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104 M4.3 - Geometry

3.1 Euclidean m-Space

Let R be the set of real numbers and let Rm (m ≥ 1) denote the Cartesian

product of m copies of R. Clearly, R1 = R. The elements of Rm are ordered

m-tuples of real numbers. Under the usual addition and scalar multiplication,

Rm is a vector space over R.

Note : The set Rm may be equipped with various “natural” structures (e.g.,

group structure, vector space structure, topological structure, etc.) thus yielding

various spaces (having the same underlying set) Rm. We must usually decide from

the context which structure is intended. We shall find it convenient to refer to the

vector space Rm equipped with its canonical topology as the Cartesian m-space.

For 0 < ` < m the canonical inclusion R` ↪→ Rm is defined as the map

(x1, . . . , x`) 7→ (x1, . . . , x`, 0, . . . , 0). Similarly, the map (x1, . . . , x`, . . . xm) 7→
((x1, . . . , x`), (x`+1, . . . xm)) defines a canonical isomorphism between (vector

spaces) Rm and R` × Rm−`. We write Rm = R` × Rm−`.

The concept of Euclidean (2- or 3-dimensional) space extends straightfor-

wardly to higher dimensions. We make the following definition.

3.1.1 Definition. The (standard) Euclidean m-space is the set Rm

together with the Euclidean distance between points x = (x1, . . . , xm) and

y = (y1, . . . , ym) given by

d(x, y) =
√

(y1 − x1)2 + · · ·+ (ym − xm)2.

The distance function d : Rm × Rm → R, (x, y) 7→ d(x, y) is a metric

(see Exercise 7) and hence Euclidean m-space Rm is a metric space.

Note : Any metric space is a topological space and so any (standard) Euclidean

space is, by definition, a Cartesian space. It is important to realize that these two

structures are distinct : a Euclidean space has “more structure” than a Cartesian

space; this distinction will subsequently play an important role.

We denote the open ball of center p and radius ρ > 0 by

B(x, ρ) : = {x ∈ Rm | d(x, p) < ρ}.
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It turns out that the open sets are exactly the (arbitrary) unions of such open

balls. In the usual sense one can introduce concepts like closed sets, connected

sets, convergence (of sequences), completeness, compact sets, etc. Also, one

can speak of continuous mappings.

Under the usual addition and scalar multiplication, Euclidean m-space Rm

is a vector space. This vector space is rather special in the sense that it has

a built-in positive definite inner product (i.e., a positive definite symmetric

bilinear form), the so-called dot product,

x • y : = x1y1 + x2y2 + · · ·+ xmym

and an orthonormal basis

{e1, e2, . . . , em} with ei • ej = δij .

Note : (1) The Euclidean metric d can be defined using the standard inner

product on Rm. We define ‖x‖, the norm of the element (vector) x, by ‖x‖ =
√
x • x.

Then we have

d(x, y) = ‖x− y‖.

This notation is frequently useful even when we are dealing with the Euclidean m-

space Rm as a metric space and not using its vector space structure. In particular,

‖x‖ = d(x, 0).

(2) An abstract concept of Euclidean space (i.e., a space satisfying the axioms of

Euclidean geometry) can be introduced. It is defined as a structure
(
E , ~E, ϕ

)
, con-

sisting of a (nonempty) set E , an associated standard vector space (which is a real

vector space equipped with an arbitrary positive definite inner product 〈·, ·〉), and a

structure map

ϕ : E × E → ~E, (p, q) 7→ −→pq

such that

(AS1) −→pq +−→qr = −→pr for every p, q, r ∈ E ;

(AS2) For every o ∈ E and every v ∈ ~E, there is a unique p ∈ E such that
−→op = v.

Elements of E are called points, whereas elements of ~E are called vectors. (−→op is the

position vector of p with the initial point o.) The dimension of E is the dimension

of (the vector space) ~E. It turns out that
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(i) if we fix an arbitrary point o ∈ E , there is a one-to-one correspondence between

E and ~E (the mapping p 7→ −→op is a bijection);

(ii) in addition, if we fix an arbitrary orthonormal basis e1, e2, . . . , em of ~E, the

(inner product) spaces ~E and Rm are isomorphic. (In other words, the inner product

on ~E “is” a dot product : for v, w ∈ ~E,

〈v, w〉 = 〈v1e1 + · · ·+ vmem, w1e1 + · · ·+ wmem〉

= v1w1 + · · ·+ vmwm.)

In this sense, we identify the (abstract) m-dimensional Euclidean space E = Em with

the (concrete) standard Euclidean m-space Rm.

Elements of Euclidean m-space Rm, when thought of as points, will be

written as m-tuples. When thought of as vectors, they will be written as

column m-matrices. Euclidean 1-space R1 = R will be referred to as the real

line.

Let U ⊆ Rm. Let x = (x1, . . . , xm) denote the general (variable) point of

U and let p = (p1, . . . , pm) be a fixed but arbitrary point of U . U is an open

set if (and only if) for each point x ∈ U there is an open ball B(x, ρ) ⊂ U ;

intuitively, this means that points in U are entirely surrounded by points of

U (or that points sufficiently close to points of U still belong to U). Let

∅ 6= A ⊆ Rm. An open neighborhood of A is an open set containing A, and

a neighborhood of A is any set containing an open neighborhood of A. In

particular, a neighborhood of a set {p} is also called a neighborhood of the

point p.

Henceforth, throughout this chapter, U will denote an open set.

Continuity

A mapping F : U ⊆ Rm → Rn is continuous at p ∈ U if (and only if)

given ε > 0, there exists a δ > 0 such that

F (B(p, δ)) ⊆ B(F (p), ε).

In other words, F is continuous at p if (and only if) points arbitrarily close to

F (p) are images of points sufficiently close to p. We say that F is continuous

provided it is continuous at each p ∈ U .
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Given a mapping F : U ⊆ Rm → Rn, we can determine n functions (of

m variables) as follows. Let x = (x1, . . . , xm) ∈ U and F (x) = (y1, . . . , yn).

Then we can write

y1 = f1(x1, . . . , xm), y2 = f2(x1, . . . , xm), . . . , yn = fn(x1, . . . , xm).

The functions fi : U → R, i = 1, 2, . . . , n are the component functions

of F . The continuity of the mapping F is equivalent to the continuity of its

component functions.

� Exercise 123 Prove that a mapping F : U ⊆ Rm → Rn is continuous if and

only if each component function fi : U ⊆ Rm → R, i = 1, 2, . . . , n is continuous.

The following results are standard (and easy to prove).

3.1.2 Proposition. Let F,G : U ⊆ Rm → Rn be continuous mappings

and let λ ∈ R. Then F + G, λF, and F • G are each continuous. If n = 1

and G(x) 6= 0 for all x ∈ U , then the quotient F
G is also continuous.

3.1.3 Proposition. Let F : U ⊆ R` → Rm and G : V ⊆ Rm → Rn be

continuous mappings, where U and V are open sets such that F (U) ⊆ V .

Then G ◦ F is a continuous mapping.

� Exercise 124 Show that the following mappings (or functions) are continuous.

(a) The identity mapping id : Rm → Rm, x 7→ x.

(b) The norm function ν : Rm → R, x 7→ ‖x‖.

(c) The ith natural projection pri : Rm → R, x 7→ xi.

Hence derive that every polynomial function (in several variables)

pk : Rm → R, x = (x1, . . . , xm) 7→
k∑

i1,...,im=0
i1+···+im≤k

ai1...imx
i1
1 . . . ximm

is continuous.

Note : More generally, every rational function (i.e., a quotient of two polynomial

functions) is continuous. In can be shown that elementary functions like exp, log, sin,

and cos are also continuous.
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Mappings L : Rm → Rn that preserve the linear structure of the Euclidean

space (i.e., linear mappings) play an important role in differentiation. Such

mappings are continuous (see also Exercise 128).

� Exercise 125 Show that every linear mapping L : Rm → Rn is continuous.

In most applications it is convenient to express continuity in terms of

neighborhoods instead of open balls.

� Exercise 126 Prove that a mapping F : U ⊆ Rm → Rn is continuous at p ∈
U if and only if given a neighborhood N of F (p) in Rn there exists a neighborhood

M of p in Rm such that F (M) ⊆ N .

It is often necessary to deal with mappings (or functions) defined on ar-

bitrary (i.e., not necessarily open) sets. To extend the previous ideas to this

situation, we shall proceed as follows.

Let F : A ⊆ Rm → Rn be a mapping, where A is an arbitrary set. We say

that F is continuous on A provided there exists an open set U ⊆ Rm, A ⊆
U , and a continuous mapping F̄ : U → Rn such that the restriction F̄

∣∣
A

= F .

In other words, F is continuous (on A ) if it is the restriction of a continuous

mapping defined on an open set containing A.

Note : It is clear that if F : A ⊆ Rm → Rn is continuous, then given a neigh-

borhood N of F (p) in Rn, p ∈ A, there exists a neighborhood M of p in Rm

such that F (M∩ A) ⊆ N . For this reason, it is convenient to call the set W ∩ A a

neighborhood of p in A.

We say that a continuous mapping F : A ⊆ Rm → Rm is a homeomor-

phism onto F (A) if F is one-to-one and the inverse F−1 : F (A) ⊆ Rm →
Rm is continuous. In this case A and F (A) are homeomorphic sets.

3.1.4 Example. Let F : R3 → R3 be given by

F (x1, x2, x3) = (ax1, bx2, cx3).

F is clearly continuous, and the restriction of F to the (unit) sphere

S2 =
{
x = (x1, x2, x3) ∈ R3 |x2

1 + x2
2 + x2

3 = 1
}
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is a continuous mapping F̃ : S2 → R3. Observe that F̃ (S2) = E, where E is

the ellipsoid

E =

{
x = (x1, x2, x3) ∈ R3 | x

2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1

}
.

It is also clear that F is one-to-one and that

F−1(x1, x2, x3) =
(x1

a
,
x2

b
,
x3

c

)
·

Thus F̃−1 = F−1
∣∣
E

is continuous. Therefore, F̃ is a homeomorphism of the

sphere S2 onto the ellipsoid E.

Differentiability

A function f : U ⊆ Rm → R is differentiable at p ∈ U if there exists a

linear functional Lp : Rm → R such that

lim
x→p

f(x)− f(p)− Lp(x− p)
‖x− p‖

= 0

or, equivalently, if there exist a linear functional Lp : Rm → R and a function

R(·, p), defined on an open neighborhood V of p ∈ U , such that

f(x) = f(p) + Lp(x− p) + ‖x− p‖ ·R(x, p), x ∈ V

and

lim
x→p

R(x, p) = 0.

Then Lp is called a derivative (or differential) of f at p. We say that f is

differentiable provided it is differentiable at each p ∈ U .

Note : We think of a derivative Lp as a linear approximation of f near p. By the

definition, the error involved in replacing f(x) by Lp(x− p) is negligible compared

to the distance from x to p, provided that this distance is sufficiently small.

If Lp(x) = b1x1 + · · ·+ bmxm is a derivative of f at p, then

bi =
∂f

∂xi
(p) : = lim

t→0

1

t
(f(p+ tei)− f(p)) , i = 1, 2, . . . ,m.
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In particular, if f is differentiable at p, these partial derivatives exist and

the derivative Lp is unique. We denote by Df(p) (or sometimes f ′(p)) the

derivative of f at p, and write (by a slight abuse of notation)

Df(p) =
∂f

∂x1
(p)(x1 − p1) +

∂f

∂x2
(p)(x2 − p2) + · · ·+ ∂f

∂xn
(p)(xm − pm).

� Exercise 127 Show that any linear functional f : Rm → R is differentiable

and Df(p) = f for all p ∈ Rm.

� Exercise 128 Prove that any differentiable function f : U ⊆ Rm → R is

continuous.

Note : Mere existence of partial derivatives is not sufficient for differentiability (of

the function f). For example, the function f : R2 → R defined by

f(x1, x2) =
x1x2

x2
1 + x2

2

and f(0, 0) = 0

is not continuous at (0, 0), yet both partial derivatives are defined there. However, if

all partial derivatives ∂f
∂xi

, i = 1, 2, . . . ,m are defined and continuous in a neighbor-

hood of p ∈ U , then f is differentiable at p.

If the function f : U ⊆ Rm → R has all partial derivatives continuous (on

U) we say that f is continuously differentiable (or of class C1 ) on U . We

denote this class of functions by C1(U). (The class of continuous functions

on U is denoted by C0(U).)

Note : We have seen that

f ∈ C1(U) ⇒ f is differentiable (on U) ⇒ all partial derivatives
∂f

∂xi
exist (on U)

but the converse implications may fail. Many results actually need f to be of class

C1 rather than differentiable.

If r ≥ 1, the class Cr(U) of functions f : U ⊆ Rm → R that are r-

fold continuously differentiable (or Cr functions) is specified inductively by

requiring that the partial derivatives of f exist and belong to Cr−1(U). If f

is of class Cr for all r, then we say that f is of class C∞ or simply smooth.

The class of smooth functions on U is denoted by C∞(U).
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Note : If f ∈ Cr(U), then (at any point of U) the value of the partial derivatives

of order k, 1 < k ≤ r is independent of the order of differentiation; that is, if

(j1, . . . , jk) is a permutation of (i1, . . . , ik), then

∂kf

∂xi1 . . . ∂xik
=

∂kf

∂xj1 . . . ∂xjk
·

We are now interested in extending the notion of differentiability to map-

pings F : U ⊆ Rm → Rn. We say that F is differentiable at p ∈ U if (and

only if) its component functions are differentiable at p; that is, by writing

F (x1, . . . , xm) = (f1(x1, . . . , xm), . . . , fn(x1, . . . , xm))

the functions fi : U → R, i = 1, 2, . . . , n have partial derivatives at p ∈ U .

F is differentiable provided it is differentiable at each p ∈ U .

The class Cr(U,En), 1 ≤ r ≤ ∞ of Cr-mappings F : U ⊆ Rm → Rn is

defined in the obvious way. We will be concerned primarily with smooth (i.e.,

of class C∞ ) mappings. So if F is a smooth mapping, then its component

functions fi, i = 1, 2, . . . , n have continuous partial derivatives of all orders

and each such derivative is independent of the order of differentiation.

Note : For the case m = 1, we obtain the notion of (parametrized) smooth curve

in Euclidean n-space Rn. In Chapter 2, we have already seen such an object in E3.

(Most of the concepts introduced in Chapter 2 can be extended to higher dimensions;

in particular, the concept of tangent vector.)

Let TpRm be the tangent space to Rm at p; this vector space can be

identified with Rm via

v1
∂

∂x1

∣∣∣∣
p

+ · · ·+ vm
∂

∂xm

∣∣∣∣
p

7→ (v1, · · · , vm).

Let α : U ⊆ R→ Rm be a smooth (parametrized) curve with component

functions α1, . . . , αm. The velocity vector (or tangent vector) to α at t ∈ U
is the element

α̇(t) : =

(
dα1

dt
(t), · · · , dαm

dt
(t)

)
∈ Tα(t)Rm.
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3.1.5 Example. Given a point p ∈ U ⊆ Rm and a (tangent) vector v ∈
TpRm, we can always find a smooth curve α : (−ε, ε) → U with α(0) =

p and α̇(0) = v. Simply define α(t) = p + tv, t ∈ (−ε, ε). By writing

p = (p1, . . . , pm) and v = (v1, . . . , vm), the component functions of α are

αi(t) = pi + tvi, i = 1, 2, . . . ,m. Thus α is smooth, α(0) = p and

α̇(0) =

(
dα1

dt
(0), · · · , dαm

dt
(0)

)
= (v1, . . . , vm) = v.

We shall now introduce the concept of derivative (or differential) of a

differentiable mapping. Let F : U ⊆ Rm → Rn be a differentiable mapping.

To each p ∈ U we associate a linear mapping

DF (p) : Rm = TpRm → Rn = TF (p)Rn

which is called the derivative (or differential) of F at p and is defined as

follows. Let v ∈ TpEm and let α : (−ε, ε)→ U be a differentiable curve such

that α(0) = p and α̇(0) = v. By the chain rule (for functions), the curve

β = F ◦ α : (−ε, ε)→ En is also differentiable. Then

DF (p) · v : = β̇(0).

Note : The above definition of DF (p) does not depend on the choice of the curve

which passes through p with tangent vector v, and DF (p) is, in fact, linear. So

DF (p) · v =
d

dt
F (α(t))

∣∣∣∣
t=0

∈ TF (p)Rn = Rn.

The derivative DF (p) is also denoted by F∗,p and called the tangent mapping of F

at p (see Section 2.1 for the special case when F is an isometry on Euclidean 3-space

R3).

The matrix of the linear mapping DF (p) (relative to bases

(
∂
∂x1

∣∣∣
p
, . . . , ∂

∂xm

∣∣∣
p

)
of TpRm and

(
∂
∂y1

∣∣∣
F (p)

, . . . , ∂
∂yn

∣∣∣
F (p)

)
of TF (p)Rn ) is the Jacobian matrix

∂F

∂x
(p) =

∂(f1, . . . , fn)

∂(x1, . . . , xm)
(p) : =


∂f1
∂x1

(p) · · · ∂f1
∂xm

(p)
...

...
∂fn
∂x1

(p) · · · ∂fn
∂xm

(p)

 ∈ Rn×m



C.C. Remsing 113

of F at p. When m = n this is a square matrix and its determinant is then

defined. This determinant is called the Jacobian of F at p and is denoted

by JF (p). Thus

JF (p) =

∣∣∣∣∂F∂x (p)

∣∣∣∣ : = det
∂F

∂x
(p)·

� Exercise 129 Let f : I → R and g : J → R be differentiable functions,

where I and J are open intervals such that f(I) ⊆ J . Show that the function g ◦ f
is differentiable and (for t ∈ I)

(g ◦ f)
′
(t) = g′(f(t)) · f ′(t).

The standard chain rule (for functions) extends to mappings.

3.1.6 Proposition. (The General Chain rule) Let F : U ⊆ R` →
Rm and G : V ⊆ Rm → Rn be differentiable mappings, where U and V are

open sets such that F (U) ⊆ V . Then G ◦ F is a differentiable mapping and

(for p ∈ U)

D(G ◦ F )(p) = DG(F (p)) ◦DF (p).

Proof : The fact that G ◦ F is differentiable is a consequence of the chain

rule for functions. Now, let v ∈ TpE` be given and let us consider a (differen-

tiable) curve α : (−ε, ε)→ U with α(0) = p and α̇(0) = v. Set DF (p)·v = w

and observe that

DG(F (p)) · w =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

.

Then

D(G ◦ F )(p) · v =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

= DG(F (p)) · w

= DG(F (p)) ◦DF (p) · v.

2

Note : In terms of Jacobian matrices, the general chain rule can be written

∂(G ◦ F )

∂x
(p) =

∂G

∂y
(F (p)) · ∂F

∂x
(p)·
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Thus if H = G ◦ F and y = F (x), then

∂H

∂x
=


∂g1
∂y1

· · · ∂g1
∂ym

...
...

∂gn
∂y1

· · · ∂gn
∂ym



∂f1
∂x1

· · · ∂f1
∂x`

...
...

∂fm
∂x1

· · · ∂fm
∂x`


where

∂g1

∂y1
, . . . ,

∂gn
∂ym

are evaluated at y = F (x) and
∂f1

∂x1
, · · · , ∂Fm

∂x`
at x. Writing

this out, we obtain

∂hi
∂xj

=
∂gi
∂y1

∂y1

∂xj
+ · · ·+ ∂gi

∂ym

∂ym
∂xj

(i = 1, 2, . . . , n ; j = 1, 2, . . . , `).

� Exercise 130 Let

F (x1, x2) = (x2
1 − x2

2 + x1x2, x
2
2 − 1) and G(y1, y2) = (y1 + y2, 2y1, y

2
2).

(a) Show that F and G are differentiable, and that G ◦ F exists.

(b) Compute D(G ◦ F )(1, 1)

i. directly

ii. using the chain rule.

� Exercise 131 Show that

(a) if σ : R2 → R is defined by σ(x, y) = x+ y, then Dσ(a, b) = σ.

(b) if π : R2 → R is defined by π(x, y) = x·y, then Dπ(a, b)·(x, y) = bx+ay.

Hence deduce that if the functions f, g : U ⊆ Rm → R are differentiable at p ∈ U ,

then

D(f + g)(p) = DF (p) +Dg(p)

D(f · g)(p) = g(p)DF (p) + f(p)DG(p).

If moreover g(p) 6= 0, then

D

(
f

g

)
=
g(p)DF (p)− f(p)DG(p)

(g(p))2
·

Note : The precise sense in which the derivative DF (p) of the (differentiable)

mapping F at p is a linear approximation of F near p is given by the following
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result (in which DF (p) is interpreted as a linear mapping from Rm to Rn) : If the

mapping F : U ⊆ Rm → Rn is differentiable, then for each p ∈ U ,

lim
x→p

F (x)− F (p)−DF (p) · (x− p)
‖x− p‖

= 0.

.

If A ⊆ Rm is an arbitrary set, then C∞(A) denotes the set of all functions

f : A → R such that f = f̄
∣∣
A

, where f̄ : U → R is a smooth function on

some open neighborhood U of A.

3.2 Linear Submanifolds

Smooth curves in Euclidean 3-space R3 represent an important class of “geo-

metrically interesting” subsets that are one-dimensional and can be thoroughly

studied with the methods of calculus (and linear algebra). The simplest type of

such geometric curve is the line, which is “straight”. A two-dimensional ana-

logue of the line is the plane, which is “flat”. We shall briefly discuss these two

simple cases before considering their natural higher-dimensional analogues, the

linear submanifolds.

Lines and planes in R3

Let p ∈ R3 and 0 6= v ∈ TpR3 = R3. The line through the point p with

direction vector v is the subset

L : = p+ span {v} ⊂ R3.

We can write

L = {p+ λv |λ ∈ R}

and refer to the equation

x = p+ λv, λ ∈ R

as the vector equation of the line.
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Note : In the vector equation of line L, the elements x, p, and v are all viewed

as geometric vectors, hence written as column matrices :x1

x2

x3

 =

p1

p2

p3

+ λ

v1

v2

v3

 , λ ∈ R.

The vector equation is equivalent to the following set of three scalar equa-

tions :

x1 = p1 + λv1

x2 = p2 + λv2

x3 = p3 + λv3, λ ∈ R

called parametric equations for the line L. Alternatively, the line L can

be viewed as the image set of the linear mapping

G : R→ R3, t 7→ (p1 + tv1, p2 + tv2, p3 + tv3) .

Now let p ∈ R3 and consider two linearly independent vectors v, w ∈
TpR3 = R3. The plane through the point p with direction subspace ~P =

span{v, w} is the subset

P : = p+ span{v, w} ⊂ R3.

Likewise, we can write

P = {p+ λv + µw |λ, µ ∈ R}

and refer to the equation

x = p+ λv + µw, λ, µ ∈ R

as the vector equation of the plane. The vector equation is equivalent to

the following set of three scalar equations :

x1 = p1 + λv1 + µw1

x2 = p2 + λv2 + µw2

x3 = p3 + λv3 + µw3, λ, µ ∈ R
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called parametric equations for the plane P .

Note : The fact that the vectors v and w are linearly independent is equivalent

to the following rank condition :

rank
[
v w

]
= rank

v1 w1

v2 w2

v3 w3

 = 2.

Alternatively, the plane P can be viewed as the image set of the linear

mapping

G′ : R2 → R3, (s, t) 7→ (p1 + sv1 + tw1, p2 + sv2 + tw2, p3 + sv3 + tw3) .

� Exercise 132 Show that the system of linear equations (in unknowns λ and

µ )

λv1 + µw1 = x1 − p1

λv2 + µw2 = x2 − p2

λv3 + µw3 = x3 − p3

(where rank
[
v w

]
= 2) is consistent if and only if∣∣∣∣∣∣∣

x1 − p1 x2 − p2 x3 − p3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣ = 0.

(Hint : A system of linear equations Ax = b is consistent if and only if rank
[
A b

]
=

rank (A).)

� Exercise 133 Show that the condition x−p = λv+µw (where rank
[
v w

]
=

2) is equivalent to

(x− p) • v × w = 0.

The plane

P = p+ ~P = p+ span{v, w}, rank
[
v w

]
= 2

can be described by the scalar equation

a1(x1 − p1) + a2(x2 − p2) + a3(x3 − p3) = 0
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or by the so-called (general) Cartesian equation

a1x1 + a2x1 + a3x3 + c = 0, a2
1 + a2

2 + a2
3 6= 0.

(Here

a1 =

∣∣∣∣∣v2 v3

w2 w3

∣∣∣∣∣ , a2 =

∣∣∣∣∣v3 v1

w3 w1

∣∣∣∣∣ , a3 =

∣∣∣∣∣v1 v2

w1 w2

∣∣∣∣∣ .)
� Exercise 134 Show that any equation of the form

a1x1 + a2x2 + a3x3 + c = 0, a2
1 + a2

2 + a2
3 6= 0

represents a plane P in R3.

Note : The Cartesian equation for the plane P can be put into the form

u • x+ c = 0

where u = v × w and c = −p • v × w. The (nonzero) vector u defines the normal

direction of P . We can see that the line with vector direction u = v×w is orthogonal

to the plane with vector subspace span{v, w}.

Let P1 and P2 be two planes (not necessarily distinct) in R3. So

Pi = pi + ~Pi, i = 1, 2

and it is easy to see that

P1 = P2 ⇐⇒ p2 − p1 ∈ ~P1 = ~P2.

Hence

P1 6= P2 ⇐⇒
(
~P1 6= ~P2 or p2 − p1 6∈ ~P1 = ~P2

)
.

It turns out that condition p2 − p1 6∈ ~P1 = ~P2 is equivalent to P1 ∩ P2 = ∅;
in this case, we say that the planes P1 and P2 are strictly parallel : P1 ‖ P2

but P1 6= P2. Otherwise, P1 and P2 are two intersecting planes.

On intuitive grounds we “know” that the intersection of two distinct planes

is either the empty set (when the planes are strictly parallel) or a line.
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3.2.1 Proposition. The intersection of two distinct, intersectiong planes

is a line.

Proof : Let P1 and P2 be two distinct, intersecting planes. We can de-

scribe each of these planes by a Cartesian equation of the form

ai1x1 + ai2x2 + ai3x3 + ci = 0

where each set of coefficients is such that a2
i1 + a2

i2 + a2
i3 6= 0, i = 1, 2.

The facts that the planes are distinct and are not parallel translate into the

following rank condition :

rank

[
a11 a12 a13

a21 a22 a23

]
= 2.

But this means that the system of two linear equations in three unknowns

x1, x2, and x3

a11x1 + a12x2 + a13x3 = −c1

a21x1 + a22x2 + a23x3 = −c2

is consistent and, moreover, there is one basic variable ( v 6= 0) and one free

variable (λ). As a result, the general solution has the form

x = p+ λv, λ ∈ R

which represents a line. 2

� Exercise 135 Show that any line can be represented as an intersection of two

(distinct) planes. (Hint : Write the parametric equations of your line in “symmetric

form” :
x1 − p1

v1
=
x2 − p2

v2
=
x3 − p3

v3
·)

Note : Any line can be represented as the intersection of an arbitrary family of

planes. Indeed, given a line L described by the (Cartesian) equations

(P ) a1x1 + a2x2 + a3x3 + c = 0

(P ′) a′1x1 + a′2x2 + a′3x3 + c′ = 0
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where the coefficients satisfy the rank condition

rank

[
a1 a2 a3

a′1 a′2 a′3

]
= 2

(i.e., the line L is represented as an intersection of two planes : L = P ∩ P ′), then

the family of planes

ν1 (a1x1 + a2x2 + a3x3 + c) + ν2 (a′1x1 + a′2x2 + a′3x3 + c′) = 0, ν1, ν2 ∈ R

contains all planes through the line L. (For ν1 = 0 we get the plane P . If ν1 6= 0,

put ν : =
ν2

ν1
and we may write our family of planes - excluding the plane P ′ - as

follows

a1x1 + a2x2 + a3x3 + c+ ν (a′1x1 + a′2x2 + a′3x3 + c′) = 0, ν ∈ R.

So

L = P ∩ P ′ =
⋂
ν∈R

Pν .

Clearly, P = P0 ∈ (Pν)ν∈R but P ′ 6∈ (Pν)ν∈R. The “exclusion” of the plane P ′

can be easily fixed by simply putting P ′ = P∞ : = limν→∞ Pν . Hence any subfamily,

finite or infinite, of (Pν)ν∈R , R : = R ∪ {∞} has the desired property.

� Exercise 136 Show that the Cartesian equation of the plane through three

noncolinear points p, q, r can be put into the form∣∣∣∣∣∣∣∣∣
x1 x2 x3 1

p1 p2 p3 1

q1 q2 q3 1

r1 r2 r3 1

∣∣∣∣∣∣∣∣∣ = 0.

What do we get when the points are collinear ?

� Exercise 137 Prove that the lines

(L) x = p+ λv and (L′) x = p′ + µv′

lie in the same plane if and only if∣∣∣∣∣∣∣
p1 − p′1 p2 − p′2 p3 − p′3
v1 v2 v3

v′1 v′2 v′3

∣∣∣∣∣∣∣ = 0.
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`-Planes in Rm

Higher-dimensional analogues of lines and planes can be now defined with-

out difficulty.

3.2.2 Definition. A (nonempty) subset L ⊆ Rm of the form

L = p+ ~L,

where p ∈ Rm and ~L is a vector subspace of ToRm = Rm, is said to be a

linear submanifold of Euclidean m-space Rm.

The vector subspace ~L is called the direction subspace of the linear

submanifold L. If the dimension of ~L (as a vector subspace) is `, then we

say that L is a linear submanifold of dimension ` (or, simply, a linear `-

submanifold); in this case, m− ` is referred to as the codimension of L.

Note : A linear submanifold L = p+~L is the result of “shifting” a vector subspace

~L by (a vector) p. In this vein, linear `-submanifolds are also called `-planes (or

even `-flats).

3.2.3 Example. Vector subspaces of Rm are linear submanifolds. Indeed,

if p ∈ ~L (in particular, if p = o), then L = ~L.

3.2.4 Example. A linear 0-submanifold is simply a point (in fact, a sin-

gleton). In this case, L = p+~0 = p, hence L = {p}.

3.2.5 Example. A linear 1-submanifold is a line (in Rm).

A linear submanifold of dimension m− 1 is called a hyperplane. A hy-

perplane has codimension 1. What about linear submanifolds of codimension

zero ? There is only one such linear submanifold, the space itself. Indeed, in

this case,

L = p+ span {v1, v2, . . . , vm} = p+ Rm = Rm.

� Exercise 138 Let L = p + ~L be a linear submanifold and let q ∈ L. Show

that

L = q + ~L.

Hence deduce that a linear submanifold L is a vector subspace if and only if o ∈ L.
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� Exercise 139 Prove that if p+ ~L = p′ + ~L′, then ~L = ~L′.

� Exercise 140 Let (Lα)α∈A be a family of linear submanifolds such that⋂
α∈A

Lα 6= ∅. Show that the subset L =
⋂
α∈A

Lα is a linear submanifolds. Hence

deduce that

dim (L) = dim
⋂
α∈A

~Lα.

3.2.6 Proposition. Given two distinct points p, q ∈ Rm, there exists a

unique line
←→
pq containing p and q.

Proof : (Existence) The line p+ span{q − p} contains both points p, q.

(Uniqueness) Let L be a line such that p, q ∈ L. We must show that

L = p+ span{q − p}.

We have

L = p+ ~L

and so

q ∈ p+ ~L.

Thus the 1-dimensional vector subspace ~L contains the nonzero vector q−p.
Hence

~L = span{q − p}.

2

Note : The line
←→
pq throught the points p and q can be expressed as follows

←→
pq = {(1− λ)p+ λq |λ ∈ R} .

We can now characterize linear submanifolds in terms of lines.

3.2.7 Theorem. A subset ∅ 6= L ⊆ Rm is a linear submanifold if and only

if for every two distinct points x, y ∈ Rm, the line
←→
xy is contained in L.

Proof : Observe that this condition is equivalent to

(x, y ∈ L, λ ∈ R) ⇒ (1− λ)x+ λy ∈ L.
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(⇒) Let x, y ∈ L. Then L = x+ ~L, so y − x ∈ ~L and hence

λ(y − x) ∈ ~L.

We have

(1− λ)x+ λy = x+ λ(y − x) ∈ x+ ~L = L.

(⇐) Let p ∈ L and denote ~L : = L− p. Let

y1 = x1 − p ∈ ~L and y2 = x2 − p ∈ ~L.

Then

(1− λ)y1 + λy2 = (1− λ)(x1 − p) + λ(x2 − p)

= (1− λ)x1 + λx2 − p ∈ L− p.

Hence (
y1, y2 ∈ ~L, λ ∈ R

)
⇒ (1− λ)y1 + λy2 ∈ ~L.

In particular, for y1 = 0, we get(
y ∈ ~L, λ ∈ R

)
⇒ λy ∈ ~L.

Now let µ ∈ R \ {0, 1} and let y, y′ ∈ ~L. Then y1 =
1

1− µ
y, y2 =

1

µ
y′ ∈ ~L

and thus

y + y′ = (1− µ)
1

1− µ
y + µ

1

µ
y′

= (1− µ)y1 + µy2 ∈ ~L.

Hence

y, y′ ∈ ~L ⇒ y + y′ ∈ ~L.

It follows that ~Y is a vector subspace of Rm. But L = p + ~L, which proves

the result. 2

This result can be easily generalized.
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� Exercise 141 Prove that a subset ∅ 6= L ⊆ Rm is a linear submanifold if and

only if (
x1, . . . , xm ∈ L, λ1, . . . , λm ∈ R,

m∑
i=1

λi = 1

)
⇒

m∑
i=1

λixi ∈ L.

Note : A linear combination
∑
λixi where the coefficients λi satisfy the condition∑

λi = 1 is called an affine combination. A linear submanifold can be characterized

by the condition that it contains all the affine combinations of any (finite collection) of

its elements; such special subsets (of some “affine space”) are called affine subspaces.

So linear submanifolds are just affine subspaces of Rm.

In general, the union of two linear submanifolds is not a linear submanifold.

Let L1 and L2 be two linear submanifolds of Euclidean m-space Rm. Then

the set L1 ∪ L2 does generate a linear submanifold, denoted by L1 ∨ L2, by

taking the intersection of all linear submanifolds of Rm that contain L1 ∪L2.

Thus

L1 ∨ L2 : =
⋂

L1∪L2⊆L
L ⊆ Rm.

Note : L1 ∨ L2 is the smallest linear submanifold that contains (as subsets) L1

and L2. It is sometimes referred to as the affine span of L1 ∪ L2. It turns out that

for Li = pi + ~Li, i = 1, 2 one has

L1 ∨ L2 = p1 + ~L1 + ~L2 + span {p2 − p1}.

(Here L1 + L2 denotes the sum of the vector subspaces L1 and L2.)

� Exercise 142 Given linear submanifolds Li = pi + ~Li, i = 1, 2, show that

L1 ∩ L2 6= ∅ ⇐⇒ span {p2 − p1} ⊆ ~L1 + ~L2.

Hence deduce that if p ∈ L1 ∩ L2, then

L1 ∩ L2 = p+ ~L1 ∩ ~L2

L1 ∨ L2 = p+ ~L1 + ~L2.

3.2.8 Theorem. (Dimension Theorem) Let Li = pi + ~Li, i = 1, 2 be

linear submanifolds.
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(a) If L1 ∩ L2 6= ∅, then

dim(L1 ∨ L2) = dimL1 + dimL2 − dim(L1 ∩ L2).

(b) If L1 ∩ L2 = ∅, then

dim(L1 ∨ L2) = dim
(
~L1 + ~L2

)
+ 1.

Proof : (a) We have (see Exercise 142)

dim(L1 ∨ L2) = dim
(
~L1 + ~L2

)
dim(L1 ∩ L2) = dim

(
~L1 ∩ ~L2

)
.

But

dim
(
~L1 + ~L2

)
= dim ~L1 + dim ~L2 − dim

(
~L1 ∩ ~L2

)
and the first result follows.

(b) We have

dim(L1 ∨ L2) = dim
(
~L1 + ~L2 + span {p2 − p1}

)
= dim

(
~L1 + ~L2

)
+ 1.

2

3.2.9 Example. The linear submanifold L1 ∨ L2 generated by the lines

L1 and L2

• is a plane if L1 ∩ L2 = {p}.

• is a plane if L1 ∩ L2 = ∅ and ~L1 = ~L2.

• has dimension 3 (i.e., is a 3-flat) if L1 ∩ L2 = ∅ and ~L1 6= ~L2.

� Exercise 143 In Euclidean 4-space R4, write (parametric) equations for the

linear submanifold generated by te lines

x1

2
=
x2 − 1

1
=
x3 + 1

−1
=
x4

3

and
x1 − 1

3
=
x2

2
=
x3

1
=
x4 − 2

−1
·
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Consider an affine map

F : Rm → Rn, x 7→ Ax+ c.

(Here A is an n×m matrix and c a column n-matrix, both with real entries.)

We can see that such a map preserves affine combinations of points.

3.2.10 Proposition. Let L = p+~L be a linear submanifold of Rm. Then

the image of L under the affine map F, x 7→ Ax+ c is also a linear subman-

ifold (of Rn).

Proof : We shall show that

F (L) = F (p) +A(~L).

Let y = F (x), x ∈ L; then x− p ∈ ~L and hence

y − F (p) = F (x)− F (p)

= A(x− p) ∈ A(~L).

Thus F (L) ⊆ F (p) +A(~L).

Conversely, let y − F (p) ∈ A(~L). Then

y − F (p) = A(x− p)

for some x ∈ L. This implies y = F (x) and thus F (L) ⊇ F (p) + A(~L). The

result now follows. 2

� Exercise 144 Given a linear submanifold L = p + ~L of Rm and an affine

map F : Rm → Rn, x 7→ Ax+ c, show that the inverse image of any y ∈ F (L) under

F is a linear submanifold. (The direction subspace of F−1(y) is ker (A) ⊆ ~L.)

Note : The linear submanifold F−1(y), y ∈ F (Rm) = im (F ) may be referred

to as the fibre of (the affine map) F over (the point) y. All the fibres of F have

the same direction subspace. So the space Rm decomposes into a family of parallel

submanifolds of the same dimension :

Rm =
⋃

y∈im (F )

F−1(y), dimF−1(y) = dim ker (A).
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Recall that, for an n×m matrix A, the following basic relation holds :

dim ker (A) + dim im (A) = m

(the rank-nullity formula). Geometrically, this means that, for the linear map x 7→
Ax, the nullity of A (= dim ker (A)) counts for the number of dimensions that col-

lapse as we perform A and the rank of A (= dim im (A)) counts for the number of

dimensions that survive after we perform A.

It follows that the dimension of any of the fibres of the affine map F, x 7→ Ax+c

is m− rank (A).

A function f : Rm → R of the form

x = (x1, x2, . . . , xm) 7→ a1x1 + a2x2 + · · ·+ amxm + c

is called an affine functional on Rm. We shall find it convenient to assume

that not all the coefficients a1, . . . , am are zero; so, in other words, we rule

out the constant function x 7→ c.

Note : A nonconstant affine functional is an affine map (function)

f : Rm → R, x 7→ Ax+ c

with

rank (A) = rank
[
a1 a2 · · · am

]
= 1.

Hence the fibres of f are linear submanifolds (of Rm) of dimension m − 1 (i.e.,

hyperplanes).

The Cartesian equation

a1x1 + a2x2 + · · ·+ amxm + c = 0 with rank
[
a1 · · · am

]
= 1

represents the hyperplane f−1(0) ⊆ Rm.

� Exercise 145 Show that any nonconstant affine functional f : Rm → R is

surjective.

Note : A system of linear equations (in unknowns x1, x2, . . . , xm )

a11x1 + a12x2 + · · · + a1mxm = b1

a21x1 + a22x2 + · · · + a2mxm = b2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am−`,1x1 + am−`,2x2 + · · · + am−`,mxm = bm−`
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with

rank (A) = rank


a11 . . . a1m

...
...

am−`,1 . . . am−`,m

 = m− `

represents (geometrically) the intersection of m− ` hyperplanes in Rm.

Let

L = p+ ~L = p+ span{v1, v2, . . . , v`}

be a linear submanifold of dimension `. (It is assumed, of course, that the

vectors v1, v2, . . . , v` are linearly independent.) Then we can write

L = {p+ λ1v1 + · · ·+ λ`v` |λ1, . . . , λ` ∈ R}

and refer to the equation

x = p+ λ1v1 + · · ·+ λ`v`, λ1, . . . , λ` ∈ R

as the vector equation of the linear submanifold.

Equivalently, we can express (in coordinates) the linear submanifold L by

the following set of m scalar equations

x1 = p1 + λ1v11 + λ2v12 + · · ·+ λ`v1`

x2 = p2 + λ1v21 + λ2v22 + · · ·+ λ`v2`

...

xm = pm + λ1vm1 + λ2vm2 + · · ·+ λ`vm`, λ1, . . . , λ` ∈ R

called parametric equations for L. (Here vi =


v1i

...

vmi

 , i = 1, 2, . . . , `.)

Alternatively, the linear submanifold L can be viewed as the image set of the

following affine mapping

(t1, . . . , t`) 7→ (p1 + t1v11 + · · ·+ t`v1l, . . . , pm + t1vm1 + · · ·+ t`vm`) .

Note : Linear submanifolds are in fact solution sets for (consistent) systems of

linear equations. More precisely, let Ax = b (where A ∈ Rn×m and b ∈ Rn×1) be a
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system of n linear equations in m unknows x1, x2, . . . , xn. Suppose that rank (A) =

k with 0 < k ≤ min{m,n}. The system is consistent (i.e., it has at least one solution)

if and only if the rank of the augmented matrix of the system equals the rank of the

coefficient matrix (Kronecker-Capelli) :

rank
[
A b

]
= rank (A).

(When b = 0, the system is said to be homogeneous and, clearly, it is consistent. A

homogeneous system possesses a unique solution - the trivial solution - if and only if

rank (A) = m.) Reducing the matrix
[
A b

]
to a row echelon form using Gaussian

elimination and then solving for the basic variables in terms of the free variables leads

to the general solution

x = p+ λ1v1 + λ2v2 + · · ·+ λm−kvm−k.

As the free variables λi range over all possible values, this general solution generates

all possible solutions of the system. (p is a particular solution of the nonhomogeneous

system, whereas the expression λ1v1 + · · ·+ λm−kvm−k is the general solution of the

associated homogeneous system.) We see that the solution set S of the system

(assumed to be consistent) is a linear submanifold of dimension m− k :

S = p+ span{v1, . . . , vm−k} ⊂ Rm.

(The basic vectors form a basis of the direction subspace of S.) This algebraic view-

point makes it clear that linear submanifolds can be studied, at least in principle,

only by (linear) algebraic means. On the other hand, the alternative geometric view-

point offers a broader perspective : linear submanifolds are simple, special cases of

nonlinear objects/subspaces, the so-called smooth submanifolds; these are the natural

higher-dimensional analogues of regular curves.

We can interpret the parametric equations for (the linear `-submanifold)

L as the general solution of a system of linear equations (in unknowns x1, x2, . . . , xm).

If we write down one such system (i.e., if we eliminate the parameters λ1, . . . , λ`)

we get Cartesian equations for L :

a11x1 + a12x2 + · · · + a1mxm + c1 = 0

a21x1 + a22x2 + · · · + a2mxm + c2 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

am−`,1x1 + am−`,2x2 + · · · + am−`,mxm + cm−` = 0
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with

rank


a11 . . . a1m

...
...

am−`,1 . . . am−`,m

 = m− `.

(The linear `-submanifold L is represented as an intersection of m−` distinct

hyperplanes.)

We can summarize all these characterizations of a linear submanifold in

the following

3.2.11 Theorem. Let ∅ 6= L be a subset of Rm and assume 0 ≤ ` ≤ m.

The following statements are equivalent.

(i) L is a linear `-submanifold of Rm.

(ii) There exist linearly independent affine functions

fi : Rm → R, (x1, . . . , xm) 7→ ai1x1+· · ·+aimxm+ci (i = 1, 2, . . . ,m−`)

(i.e., the row matrices ai =
[
ai1 · · · aim

]
, i = 1, 2, . . . ,m − ` are

linearly independent) such that

L =

m−`⋂
i=1

f−1
i (0).

(iii) There exists an affine mapping

F : Rm → Rm−`, x 7→ Ax+ c

with rank (A) = m− ` such that

L = F−1(0).

(iv) There exist affine functions

hi : Rm−` → R, i = 1, 2, . . . ,m− `

such that (possibly after a permutation of coordinates) L is the graph of

the mapping

H = (h1, . . . , hm−`) : Rm−` → Rm−` ⊆ Rm

(under the canonical isomorphism).
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(v) There exists an affine mapping

G : Rm−` → Rm, t = (t1, . . . , tm−`) 7→ Bt+ d

with rank (B) = m− ` such that L is the image set of G.

Note : In (ii) we think of a linear submanifold as an intersection of hyperplanes,

in (iii) as the zero-set of a certain affine mapping, in (iv) as a graph, and in (v) as the

image set of a certain affine mapping (i.e., a parametrized set).

Parallelism and orthogonality

Let Li = pi + ~Li, i = 1, 2 be linear submanifolds of Rm.

3.2.12 Definition. We say that L1 and L2 are parallel, denoted L1 ‖
L2, provided ~L1 ⊆ ~L2 or ~L2 ⊆ ~L1.

� Exercise 146 Show that if L1 ‖ L2, then either L1 ⊆ L2 or L2 ⊆ L1 or

L1 ∩ L2 = ∅.

� Exercise 147 Given two planes

(P ) a1x1 + a2x2 + a3x3 + c = 0

(P ′) a′1x1 + a′2x2 + a′3x3 + c′ = 0

in Euclidean 3-space R3, show that a necessary and sufficient condition for them to

be parallel is
a1

a′1
=
a2

a′2
=
a3

a′3
·

(The convention is made that if a denominator is zero, the corresponding numerator

is also zero.)

� Exercise 148 Show that a necessary and sufficient condition for the plane

a1x1 + a2x2 + a3x3 + c = 0

and the line

x1 = p1 + tu1

x2 = p2 + tu2

x3 = p3 + tu3, t ∈ R
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to be parallel is

a1u1 + a2u2 + a3u3 = 0.

3.2.13 Proposition. Let L and H be an arbitrary linear submanifold an

a hyperplane (i.e., a linear submanifold of codimension 1), respectively. If

L ∩H = ∅, then L ‖ H.

Proof : Let L = p+ ~L and H = q + ~H. It is clear that

dim(L ∨H) = m.

Since

dim(L ∨H) = dim
(
~L+ ~H

)
+ 1,

it follows that

dim
(
~L+ ~H

)
= m− 1 = dim ~H.

We have ~H ⊆ ~L+ ~H and thus

~H = ~L+ ~H.

Hence ~L ⊆ ~H. This shows that L ‖ H. 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 The Inverse Mapping Theorem

One of the most important results of differential calculus is the so-called in-

verse mapping theorem. (Another fundamental result is the existence theorem

for ordinary differential equations.) In order to simplify the terminology of

this and later sections we introduce first the notion of diffeomorphism (or

differentiable homeomorphism) between two spaces.

Note : This concept can have no meaning unless the spaces are such that differen-

tiability is defined, which – at the present moment – means that they must be subsets

of Euclidean spaces.
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Let U ⊆ Rm and V ⊆ Rn be open sets. We say that a mapping F : U →
V is a Cr diffeomorphism (1 ≤ r ≤ ∞) if F is a homeomorphism and both

F and F−1 are of class Cr. (When r = 1 we simply say diffeomorphism.)

Note : A diffeomorphism is thus necessarily bijective, but a differentiable bijective

mapping may not be a diffeomorphism. For example, the function f : R→ R, t 7→ t3

is a homeomorphism and f is differentiable (in fact, smooth), but f−1 : R→ R, s 7→
3
√
s is not differentiable (since it has no derivative at s = 0).

� Exercise 149 Let A be an n ×m matrix and B an m × n matrix. Prove

that if BA = Im and AB = In, then m = n and A is invertible with inverse B.

(Hint : Show that if BA = Im, then rank (A) = rank (B) = m.)

3.3.1 Proposition. If F : U → V is a diffeomorphism (of an open subset

of Rm onto an open subset of Rn ) and p ∈ U , then the derivative DF (p) :

Rm = TpRm → Rn = TF (p)Rn is a linear isomorphism. In particular, m = n.

Proof : Since

F−1 ◦ F = idU = idRm |U

(idRm is a linear mapping), we have

D(F−1 ◦ F )(p) = idRm

or, by the general chain rule,

DF−1(F (p)) ◦DF (p) = idRm .

Likewise,

DF (p) ◦DF−1(F (p)) = idRn .

(It is safe to identify

TpU = TpRm = Rm and TF (p)V = TF (p)Rn = Rn.)

It follows that the linear mapping DF (p) is invertible with inverse

D(F−1)(F (p)). 2
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Note : It would not be possible to have a diffeomorphism between open subsets

of Euclidean spaces of different dimensions; indeed, a famous (and deep) result of

algebraic topology – Brouwer’s theorem on invariance of domain – asserts that even

homeomorphisms between open subsets of Euclidean spaces of different dimensions

is impossible. (In fact, the result says that if U ⊆ Rm is open and f : U → Rn is

continuous and one-to-one, then f(U) is open. It is then easy to derive the fact that

if U ⊆ Rm and V ⊆ Rn are open subsets such that U is homeomorphic to V , then

m = n.)

We have seen that if the mapping F : U → V is a diffeomorphism be-

tween open subsets of Rm, then the Jacobian matrix ∂F
∂x (p) is nonsingular (or,

equivalently, the Jacobian JF (p) 6= 0) for every p ∈ U . While the converse is

not exactly true, it is true locally. The following fundamental result holds.

3.3.2 Theorem. (Inverse Mapping Theorem) Let U ⊆ Rm be an open

set and let F : U → Rm be of class Cr (1 ≤ r ≤ ∞). Let p ∈ U and suppose

that DF (p) is a linear isomorphism (i.e., the Jacobian matrix ∂F
∂x (p) is non-

singular). Then there exists an open neighborhood W of p in U such that

F |W : W → F (W ) is a Cr diffeomorphism. Moreover, for y ∈ F (W ) we

have the following formula for the derivatives of F−1 at y :

DF−1(y) = (DF (x))−1 , where y = F (x).

This is a remarkable result. From a single piece of linear information at

one point, it concludes to information in a whole neighborhood of that point.

The proof is quite involved and will be omitted.

Note : The following two results are consequences of the inverse mapping theorem

:

• If DF is invertible at every point of U , then F is an open mapping (i.e., it

carries U and open subsets of Rm contained in U into open subsets of Rm).

• A necessary and sufficient condition for the C1 mapping F to be a diffeomor-

phism (from U to F (U)) is that it be one-to-one and DF be invertible at

every point of U .

� Exercise 150 Let F : R2 → R2 be given by

F (x1, x2) = (ex1 cosx2, e
x1 sinx2) .
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Show that the (smooth) mapping F is locally invertible, but not invertible.

� Exercise 151 Show that the system

y1 = x3
1x2 + x2

2

y2 = ln(x1 + x2)

has a unique solution x1 = f(y1, y2), x2 = g(y1, y2) in a neighborhood of (6, ln 3)

with f(6, ln 3) = 1 and g(6, ln 3) = 2. Find

∂f

∂y1
,
∂f

∂y2
,
∂g

∂y1
, and

∂g

∂y2
·

There is a generalization of Theorem 3.3.2, called the constant rank the-

orem, which is actually equivalent to the inverse function theorem.

A C1 mapping F : U ⊆ Rm → Rn has constant rank k if the rank of the

linear mapping DF (x) : Rm = TxRm → Rn = TF (x)Rn is k at every point

x ∈ U . Equivalently, the Jacobian matrix ∂F
∂x has constant rank k on U .

Note : In linear algebra, the rank of a matrix A ∈ Rn×m is defined in three

equivalent ways : (i) the dimension of the subspace of Rm spanned by the rows, (ii)

the dimension of the subspace of Rn spanned by the columns, or (iii) the maximum

order of any nonvanishing minor determinant. We see at once from (i) and (ii) that

rank (A) ≤ m,n.

The rank of a linear mapping is defined to be the dimension of the image, and one

proves that this is the rank of any matrix which represents the mapping. From this

it follows that, if P and Q are nonsingular matrices, then rank (PAQ) = rank (A).

When F : U ⊆ Rm → Rn is a C1 mapping, then the linear mapping DF (x) has a

rank at each x ∈ U . Because the value of the determinant is a continuous function of

its entries, we see from (iii) that if rank (DF (p)) = k, then for some neighborhood

V of p, rank (DF (x)) ≥ k; and, if k = min {m,n}, then rank (DF (x)) = k on V .

We shall refer to the rank of DF (x) as the rank of F at x.

If we compose F with diffeomorphisms, then the facts cited and the general chain

rule imply that the rank of the composition is the rank of F , since diffeomorphisms

have nonsingular Jacobian matrices.

3.3.3 Example. Consider the composition

Rk × Rm−k π−→ Rk i−→ Rn (1 ≤ k < m,n)
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where

π(x1, . . . , xk, y1, . . . , ym−k) = (x1, . . . , xk)

i(x1, . . . , xk) = (x1, . . . , xk, 0, . . . , 0).

The Jacobian matrix of i ◦ π is constantly the matrix[
Ik 0

0 0

]
∈ Rn×m.

The rank is constantly k.

The constant rank theorem asserts that, in a certain precise sense, map-

pings of constant rank k locally “look like” the above example.

3.3.4 Theorem. (Constant Rank Theorem) Let U ⊆ Rm and V ⊆
Rn be open sets and let F : U → V be of class Cr (1 ≤ r ≤ ∞). Let p ∈ U
and suppose that, in some neighborhood of p, F has constant rank k. Then

there are open neighborhoods W of p in U and Z ⊇ F (W ) of F (p) in V ,

respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(z1, . . . , zm) = (z1, . . . , zk, 0, . . . , 0).

Note : The diffeomorphisms G : W → W̃ and H : Z → Z̃ should be thought of

as changes of coordinates in these open sets. For instance, one could write

z1 = g1(x1, . . . , xm)

z2 = g2(x1, . . . , xm)

...

zm = gm(x1, . . . , xm)

viewing (z1, . . . , zm) as new coordinates of the point (x1, . . . , xm). The new coor-

dinates depend differentiably on the original ones and, G being a diffeomorphism,
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the original coordinates depend differentiably on the new ones. Thus, all of calculus,

formulated in the coordinates xi has a completely equivalent formulation in the co-

ordinates zi. (The specific formulas change, but the “realities” they express do not.)

According to this philosophy, the point of the constant rank theorem is that the most

general mapping of constant rank can be expressed locally using the same formula as

the simple Example 3.3.3, provided the coordinates in the domain and the range

are suitably changed.

The immersion and submersion theorems

There are two important special cases of Theorem 3.3.4, the immersion

theorem and the submersion theorem. A Cr mapping F : U ⊆ Rm → V ⊆ Rn

is

• an immersion if it has constant rank m

• a submersion if it has constant rank n

on U .

Note : If F is an immersion, then m ≤ n. If it is a submersion, then m ≥ n. If it is

both an immersion and a submersion, then n = m and F is locally a diffeomorphism

(such a mapping is also said to be regular).

� Exercise 152 Let F : U ⊆ Rm → V ⊆ Rn be a Cr mapping (between open

sets), and m ≤ n. Show that F is an immersion if and only if the derivative DF (x)

is one-to-one at every point x ∈ U .

When m = 1, let U be an open interval J ⊆ R. In this case, the mapping

F : J → Rn is a parametrized curve in the Euclidean space Rn. To verify that

F is an immersion it is necessary to check that the Jacobian matrix of F has

rank 1 (i.e., one of the derivatives, with respect to t, of the components of

F differs from zero for every t ∈ J).

� Exercise 153 Verify that the following mappings are immersions.

(a) F1 : R→ R3, t 7→ (cos t, sin t, t).

(The image of F1 is a circular helix.)
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(b) F2 : R→ R2, t 7→ (cos t, sin t).

(The image of F2 is the unit circle S1.)

(c) F3 : (1,∞)→ R2, t 7→
(

1
t cos(2πt), 1

t sin(2πt)
)
.

(The image of F3 is a curve spiraling to the origin as t→∞ and tending

to the point (1, 0) as t→ 1.)

3.3.5 Corollary. (Immersion Theorem) Let F : U → V be a Cr

immersion. Then there are open neighborhoods W of p in U and Z ⊇ F (W )

of F (p) in V , respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(y1, . . . , ym) = (y1, . . . , ym, 0, . . . , 0).

An immersion is locally – but not necessarily globally – one-to-one. For

instance, the standard parametrization of the unit circle is an immersion which

is clearly not one-to-one. Two more instructive examples are given below.

3.3.6 Example. Consider the mapping

F : R→ R2, t 7→
(

2 cos
(
t− π

2

)
, sin 2

(
t− π

2

))
.

It is easy to check that F is an immersion which is not one-to-one. The image

of F is a “figure eight” (a self-intersecting geometric curve) with the image

point making a complete circuit starting at the origin as t goes from 0 to 2π.

3.3.7 Example. The mapping

G : R→ R2, t 7→ F (g(t)) =
(

2 cos
(
g(t)− π

2

)
, sin 2

(
g(t)− π

2

))
where g(t) = π + 2 arctan t, is again an immersion. The image is the “eight

figure” as in the previous example, but with an important difference : the

image point passes through the origin only once, when t = 0; for t → −∞
and t→∞ it only approaches the origin as limit. Hence G is an one-to-one

immersion.
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� Exercise 154 Is the mapping

F : R→ R2, t 7→ (t2, t3)

an immersion ? What about the restriction F |U of F to U = R \ {0} ? Investigate

for injectivity this restriction.

Note : An immersion F : U ⊆ R` → Rm is said to be an embedding if, in

addition,

– F is injective. (Observe that the induced mapping F : U → F(U) is

bijective.)

– F−1 : F (U)→ U is continuous.

In particular, the mapping F : U → F (U) is bijective, continuous, and possesses a

continuous inverse; hence, is is a homeomorphism. Accordingly, an embedding is an

immersion which is also a homeomorphism onto its image.

3.3.8 Example. The mapping

F : R→ R2, t 7→ (cos t, sin t)

is a smooth immersion (see Exercise 153). Its image set is the unit circle

S1 =
{
x ∈ R2 | ‖x‖ = 1

}
.

We can see that F is not one-to-one. However, we can make it so by restricting

F to the open interval J0 = (0, 2π) (or, more generally, to an interval of the

form Ja = (a, a+ 2π) with a ∈ R). The image of this interval under F is a

circle with one point left out (a punctured circle) :

F (J0) = S1 \ {(1, 0)}.

The maping

F−1 : F (J0)→ J0

is continuous. Consequently, F : J0 → R2 is a smooth embedding.
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3.3.9 Example. The mapping

F̃ : R→ R2, t 7→ (t2 − 1, t3 − t)

is a smooth immersion. One has

F̃ (s) = F̃ (t) ⇐⇒ t = s or s, t ∈ {−1, 1}.

This makes the restriction F : = F̃
∣∣∣
(−∞,1)

one-to-one. But it does not make

F an embedding.

� Exercise 155 Show that the mapping

F−1 : F ((−∞, 1))→ (−∞, 1)

is not continuous at the point (0, 0).

� Exercise 156 Let F : U ⊆ Rm → V ⊆ Rn be a Cr mapping (between open

sets), and m ≥ n. Show that F is a submersion if and only if the derivative DF (x)

is onto at every point x ∈ U .

When n = 1, the mapping F = f : U ⊆ Rm → R is a (differentiable)

function defined on the open set U . To verify that f is a submersion it is

necessary to check that the Jacobian matrix of f has rank 1 (i.e., one of the

partial derivatives of f differs from zero for every t ∈ U).

� Exercise 157 Verify that the following functions are submersions.

(a) f1 : Rm → R, x 7→ a1x1 + · · ·+ amxm + c (a2
1 + · · ·+ a2

m 6= 0).

(The inverse image of the origin under f1 is a hyperplane.)

(b) f2 : Rm \ {0} → R, x 7→ x2
1 + · · ·+ x2

m − 1.

(The inverse image of the origin under f2 is the unit sphere Sm−1.)

3.3.10 Corollary. (Submersion Theorem) Let F : U → V be a Cr

submersion. Then there are open neighborhoods W of p in U and Z ⊇
F (W ) of F (p) in V , respectively, together with Cr diffeomorphisms

G : W → W̃ ⊆ Rm and H : Z → Z̃ ⊆ Rn

such that (on W̃ )

H ◦ F ◦G−1(y1, . . . , ym) = (y1, . . . , yn).
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3.3.11 Example. Let GL (n,R) denote the set (group) of all invertible

(i.e., nonsingular) n × n matrices with real entries. (It can be shown that

GL (n,R) may be viewed as an open subset of Euclidean space Rn2
.) The

map

det : GL (n,R)→ R×, A 7→ det(A)

is differentiable (in fact, smooth) and its derivative is given by

D det (A) ·B = (detA) tr
(
A−1B

)
.

The differentiability of det is clear from its formula in terms of matrix ele-

ments. Now

det (In + λC) = 1 + λtrC + · · ·+ λndetC

implies
d

dλ
det (In + λC)

∣∣∣∣
λ=0

= trC

and hence

D det (A) ·B =
d

dλ
det (A+ λB)

∣∣∣∣
λ=0

=
d

dλ

[
(detA) det (In + λA−1B)

]
λ=0

= (detA) (tr (A−1B)).

In particular (for A = In),

D det (In) ·B = trB.

The map tr is onto, and so the function det is a (smooth) submersion.

� Exercise 158 Let Sym (n) denote the set (vector space) of all symmetric

n× n matrices with real entries, and consider the mapping

Ψ : GL (n,R)→ Sym (n), A 7→ AAT .

Show that Ψ is differentiable (in fact, smooth) and its derivative is given by

DΨ(A) ·B = ABT +BAT .

Hence derive that Ψ is a (smooth) submersion.
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The Implicit Mapping Theorem

The following result follows easily from the Inverse Mapping Theorem.

3.3.12 Proposition. Let U ⊆ Rk × Rm−k be an open set and let F :

U → Rm−k be of class Cr (1 ≤ r ≤ ∞). Let (p, q) ∈ U and suppose

that F (p, q) = 0 and the matrix ∂F
∂y (p, q) ∈ R(m−k)×(m−k) is nonsingular.

Then there exist an open neighborhood W ⊆ Rk of p, an open neighborhood

W ′ ⊆ Rm−k of q and a unique Cr mapping Φ : W →W ′ such that Φ(p) = q,

and for all x ∈W , (x,Φ(x)) ∈ U and

F (x,Φ(x)) = 0.

Note : This result is the so-called Implicit Mapping Theorem. It gives suffi-

cient conditions for local solvability of a system of equations of the form

f1(x1, . . . , xk, y1, . . . , ym−k) = 0

f2(x1, . . . , xk, y1, . . . , ym−k) = 0

...

fm−k(x1, . . . , xk, y1, . . . , ym−k) = 0

where the functions fi are differentiable. (We want to solve for these m−k unknown

y1, . . . , ym−k in the m− k equations in terms of x1, . . . , xk.)

Proof : Define the mapping F̃ : U → Rk × Rm−k = Rm by

F̃ (x, y) : = (x, F (x, y))

and observe that F̃ satisfies the hypotheses of the Inverse Mapping Theorem: F̃ ∈
Cr(U,Rm) and J

F̃
(p, q) =

∣∣∣∂F∂y (p, q)
∣∣∣ 6= 0. Thus there is an open neighborhood

W̃ = W ′0×W ′ of (p, q) and an open neighborhood W×W0 of F̃ (p, q) = (p, 0)

such that F̃ : W ′0×W ′ →W×W0 has a Cr inverse F̃−1 : W×W0 →W ′0×W ′;
clearly, F̃−1 is of the form F̃−1(x, y) = (x,H(x, y)). Now define

Φ : W →W ′, Φ(x) : = H(x, 0).

Then Φ ∈ Cr(W,Rm−k) and

(p,Φ(p)) = (p,H(p, 0) = F̃−1(p, 0) = (p, q)
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which implies Φ(p) = q. For x ∈W , (x,Φ(x)) ∈ U and

F (x,Φ(x)) =
(
F ◦ F̃−1

)
(x, 0) =

(
pr2 ◦ F̃ ◦ F̃−1

)
(x, 0) = pr2(x, 0) = 0.

2

� Exercise 159 Show that (in Proposition 3.3.10) when m− k = 1 we get

∂Φ

∂xj
= −

∂F

∂xj
∂F

∂y

(j = 1, 2, . . . , k).

Note : More generally, the partial derivatives
∂Φi
∂xj

are given by


∂Φ1
∂x1

· · · ∂Φ1
∂xk

...
...

∂Φm−k
∂x1

· · · ∂Φm−k
∂xk

 = −


∂f1
∂y1

· · · ∂f1
∂ym−k

...
...

∂fm−k
∂y1

· · · ∂fm−k
∂ym−k


−1 

∂f1
∂x1

· · · ∂f1
∂xk

...
...

∂fm−k
∂x1

· · · ∂fm−k
∂xk

 .
� Exercise 160 Show that the equations

x+ y + t = 0

xyt+ sin(xyt) = 0

define x and y implicitly as functions of t in an open neighborhood of the point

(t, x, y) = (−1, 0, 1). Calculate the derivatives x′(−1) and y′(−1).

3.4 Smooth Submanifolds

Linear submanifolds (of some Euclidean space Rm) are a generalization of

the notion of line; they are higher-dimensional geometrical objects (subsets)

which can be studied rather easily because of their simple algebraic structure :

linear submanifolds are “linear” ! The natural “non-linear” analogues are the

smooth submanifolds; smooth submanifolds are a significant generalization of

the notion of smooth curve.

Note : All the results proven so far are valid for Cr mappings (or functions).

However, the class Cr is not strong enough for some purposes. For this reason, and
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since it is very convenient to know that we do not lose differentiability as a result of

taking derivatives (the derivatives of a smooth mapping are also smooth). C∞ is the

preferred differentiability class in much of (differentiable) manifold theory. Henceforth

we will be concerned almost exclusively with smooth mappings (or functions).

We make the following definition.

3.4.1 Definition. A (nonempty) subset S of Rm is said to be a smooth

submanifold if, for every x ∈ S, there exist an open neighborhood U of x

in Rm and a smooth diffeomorphism φ : U → Ũ ⊆ Rm such that

φ(S ∩ U) = Ũ ∩ R`,

where 0 ≤ ` ≤ m.

We say that S is a smooth submanifold of dimension ` (or, simply, an

`-submanifold). The codimension of S is m− `.

Note : Roughly speaking, the condition

S ∩ U = φ−1(Ũ ∩ R`)

says that the set S looks like R` and is “flat” in Rm. We may assume, without any

loss of generality, that φ(x) = o (the origin).

3.4.2 Theorem. Let ∅ 6= S be a subset of Rm and suppose 0 ≤ ` ≤ m.

The following statements are equivalent.

(i) S is an `-submanifold of Rm.

(ii) For every x ∈ S there exist an open neighborhood U of x in Rm and

smooth functions fi : U → R, i = 1, 2, . . . ,m − ` such that the linear

functionals Dfi(x) are linearly independent and

S ∩ U =

m−`⋂
i=1

f−1
i (0).

(iii) For every x ∈ S there exist an open neighborhood U of x in Rm and

a smooth submersion F : U → Rm−` such that

S ∩ U = F−1(0).
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(iv) For every x ∈ S there exist an open neighborhood U of x = (x1, . . . , xm)

in Rm, an open neighborhood U ′ of x′ = (x1, . . . , x`) in R` and smooth

functions hi : U ′ → R, i = 1, 2, . . . ,m − ` such that, possibly after a

permutation of coordinates, the intersection S ∩ U is the graph of the

mapping H : = (h1, . . . , hm−`) : U ′ → Rm−` (under the canonical iso-

morphism):

S ∩ U = graph (H).

(v) For every x ∈ S there exist an open neighborhood U of x in Rm, an

open neighborhood V of 0 in R` and a smooth embedding Φ : V → Rm

such that Φ(0) = x and

S ∩ U = im Φ : = {Φ(y) | y ∈ V }.

Note : In (ii) we think of a smooth submanifold as an intersection of hypersurfaces

(i.e., codimension-1 smooth submanifolds) defined by local equations, in (iii) as the

zero-set of a smooth submersion, in (iv) as a graph, and in (v) as the image set of

a smooth embedding (i.e., a parametrized set). All these are local descriptions. (In

(v) it is sufficient to assume that the smooth mapping Φ is an embedding only at

the origin because if DG(0) is injective, so is DG(x) for x close enough to o.)

Proof : We shall show that

(iii) ⇒ (i) ⇒ (v) ⇒ (iv) ⇒ (ii) ⇒ (iii).

(iii) ⇒ (i). This is just the Submersion Theorem.

(i) ⇒ (v). We may assume (by using a translation, if necessary) that

φ(x) = 0. Take V = φ(S ∩ U) and Φ = φ−1 ◦ i, where i : R` → Rm is the

canonical inclusion.

(v) ⇒ (iv). After permuting indices, if necessary, we may assume that

DΦ(0)(R`) ∩ Rm−` = 0. Let pr1 : Rm = R` × Rm−` → R` be the projection

on the first factor. From DΦ(0)(R`) ∩ Rm−` = 0 we deduce that

D(pr1 ◦ Φ)(0)(R`) = R`.
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In other words, the mapping pr1◦Φ is regular at 0. By the Inverse Mapping

Theorem, there exists an open neighborhood V ′ of 0 such that pr1 ◦ Φ is

a (smooth) diffeomorphism between V ′ and U ′ = pr1(Φ(V ′)) ⊆ R`. Thus

(iv) is satisfied if we take this U ′ and h1, . . . , hm−` equal to the m− ` last

component functions of the mapping H = Φ ◦ (pr1 ◦ Φ)−1 ∈ C∞(U ′,Rm). In

fact, H(U ′) = Φ(V ′) by assumption, and so there exists an open set U ′′ ⊆ Rm

(containing U) such that

Φ(V ′) = H(U ′) = U ′′ ∩ V.

Thus U ′′ ∩ V is the graph of (h1, . . . , hm−`) = H.

(iv) ⇒ (ii). Just set

fi(x1, . . . , xm) = hi(x1, . . . , x`)− xi+`

for i = 1, 2, . . . ,m− `.

(ii) ⇒ (iii). The mapping F : U → Rm−` with component functions

f1, . . . , fm−` is a smooth submersion at x, and remains a submersion on an

open neighborhood of x, since the determinant is a continuous function.

2

The following result follows easily from the Constant Rank Theorem.

3.4.3 Proposition. Let U ⊆ Rm and V ⊆ Rn be open sets and let F :

U → V be a smooth mapping of constant rank k. Let q ∈ F (U) ⊆ V . Then

F−1(q) is a smooth submanifold of U of dimension m− k.

Proof : Let x ∈ F−1(q). Choose a neighborhood of x as in the Constant

Rank Theorem. Without loss of generality, we can replace W with W̃ and

F |W with H ◦ F ◦ G−1 on W̃ , all as in that theorem. That is, on W , we

assume that

F (x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0).

Thus q = (a1, . . . , ak, 0, . . . , 0) and W ∩ F−1(q) is the set of all points in W

of the form

(a1, . . . , ak, xk+1, . . . , xm).
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The desired diffeomorphism φ : W → φ(W ) ⊆ Rm will be

φ(x1, . . . , xm) = (xk+1, . . . , xm, x1 − a1, . . . , xk − ak).

2

Examples of smooth submanifolds

3.4.4 Example. 0-submanifolds of Rm are exactly sets of isolated points.

� Exercise 161 Show that linear submanifolds are smooth submanifolds.

3.4.5 Example. A parametrized curve in Rm is a smooth mapping

α : J → Rm,

where J ⊆ R is an open interval. If the mapping α is an immersion (i.e.,

α̇(t) 6= 0 for all t ∈ J), we say that the curve is regular. In this case, one can

show that every t ∈ J has a neighborhood W such that α(W ) ⊆ Rm is a

1-submanifold of Rm.

Note : In general, the trace α(J) of a regular curve is not a submanifold, even if

the mapping α is one-to-one. For instance, neither the “figure eight” (see Example

3.3.6) nor its variation, without self-intersection (see Example 3.3.7) are submani-

folds of R2. Both these geometric curves are images of a smooth submanifold – the

open interval J – under some smooth immersion.

We have just seen that, in general, the image of a submanifold under an

immersion (even a one-to-one immersion) is not a submanifold. However, the

inverse image of a point (i.e., a connected 0-dimensional submanifold) under

a submersion is either the empty set or a submanifold. (This is a special case

of Proposition 3.4.3.)

3.4.6 Example. The sphere

Sm−1 : = {x ∈ Rm | ‖x‖ = 1}

is a compact, (m − 1)-submanifold of Rm. (S1 is the unit circle; S0 is equal

to two points.)
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To see this, write

Sm−1 = {x = (x1, . . . , xm) |x2
1 + · · ·+ x2

m = 1}.

Thus the sphere Sm−1 is the zero-set of the smooth function

f : Rm → R, (x1, . . . , xm) 7→ x2
1 + · · ·+ x2

m − 1.

That is, Sm−1 = f−1(0). Since the function f is a smooth submersion, the

result follows.

3.4.7 Example. A smooth submanifold of codimension one is usually re-

ferred to as a (smooth) hypersurface. Hyperplanes and spheres are simple

examples of hypersurfaces. More generally, (nonempty) subsets of the form

S = {x = (x1, . . . , xm) ∈ Rm | f(x1, . . . , xm) = 0} ,

where f : Rm → R is a smooth submersion, are hypersurfaces (of Rm).

Another simple way of constructing smooth submanifolds is given now.

3.4.8 Proposition. Let S1 be an `1-submanifold of Rm and S2 an `2-

submanifold of Rn. Then S1 × S2 is an (`1 + `2)-submanifold of Rm+n.

Proof : Theorem 3.4.2, applied to x ∈ S1, and y ∈ S2, gives n +

m − (`1 + `2) (smooth) functions fi defined on an open neighborhood U =

U1 × U2 ⊆ Rm+n of (x, y) and satisfying condition (ii) for S1 × S2. 2

3.4.9 Example. The k-torus

Tk : = S1 × · · · × S1 ⊆ R2 × · · · × R2 = R2k

is a compact, k-submanifold of R2k.

3.4.10 Example. m-submanifolds of Rm are exactly open subsets of Rm.

We shall see that the set (group) GL (n,R) of all invertible n × n matrices

with real entries - the so-called (real) general linear group - is an open subset

of Euclidean space Rn2
. Hence the general linear group GL (n,R) is a smooth

submanifold (of Rn2
).
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Note : Any closed subgroup of GL (n,R) turns out to be a smooth submanifold

(of Rn2

). This result (by no means obvious) will be proved in the chapter devoted to

(abstract) Lie groups.

� Exercise 162 Prove that

(a) each of the following sets is a smooth submanifold of R2 (of dimension

1 ):

i. {x ∈ R2 |x2 = x3
1};

ii. {x ∈ R2 |x1 = x3
2};

iii. {x ∈ R2 |x1x2 = 1}.

(b) none of the following sets is a smooth submanifold of R2 :

i. {x ∈ R2 |x2 = |x1|};
ii. {x ∈ R2 | (x1x2 − 1)(x2

1 + x2
2 − 2) = 0};

iii. {x ∈ R2 |x2 = −x2
1 for x1 ≤ 0; x2 = x2

1 for x1 ≥ 0}.

� Exercise 163 Why is that

{x ∈ R2 | ‖x‖ < 1} and {x ∈ R2 | |x1| < 1, |x2| < 1}

are submanifolds of R2, but not

{x ∈ R2 | ‖x‖ ≤ 1} ?

� Exercise 164 Which of the following sets are smooth submanifolds (of some

appropriate Euclidean space Rm) ?

(a)
{

(t2, t3) | t ∈ R
}

;

(b)
{

(x1, x2) ∈ R2 |x1 = 0 or x2 = 0
}

;

(c)
{

(t, t2) | t < 0
}
∪
{

(t,−t2) | t > 0
}

;

(d) {(cos t, sin t, t) | t ∈ R};

(e)
{

(x1, x2, x3) ∈ R3 |x3
1 + x3

2 + x3
3 − 3x1x2x3 = 1

}
;

(f)
{

(x1, x2, x3) ∈ R3 |x2
1 + x2

2 + x2
3 = 1 and x1 + x2 − x3 = 0

}
.

� Exercise 165 Define

f : R2 → R, x 7→ x3
1 − x3

2.
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(a) Prove that f is a surjective smooth function.

(b) Prove that f is a smooth submersion at every point x ∈ R2 \ {0}.

(c) Prove that for all c ∈ R the set

{x ∈ R2 | f(x) = c}

is a submanifold of R2 of dimension 1.

� Exercise 166 Define

g : R3 → R, x 7→ x2
1 + x2

2 − x2
2.

(a) Prove that g is a surjective smooth function.

(b) Prove that g is a smooth submersion at every point x ∈ R3 \ {0}.

(c) Prove that the two sheets of the cone

g−1(0) \ {0} = {x ∈ R3 \ {0} |x2
1 + x2

2 = x2
3}

form a submanifold of R3 of dimension 2.

� Exercise 167 A nondegenerate quadric in Rm is a set of the form

Q : = {x ∈ Rm | (Ax) • x+ b • x+ c = 0}

= {x ∈ Rm |x>Ax+ b>x+ c = 0},

where A is a symmetric (i.e., A> = A ) invertible m ×m matrix with real entries,

b is a column m-matrix with real entries, and c ∈ R. Introduce the discriminant

∆ : = b>A−1b− 4c ∈ R.

(a) Show that Q is a smooth hypersurface (i.e., a smooth submanifold of

dimension m− 1) of Rm.

(b) Suppose ∆ = 0. Verify that p : = − 1
2A
−1b ∈ Q and then show that

S = Q \ {p} is also a smooth hypersurface of Rm.

Tangent spaces

Let S be an `-submanifold of Euclidean space Rm and let p ∈ S. We

want to define the (geometric) tangent space to S at the point p; this is,

locally at p, the “best” approximation of S by a linear `-submanifold.



C.C. Remsing 151

We shall base our definition of tangent space on the concept of (geometric)

tangent vector to a curve in Rm.

Let γ : J → Rm be a parametrized curve in Rm. (This means that J is an

open interval of R and γ is a smooth mapping. Also, recall that the image

set γ(J) ⊆ Rm, the so-called trace of γ, is generally not a submanifold of

Rm.) The (geometric) tangent vector to γ at (the point) γ(t) is the element

γ̇(t) =

(
dγ1

dt
(t), · · · , dγm

dt
(t)

)
∈ Rm = Tγ(t)Rm,

where γi : J → R, i = 1, 2, . . . ,m are the component functions of γ.

3.4.11 Definition. Let S be an `-submanifold of Rm and let p ∈ S. A

tangent vector v ∈ Rm = TpRm is said to be a geometric tangent vector

of S at p if there exist a parametrized curve γ : J → Rm and t0 ∈ J such

that

(GTV1) γ(t) ∈ S for all t ∈ J ;

(GTV2) γ(t0) = p;

(GTV3) γ̇(t0) = v.

Note : We are dealing with two kinds of tangent vectors : those that are “tangent”

to the whole space (i.e., the Euclidean space Rm) and those that are tangent to a

specific submanifold; the latter will be referred to as geometric tangent vectors in

order to avoid ambiguity.

The set of all geometric tangent vectors of S at p is denoted by TpS and

is called the tangent space to S at p.

Note : By definition, TpS is a subset of (the vector space) TpRm = Rm. It turns

out that it is, in fact, a vector subspace of the tangent space TpRm. When regarded

as a subset of (Euclidean space) Rm, the tangent space TpS is better viewed as a

linear submanifold which is tangent to (i.e., has a contact of order one with) the

smooth submanifold S at the point p. It is common to refer to p + TpS, as the

geometric tangent space of S at p. (Obviously, the point p plays an important

role in this linear submanifold. By choosing the point p as the origin, one obtains the

identification of the geometric tangent space with the vector space TpS.) Experience
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shows that is convenient to regard the tangent space to S at p as a vector space

(i.e., to identify the linear submanifold p+ TpS with its direction space TpS).

Let v ∈ TpS and λ ∈ R. Then λv ∈ TpS. Indeed, we may assume that

γ(t) ∈ S for al t ∈ J with γ(0) = p and γ̇(0) = v. Consider the parametrized

curve γλ : t 7→ γ(λt). One has, for sufficiently small t, γλ(t) ∈ S. Also

γλ(0) = p and γ̇λ(0) = λv.

Hence λv ∈ TpS. It is less obvious that if v, w ∈ TpS, then v + w ∈ TpS.

3.4.12 Theorem. Let S be an `-submanifold of Rm and let p ∈ S. As-

sume that, locally at p, S is described as in Theorem 3.4.2. Then

TpS = ker (DF (p))

= graph (DH(z))

= im (DΦ(0)).

In particular, TpS is an `-dimensional vector subspace of Rm = TpRm.

Proof : Since S is an `-submanifold of Rm and p ∈ S, there exists an

open neighborhood U of p in Rm such that we can write

• S ∩ U = F−1(0), where F : U → Rm−` is a smooth submersion;

• S ∩ U = graph (H), where H : W ⊆ R` → Rm−` is a smooth

mapping;

• S ∩ U = im (Φ), where Φ : V ⊆ R` → Rm is a smooth embedding.

In particular, we assume that

p = (z,H(z)) , z ∈W ⊆ R`

= Φ(y), y ∈ V ⊆ R`

and

F (p) = 0 ∈ Rm−`.

Let h ∈ R`. Then there exists an ε > 0 such that z + th ∈W for all |t| < ε.

Consequently,

γ : t 7→ (z + th,H(z + th)) , |t| < ε

is a smooth curve in Rm such that
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– γ(t) ∈ V ;

– γ(0) = (z,H(z)) = p ;

– γ̇(0) = (h,DH(z) · h).

This implies

graph (H) ⊂ TpS.

It is equally true that

im (DΦ(y)) ⊂ TpS.

Hence

graph (H) ∪ im (DΦ(y)) ⊂ TpS. (∗)

Now let v ∈ TpS and assume v = γ̇(t0). Then we have (F ◦ γ)(t) = 0, t ∈ J
and hence (by differentiation)

0 = D(F ◦ γ)(t0) = DF (p) ◦ γ̇(t0) = DF (p) · v.

Therefore

TpS ⊂ ker (DF (p)) . (∗∗)

Since the linear mappings h 7→ (h,DH(z) · h) and DΦ(p) are injective and

surjective, respectively, from (∗) and (∗) it follows that

dim graph (DH(z)) = dim im (DΦ(y)) = dim ker(DF (p)) = `.

This proves the result. 2

� Exercise 168 Let S be an `-submanifold of Rm and let p ∈ S. Assume

that, locally at p, S is described as in Theorem 3.4.2 (i). Prove that

TpS = (Dφ−1(0))(R`).

3.4.13 Example. Let H = (h1, h2) : dom (H) ⊆ R → R2 be a smooth

mapping. The submanifold

S = {(t, h1(t), h2(t)) ∈ R3 | t ∈ dom (H)}

is the (geometric) curve in R3 given as the graph of H.
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Then

graph (DH(t)) = R (1, ḣ1(t), ḣ2(t)).

A parametric representation of the geometric tangent line of S at (t,H(t))

(with t ∈ R fixed) is

x = (t, h1(t), h2(t)) + λ
(

1, ḣ1(t), ḣ2(t)
)
, λ ∈ R.

3.4.14 Example. Let S ⊂ R3 be the (geometric) helix such that

S ⊂ {x ∈ R3 |x2
1 + x2

2 = 1} and

S ∩ {x ∈ R3 |x3 = 2kπ} = {(1, 0, 2kπ)}, k ∈ Z.

Then S is the graph of the smooth mapping

H : R→ R2, t 7→ (cos t, sin t).

That is,

S = {(cos t, sin t, t) | t ∈ R}.

It follows that S is a smooth submanifold of R3 of dimension 1. Moreover,

S is a zero-set. Indeed, we have

x ∈ S ⇐⇒ F (x) = (x1 − cosx3, x2 − sinx3) = 0.

For x = (H(t), t) we obtain

TxS = graph (DH(t)) = R (− sin t, cos t, 1)

= R (−x2, x1, 1),

DF (x) =

[
1 0 sinx3

0 1 − cosx3

]
.

The parametric representation of the geometric tangent line of S at x =

(H(t), t) is

(cos t, sin t, t) + λ(− sin t, cos t, 1), λ ∈ R.
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3.4.15 Example. The submanifold S ⊂ R3 is given by a smooth embed-

ding Φ : dom (Φ) ⊆ R2 → R3. That is,

S =
{

Φ(y) ∈ R3 | y ∈ dom (Φ)
}
.

Then

DΦ(y) =
[
∂Φ
∂y1

(y) ∂Φ
∂y2

(y)
]

=


∂Φ1
∂y1

(y) ∂Φ1
∂y2

(y)

∂Φ2
∂y1

(y) ∂Φ2
∂y2

(y)

∂Φ3
∂y1

(y) ∂Φ3
∂y2

(y)

 .
The tangent space TxS, with x = Φ(y), is spanned by the (tangent) vectors

∂Φ

∂y1
(y) and

∂Φ

∂y2
(y)·

Therefore, a parametric representation of the geometric tangent plane of S

at Φ(y) is

u1 = Φ1(y) + λ1
∂Φ1

∂y1
(y) + λ2

∂Φ1

∂y2
(y)

u2 = Φ2(y) + λ1
∂Φ2

∂y1
(y) + λ2

∂Φ2

∂y2
(y)

u3 = Φ3(y) + λ1
∂Φ3

∂y1
(y) + λ2

∂Φ3

∂y2
(y), λ ∈ R2.

It turns out that

TxS =

{
h ∈ R3 |h • ∂Φ

∂y1
(y)× ∂Φ

∂y2
(y) = 0

}
.

3.4.16 Example. The submanifold S ⊂ R3 is the (geometric) curve in

R3 given as a zero-set of a smooth submersion F : dom (F ) ⊆ R3 → R2. That

is,

x ∈ S ⇐⇒ F (x) = (f1(x), f2(x)) = 0.

Then

DF (x) =

[
∂f1
∂x (x)

∂f2
∂x (x)

]
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and thus

ker (DF (x)) =
{
h ∈ R3 | grad f1(x) • h = grad f2(x) • h = 0

}
.

The tangent space TxS is seen to be the line in R3 through the origin, formed

by intersection of two planes

{h ∈ R3 | grad f1(x) • h = 0} and {h ∈ R3 | grad f2(x) • h = 0}.

� Exercise 169 Let S be the hyperboloid of two sheets

S = {(a sinh y1 cos y2, b sinh y1 sin y2, c cosh y1) | y = (y1, y2) ∈ R2}, a, b, c > 0.

(a) Show that S is a smooth submanifold of R3 of dimension 2.

(b) Determine the geometric tangent space of S at an arbitrary point p of S

in three ways, by successively considering S as a zero-set, a parametrized

set and a graph.

� Exercise 170 Let Q ⊂ Rm be a nondegenerate quadric given by

Q = {x ∈ Rm |x>Ax+ b>x+ c = 0}.

Let x ∈ Q \
{
− 1

2A
−1b
}

.

(a) Prove that

TxQ = {h ∈ Rm | (2Ax+ b) • h = 0}.

(b) Prove that

x+ TxQ = {h ∈ Rm | (2Ax+ b) • (x− h) = 0}

= {h ∈ Rm | (Ax) • h+
1

2
b • (x+ h) + c = 0}.
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