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2 M4.3 - Geometry

1.1 Euclidean 3-Space

The Euclidean space, points, and vectors

Three-dimensional visual space S is often used in mathematics without being

formally defined. The “elements” of S are called points. In the usual sense,

we introduce Cartesian coordinates by fixing a point, called the origin, and

three (mutually orthogonal) coordinate axes. The choice of origin and of axes

is arbitrary, but once it has been fixed, three real numbers (or coordinates)

p1, p2, p3 can be measured to describe the position of each point p.

The one-to-one correspondence

p ∈ S 7→ (p1, p2, p3) ∈ R3

makes possible the identification of S with the set R3 of all ordered triplets

of real numbers. In other words, instead of saying that three numbers describe

the position of a point, we define them to be the point.

We make the following definition.

1.1.1 Definition. The (standard) Euclidean 3-space is the set R3 to-

gether with the Euclidean distance between points p = (p1, p2, p3) and q =

(q1, q2, q3) given by

d(p, q) =
√

(q1 − p1)2 + (q2 − p2)2 + (q3 − p3)2.

Note : Euclidean 3-space R3 is a model for the physical space. There are other

models for our Universe. The question of what is the most convenient geometry

with which to model physical space is an open one, and is the subject of intense

contemporary investigation and speculation.

Let p = (p1, p2, p3) and q = (q1, q2, q3) be two points of R3, and let λ be

a scalar (real number). The sum of p and q is the point

p+ q : = (p1 + q1, p2 + q2, p3 + q3)

and the scalar multiple of p by λ is the point

λp : = (λp1, λp2, λp3).
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Under these two operations (the usual addition and scalar multiplication), R3

is a vector space over R.

Note : The origin o = (0, 0, 0) plays the role of identity (with respect to addition).

The sum p+ (−1)q is usually written p− q.

We shall consider now the relationship between points and geometric vec-

tors in Euclidean 3-space R3.

Note : The concept of vector originated in physics from such notions as velocity,

acceleration, force, and angular momentum. These physical quantities are supplied

with length and direction; they can be added and multiplied by scalars.

Intuitively, a geometric vector v in R3 is represented by a directed line seg-

ment (or “arrow”) −→pq . Here we take the view that a geometric vector is really

the same thing as a translation in space.

Note : We can also take the view that we can describe an “arrow” (located at some

point) by giving the starting point and the change necessary to reach its terminal

point. This approach leads to the concept of (geometric) tangent vector and will be

considered in the next chapter.

We make the following definition.

1.1.2 Definition. A (geometric) vector in Euclidean 3-space R3 is a

mapping

v : R3 → R3, p 7→ v(p)

such that for any two points p and q, the midpoint of pv(q) is equal to the

midpoint of qv(p).

Thus, if v is a vector and p, q are two points, then the quadrilateral 2 pqv(q)v(p)

is a parallelogram (proper or degenerate).

� Exercise 1 Show that given two points p and q, there is exactly one vector

v such that v(p) = q.

This unique vector is denoted by −→pq . A vector −→pq is sometimes called a free

vector.
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Note : An alternative description is the following. Two directed line segments
−→pq and

−→
p′q′ (or, if one prefers, two ordered pairs of points (p, q) and (p′, q′) ) are

equivalent if the line segments −→pq and
−→
p′q′ are of the same length and are parallel in

the same sense. This relation, being reflexive, symmetric, and transitive, is a genuine

equivalence relation. Such an equivalence class of directed line segments (or, if one

prefers, of ordered pairs of points) is a vector. We denote the vector [−→pq ] simply

by −→pq . If p = (p1, p2, p3) and q = (q1, q2, q3), the components of the vector are

q1− p1, q2− p2, and q3− p3. Two vectors are equal if and only if they have the same

components.

� Exercise 2 Show that two directed line segments −→pq and
−→
p′q′ are equivalent

if and only if p+ q′ = p′ + q.

If p = (p1, p2, p3) and q = (q1, q2, q3), it is customary to represent the

vector v = −→pq by the 3× 1 matrixq1 − p1

q2 − p2

q3 − p3

 .
Let o be the origin of the Euclidean 3-space R3. Any point p ∈ R3 can be

described by means of the vector −→op (the position vector of the point p ).

Each point has a unique position vector, and each position vector describes a

unique point. Hence we set up a one-to-one correspondence between points

and geometric vectors in R3. It is convenient to identify

the point (p1, p2, p3) with the vector

p1

p2

p3

 .
Note : An element of Euclidean 3-space E3 can be considered (or represented)

either as an ordered triplet of real numbers or as a column 3-matrix with real entries.

In other words, we can think of the Euclidean 3-space as either the set of all its points

or the set of all its (geometric) vectors.

� Exercise 3 Explain why the identification of the vector v = −→pq with the

point q − p is legitimate.
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The (vector) space R3 has a built-in standard inner product (i.e., a non-

degenerate symmetric bilinear form). For v, w ∈ R3, the dot product of (the

vectors) v and w is the number (scalar)

v • w : = v1w1 + v2w2 + v3w3.

The dot product is a positive definite inner product; that is, it has the following

three properties (for v, v′, w ∈ R3 and λ, λ′ ∈ R) :

(IP1) (λv + λ′v′) • w = λ(v • w) + λ′(v′ • w) (linearity);

(IP2) v • w = w • v (symmetry);

(IP3) v • v ≥ 0, and v • v = 0 ⇐⇒ v = 0 (positivity).

� Exercise 4 Given v, w ∈ R3, show that

(v • w)2 ≤ (v • v)(w • w).

This inequality is called the Cauchy-Schwarz inequality.

Write

‖v‖ : =
√
v • v =

√
v2

1 + v2
2 + v2

3

and call it the norm (or length) of (the vector) v. A vector with unit norm

is called a unit vector.

Note : In view of our definition, we can rewrite the Cauchy-Schwarz inequality in

the form

|v • w| ≤ ‖v‖ ‖w‖.

The norm (more precisely, the norm function v ∈ R3 7→ ‖v‖ ∈ R ) has the

following properties (for v, w ∈ R3 and λ ∈ R) :

(N1) ‖v‖ ≥ 0, and ‖v‖ = 0 ⇐⇒ v = 0 (positivity);

(N2) ‖λv‖ = |λ| ‖v‖ (homogeneity);

(N3) ‖v + w‖ ≤ ‖v‖+ ‖w‖ (the triangle inequality).

� Exercise 5 Let v, w ∈ R3. Verify the following properties.
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(a) Polarization identity : v •w = 1
4

(
‖v + w‖2 − ‖v − w‖2

)
, which expresses

the standard inner product in terms of the norm.

(b) Parallelogram identity : ‖v+w‖2 + ‖v−w‖2 = 2
(
‖v‖2 + ‖w‖2

)
. That is,

the sum of the squares of the diagonals of a parallelogram equals the sum

of the squares of the sides.

� Exercise 6 Given v, w ∈ R3, prove the Pythagorean property

v • w = 0 ⇐⇒ ‖v ± w‖2 = ‖v‖2 + ‖w‖2.

In terms of the norm we get a compact version of the (Euclidean) distance

formula :

d(p, q) = ‖v − w‖ with v = −→op and w = −→oq .

In other words, ‖v − w‖ represents the distance between two points with

position vectors v and w.

� Exercise 7 Verify that the Euclidean distance satisfies the following properties

(the axioms for a metric):

(M1) d(p, q) ≥ 0, and d(p, q) = 0 ⇐⇒ p = q ;

(M2) d(p, q) = d(q, p) ;

(M3) d(p, r) ≤ d(p, q) + d(q, r).

Relation (M3) is also known as the triangle inequality.

Note : Euclidean 3-space R3 is not only a vector space. It is also a metric space.

It is important to realize that the Euclidean distance is completely determined by the

dot product; indeed,

d(p, q) =
√

(q − p) • (q − p) (p, q ∈ R3).

However, not any distance function is associated with an inner product. A (real)

vector space endowed with a specific (positive definite) inner product is called an

inner product space.

Let v and w be two nonzero vectors of R3. The Cauchy-Schwarz inequal-

ity permits us to define the cosine of the angle θ, 0 ≤ θ ≤ π between v and

w by the equation

v • w = ‖v‖ ‖w‖ cos θ.
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Thus the dot product of two vectors is the product of their lengths times the

cosine of the angle between them. If θ = 0 or θ = π, the vectors v and w

are said to be collinear, whereas if θ = π
2 , the vectors are called orthogonal.

Note : We regard the zero vector as both collinear with and orthogonal to every

vector. Clearly, vectors v and w are orthogonal if and only if v • w = 0.

� Exercise 8 Given a nonzero vector w, show that vectors v and w are collinear

if and only if v = λw for some λ ∈ R.

There is another product on the Euclidean 3-space R3, second in impor-

tance only to the dot product. For v, w ∈ R3, the cross product of v and

w is the vector

v × w : =

v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

 .
An easy way to remember this formula is to compute the “determinant”

v × w =

∣∣∣∣∣∣∣
e1 e2 e3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣
by formal expansion along the first row. Here e1, e2, e3 denote the standard

unit vectors

e1 =

1

0

0

 , e2 =

0

1

0

 , and e3 =

0

0

1

 .
Note : The vectors e1, e2, e3 are lineary independent, and hence form a (orthonor-

mal) basis of the vector space R3. Any vector v ∈ R3 can be expressed uniquely as

a linear combination of the standard unit vectors e1, e2, e3 :

v =

v1

v2

v3

 = v1

1

0

0

+ v2

0

1

0

+ v3

0

0

1

 = v1e1 + v2e2 + v3e3.

Familiar properties of determinants show that the cross product (also called

vector product) is a skew-symmetric bilinear mapping; that is, it has the fol-

lowing properties (for v, v′, w ∈ R3 and λ ∈ R) :
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(VP1) (v + v′)× w = v × w + v′ × w (additivity);

(VP2) λ(v × w) = (λv)× w (homogeneity);

(VP3) v × w = −w × v (skew-symmetry).

Hence, in particular, v × v = 0.

� Exercise 9 Show that

v • (v × w) = 0 and w • (v × w) = 0.

Therefore, the cross product of two vectors is a vector orthogonal to both of them.

� Exercise 10 Verify (by tedious computation) the following formula known as

the Lagrange identity :

‖v × w‖2 = ‖v‖2‖w‖2 − (v • w)2.

Note : The geometric usefulness of the cross product is based mostly on this result.

A more intuitive description of the length of a cross product is

‖v × w‖ = ‖v‖ ‖w‖ sin θ

where θ is the angle between v and w. The direction of v × w on the straight line

orthogonal to v and w is given, for practical purposes, by the so-called “right-hand

rule”: if the fingers of the right hand point in the direction of the shortest rotation of

v to w, then the thumb points in the direction of v × w.

� Exercise 11 Show that vectors v and w are collinear if and only if v×w = 0.

Combining the dot and cross product, we get the triple scalar product of

three vectors u, v, and w : u•v×w. Parantheses are unnecessary : u•(v×w)

is the only possible meaning.

� Exercise 12 Given vectors u, v, and w, show that

u • v × w = v • w × u = w • u× v =

∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ .
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� Exercise 13 Let v, w ∈ R3. Show that the only vector x ∈ R3 such that

u • x is equal to the determinant det
[
u v w

]
for all u ∈ R3 is x = v × w.

� Exercise 14 Given vectors u, v, and w, show that

(u× v)× w = (u • w)v − (v • w)u.

Deduce the Jacobi identity :

(u× v)× w + (v × w)× u+ (w × u)× v = 0.

� Exercise 15 Let v1, v2, w2, w2 ∈ R3. Verify the following identities.

(a) (v1 × v2) • (w1 × w2) = det
[
v1 × v2 w1 w2

]
.

(b) (v1 × v2)× (w1 × w2) = det
[
v1 w1 w2

]
v2 − det

[
v2 w1 w2

]
v1.

Geometric transformations

One of the most important concepts in geometry is that of a transforma-

tion.

Note : Moving geometric figures around is an ancient and natural approach to

geometry. However, the Greek emphasis on synthetic geometry and constructions

and much later the development of analytic geometry overshadowed transformational

thinking. The study of polynomials and their roots in the early nineteenth century

led to algebraic transformations and abstract groups. At the same time, August

Ferdinand Möbius (1790-1868) began studying geometric transformations. In the

late nineteenth century, Felix Klein (1849-1925) and Sophus Lie (1842-1899)

showed the central importance of both groups and transformations for geometry.

Generally speaking, a geometric transformation is merely a mapping be-

tween two sets. However, these sets are assumed to be, in a certain sense,

geometrical; they are equipped with some additional structure and are usually

referred to as “spaces”. We shall find it convenient to use the word transfor-

mation ONLY IN THE SPECIAL SENSE of a bijective mapping of a set (space)

onto itself. Groups of transformations form the heart of geometry.

We make the following definition.
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1.1.3 Definition. A (geometric) transformation on R3 is a mapping

from R3 to itself that is one-to-one and onto.

Note : Hereafter, in this chapter, all the definitions and results hold for R3 as

well as for the Euclidean plane R2. We shall only discuss the case of R3, and consider

the case of R2 as a special case.

Let T be a transformation on R3. Then T can be visualized as “moving”

(or transforming) each point p ∈ R3 to its unique image T (p) ∈ R3. Given

two transformations T and S, their composition (T followed by S)

ST : R3 → R3, p 7→ S(T (p))

is called the product of S with T .

� Exercise 16 Verify that the product of two transformations is a transforma-

tion.

The identity transformation I is defined by

I : R3 → R3, p 7→ p.

For any transformation T on R3, TI = IT = T . Every transformation T

has a unique inverse T−1.

� Exercise 17 Given two transformations T and S, show that

(ST )
−1

= T−1S−1.

The set of all transformations on R3 is a (transformation) group. Various

sets of transformations corespond to important geometric properties and also

form groups.

Note : Felix Klein in his famous Erlanger Programm (1872) used groups of

transformations to give a definition of geometry : Geometry is the study of those

properties of a set that are preserved under a group of transformations on that set.

Klein showed that various non-Euclidean geometries, projective geometry, and Eu-

clidean geometry were closely related, not competing subjects. He realized that we

can, for example, investigate the properties of Euclidean geometry by studing isome-

tries (i.e., distance-preserving transformations).
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1.2 Linear Transformations

Linear transformations (on R3 ) are structure-preserving transformations on

the vector space R3. The structure that must be preserved is that of vector

addition and scalar multiplication (of which the geometric analogues are the

parallelograms with one vertex at the origin and straight lines through the

origin, respectively).

1.2.1 Definition. A transformation T : R3 → R3 is a linear transfor-

mation if, for all x, y ∈ R3 and all λ ∈ R,

(L1) T (x+ y) = T (x) + T (y);

(L2) T (λx) = λT (x).

Note : The terms function, mapping, map, and transformation are commonly used

interchangeably. However, in studying geometric objects (particularly, on smooth

manifolds), it is often convenient to make slight distinctions between them. Thus, we

will reserve the term “function” for a map whose range is R (i.e., a real-valued map),

whereas the terms “map” or “mapping” can mean any type of map. Furthermore,

invertible maps (or mappings) – on some structured sets – will be referred to as

“transformations”. Typical transformations are structure-preserving bijections on

structured sets of a certain kind. (In modern algebraic parlance, such transformations

are usually called automorphisms.)

Addition and scalar multiplication of linear transformations are defined in

the usual way. That is, for (linear) transformations S, T and scalar λ ∈ R,

(S + T ) (x) : = S(x) + T (x)

(λT ) (x) : = λT (x).

� Exercise 18 Is the sum of any two linear transformations a linear transfor-

mation ? Justify your answer.

� Exercise 19 Verify that, under the usual product, the set of all linear trans-

formations on R3 is a (transformation) group.
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Let {e1, e2, e3} be the standard basis of R3 and let T be a linear trans-

formation on R3. Then we have, uniquely,

T (ei) = a1ie1 + a2ie2 + a3ie3, i = 1, 2, 3.

So we can associate to T a 3× 3 matrix with real entries

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
Notice that the image of ei under T is the ith column of the matrix A; that

is, A =
[
T (e1) T (e2) T (e3)

]
. We can write

T (x) = T (x1e1 + x2e2 + x3e3) = x1T (e1) + x2T (e2) + x3T (e3)

= x1(a11e1 + a21e2 + a31e3) + x2(a12e1 + a22e2 + a32e3) +

x3(a13e1 + a23e2 + a33e3)

= (a11x1 + a12x2 + a13x3)e1 + (a21x1 + a22x2 + a23x3)e2 +

(a31x1 + a32x2 + a33x3)e3

=

a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3

 =

a11 a12 a13

a21 a22 a23

a31 a32 a33


x1

x2

x3


= Ax.

Consider now two linear transformations T and S with associated ma-

trices (with respect to the standard basis of R3 ) A =
[
aij

]
and B =

[
bij

]
,

respectively. Then the product ST is a linear transformation whose asso-

ciated matrix is C = BA (the matrix product of B and A). Indeed, we

have

Cx = ST (x) = S (T (x)) = S(Ax) = B(Ax) = (BA)x.

� Exercise 20 Show that the matrix associated with a linear transformation is

nonsingular (i.e., invertible).

Let GL (3,R) be the set of all nonsingular 3×3 matrices with real entries.

Under the usual matrix multiplication, GL (3,R) is a group.
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� Exercise 21 Show that the group of all linear transformations on R3 is iso-

morphic to the group GL (3,R).

Either one of these groups is called the general linear group. Given

a matrix A ∈ GL (3,R), the transformation T, x 7→ Ax is the only linear

transformation whose associated matrix is A. We say that the matrix A

represents the linear transformation T . It is convenient to identify

the linear transformation T, x 7→ Ax with the (nonsingular) matrix A.

Henceforth, the same symbol will be used to denote a linear transformation

and its associated matrix. Thus, for instance, I will denote the identity

transformation x 7→ x as well as the identity matrix

[
δij

]
=

1 0 0

0 1 0

0 0 1

 .
Note : The notation Ax stands for both the image of (the point) x under the

linear transformation A and the matrix product of the (nonsingular) matrix A by

the column matrix (vector) x.

Orthogonal transformations

Recall that the Euclidean 3-space R3 has a built-in inner product. Inner-

product-preserving transformations form an important class of (linear) trans-

formations.

1.2.2 Definition. A linear transformation A, x 7→ Ax is an orthogonal

transformation if it preserves the inner-product between any two vectors;

that is, for all x, y ∈ R3,

Ax •Ay = x • y.

Let A and B be two orthogonal transformations. Then their product

BA is also an orthogonal transformation. Indeed, for all vectors x, y ∈ R3,

(BA)x • (BA)y = B(Ax) •B(Ay) = Ax •Ay = x • y.
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� Exercise 22 Verify that the inverse of an orthogonal transformation is also

an orthogonal transformation.

The set of all orthogonal transformations on R3 is a (transformation) group.

1.2.3 Definition. A 3×3 matrix (with real entries) A is called orthog-

onal if

A>A = I,

where A> is the transpose of A.

Note : If the matrix A =
[
aij

]
is orthogonal, then (and only then)

a1ia1j + a2ia2j + a3ia3j = δij , i, j = 1, 2, 3.

Thus the vectors (the columns of the matrix)

ai : =

a1i

a2i

a3i

 , i = 1, 2, 3

have unit length and are orthogonal to one another :

‖a1‖ = ‖a2‖ = ‖a3‖ = 1 and ai • aj = 0 (i 6= j).

(This can be written, in a more compact form, as ai • aj = δij , i, j = 1, 2, 3.)

Hence {a1, a2, a3} is an orthonormal basis for R3.

� Exercise 23 Show that any orthogonal matrix is nonsingular.

� Exercise 24 Let A ∈ GL (3,R). Show that

A>A = I ⇐⇒ AA> = I ⇐⇒ A−1 = A>.

Let O (3) be the set of all orthogonal matrices. Thus

O (3) : = {A ∈ GL (3,R) |A>A = I}.

� Exercise 25 Show that O (3) is a subgroup of the general linear group GL (3,R).



C.C. Remsing 15

1.2.4 Proposition. A linear transformation A, x 7→ Ax is an orthogonal

transformation if and only if the matrix A is orthogonal.

Proof : (⇒ ) Suppose the transformation A, x 7→ Ax is orthogonal.

Then we have

δij = ei • ej = Aei •Aej
= (Aei)

>Aej = e>i (A>A)ej

= (A>A)ij

and hence the matrix A is orthogonal.

(⇐ ) Conversely, suppose the matrix A is orthogonal. Then

Ax •Ay = (Ax)>Ay = x>(A>A)y = x>Iy = x • y

and thus the transformation x 7→ Ax is orthogonal. 2

The group of all orthogonal transformations is isomorphic to the group

O (3). Either one of these groups is called the orthogonal group. Those

elements of O (3) which have determinant equal to +1 form a subgroup of

O (3), denoted by SO (3) and called the special orthogonal group.

1.2.5 Proposition. An orthogonal transformation A, x 7→ Ax preserves

the distance between any two points; that is, for all x, y ∈ R3,

d (Ax,Ay) = d(x, y).

Proof : First we show that A preserves norms. By definition, ‖x‖2 = x•x
and hence

‖Ax‖2 = Ax •Ax = x • x = ‖x‖2.

Thus ‖Ax‖ = ‖x‖ for all (vectors) x ∈ R3. Since A is linear, it follows that

d (Ax,Ay) = ‖Ax−Ay‖ = ‖A(x− y)‖ = ‖x− y‖ = d(x, y).

2

Note : The orthogonal groups O (2) and O (3) were first studied, by the number

theorists of the eighteenth century, as the groups of transformations preserving the

quadratic form ξ2
1 + ξ2

2 or ξ2
1 + ξ2

2 + ξ2
3 , respectively.
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Rotations and reflections

If A ∈ O (2), then the columns of A are unit vectors and are orthogonal

to one another. Suppose

A =

[
a1 a3

a2 a4

]
.

Then the point (a1, a2) lies on the unit circle S1 giving

a1 = cos θ and a2 = sin θ

for some θ satisfying 0 ≤ θ < 2π. As the vector

[
a3

a4

]
is at right angles to[

a1

a2

]
and (as a point) also lies on the unit circle S1, we have

a3 = cosϕ and a4 = sinϕ

where either ϕ = θ + π
2 or ϕ = θ − π

2 · In the first case we obtain[
cos θ − sin θ

sin θ cos θ

]

which is an element of SO (2) and represents a rotation about the origin (more

precisely, a counterclockwise rotation about the origin through the angle θ).

The second case gives [
cos θ sin θ

sin θ − cos θ

]
which has determinant −1 and represents a reflection in a line through the

origin (more precisely, a reflection in a line through the origin at angle θ
2 to

the positive x1-axis).

Therefore, a 2 × 2 orthogonal matrix represents either a rotation of the

plane about the origin or a reflection in a line through the origin, and the

matrix has determinant +1 precisely when it represents a rotation.

Note : The group SO (2) is often referred to as the rotation group. SO (2) is in

fact the unit circle S1 in disguise. (Each point on the unit circle has the form eiθ,

where 0 ≤ θ < 2π and hence corresponds to an angle.)
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� Exercise 26 Show that the mapping

eiθ 7→

[
cos θ − sin θ

sin θ cos θ

]

is an isomorphism from S1 to SO (2). (Here S1 = {z ∈ C | |z| = 1} is considered as

a subgroup of the multiplicative group C× of complex numbers.)

� Exercise 27 Let

Aθ =

[
cos θ − sin θ

sin θ cos θ

]
and Bϕ =

[
cosϕ sinϕ

sinϕ − cosϕ

]
.

(a) Verify that

AθAϕ = Aθ+ϕ, AθBϕ = Bθ+ϕ, BθAϕ = Bθ−ϕ, BθBϕ = Aθ−ϕ

where the angles in the matrices are read modulo 2π. Interpret these

results geometrically.

(b) Work out the products

AθBϕA
−1
θ , BϕAθBϕ, AθBϕA

−1
θ Bϕ.

Evaluate each of these when θ = π
3 and ϕ = π

2 ·

Rotations of the Euclidean space about any one of the coordinate axes are

similar to those of the plane (about the origin). The three basic types are

(realized by the following orthogonal matrices) :

R(e1, θ) = R1(θ) =

1 0 0

0 cos θ − sin θ

0 sin θ cos θ



R(e2, θ) = R2(θ) =

 cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



R(e3, θ) = R3(θ) =

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

 .
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Note : The minus sign appears above the (main) diagonal in R1 and R3, but

below the diagonal in R2. This is not a “mistake” : it is due to the orientation of the

positive x1-axis with respect to the x2x3-plane. Clearly, Ri(θ) ∈ SO (3), i = 1, 2, 3.

It can be shown that any rotation x 7→ Ax of R3 which fixes the origin

can be written as a product of just three of these elementary rotations :

A = R1(θ)R2(ϕ)R3(ψ).

(The independent parameters θ, ϕ, ψ are called the Euler angles for the given

rotation.)

It follows that

1.2.6 Proposition. Every rotation of R3 which fixes the origin can be

represented by a matrix in SO (3).

Now suppose that A ∈ SO (3). The characteristic polynomial charA(λ) =

det (λI − A) is cubic and therefore must have at least one real root. That is

to say, A has a real eigenvalue. As the product of the eigenvalues of a matrix

is the determinant of the matrix, we see that +1 is an eigenvalue of A.

� Exercise 28 Show that every A ∈ SO (3) has an eigenvalue equal to +1.

Note : The other two eigenvalues are complex conjugate and have absolute value

1, so they can be written as eiθ and e−iθ for some θ ∈ R.

If w is a corresponding eigenvector (i.e., Aw = w), the line through the

origin determined by w is invariant under (the linear transformation) A. Also

since A preserves right angles, it must send the plane which is orthogonal to

w, and which contains the origin, to itself.

� Exercise 29 Check that the set (plane) w⊥ = {y ∈ E3 | y•w = 0} is invariant

under (the orthogonal transformation) A; that is, A(w⊥) = w⊥.

Construct an orthonormal basis for R3 which has the unit vector 1
‖w‖w as

first member. The matrix of x 7→ Ax with respect to this new basis will be
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of the form 1 0 0

0 a1 a3

0 a2 a4

 =

[
1 0

0 R

]
.

Since R ∈ SO (2), x 7→ Ax is a rotation with axis determined by w.

Therefore, each matrix in SO (3) represents a rotation of R3 about an

axis which passes through the origin.

Note : Every element (rotation) A ∈ SO (3) can be written as

A = R(w, θ)

= P R(e1, θ)P
−1

for some w, θ, and P ∈ SO (3). (We say that A and R(e1, θ) are conjugate in

SO (3).) The eigenvector w determines the axis of the rotation (i.e., the unique line

through the origin which is left fixed). The angle of rotation is obtained from the

other two eigenvectors. (In fact, θ is given by the eigenvalue eiθ .)

� Exercise 30 Let A = R(w, θ) ∈ SO (3).

(a) Show that

A−A> =

 0 c b

−c 0 a

−b −a 0

 and w ∈ ker
(
A−A>

)
.

Hence deduce that (for θ 6= 0, π)

w = λ

−ab
−c

 .
(b) Show that

trA = 1 + 2 cos θ.

(So we can solve for cos θ from the trace of A. However, we don’t know

without further investigation if the rotation is clockwise or counterclock-

wise about w.)
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� Exercise 31 Show that the matrices1 0 0

0 −1 0

0 0 −1

 and

 2/3 1/3 2/3

−2/3 2/3 1/3

−1/3 −2/3 2/3


both represent rotations, and then find axes and angles for these rotations.

� Exercise 32 Let A ∈ SO (3) and w ∈ E3 such that ‖w‖ = 1. Show that, for

all x, y ∈ E3 and θ ∈ R,

(a) Ax×Ay = A(x× y) ;

(b) w • (R(w, θ)x− x) = 0 ;

(c) AR(w, θ)A−1 = R(Aw, θ).

(Hint : The cross product x×y can be characterized as the unique vector such that

w • x× y = det
[
w x y

]
for every vector w. See Exercise 13.)

Note : The group SO (3) is often referred to as the rotation group. SO (3) and

the sphere S3 are not the “same” (i.e., they are not isomorphic groups). It is an

interesting fact that S0 = {−1, 1}, S1, and S3 are the only spheres which can be

groups.

If A lies in O (3) but not in SO (3), then AS ∈ SO(3) where

S =

1 0 0

0 1 0

0 0 −1

 .
The matrix S represents a reflection in the x1x2-plane (identified with the

Euclidean plane R2 ). We write

A = (AS)S.

As above, the transformation x 7→ ASx is a rotation. Consequently, A is a

reflection (in the x1x2-plane) followed by a rotation.
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� Exercise 33 Complete the entries in the matrix
1√
2

0 ·
0 1 ·
− 1√

2
0 ·


to give an element of SO (3), and to give an element of O (3) \ SO (3). Describe the

(linear) trasformations represented by these matrices.

� Exercise 34 Let c ∈ R3 such that ‖c‖ = 1. Prove that the correspondence

x 7→ c× x+ (c • x)c

defines an orthogonal transformation. Describe its general effect on R3.

1.3 Translations and Affine Transformations

Let c ∈ R3 be a vector and let Tc be the mapping that adds c to every point

of R3. This mapping is one-to-one and onto and hence a transformation.

1.3.1 Definition. The transformation

Tc : R3 → R3, x 7→ x+ c

is called the translation by vector c.

Note : A nonidentity translation is not a linear transformation.

� Exercise 35 Show that given two points p, q ∈ R3, there exists a unique

translation T such that T (p) = q.

The inverse of the translation Tc, x 7→ x+ v is the translation T−1
c , x 7→

x− c. Thus,

T−1
c = T−c.

� Exercise 36 Verify that the product of two translations is also a translation.

The set of all translations on R3 is a (transformation) group. This group is

isomorphic to the additive group (also denoted by R3 ) of (the vectors of) R3.

Either one of these groups is called the translation group.
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1.3.2 Proposition. A translation T = Tc, x 7→ x + c preserves the dis-

tance between any two points; that is, for all x, y ∈ R3,

d(T (x), T (y)) = d(x, y).

Proof : We have

d(T (x), T (y)) = ‖T (x)− T (y)‖ = ‖x+ c− (y + c)‖ = ‖x− y‖ = d(x, y).

2

1.3.3 Definition. An affine transformation F on R3 is a linear trans-

formation followed by a translation; that is, a transformation of the form

F : R3 → R3, F = TA

where A, x 7→ Ax is a linear transformation, and T = Tc, x 7→ x + c is a

translation. A is called the linear part of F , and T the translation part of

F .

For every x ∈ R3,

F (x) = Ax+ c.

Note : The pair (c, A) ∈ R3 × GL (3,R) represents the affine transformation

F, x 7→ Ax+ c.

Affine transformations F, x 7→ Ax+ c, include the linear transformations

(with c = 0 ) and the translations (with A = I). Let F, x 7→ Ax + c and

G, x 7→ Bx+ d be two affine transformations. Then (for x ∈ R3 )

GF (x) = G(F (x)) = B (Ax+ c) + d = (BA)x+Bc+ d

and thus the product of G with F is also an affine transformation.

� Exercise 37 Show that the inverse of an affine transformation is also an affine

transformation.

The set of all affine transformations on R3 is a (transformation) group, which

contains as subgroups the general linear group GL (3,R) and the translation

group R3.
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Note : Affine transformations preserve lines, parallelism, betweeness, and propor-

tions on lines. Affine transformations can distort shapes. However, there is a limit

to the amount of distortion : a convex set is always mapped to a convex set. (The

converse holds as well : Transformations on R3 that preserve convexity are affine

transformations.)

Any affine transformation (on R3 ) is represented by a pair (c, A) ∈ R3 ×

GL (3,R) which we can write further as a 4 × 4 matrix

[
1 0

c A

]
. Call such

a matrix an affine matrix. Let GA (3,R) be the set of all affine matrices.

Thus

GA (3,R) : =

{[
1 0

c A

]
| c ∈ R3, A ∈ GL (3,R)

}
.

� Exercise 38 Show that GA (3,R) is a group.

The group of all affine transformations on R3 is isomorphic to the group

GA (3,R). Either of these groups is called the general affine group.

Note : In R3, of special interest are the affine transformations x 7→ Ax+ c with

detA = 1. These transformations also form a group..

1.4 Isometries

Isometries (on Euclidean 3-space R3 ) are distance-preserving transformations

on the metric space R3. They do not change the distance between points as the

transformations move these points. Isometries are the dynamic counterpart

to the Euclidean notion of congruence.

1.4.1 Definition. A transformation F : R3 → R3 is an isometry (or

rigid motion) if it preserves the distance between any two points; that is, for

all x, y ∈ R3,

d(F (x), F (y)) = d(x, y).

Orthogonal transformations and translations are isometries. If F is an isom-

etry, then (for x, y ∈ R3)

d(F−1(x), F−1(y)) = d(FF−1(x), FF−1(y)) = d(x, y)
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and thus the inverse F−1 is also an isometry.

� Exercise 39 Verify that the product of two isometries is also an isometry.

The set of all isometries on R3 is a (transformation) group, which contains as

subgroups the orthogonal group O (3) and the translation group R3.

1.4.2 Proposition. If F is an isometry on R3 such that F (0) = 0, then

F is an orthogonal transformation.

Proof : For any (vector) x ∈ R3,

‖F (x)‖ = d(0, F (x)) = d(F (0), F (x)) = d(0, x) = ‖x‖.

Let x, y ∈ R3. Then we have

‖F (x)− F (y)‖ = d(F (x), F (y)) = d(x, y) = ‖x− y‖

which implies

(F (x)− F (y)) • (F (x)− F (y)) = (x− y) • (x− y)

or

‖F (x)‖2 − 2F (x) • F (y) + ‖F (y)‖2 = ‖x‖2 − 2x • y + ‖y‖2.

Thus we have

F (x) • F (y) = x • y

so that F preserves the inner product of any two vectors.

It remains to prove that F is a linear transformation. Let x ∈ R3. Then

(with respect to the standard basis)

x = x1e1 + x2e2 + x3e3.

Since {e1, e2, e3} is an orthonormal basis (and F preserves the inner product

of any two vectors), it follows that {F (e1), F (e2), F (e3)} is also an orthonor-

mal basis so that

F (x) = x̄1F (e1) + x̄2F (e2) + x̄3F (e3).
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Taking the inner product of both sides with F (ei), we get

x̄i = F (x) • F (ei) = x • ei = xi, i = 1, 2, 3.

Hence

F (x) = x1F (e1) + x2F (e2) + x3F (e3)

and we can easily check the linearity conditions (L1) and (L2). 2

1.4.3 Theorem. If F is an isometry on R3, then there exists a unique

orthogonal transformation A, x 7→ Ax and a unique translation T = Tc, x 7→
x+ c such that

F = TA.

A is called the orthogonal part of F , and T the translation part of F .

Proof : Let T be the translation by vector c = F (0). Then T−1 is the

translation by vector −c = −F (0), and so T−1F is an isometry. Furthermore,

T−1F (0) = T−1(F (0)) = F (0)− F (0) = 0.

Thus T−1F is an orthogonal transformation, say T−1F = A, from which

follows immediately F = TA.

To prove the required uniqueness, suppose F = T̄ Ā, where T̄ is a trans-

lation and Ā is an orthogonal transformation. Then

TA = T̄ Ā

so that A = T−1T̄ Ā. Since A and Ā are linear transformations, A(0) =

Ā(0) = 0. It follows that T−1T̄ = I (the identity transformation), so that

T̄ = T , which implies Ā = A. 2

Note : We see that an isometry on R3 is a special affine transformation. Inter-

mediate between isometries and affine transformations are similarities, the transfor-

mations corresponding to similar figures. Similarities preserve betweeness, segments,

angle measure, and the proportions of all distances. The set of all similarities on R3

is a subgroup GE (3) of the general affine group, called the general Euclidean group.

A similarity that is not an isometry is either a dilation or a dilative rotation (spiral).
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The group of all isometries on R3 is (isomorphic to) a subgroup of the

general affine group GA (3,R), denoted by E (3). We have

E (3) =

{[
1 0

c A

]
| c ∈ R3, A ∈ O (3)

}
.

Either one of these groups is called the Euclidean group.

Note : The Euclidean group E (3) is generated by reflections. Each isometry

on R3 is exactly one of the following : translation, rotation, glide rotation (screw),

reflection, glide reflection, or rotary reflection. In the case of the plane, an element

of E (2) is exactly one of the following : translation, rotation, reflection, or glide

reflection.

Orientation

We now come to one of the most interesting and elusive ideas in geometry.

Intuitively, it is orientation that distinguishes between a right-handed glove

and a left-handed glove in ordinary space. We shall not formalize this concept

now.

Note : To handle the concept of orientation mathematically, we replace “gloves”

by orthonormal bases (in fact, frames) and separate all these orthonormal bases of

R3 into two classes : positively-oriented (or right-handed) and negatively-oriented

(or left-handed).

Let F, x 7→ Ax + c be an isometry on R3. Since (the matrix) A is

orthogonal, its determinant is either +1 or −1. We define the sign of F to

be the determinant of A, with notation

sgnF : = detA.

1.4.4 Definition. An isometry F, x 7→ Ax+ c is said to be

• direct (or orientation-preserving) if sgnF = +1;

• opposite (or orientation-reversing) if sgnF = −1.
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All translations are orientation-preserving. Intuitively this is clear. In fact,

the orthogonal part of a translation T is just the identity transformation I,

and so sgnT = det I = +1.

� Exercise 40 Consider the orthogonal transformation R1(θ) represented by

the matrix 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

 .
Show that R1(θ) is orientation-preserving.

1.4.5 Example. One can (literally) see reversal of orientation by using a

mirror. Suppose the x2x3-plane of R3 is the mirror. If one looks toward the

plane, the point p = (p1, p2, p3) appears to be located at the point

S(p) = (−p1, p2, p3).

The transformation S, p 7→ S(p) is the reflection in the x2x3-plane. Ev-

idently, S is an orthogonal transformation represented by the (orthogonal)

matrix −1 0 0

0 1 0

0 0 1

 .
Thus S is an orientation-reversing isometry, as confirmed by the experimental

fact that the mirror image of the right hand is a left hand.

Recall that an isometry is also called a rigid motion. If this is the case, a

direct isometry is referred to as a proper rigid motion. The set of all direct

isometries (or proper rigid motions) on R3 is a (transformation) group. This

group is (isomorphic to) a subgroup of the Euclidean group E (3), denoted by

SE (3). We have

SE (3) : =

{[
1 0

c A

]
| c ∈ R3, A ∈ SO (3)

}
.

Either one of these groups is called the special Euclidean group.
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Note : The orientation-preserving isometries on R3 are precisely the translations,

rotations, and glide rotations (screws). In the case of the plane, the elements of the

special Euclidean group SE (2) are the translations and the rotations.

1.5 Galilean Transformations

Galilean spacetime

Newtonian mechanics takes place in a Galilean spacetime. Let R3 be the

Euclidean 3-space and let R×R3 denote the (standard) Galilean spacetime.

Elements of R× R3 are called events.

Note : R × R3 is a model for spatio-temporal world of Newtonian mechanics.

The Newtonian world is comprised of objects sitting in a Universe (i.e., a Galilean

spacetime) and interacting with one another in a way consistent with the Galilean

relativity principle (which states that for a closed system in Galilean spacetime the

governing physical laws are invariant under Galilean transformations). In particular,

determinacy principle says that to “see” what will happen in the Universe, one need

only specify initial conditions for the ODEs of Newtonian mechanics, and all else

follows, at least in principle.

Given two events ξ = (t, x) = (t, (x1, x2, x3)) and ξ′ = (t′, x′) = (t′, (x′1, x
′
2, x
′
3)),

the time between these events is

t (ξ, ξ′) : = t′ − t.

The distance between simultaneous events (t, x) and (t, x′) is then

d ((t, x), (t, x′)) : = ‖x′ − x‖ =
√

(x′1 − x1)2 + (x′2 − x2)2 + (x′3 − x3)2,

where ‖ · ‖ is the (standard) Euclidean norm on R3.

Note : Distance between events that are not simultaneous cannot be measured.

In particular, it does not make sense to talk about two non-simultaneous events as

ocurring in the same place (i.e., as separated by zero distance). The picture one

should have in mind for a Galilean spacetime is of it being a union of simultaneous

events, nicely stacked together. We write

R× R3 =
⋃
t∈R
{t} × R3 : =

⋃
t∈R

R3
t .
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That one cannot measure distance between non-simultaneous events reflects there

being no natural direction transverse to the stratification by simultaneous events.

Galilean transformations

Galilean transformations are structure-preserving transformations on the

Galilean spacetime. They preserve simultaneity of events and do not change

the distance between simultaneous events.

1.5.1 Definition. An affine transformation F : R × R3 → R × R3 is a

Galilean transformation if it preserves the time between any two events and

the distance between any two simultaneous events; that is, for all ξ, ξ′ ∈ R×R3,

t (F (ξ), F (ξ′)) = t (ξ, ξ′)

and, for all t ∈ R and ξ, ξ′ ∈ R3
t ,

d (F (ξ), F (ξ′)) = d (ξ, ξ′).

Let F, (t, x) 7→ A(t, x) + (ζ, c) be a Galilean transformation. Let us write

A(t, x) + (ζ, c) =

[
A11 A12

A21 A22

][
t

x

]
+

[
ζ

c

]

=

[
A11t+A12x+ ζ

A21t+A22x+ c

]
= (A11t+A12x+ ζ,A21t+A22x+ c)

where A11 ∈ R and A22 ∈ GL (3,R).

� Exercise 41 Show that if

(t, x) 7→ (A11t+A12x+ ζ, A21t+A22x+ c)

is a Galilean transformation, then

A11 = 1, A12 =
[
0 0 0

]
, A21 = v ∈ R3×1, A22 ∈ O (3).
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Any Galilean transformation

(t, x) 7→ (t+ ζ, Rx+ tv + c)

where ζ ∈ R, c, v ∈ R3×1, and R ∈ O (3), may be written in matrix form as[
t

x

]
7→

[
1 0

v R

][
t

x

]
+

[
ζ

c

]
.

� Exercise 42 Show that the set of all Galilean transformations is a (transfor-

mation) group.

The following basic Galilean transformations

• (t, x) 7→ (t+ ζ, x+ c) (shift of origin);

• (t, x) 7→ (t, x+ tv) (velocity boost);

• (t, x) 7→ (t, Rx) (“rotation” of reference frame)

can be used to generate the whole set (group) of Galilean transformations.

Note : The names given to these basic Galilean transformations are suggestive. A

shift of the origin (in fact a spacetime translation) may be thought of as moving the

origin to a new position and resetting the clock, but maintaining the same orientation

in space. A (Galilean) velocity boost means the origin maintains its “orientation”

and uses the same clock, but now moves with a certain velocity with respect to the

previous origin. Finally, the “rotation” of reference frame (in fact an orthogonal

transformation or linear isometry) means the origin stays in the same place and uses

the same clock, but rotates the “point of view”.

Any Galilean transformation is represented by a quadruple (ζ, c, v, R) ∈
R× R3 × R3 × O (3) which we can write further as a 5× 5 matrix1 0 0

ζ 1 0

c v R

 .
Let Gal be the set of all such matrices. Thus

Gal : =


1 0 0

ζ 1 0

c v R

 | ζ ∈ R, c, v ∈ R3, R ∈ O (3)

 .
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� Exercise 43 Show that Gal is a group.

The group of all Galilean transformations is isomorphic to the group Gal.

Either one of these groups is called the Galilean group

We saw that the elements of Gal are products of spacetime translations,

velocity boosts, and spatial orthogonal transformations (in particular, rota-

tions). Various subgroups of Gal are of particular interest in applications

(including some familiar transformation groups). For instance,

• the subgroup of isochronous Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which ζ = 0;

• the subgroup of unboosted Galilean transformations consists of those

Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which v = 0;

• the subgroup of anisotropic Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which R = I;

• the subgroup of homogeneous Galilean transformations consists of

those Galilean transformations (represented by the quadruple (ζ, c, v, R))

for which ζ = 0, c = 0.

� Exercise 44 Identify the following subgroups of Gal.

(a) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which ζ = 0, v = 0.

(b) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which v = 0, R = I.

(c) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple ζ, c, v, R)) for which ζ = 0, v = 0, R = I.

(d) The subgroup of Gal consisting of those Galilean transformations (repre-

sented by the quadruple (ζ, c, v, R)) for which c = 0, v = 0, R = I.
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1.6 Lorentz Transformations

Minkowski spacetime

The geometric setting for Einstein’s Special Theory of Relativity is provided

by Minkowski spacetime.

Note : A spacetime is simply the mathematical version of a universe that, like our

own physical universe, has dimensions both of space and of time. A flat spacetime

is a spacetime with no gravity, since gravitation tends to “bend” spacetime. Flat

spacetimes are the simplest kind of spacetimes; they stand in the same relation to

curved spacetimes as a flat Euclidean plane does to a curved surface.

We make the following definition.

1.6.1 Definition. The (standard) Minkowski spacetime R1,3 is the

vector space R4 together with the Minkowski product between vectors v =

(v0, v1, v2, v3) and w = (w0, w1, w2, w3) given by

v � w : = −v0w0 + v1w1 + v2w2 + v3w3.

The Minkowski product is an inner product; that is, it has the following

three properties (for v, v′, w ∈ R1,3 and λ, λ′ ∈ R) :

(IP1) (λv + λ′v′)� w = λ(v � w) + λ′(v′ � w);

(IP2) v � w = w � v;

(IP4) v � w = 0 for all v implies w = 0.

We can write (for v, w ∈ R1,3 )

v � w = v>Qw

where

Q = diag (−1, 1, 1, 1) =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 .
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The elements (vectors) of R1,3 are also called events.

Note : We can use t in place of v0 since in relativity theory this coordinate is

related to the time measurements while the others are related to the spatial ones.

Hence we can write elements of the Minkowski spacetime R1,3 in the form

ξ = (t, x) =

[
t

x

]
(t ∈ R, x ∈ R3).

Then (for ξ = (t, x) and ξ′ = (t′, x′)) ξ � ξ′ = −tt′ + x • x′.

Two vectors v, w ∈ R1,3 are Minkowski-orthogonal provided v�w = 0.

1.6.2 Example. Since the Minkowski product is not positive definite, there

exist nonzero elements (vectors) v ∈ R1,3 for which v � v = 0. For instance,

such a vector is v = (1, 0, 1, 0). Such vectors are said to be null and R1,3

actually has bases which consist exclusively of this type of vector. A null basis

cannot consist of mutually (Minkowski-)orthogonal vectors, however.

� Exercise 45 Show that two null vectors v, w are Minkowski-orthogonal if and

only if they are linearly dependent (i.e., v = λw for some λ ∈ R).

We make the following definitions (this terminology derives from relativity

theory).

1.6.3 Definition. A nonzero vector v ∈ R1,3 is called

• spacelike provided v � v > 0;

• timelike provided v � v < 0;

• null (or lightlike) provided v � v = 0.

� Exercise 46 Show that if a nonzero vector is Minkowski-orthogonal to a time-

like vector, then it must be spacelike.

Note : Let Q denote the quadratic form associated with the Minkowski product

on R1,3; that is, the mapping

Q : R1,3 → R, v 7→ v � v.
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Consider two distinct events ξ and ξ0 for which the displacement vector v : = ξ− ξ0
from ξ0 to ξ is null (i.e., Q(ξ − ξ0) = 0). Then we can define the null cone (or light

cone CN (ξ0)) at ξ0 by

CN (ξ0) : =
{
ξ ∈ R1,3 | Q(ξ − ξ0) = 0

}
.

CN (ξ0) consists of all those events in R1,3 that are “connectible to ξ0 by a light ray”.

Let T denote the collection of all timelike vectors in R1,3 and define a relation

∼ on T as follows :

v ∼ w ⇐⇒ v � w < 0.

This is an equivalence relation and hence T is the union of two disjoint subsets

(equivalence classes) T + and T −, called time cones, and there is no intrinsic way to

distinguish one from the other. We think of the elements of T + (and T − ) as having

the same time orientation. More specifically, we select (arbitrarily) T + and refer to

its elements as future-directed timelike vectors, whereas the vectors in T − we call

past-directed.

For each ξ0 in R1,3 we define the time cone CT (ξ0), future time cone C+
T (ξ0),

and past time cone C−T (ξ0) at ξ0 by

CT (ξ0) : =
{
ξ ∈ R1,3 | Q(ξ − ξ0) < 0

}
C+
T (ξ0) : =

{
ξ ∈ R1,3 | ξ − ξ0 ∈ T +

}
= CT (ξ0) ∩ T +

C−T (ξ0) : =
{
ξ ∈ R1,3 | ξ − ξ0 ∈ T −

}
= CT (ξ0) ∩ T −.

We picture CT (ξ0) as the interior of the null cone CN (ξ0). It is the (disjoint) union

of C+
T (ξ0) and C−T (ξ0).

The notion of time-orientation can be extended to null vectors. We say that a null

vector n is future-directed if n� v < 0 for all v ∈ T + and past-directed if n� v > 0

for all v ∈ T +. For any event ξ0 we define the future null cone C+
N (ξ0) and the past

null cone C−N (ξ0) at ξ0 by

C+
N (ξ0) : = {ξ ∈ CN (ξ0) | ξ − ξ0 is future-directed}

C−N (ξ0) : = {ξ ∈ CN (ξ0) | ξ − ξ0 is past-directed} .

Physically, event ξ is in C+
N (ξ0) if ξ0 and ξ can be regarded as the emission and

reception of a light signal, respectively. Consequently, C+
N (ξ0) may be thought of as

the history in spacetime of a spherical electromagnetic wave (photons in all directions)

whose emission event is ξ0.
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For a vector v = (v0, v1, v2, v3) ∈ R1,3 we write

‖v‖ : =
√
v � v =

√∣∣−v2
0 + v2

1 + v2
2 + v2

3

∣∣
and call it the Minkowski norm (or length) of v. A unit vector is a vector

v with Minkowski norm 1 : v � v = ± 1.

Note : This is a funny kind of “length” since null vectors have zero length (even

though they are not zero). For any timelike vector v, the Minkowski norm ‖v‖
is commonly referred to as the duration of v. If v = ξ − ξ0 is the displacement

vector between two events ξ, ξ0, then ‖v‖ is to be interpreted physically as the time

separation of ξ0 and ξ (in any admissible frame of reference in which both events

occur at the same spatial location).

Many features of Euclidean 3-space R3 (which is a positive definite inner

product space) have counter-intuitive analogues in the Minkowski case. For

example, analogues of the basic inequalities (like the Cauchy-Schwarz inequal-

ity and the triangle inequality) are generally reversed.

� Exercise 47 Show that if v and w are timelike vectors, then

(v � w)2 ≥ (v � v)(w � w)

and equality holds if and only if v and w are linearly dependent.

1.6.4 Proposition. Let v and w be timelike vectors in the same time

cone (i.e., with the same time orientation : v � w < 0). Then

‖v + w‖ ≥ ‖v‖+ ‖w‖

and equality holds if and only if v and w are linearly dependent.

Proof : Since v � v < 0, v + w ∈ T and (by Exercise 47)

‖v‖ ‖w‖ ≤ −v � w.

Hence

(‖v‖+ ‖w‖)2 = ‖v‖2 + 2‖v‖‖w‖+ ‖w‖2

≤ ‖v‖2 − 2v � w + ‖w‖2

≤ −(v + w)� (v + w)

= ‖v + w‖2
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and the equality holds if and only if ‖v‖ ‖w‖ = −v � w. The conclusion now

follows from Exercise 47. 2

Lorentz transformations

Lorentz transformations are structure-preserving transformations on the

Minkowski spacetime.

1.6.5 Definition. A linear transformation (on R1,3 ) L, v 7→ Lv is an

orthogonal transformation if it preserves the Minkowski product between

any two vectors; that is, for all v, w ∈ R1,3,

Lv � Lw = v � w.

The set of all orthogonal transformations on R1,3 is a (transformation)

group.

� Exercise 48 Let L : R1,3 → R1,3 be a linear transformation. Then show that

the following statements are equivalent :

(a) L is an orthogonal transformation.

(b) L preserves the quadratic form on R1,3 (i.e., Q(Lv) = Q(v) for all v ∈
R1,3).

(c) (The matrix of) L satisfies the condition

L>QL = Q

where Q = diag (−1, 1, 1, 1). (Hint : To prove that (b) ⇒ (a) compute

L(v + w)� L(v + w)− L(v − w)� L(v − w).)

Any such linear transformation L, v 7→ Lv on R1,3 is called a general

(homogeneous) Lorentz transformation.

Note : If L =
[
lij

]
is a 4 × 4 matrix such that L>QL = Q, where Q =

diag (−1, 1, 1, 1), then its columns are mutually Minkowski-orthogonal unit vectors.

Let LorGH be the set of all such 4×4 matrices (i.e. matrices representing

general homogeneous Lorentz transformations). Thus

LorGH : = {L ∈ GL (4,R) |L>QL = Q}.
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� Exercise 49 Show that LorGH is a subgroup of the general linear group GL (4,R).

The group of all (Minkowski-)orthogonal transformations is isomorphic to

the group LorGH . Either one of these groups is called the general (homo-

geneous) Lorentz group.

Let L =
[
lij

]
∈ LorGH (i.e., L>QL = Q). Then, in particular, we have

l211 = 1 + l212 + l213 + l214 ≥ 1

so that

l11 ≥ 1 or l11 ≤ −1.

L is said to be orthocronous if l11 ≥ 1 and nonorthocronous if l11 ≤ −1.

Nonorthocronous Lorentz transformations have certain “unsavory” character-

istics; for instance, they always reverse time orientation (and so presumably

relate reference frames in which someone’s clock is running backwards). For

this reason, it is commom practice to restrict attention to the orthocronous

elements of LorGH .

There is yet one more restriction we would like to impose on our Lorentz

transformations.

� Exercise 50 Show that if L ∈ LorGH , then

detL = 1 or detL = −1.

We shall say that a Lorentz transformation v 7→ Lv is proper if detL = 1

and improper if detL = −1. The set Lor of all proper, orthocronous Lorentz

transformations is a subgroup of LorGH . Generally, we shall refer to Lor simply

as the Lorentz group and its elements as Lorentz transformations with the

understanding that they are all proper and orthocronous.

Note : Ocasionally, it is convenient to enlarge the group Lor to include spacetime

translations, thereby obtaining the so-called inhomogeneous Lorentz group (or

Poincaré group). Physically, this amounts to allowing “admissible” observers to

use different spacetime origins.
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The Lorentz group Lor has an important subgroup consisting of those

elements of the form

R =

[
1 0

0 A

]

where A ∈ SO (3) (i.e., A> = A−1 and detA = 1). Such elements are called

(spatial) rotations (in Lor).

A Lorentz transformation v 7→ L(β)v of the form

L(β) : =


γ 0 0 −βγ
0 1 0 0

0 0 1 0

−βγ 0 0 γ


where −1 < β < 1 (and γ : = 1√

1−β2
≥ 1 ) is called a special Lorentz

transformation. The matrix L(β) is often called a (Lorentz) boost in the

x1-direction.

Note : Likewise, one can define matrices (representing) boosts in the x2- and x3-

directions. One can also define a boost in an arbitrary direction by first rotating, say,

the positive x1-axis into that direction and then applying L(β).

� Exercise 51 Suppose −1 < β1 ≤ β2 < 1. Show that :

(a)

∣∣∣∣ β1 + β2

1 + β1β2

∣∣∣∣ < 1.

(b) L(β2)L(β1) = L

(
β1 + β2

1 + β1β2

)
·

(Hint : Show that if a is a constant, then the function x 7→ x+ a

1 + ax
is increasing

for −1 ≤ x ≤ 1.)

It follows from Exercise 51 that the product of two boosts in the x1-

direction is another boost in the x1-direction. Since L(β)−1 = L(−β), the

collection of all such special Lorentz transformations forms a subgroup of Lor.

We point out, however, that the product of two boosts in two different direc-

tions is, in general, not equivalent to a single boost in any direction.
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Note : A simple computation shows that if we put β = tanh θ, then the Lorentz

transformation L(β) takes the hyperbolic form :

L(θ) =


cosh θ 0 0 − sinh θ

0 1 0 0

0 0 1 0

− sinh θ 0 0 cosh θ

 .
It is remarkable that all of the physically interesting behaviour of (proper, orthochronous)

Lorentz transformations is exhibited by the special Lorentz transformations : any ele-

ment of Lor differs from some L(β) only by at most two rotations (in Lor); that is,

for L ∈ Lor there is some (real) number θ and (spatial) rotations R1, R2 ∈ Lor, such

that

L = R1L(θ)R2.


