V ).

Φ is a smooth mapping which maps O to I. Observe that the factor exp(U)

is in G. Consider the derivative (at O)

DΦ(O) : Rn×n → Rn×n.

To determine DΦ(O) · (A+B), where A ∈ g̃ and B ∈ h, we differentiate the

curve t 7→ Φ(t(A+B)) at t = 0. Assuming that A and B small enough, for

small t ∈ R, there is a unique matrix C(t) (depending on t) for which

Φ(t(A+B)) = exp(C(t)).

Then (by using the estimate in Proposition 3.5.6)

‖C(t)− tA− tB − t2

2
[A,B]‖ ≤ 65|t|3 (‖A‖+ ‖B‖)3 .

From this we obtain

‖C(t)− tA− tB‖ ≤ t2

2
‖[A,B]‖+ 65|t|3 (‖A‖+ ‖B‖)3

=
t2

2

(
‖[A,B]‖+ 130|t| (‖A‖+ ‖B‖)3

)
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and so

DΦ(O) · (A+B) =
d

dt
Φ(t(A+B))

∣∣∣∣
t=0

=
d

dt
exp(C(t))

∣∣∣∣
t=0

= A+B.

Hence DΦ(O) is the identity mapping on Rn×n, and by the Inverse Map-

ping Theorem, there exists an open neighborhood (and we may take this to

be an open ball) BRn×n(O, δ) of O such that the restriction

Φ1 : = Φ|B(O,δ) : B(O, δ)→ Φ (B(O, δ))

is a smooth diffeomeorphism.

Now we must show that Φ maps some open subset (which we may assume

to be an open ball) of BRn×n(O, δ) ∩ g̃ onto an open neighborhood of I in

G. Suppose not. Then there is a sequence of elements (Ur)r≥1 in G with

Ur → I as r → ∞ but Ur 6∈ Φ(g̃). For large enough r, Ur ∈ Φ(B(O, δ)),

hence there are unique elements Ar ∈ g̃ and Br ∈ w with Φ(Ar +Br) = Ur.

Notice that Br 6= O since otherwise Ur ∈ Φ(g̃). As Φ1 is a diffeomorphism,

Ar + Br → O and this implies that Ar → O and Br → O. By definition of

Φ,

exp(Br) = exp(Ar)
−1Ur ∈ G.

Hence Br ∈ exp−1(G). Consider the elements B̄r = 1
‖Br‖Br of unit norm.

Each B̄r is in the unit sphere in Rn×n, which is compact hence there is a

convergent subsequence of (B̄r)r≥1. By renumbering this subsequence, we

can assume that B̄r → B, where ‖B‖ = 1. Applying Lemma 4.5.4 to the

sequences (Br)r≥1 and
(

1
‖Br‖

)
r≥1

, we find that B ∈ g̃. But each Br (and

hence B̄r ) is in w, so B must be too. Thus B ∈ g̃ ∩ w, which contradicts

the fact that B 6= O.

So there must be an open ball

B g̃(O, δ1) = BRn×n(O, δ1) ∩ g̃

which is mapped by Φ onto an open neighborhood of I in G. So the re-

striction of Φ to this open ball is a local diffeomorphism at O. The inverse
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mapping gives a local chart for G at I (and moreover B g̃(O, δ1) is then a

smooth submanifold of Rn×n). We can use left translation to move this local

chart to a new chart at any other point U ∈ G (by considering LU ◦ Φ).

So we have shown that G ≤ GL (n,R) is a smooth submanifold. The

matrix product (A,B) 7→ AB is clearly a smooth (in fact, analytic) function

of the entries of A and B, and (in light of Cramer’s rule) A 7→ A−1 is a

smooth (in fact, analytic) function of the entries of A. Hence G is a Lie

subgroup, proving Theorem 4.5.1.

2

This is a fundamental result that can be usefully reformulated as follows

: A subgroup of GL (n,R) is a closed Lie subgroup if and only if it is a ma-

trix subgroup. (More generally, a subgroup of a Lie group G is a closed Lie

subgroup if and only if is a closed subgroup.)

Note : Recall that the dimension of a matrix group G (as a manifold) is dim g̃.

By Corollary 4.5.3, g̃ ⊆ g and so dim g̃ ≤ dim g. By definition of g = TIG, these

dimensions are in fact equal, giving

g̃ = g.

Combining with Proposition 3.3.3, this gives the following result : For a matrix

group G ≤ GL (n,R), the exponential mapping

exp : g→ Rn×n

has image in G. Moreover, expG is a local diffeomorphism at the origin (mapping

some open neighborhood of 0 onto an open neighborhood of I in G).

It is a remarkable fact that most of the important examples of Lie groups

are (or can easily be represented as) matrix groups. However, not all Lie

groups are matrix groups. For the sake of completeness, we shall describe the

simplest example of a Lie group which is not a matrix group.

Consider the matrix group (of unipotent 3× 3 matrices)

H (1) =

γ(x, y, t) =

1 x t

0 1 y

0 0 1

 |x, y, t ∈ R

 ≤ GL (3,R)
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commonly referred to as the Heisenberg group. H (1) is a 3-dimensional Lie

group.

Note : More generally, the Heisenberg group H (n) is defined by

H (n) =

γ(x, y, t) =

1 xT t

0 In y

0 0 1

 | (x, y) ∈ R2n, t ∈ R

 ≤ GL (n+ 2,R).

This (matrix) group is isomorphic to either one of the following groups :

• R2n+1 equipped with the group multiplication

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + x • y′).

• R2n+1 equipped with the group multiplication

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ +

1

2
(Ω((x, y), (x′, y′)))

)
where Ω((x, y), (x′, y′)) = x • y′ − x′ • y is the standard symplectic form on

R2n.

The Lie algebra h (n) of H (n) is given by

h (n) =

Γ(x, y, t) =

0 xT t

0 On y

0 0 0

 | (x, y) ∈ R2n, t ∈ R

 .

(The Lie algebra h (1), which occurs throughout quantum physics, is essentially the

same as the Lie algebra of operators on differentiable functions f : R → R spanned

by the three operators 1,p,q defined by

1f(x) : = f(x), pf(x) : =
d

dx
f(x), qf(x) : = xf(x).

The non-trivial commutator involving these three operators is given by the canonical

commutation relation [p,q] = pq− qp = 1.)

� Exercise 279 Determine the (group) commutator in H (1) (i.e. the product

γγ′γ−1γ′
−1

for γ, γ′ ∈ H (1)) and hence deduce that the centre Z(H (1)) of H (1) is

Z(H (1)) = {γ(0, 0, t) | t ∈ R} .
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Clearly, there is an isomorphism (of Lie groups) between R and Z(H(1)),

under which the subgroup Z of integers corresponds to the subgroup Z of

Z(H(1)). Thus

Z = {γ(0, 0, t) | t ∈ Z} .

The subgroup Z is discrete and also normal.

Note : (1) By a discrete group Γ is meant a group with a countable number of

elements and the discrete topology (every point is an open set). A discrete group is

a 0-dimensional Lie group. Closed 0-dimensional Lie subgroups of a Lie group are

usually called discrete subgroups. The following remarkable result holds : If Γ is a

discrete subgroup of a Lie group G, then the space of right (or left) cosets G/Γ is a

smooth manifold (and the natural projection G→ G/Γ is a smooth mapping).

(2) A subgroup N of G is normal if for any n ∈ N and g ∈ G we have gng−1 ∈ N .

A kernel of a homomorphism is normal. Conversely, if N is normal, we can define

the quotient group G/N whose elements are equivalence classes [g] of elements in

G, and two elements g, h are equivalent if and only if g = hn for some n ∈ N . The

multiplication is given by [g][h] = [gh] and the fact that N is normal says that this

is well-defined. Thus normal subgroups are exactly kernels of homomorphisms.

Hence we can form the quotient group

H (1)/Z

which is in fact a ( 3-dimensional) Lie group. (Its Lie algebra is h (1).)

The following result (which we will not prove) tells that the Lie group

H (1)/Z cannot be realized as a matrix group.

6.4.5 Proposition. There are no continuous homomorphisms ϕ : H (1)/Z →
GL (n,C) with trivial kernel.

6.5 Hamiltonian Vector Fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.6 Lie-Poisson Reduction

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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