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4.1 Real and Complex Matrix Groups

Throughout, we shall denote by k either the field R of real numbers or the

field C of complex numbers.

The algebra of n× n matrices over k

Let km be the set of all m-tuples of elements of k. Under the usual

addition and scalar multiplication, km is a vector space over k. The set

Hom (kn,km) of all linear mappings from kn to km (i.e., mappings L : kn →
km such that L(λx+µy) = λL(x) +µL(y) for every x, y ∈ kn and λ, µ ∈ k)

is also a vector space over k.

� Exercise 171 Determine the dimension of the vector space Hom (kn,km).

Let km×n be the set of all m × n matrices with elements (entries) from

k. It is convenient to identify

the m-tuple (a1, a2, . . . , am) ∈ km with the column m-matrix


a1

a2

...

am

 ∈ km×1.

� Exercise 172 Give reasons why the identification of km with km×1 is legit-

imate.

Under the usual matrix addition and multiplication, km×n is a vector space

over k. There is a natural one-to-one correspondence

A 7→ LA (: x 7→ Ax)

between the m × n matrices with elements from k and the linear mappings

from kn to km.

� Exercise 173 Show that the vector spaces km×n and Hom (kn,km) are iso-

morphic. Observe that, in particular, the vector spaces k1×n and Hom (kn,k) =

(kn)∗ (the dual of kn ) are isomorphic.
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Note : We do not identify the row n-matrix
[
a1 a2 . . . an

]
with the n-tuple

(a1, a2, . . . , an) but rather with the linear mapping (functional)

(x1, x2, . . . , xn) 7→ a1x1 + a2x2 + · · ·+ anxn.

Any matrix A ∈ km×n can be interpreted as a linear mapping LA ∈
Hom (kn,km), whereas any linear mapping L ∈ Hom (kn,km) can be realized

as a matrix A ∈ km×n. Henceforth we shall not distinguish notationwise

between a matrix A and its corresponding linear mapping x 7→ Ax.

Note : A matrix (or linear mapping, if one prefers) A ∈ kn×n can be viewed

as a vector field (on kn) : A associates to each point p in kn the tangent vector

A(p) = Ap ∈ kn. We may think of a fluid in motion, so that the velocity of the fluid

particles passing through p is always A(p). The vector field is then the current of

the flow and the paths of the fluid particles are the trajectories. This kind of flow is,

of course, very special : A(p) is independent of time, and depends linearly on p.

Notice that kn×n is not just a vector space. It also has a multiplication

which is associative and distributes over addition (on either side). In other

words, under the usual addition and multiplication, kn×n is a ring (in general

not commutative), with identity In. Moreover, for all A,B ∈ kn×n and λ ∈ k,

λ(AB) = (λA)B = A(λB).

Such a structure is called an (associative) algebra over k.

� Exercise 174 Give the definition of an algebra over (the field) k. Write down

all the axioms.

The topology of kn×n

For x ∈ kn
(
= kn×1

)
, let

‖x‖2 : =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

be the 2-norm (or Euclidean norm) on kn.

Note : For r ≥ 1, the r-norm of x ∈ kn is defined as

‖x‖r : = (|x1|r + |x2|r + · · ·+ |xn|r)1/r
.

The following properties hold (for x, y ∈ kn and λ ∈ k) :
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‖x‖r ≥ 0, and ‖x‖r = 0 ⇐⇒ x = 0 ;

‖λx‖r = |λ| ‖x‖r ;

‖x+ y‖r ≤ ‖x‖r + ‖y‖r.

In practice, only three of the r-norms are used, and they are :

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (the grid norm);

‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2 (the Euclidean norm);

‖x‖∞ = lim
r→∞

‖x‖r = max{|x1|, |x2|, . . . , |xn|} (the max norm).

For x ∈ kn, we have

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n · ‖x‖2 ≤ n · ‖x‖∞

and so any two of these norms are equivalent (i.e., the associated metric topologies

are identical). In fact, all norms on a finite dimensional vector space (over k ) are

equivalent.

The metric topology induced by (the Euclidean distance)

(x, y) 7→ ‖x− y‖2

is the natural topology on the set (vector space) kn.

� Exercise 175 Show that, for x, y ∈ kn,

| ‖x‖2 − ‖y‖2 | ≤ ‖x− y‖2.

Hence deduce that the function

‖ · ‖2 : kn → R, x 7→ ‖x‖2

is continuous (with respect to the natural topologies on kn and R).

� Exercise 176 Given A ∈ kn×n, show that the linear mapping (on kn) x 7→
Ax is continuous (with respect to the natural topology on kn).

Let A ∈ kn×n. The 2-norm ‖ · ‖2 on kn×1 induces a (matrix) norm on

kn×n by setting

‖A‖ : = max
‖x‖2=1

‖Ax‖2.
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The subset K = {x ∈ kn | ‖x‖2 = 1} ⊂ kn is closed and bounded, and so is

compact. [A subset of the metric space kn is compact if and only if it is closed

and bounded.] On the other hand, the function f : K → R, x 7→ ‖Ax‖2 is

continuous. [The composition of two continuous maps is a continuous map.]

Hence the maximum value maxx∈K ‖Ax‖2 must exist.

Note : The following topological result holds : If K ⊂ kn is a (nonempty) compact

set, then any continuous function f : K → R is bounded; that is, the image set

f(K) = {f(x) |x ∈ K} ⊆ R is bounded. Moreover, f has a global maximum (and a

global minimum).

� Exercise 177 Show that the induced norm ‖ · ‖ is compatible with its under-

lying norm ‖ · ‖2; that is (for A ∈ kn×n and x ∈ kn),

‖Ax‖2 ≤ ‖A‖ ‖x‖2.

‖ · ‖ is a matrix norm on kn×n, called the operator norm; that is, it has the

following four properties (for A,B ∈ kn×n and λ ∈ k) :

(MN1) ‖A‖ ≥ 0, and ‖A‖ = 0 ⇐⇒ A = 0 ;

(MN2) ‖λA‖ = |λ| ‖A‖ ;

(MN3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ ;

(MN4) ‖AB‖ ≤ ‖A‖ ‖B‖.

Note : There is a simple procedure (well-known in numerical linear algebra) for

calculating the operator norm of an n× n matrix A . This is

‖A‖ =
√
λmax,

where λmax is the largest eigenvalue of the matrix A∗A. Here A∗ denotes the

Hermitian conjugate (i.e., the conjugate transpose) matrix of A; in the case k = R,

A∗ = A>.

We define a metric ρ on (the algebra) kn×n by

ρ(A,B) : = ‖A−B‖.
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Associated to this metric is a natural topology on kn×n. Hence fundamental

topological concepts, like open sets, closed sets, compactness, connectedness, as

well as continuity, can be introduced. In particular, we can speak of continuous

functions from kn×n into k.

� Exercise 178 For 1 ≤ i, j ≤ n, show that the coordinate function

coordij : kn×n → k, A 7→ aij

is continuous. [Hint : Show first that |aij | ≤ ‖A‖ and then verify the defining

condition for continuity.]

It follows immediately that if f : kn2 → k is continuous, then the associ-

ated function

f̃ = f ◦ (coordij) : kn×n → k, A 7→ f((aij))

is also continuous. Here (aij) = (a11, a12, . . . , a1n, a21, . . . , ann) ∈ kn2
.

� Exercise 179 Show that the determinant function

det : kn×n → k, A 7→ detA : =
∑
σ∈Sn

(−1)|σ|a1σ(1)a2σ(2) · · · anσ(n)

and the trace function

tr : kn×n → k, A 7→ trA : =

n∑
i=1

aii

are continuous.

The metric space (kn×n, ρ) is complete. This means that every Cauchy

sequence (Ar)r≥0 in kn×n has a unique limit lim
r→∞

Ar. Furthermore,(
lim
r→∞

Ar

)
ij

= lim
r→∞

(Ar)ij .

Indeed, the limit on the RHS exists, so it is sufficient to check that the re-

quired matrix limit is the matrix A with aij = lim
r→∞

(Ar)ij . The sequence

(Ar −A)r≥0 satisfies

‖Ar −A‖ ≤
n∑

i,j=1

|(Ar)ij − aij | → 0 as r →∞

and so Ar → A.
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Groups of matrices

Let GL (n, k) be the set of all invertible n×n matrices over k (or, equiv-

alently, the set of all linear transformations on kn). So

GL (n, k) : = {A ∈ kn×n |detA 6= 0}.

� Exercise 180 Verify that the set GL (n,k) is a group under matrix multipli-

cation.

GL (n,k) is called the general linear group over k. We will refer to

GL (n,R) and GL (n,C) as the real and complex general linear group, respec-

tively.

A 1× 1 matrix over k is just an element of k and matrix multiplication

of two such elements is just multiplication in k. So we see that

GL (1, k) = k× (the multiplicative group of k \ {0}) .

4.1.1 Proposition. GL (n, k) is an open subset of kn×n.

Proof : We have seen that the function det : kn×n → k is continuous (see

Exercise 179). Then observe that

GL (n, k) = kn×n \ det−1(0).

Since the set {0} is closed (in k), it follows that det−1(0) = det−1({0}) ⊂
kn×n is also closed. [The preimage of a closed set under a continuous map is

a closed set.] Hence GL (n,k) is open. [The complement of a closed set is an

open set.] 2

Let G be a subgroup of the general linear group GL (n, k). If G is also a

closed subspace of GL (n, k), we say that G is a closed subgroup.

4.1.2 Definition. A closed subgroup of GL (n,k) is called a matrix group

over k (or a matrix subgroup of GL (n,k)).

Matrix groups are also known as linear groups or even as matrix Lie

groups. This latter terminology emphasizes the remarkable fact that every

matrix group is a Lie group.
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Note : The condition that the group of matrices G ⊆ GL (n, k) is a closed subset

of (the metric space) GL (n, k) means that the following condition is satisfied : if

(Ar)r≥0 is any sequence of matrices in G and Ar → A, then either A ∈ G or A is

not invertible (i.e. A 6∈ GL (n, k)).

The condition that G be a closed subgroup, as opposed to merely a subgroup,

should be regarded as a “technicality” since most of the interesting subgroups of

GL (n,k) have this property. Almost all of the matrix groups we will consider have

the stronger property that if (Ar)r≥0 is any sequence of matrices in G converging

to some matrix A, then A ∈ G.

We will often use the notation G ≤ GL (n,k) to indicate that G is a

(matrix) subgroup of GL (n,k).

4.1.3 Example. The general linear group GL (n, k) is a matrix group (over

k).

4.1.4 Example. An example of a group of matrices which is not a matrix

group is the set of all n×n invertible matrices all of whose entries are rational

numbers. This is in fact a subgroup of GL (n,C) but not a closed subgroup;

that is, one can (easily) have a sequence of invertible matrices with rational

entries converging to an invertible matrix with some irrational entries.

� Exercise 181 ∗ Let a ∈ R \Q. Show that

G =

{[
eit 0

0 eiat

]
| t ∈ R

}
is a subgroup of GL (2,C), and then find a sequence of matrices in G which converges

to −I2 6∈ G. This means that G is not a matrix group. [Hint : By taking t =

(2n + 1)π for a suitably chosen n ∈ Z, we can make ta arbitrarily close to an odd

integer multiple of π, (2m + 1)π say. It is sufficient to show that for any positive

integer N , there exist n,m ∈ Z such that |(2n+ 1)a− (2m+ 1)| < 1
N ·]

Note : The closure of G (in GL (2,C) ) can be thought of as (the direct product)

S1 × S1 and so is a matrix group (see Exercise 195).

4.1.5 Proposition. Let G be a matrix group over k and H a closed

subgroup of G. Then H is a matrix group over k.
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Proof : Every sequence (Ar)r≥0 in H with a limit in GL (n, k) actually

has its limit in G since each Ar ∈ H ⊆ G and G is closed in GL (n,k). Since

H is closed in G, this means that (Ar)r≥0 has a limit in H. So H is closed

in GL (n, k), showing it is a matrix group over k. 2

� Exercise 182 Prove that any intersection of matrix groups (over k) is a ma-

trix group.

4.1.6 Example. Denote by SL (n, k) the set of all n×n matrices over k,

having determinant one. So

SL (n, k) : = {A ∈ kn×n | detA = 1} ⊆ GL (n, k).

� Exercise 183 Show that SL (n, k) is a closed subgroup of GL (n, k) and hence

is a matrix group over k.

SL (n,k) is called the special linear group over k. We will refer to SL (n,R)

and SL (n,C) as the real and complex special linear groups, respectively.

4.1.7 Definition. A closed subgroup of a matrix group G is called a

matrix subgroup of G.

4.1.8 Example. We can consider GL (n,k) as a subgroup of GL (n+ 1,k)

by identifying the n× n matrix A =
[
aij

]
with

[
1 0

0 A

]
=



1 0 . . . 0

0 a11 . . . a1n

0 a21 . . . a2n

...
...

...

0 an1 . . . ann


.

It is easy to verify that GL (n,k) is closed in GL (n+1,k) and hence GL (n,k)

is a matrix subgroup of GL (n+ 1, k).

� Exercise 184 Show that SL (n, k) is a matrix subgroup of SL (n+ 1,k).



166 M4.3 - Geometry

4.2 Examples of Matrix Groups

The vector space kn×n over k can be considered to be a real vector space, of

dimension n2 or 2n2, respectively. Explicitly, Rn×n is (isomorphic to) Rn2
,

and Cn×n is (isomorphic to) Cn2
= R2n2

. Hence we may assume, without

any loss of generality, that kn×n is some Euclidean space Rm.

The real general linear group GL (n,R)

We showed that GL (n,R) is a matrix group and that it is an open subset

of the vector space Rn×n
(

= Rn2
)

. Since the set GL (n,R) is not closed, it is

not compact. [Any compact set is a closed set.]

The determinant function det : GL (n,R) → R is continuous (in fact,

smooth) and maps GL (n,R) onto the two components of R×. Thus GL (n,R)

is not connected. [The image of a connected set under a continuous map is a

connected set.]

Note : A matrix group G is said to be connected if given any two matrices

A,B ∈ G, there exists a continuous path γ : [a, b]→ G with γ(a) = A and γ(b) = B.

This property is what is called path-connectedness in topology, which is not (in

general) the same as connectedness. However, it is a fact (not particularly obvious at

the moment) that a matrix group is connected if and only if it is path-connected. So

in a slight abuse of terminology we shall continue to refer to the above property as

connectedness.

A matrix group G which is not connected can be decomposed (uniquely) as a

union of several pieces, called components, such that two elements of the same com-

ponent can be joined by a continuous path, but two elements of different components

cannot. The component of G containing the identity is a closed subgroup of G (and

hence a connected matrix group).

Consider the sets

GL+ (n,R) : = {A ∈ GL (n,R) |detA > 0}

GL− (n,R) : = {B ∈ GL (n,R) |detB < 0}.

These two disjoint subsets of GL (n,R) are open and such that

GL+ (n,R) ∪ GL− (n,R) = GL (n,R).
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[The preimage of an open set under a continuous map is an open set.]

� Exercise 185 Show that GL+ (n,R) is a matrix subgroup of GL (n,R) but

GL− (n,R) is not.

The mapping

A ∈ GL+ (n,R) 7→ SA ∈ GL− (n,R)

where S = diag (1, 1, . . . , 1,−1), is a bijection (in fact, a diffeomorphism). The

transformation x 7→ Sx may be thought of as a reflection in the hyperplane

Rn−1 = Rn−1 × {0} ⊂ Rn.

Note : The group GL+ (n,R) is connected, which proves that GL+ (n,R) is the

connected component of the identity in GL (n,R) and that GL (n,R) has two (con-

nected) components.

The real special linear group SL (n,R)

Recall that

SL (n,R) : = {A ∈ GL (n,R) |detA = 1} = det−1(1).

It follows that SL (n,R) is a closed subgroup of GL (n,R) and hence is a

matrix group. [The preimage of a closed set under a continuous map is a

closed set.] We introduce a new matrix norm on Rn×n, called the Frobenius

norm, as follows :

‖A‖F : =
√

tr (A>A) =

√√√√ n∑
i,j=1

a2
ij .

Note : The Frobenius norm coincides with the Euclidean norm on Rn2

, and is

much easier to compute than the operator norm. However, all matrix norms on

Rn×n are equivalent (i.e., they generate the same metric topology).
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We shall use this (matrix) norm to show that SL (n,R) is not compact.

Indeed, all matrices of the form
1 0 . . . t

0 1 . . . 0
...

...
...

0 0 . . . 1


are elements of SL (n,R) whose norm equals

√
n+ t2 for any t ∈ R. Thus

SL (n,R) is not a bounded subset of Rn×n and hence is not compact. [In a

metric space, any compact set is bounded.]

Note : The special linear group SL (n,R) is connected.

More on SL (2,R). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The orthogonal and special orthogonal groups O (n) and SO (n)

The set

O (n) : = {A ∈ Rn×n |A>A = In}

is the orthogonal group. Clearly, every orthogonal matrix A ∈ O (n) has

an inverse, namely A>. Hence O (n) ⊆ GL (n,R).

� Exercise 186 Verify that O (n) is a subgroup of the general linear group

GL (n,R).

The single matrix equation A>A = In is equivalent to n2 equations for

the n2 real numbers aij , i, j = 1, 2, . . . , n :

n∑
k=1

akiakj = δij .

This means that O (n) is a closed subset of Rn×n and hence of GL (n,R).

� Exercise 187 Prove that O (n) is a closed subset of Rn2

.
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Thus O (n) is a matrix group. The group O (n) is also bounded in Rn×n.

Indeed, the (Frobenius) norm of A ∈ O (n) is

‖A‖F =
√

tr (A>A) =
√

tr In =
√
n.

Hence the group O (n) is compact. [A subset of Rn×n is compact if and only

if it is closed and bounded.]

Let us consider the determinant function (restricted to O (n)), det : O (n)→
R×. Then for A ∈ O (n)

det In = det (A>A) = detA> · detA = (detA)2.

Hence detA = ±1. So we have

O (n) = O+ (n) ∪ O− (n)

where

O+ (n) : = {A ∈ O (n) |detA = 1} and O− (n) : = {A ∈ O (n) | detA = −1}.

Note : The group O+ (n) is connected, which proves that O+ (n) is the connected

component of the identity in O (n).

The special orthogonal group is defined as

SO (n) : = O (n) ∩ SL (n,R).

That is,

SO (n) = {A ∈ O (n) |detA = 1} = O+ (n).

It follows that SO (n) is a closed subset of O (n) and hence is compact. [A

closed subset of a compact set is compact.]

Note : One of the main reasons for the study of these groups O (n),SO (n) is

their relationship with isometries (i.e., distance-preserving transformations on the

Euclidean space Rn). If such an isometry fixes the origin, then it is actually a linear

transformation and so – with respect to the standard basis – corresponds to a matrix

A. The isometry condition is equivalent to the fact that (for all x, y ∈ Rn)

Ax •Ay = x • y,
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which in turn is equivalent to the condition that A>A = In (i.e., A is orthogonal).

Elements of SO (n) are (identified with) rotations (or direct isometries); elements of

O− (n) are sometimes referred to as indirect isometries.

The Lorentz group Lor (1, n)

Consider the inner-product (i.e., nondegenerate symmetric bilinear form)

� on (the vector space) Rn+1 given by (for x, y ∈ Rn+1)

x� y : = −x1y1 +
n+1∑
i=2

xiyi

(the so-called Minkowski product). It is standard to denote this inner-product

space by R1,n.

� Exercise 188 Show that the group of all linear isometries (i.e., linear trans-

formations on R1,n that preserve the Minkowski product) is isomorphic to the matrix

group

O(1, n) : =
{
A ∈ GL(n+ 1,R) |A>SA = S

}
where

S = diag (−1, 1, 1, . . . , 1) =

[
−1 0

0 In

]
∈ GL (n+ 1,R).

In a similar fashion, one can define more general matrix groups

O (k, `) ≤ GL (k + `,R) and SO (k, `) ≤ SL (k + `,R)

usually called “pseudo-orthogonal” groups.

� Exercise 189 Define the inner-product 〈·, ·〉k,` on Rk+` by the formula

〈x, y〉k,` : = −x1y1 − · · · − xkyk + xk+1yk+1 + · · ·+ xk+`yk+`.

The pseudo-orthogonal group O (k, `) consists of all matrices A ∈ GL (k+`,R) which

preserve this inner-product (i.e., such that 〈Ax,Ay〉k,` = 〈x, y〉k,` for all x, y ∈ Rk+`).

(a) Verify that O (k, `) is a matrix subgroup of GL (k + `,R).
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(b) Let

Q = diag (−1, . . . ,−1, 1, . . . , 1) =

[
−Ik 0

0 I`

]
.

Prove that a matrix A ∈ GL (k+`,R) is in O (k, `) if and only if A>QA =

Q. Hence deduce that detA = ±1.

(c) Verify that SO (k, `) : = O (k, `) ∩ SL (k + `,R) is a matrix subgroup of

SL (k + `,R).

Note : Since O (k, `) and O (`, k) are essentially the same group, we may assume

(without any loss of generality) that 1 ≤ k ≤ `. The pseudo-orthogonal groups are

neither compact nor connected. The groups O (k, `) have four (connected) compo-

nents, whereas SO (k, `) have two components.

For each positive number ρ > 0, the hyperboloid

H1,n(ρ) : =
{
x ∈ R1,n | 〈x, x〉 = −ρ

}
has two (connected) components

H+
1,n(ρ) = {x ∈ H1,n(ρ) |x1 > 0} and H−1,n(ρ) = {x ∈ H1,n(ρ) |x1 < 0} .

We define the Lorentz group Lor (1, n) to be the (closed) subgroup of

SO (1, n) preserving each of the connected sets H±1,n(1). Thus

Lor (1, n) : =
{
A ∈ SO (1, n) |AH±1,n(1) = H±1,n(1)

}
≤ SO (1, n).

It turns out that A ∈ Lor (1, n) if and only if it preserves the hyperboloids

H±1,n(ρ), ρ > 0 and the “light cones” H±1,n(0).

Note : The Lorentz group Lor (1, n) is connected .

Of particular interest in physics is the Lorentz group Lor = Lor (1, 3). That

is,

Lor =
{
L ∈ SO (1, 3) |LH±1,3(ρ) = H±1,3(ρ), ρ ≥ 0

}
≤ SO (1, 3).

� Exercise 190 Show that

(a) The matrix A =

[
cosh t sinh t

sinh t cosh t

]
is in SO (1, 1).
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(b) For every s, t ∈ R[
cosh s sinh s

sinh s cosh s

][
cosh t sinh t

sinh t cosh t

]
=

[
cosh(s+ t) sinh(s+ t)

sinh(s+ t) cosh(s+ t)

]
.

(c) Every element (matrix) of O (1, 1) can be written in one of the four forms[
cosh t sinh t

sinh t cosh t

]
,

[
− cosh t sinh t

sinh t − cosh t

]
,

[
cosh t − sinh t

sinh t − cosh t

]
,

[
− cosh t − sinh t

sinh t cosh t

]
.

(Since cosh t is always positive, there is no overlap among the four cases. Matrices

of the first two forms have determinant one; matrices of the last two forms have

determinant minus one.)

Note : We can write

SO (1, 1) = Lor (1, 1) ∪

[
−1 0

0 −1

]
Lor (1, 1)

O (1, 1) = SO (1, 1) ∪

[
1 0

0 −1

]
SO (1, 1).

More on Lor (1, 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The real symplectic group Sp (2n,R)

Let

J : =

[
0 In

−In 0

]
∈ SL (2n,R).

A matrix A ∈ R2n×2n is called symplectic if

A>JA = J.

Note : The word symplectic was invented by Hermann Weyl (1885-1955), who

substituted Greek for Latin roots in the word complex to obtain a term which would

describe a group (related to “line complexes” but which would not be confused with

complex numbers).
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Let Sp (2n,R) be the set of all 2n × 2n symplectic matrices. Taking

determinants of the condition A>JA = J gives

1 = det J = (detA>) · (det J) · (detA) = (detA)2.

Hence detA = ±1, and so A ∈ GL (2n,R). Furthermore, if A,B ∈ Sp (2n,R),

then

(AB)>J(AB) = B>A>JAB = J.

Hence AB ∈ Sp (2n,R). Now, if A>JA = J, then

JA = (A>)−1J = (A−1)>J

so

J = (A−1)>JA−1.

It follows that A−1 ∈ Sp (2n,R) and hence Sp (2n,R) is a group. In fact, it

is a closed subgroup of GL (2n,R), and thus a matrix group.

Note : The symplectic group Sp (2n,R) is connected. (It turns out that the de-

terminant of a symplectic matrix must be positive; this fact is by no means obvious.

� Exercise 191 Check that Sp (2,R) = SL (2,R). (In general, it is not true that

Sp (2n,R) = SL (2n,R).)

� Exercise 192 Given A =

[
a b

c d

]
∈ GL (2n,R), show that A ∈ Sp (2n,R) if

and only if a>c and b>d are symmetric and a>d− c>b = In.

All matrices of the form [
In 0

tIn In

]
are symplectic. However, the (Frobenius) norm of such a matrix is equal

to
√

2n+ t2n, which is unbounded if t ∈ R. Therefore, Sp (2n,R) is not a

bounded subset of R2n×2n and hence is not compact.

� Exercise 193 Consider the skew-symmetric bilinear form on (the vector space)

R2n defined by

Ω(x, y) : =

n∑
i=1

(xiyn+i − xn+iyi)
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(the standard symplectic form or the “canonical” symplectic structure). Show that

a linear transformation (on R2n ) x 7→ Ax preserves the symplectic form Ω if and

only if A>JA = J (i.e., the matrix A is symplectic). Such a structure-preserving

transformation is called a symplectic transformation.

The group of all symplectic transformations on R2n (equipped with the

symplectic form Ω ) is isomorphic to (the matrix group) Sp (2n,R).

Note : The symplectic group is related to classical mechanics. Consider a particle

of mass m moving in a potential field V . Newton’s second law states that the

particle moves along a curve t 7→ x(t) in in Cartesian 3-space R3) in such a way that

mẍ = −gradV (x). Introduce the conjugate momenta pi = mẋi, i = 1, 2, 3 and the

energy (Hamiltonian)

H(x, p) : =
1

2m

3∑
i=1

p2
i + V (x).

Then
∂H

∂xi
=
∂V

∂xi
= −mẍi = −ṗi and

∂H

∂pi
=

1

m
pi = ẋi

and hence Newton’s law F = ma is equivalent to Hamilton’s equations

ẋi =
∂H

∂pi
and ṗi = −∂H

∂xi
(i = 1, 2, 3).

Writing z = (x, p),

J · gradH(z) =

[
0 I3

−I3 0

]
∂H
∂x

∂H
∂p

 = (ẋ, ṗ) = ż

so Hamilton equations read ż = J · gradH(z). Now let

F : R3 × R3 → R3 × R3

and write w(t) = F (z(t)). If z(t) satisfies Hamilton’s equations

ż = J · gradH(z)

then w(t) = F (z(t)) satisfies ẇ = A>ż, where A> = [∂wi/∂zj ] is the Jacobian

matrix of f . By the chain rule,

ẇ = A>J gradzH(z) = A>JA gradwH(z(w)).
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Thus, the equations for w(t) have the form of Hamilton’s equations with energy

K(w) = H(z(w)) if and only if A>JA = J; that is, if and only if A is symplec-

tic. A nonlinear transformation F is canonical if and only if its Jacobian matrix is

symplectic (or, if one prefers, its tangent mapping is a symplectic transformation).

As a special case, consider a (linear transformation) A ∈ Sp (2n,R) and let

w = Az. Suppose H is quadratic (i.e., of the form H(z) = 1
2z
>Bz where B is a

symmetric matrix). Then gradH(z) = Bz and thus the equations of motion become

the linear equations ż = JBz. Now

ẇ = Aż = AJBz = J(A>)−1Bz = J(A>)−1BA−1Az = JB′w

where B′ = (A>)−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) =
1

2
w>(A>)−1BA−1w =

1

2
(A−1w)>BA−1w

= H(A−1w) = H(z).

Thus Sp (2n,R) is the linear invariance group of classical mechanics.

The complex general linear group GL (n,C)

Many important matrix groups involve complex matrices. As in the real

case,

GL (n,C) : = {A ∈ Cn×n | detA 6= 0}

is an open subset of Cn×n, and hence is not compact. Clearly GL (n,C) is a

group under matrix multiplication.

Note : The general linear group GL (n,C) is connected. This is in contrast with

the fact that GL (n,R) has two components.

The complex special linear group SL (n,C)

This group is defined by

SL (n,C) : = {A ∈ GL (n,C) | detA = 1}

and is treated as in the real case. The matrix group SL (n,C) is not compact

but connected.

The unitary and special unitary groups U (n) and SU (n)
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For A =
[
aij

]
∈ Cn×n,

A∗ : = Ā> = A>

is the Hermitian conjugate (i.e., the conjugate transpose) matrix of A; thus,

(A∗)ij = āji. The unitary group is defined as

U (n) : = {A ∈ GL (n,C) |A∗A = In}.

� Exercise 194 Verify that U (n) is a subgroup of the general linear group

GL (n,C).

The unitary condition amounts to n2 equations for the n2 complex num-

bers aij , i, j = 1, 2, . . . , n
n∑
k=1

ākiakj = δij .

By taking real and imaginary parts, these equations actually give 2n2 equa-

tions in the 2n2 real and imaginary parts of the aij (although there is some

redundancy). This means that U (n) is a closed subset of Cn×n = R2n2
and

hence of GL (n,C). Thus U (n) is a complex matrix group.

Note : The unitary group U(n) is compact and connected.

Let A ∈ U (n). From |detA| = 1, we see that the determinant function

det : GL (n,C)→ C maps U (n) onto the unit circle S1 = {z ∈ C | |z| = 1}.

Note : In the special case n = 1, a complex linear mapping φ : C → C is

multiplication by some complex number z, and φ is an isometry if and only if |z| = 1.

In this way, the unitary group U (1) is identified with the unit circle S1. The group

U (1) is more commonly known as the circle group or the 1-dimensional torus, and is

also denoted by T1.

The dot product on Rn can be extended to Cn by setting (for x, y ∈
Cn×1 )

x • y : = x∗y = x̄1y1 + x̄2y2 + · · ·+ x̄nyn.

Note : This is not C-linear but satisfies (for x, y ∈ Cn×1 and u, v ∈ C)

(ux) • (vy) = ūv(x • y).



C.C. Remsing 177

This dot product allows us to define the length (or norm) of a complex vector

x ∈ Cn×1 by

‖x‖ : =
√
x • x.

Then a matrix A ∈ Cn×n is unitary if and only if (for x, y ∈ Cn)

Ax •Ay = x • y.

� Exercise 195 If Gi ≤ GL (ni,k), i = 1, 2 are matrix groups, show that their

(direct) product G1 × G2 is also a matrix group (in GL (n1 + n2,k)). Observe, in

particular, that the k-dimensional torus

Tk : = T1 × T1 × · · · × T1

is a matrix group (in GL (k,C)). These groups are compact connected Abelian matrix

groups. In fact, they are the only matrix groups with these properties.

The special unitary group

SU (n) : = {A ∈ U (n) | detA = 1}

is a closed subgroup of U (n) and hence a complex matrix group.

Note : The matrix group SU (n) is compact and connected. In the special case

n = 2, SU (2) is diffeomorphic to the unit sphere S3 in C2 (or R4). The group

SU (2) is used in the construction of the gauge group for the Young-Mills equations

in elementary particle physics. Also, there is a 2 to 1 surjection (in fact, a surjective

submersion)

π : SU (2)→ SO (3)

which is of crucial importance in computational mechanics (it is related to the quater-

nionic representation of rotations in Euclidean 3-space).

The complex orthogonal groups O (n,C) and SO (n,C)

Consider the bilinear form on (the vector space) Cn defined by (for x, y ∈
Cn)

(x, y) : = x1y1 + x2y2 + · · ·+ xnyn.

This form is not an inner product because of the lack of complex conjugation

in the definition. The set of all complex n × n matrices which preserve this
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form (i.e., such that (Ax,Ay) = (x, y) for all x, y ∈ Cn) is the complex

orthogonal group O (n,C). Thus

O (n,C) : =
{
A ∈ GL (n,C) |A>A = In

}
⊆ GL (n,C).

It is easy to show that O (n,C) is a matrix group, and that detA = ±1 for all

O (n,C).

Note : The matrix group O (n,C) is not the same as the unitary group U (n).

The complex special orthogonal group

SO (n,C) : = {A ∈ O (n,C) | detA = 1}

is also a matrix group.

The unipotent group UTu (n,k)

A matrix A =
[
aij

]
∈ kn×n is upper triangular if all the entries bellow

the main diagonal are equal to 0. Let UT (n,k) denote the set of all n × n
invertible upper triangular matrices (over k). Thus

UT (n, k) : = {A ∈ GL (n, k) | aij = 0 for i > j}.

� Exercise 196 Show that UT (n, k) is a closed subgroup of the general linear

group GL (n, k) (and hence a matrix group).

The group UT (n,k) is called the (real or complex) upper triangular group.

This group is not compact.

Note : Likewise, one can define the lower triangular group

LT (n, k) : = {A ∈ GL (n, k) | aij = 0 for i < j}.

Clearly, A ∈ LT (n,k) if and only if A> ∈ UT (n, k). The matrix groups UT (n, k)

and LT (n, k) are isomorphic and there is no need to distinguish between them.

� Exercise 197 Show that the diagonal group

D (n, k) : = {A ∈ GL (n, k) | aij = 0 for i 6= j}

is a closed subgroup of UT (n, k) (and hence a matrix group).
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� Exercise 198 For k ≤ n, let P (k) denote the group of all linear transfor-

mations (i.e., invertible linear mappings) on Rn that preserve the subspace Rk =

Rk × {0} ⊆ Rn. Show that P (k) is (isomorphic to) the matrix group{[
A X

0 B

]
|A ∈ GL (k,R), B ∈ GL (n− k,R), X ∈ Rk×(n−k)

}
.

An upper triangular matrix A =
[
aij

]
is unipotent if it has all diagonal

entries equal to 1. The (real or complex) unipotent group is (the subgroup

of GL (n,k))

UTu (n, k) : = {A ∈ GL (n,k) | aij = 0 for i > j and aii = 1}

(see also Exercise 194). It is easy to see that the unipotent group UTu (n, k)

is a closed subgroup of GL (n,k) and hence a matrix group.

Note : UTu (n, k) is a closed subgroup of UT (n,k).

For the case

UTu (2,k) =

{[
1 t

0 1

]
∈ GL (n, k) | t ∈ k

}

the mapping

θ : k→ UTu (2, k), t 7→

[
1 t

0 1

]
is a continuous group homomorphism which is an isomorphism with continuous

inverse. This allows us to view k as a matrix group.

Note : Given two matrix groups G and H, a group homomorphism θ : G → H

is a continuous homomorphism if it is continuous and its image θ(G) ≤ H is a closed

subset of H. For instance,

θ : UTu (2,R)→ U (1),

[
1 t

0 1

]
7→ e2πti

is a continuous homomorphism of matrix groups, but (for a ∈ R \Q)

θ′ : G =

{[
1 k

0 1

]
∈ SUT (2,R) | k ∈ Z

}
→ U (1),

[
1 k

0 1

]
7→ e2πkai
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is not (since its image is a dense proper subset of U (1)). Whenever we have a

continuous homomorphism of matrix groups θ : G → H which is a homeomorphism

(i.e., a continuous bijection with continuous inverse) we say that θ is a continuous

isomorphism and regard G and H as “identical” (as matrix groups).

The unipotent group UTu (3,R) is the Heisenberg group

Heis : =


1 a b

0 1 c

0 0 1

 | a, b, c ∈ R


which is particularly important in quantum physics; the Lie algebra of Heis

gives a realization of the Heisenberg commutation relations of quantum me-

chanics.

� Exercise 199 Verify that the 4× 4 unipotent matrices A of the form

A =


1 a2 a3 a4

0 1 a1
a21
2

0 0 1 a1

0 0 0 1


form a closed subgroup of UTu (4,R) (and hence a matrix group). Generalize.

Several other matrix groups are of great interest. We describe briefly some of

them.

The general affine group GA (n, k)

The general affine group (over k ) is the group

GA (n, k) : =

{[
1 0

c A

]
∈ GL (n+ 1, k) | c ∈ kn×1 and A ∈ GL (n, k)

}
.

This is clearly a closed subgroup of the general linear group GL (n+1,k) (and

hence a matrix group). The general affine group GA (n,k) is not compact.

Likewise the case of the general linear group, the matrix group GA (n,C) is

connected but GA (n,R) is not.
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Note : If we identify the element x ∈ kn with

[
1

x

]
∈ k(n+1)×1, then since

[
1 0

c A

][
1

x

]
=

[
1

Ax+ c

]

we obtain an action of the group GA (n, k) on (the vector space) kn. Transformations

on kn having the form x 7→ Ax + c (with A invertible) are called affine transfor-

mations and they preserve lines (i.e., translates of 1-dimensional subspaces of the

vector space kn). The associated geometry is affine geometry that has GA (n, k) as

its symmetry group.

The (additive group of the) vector space kn (in fact, kn×1 ) can be viewed as

(and identified with) the translation subgroup of GA (n,k){[
1 0

c In

]
∈ GL (n+ 1,k) | c ∈ kn×1

}
≤ GA (n, k)

and this is a closed subgroup.

The identity component of the (real) general affine group GA (n,R) is (the

matrix group)

GA+ (n,R) =

{[
1 0

c A

]
| c ∈ kn×1 and A ∈ GL+ (n,R)

}
.

In particular,

GA+ (1,R) =

{[
1 0

c ea

]
| a, c ∈ R

}
is a connected matrix group (of “dimension” 2). Its elements are (in fact,

can be identified with) transformations on (the real line) R having the form

x 7→ bx+ c (with b, c ∈ R and b > 0).

The Euclidean group E (n)

This is the matrix group

E (n) : =

{[
1 0

c A

]
∈ GL (n+ 1,R) | c ∈ Rn×1 and A ∈ O (n)

}
.
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The Euclidean group E (n) is a closed subgroup of the general affine group

GA (n,R) and also is neither compact nor connected. It can be viewed as (and

thus identified with) the group of all isometries (i.e., rigid motions) on the

Euclidean n-space Rn.

The special Euclidean group SE (n)

The special Euclidean group SE (n) is (the matrix group) defined by

SE (n) : =

{[
1 0

c R

]
∈ GL (n+ 1,R) | c ∈ Rn×1 and R ∈ SO (n)

}
.

This group is isomorphic to the group of all orientation-preserving isometries

(i.e., proper rigid motions) on the Euclidean n-space Rn. It is not compact

but connected.

Some other groups

Several important groups which are not naturally groups of matrices can

be viewed as matrix groups. We have seen that the multiplicative groups

R× and C× (of non-zero real numbers and complex numbers, respectively)

are isomorphic to the matrix groups GL (1,R) and GL (1,C), respectively.

Also, the circle group S1 (of complex numbers with absolute value one) is

isomorphic to U (1). The n-torus (the direct product of n copies of S1)

Tn = S1 × · · · × S1 ≤ GL (n,C)

is isomorphic to the matrix group of n × n diagonal matrices with complex

entries of modulus one. (Tn can also be realized as the quotient group Rn/Zn :

an element (θ1, . . . , θn) mod Zn of Rn/Zn can be identified with the diagonal

matrix diag
(
e2πiθ1 , . . . , e2πiθn

)
.)

Note : If θ : G → H is a continuous homomorphism of matrix groups, then

its kernel ker θ ≤ G is a matrix group. Moreover, the quotient group G/ker θ can

be identified with the matrix group θ(G) by the usual quotient isomorphism θ̃ :

G/ker θ → θ(G).

However, it is important to realize that not every normal matrix subgroup N of

the matrix group G gives rise to a matrix group G/N ; there are examples for which
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G/N is a Lie group but not a matrix group. (We shall see later that every matrix

group is a Lie group.)

Recall that the additive groups R and C are isomorphic to the unipotent

groups UTu (2,R) and UTu (2,C), respectively.

� Exercise 200 Verify that the map

x ∈ R 7→ [ex] ∈ GL+ (1,R)

is a continuous isomorphism of matrix groups, and then show that the additive group

Rn is isomorphic to the matrix group of all n × n diagonal matrices with positive

entries.

� Exercise 201 Let Zn ≤ Rn be the discrete subgroup of vectors with integer

entries and set

GL (n,Z) : = {A ∈ GL (n,R) |A(Zn) = Zn} .

Show that GL (n,Z) is a matrix group. (This matrix group consists of n×n matrices

over (the ring) Z with determinant ± 1.)

The symmetric group Sn of all permutations on n elements may be con-

sidered as well as a matrix group. Indeed, we can make Sn to act (from the

right) on kn by linear transformations :
x1

x2

...

xn

 · σ =


xσ−1(1)

xσ−1(2)
...

xσ−1(n)

 .

Thus (for the standard unit vectors e1, e2, . . . , en) ei·σ = eσ(i), i = 1, 2, . . . , n.

The matrix [σ] of the linear transformation induced by σ ∈ Sn (with

respect to the standard basis) has all its entries 0 or 1, with exactly one 1 in

each row and column. Such a matrix is usually called a permutation matrix.

� Exercise 202 Write down the permutations matrices induces by the elements

(permutations) of S3.
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When k = R each of these permutation matrices is orthogonal, while

when k = C it is unitary. So, for a given n ≥ 1, the symmetric group Sn is

(isomorphic to) a closed subgroup of O (n) or U (n).

Note : Any finite group is (isomorphic to) a matrix subgroup of some orthogonal

group O (n).

The following table lists some interesting matrix groups, indicates whether

or not the group is compact and/or connected, and gives the number of (con-

nected) components.

Group Compact ? Connected ? Components

GL (n,C) no yes one

SL (n,C) no yes one

GL (n,R) no no two

GL+ (n,R) no yes one

SL (n,R) no yes one

U (n) yes yes one

SU (n) yes yes one

O (n) yes no two

SO (n) yes yes one

O (1, n) no no four

SO (1, n) no no two

Lor (1, n) no yes one

Sp (2n,R) no yes one

UTu (n, k) no yes one

GA (n, k) no no two

GA+ (n,k) no yes one

E (n) no no two

SE (n) no yes one

Rn no yes one

Tn yes yes one

Note : There are more interesting matrix groups, e.g., the quaternionic matrix

groups (in particular, the quaternionic symplectic group Sp (n)), associated with the
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division algebra H of quaternions, as well as the spinor groups Spin (n) and the pinor

groups Pin (n), associated with (real) Clifford algebras.

Complex matrix groups as real matrix groups

Recall that the (complex) vector space C can be viewed as a real 2-dimensional

vector space (with basis {1, i}, for example).

� Exercise 203 Show that the mapping

ρ : C→ R2×2, z = x+ iy 7→

[
x −y
y x

]

is an injective ring homomorphism (i.e., a one-to-one mapping such that, for z, z′ ∈ C,

ρ(z + z′) = ρ(z) + ρ(z′) and ρ(zz′) = ρ(z)ρ(z′).)

We can view C as a subring of R2×2. In other words, we can identify the

complex number z = x+ iy with the 2× 2 real matrix ρ(z).

Note : This can also be expressed as

ρ(x+ iy) = xI2 − yJ2, where J2 : =

[
0 1

−1 0

]
.

Also, for z ∈ C,

ρ(z̄) = ρ(z)T

(complex conjugation corresponds to transposition).

More generally, given Z =
[
zrs

]
∈ Cn×n with zrs = xrs + iyrs, we can

write

Z = X + iY,

where X =
[
xrs

]
, Y =

[
yrs

]
∈ Rn×n.

� Exercise 204 Show that the mapping

ρn : Cn×n → R2n×2n, Z = X + iY 7→

[
X −Y
Y X

]

is an injective ring homomorphism.
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Hence we can identify the complex matrix Z = X + iY with the 2n× 2n

real matrix ρn(Z). Let

J = J2n : =

[
0 In

−In 0

]
∈ SL (2n,R).

Then we can write

ρn(Z) = ρn(X + iY ) =

[
X 0

0 X

]
−

[
Y 0

0 Y

]
J.

� Exercise 205 First verify that

J2 = −I2n and J> = −J

and then show that, for Z ∈ Cn×n,

ρn(Z̄) = ρn(Z)> ⇐⇒ X = X> and Y = Y >.

We see that ρn(GL (n,C)) is a closed subgroup of GL (2n,R), so any matrix

subgroup G of GL (n,C) can be viewed as a matrix subgroup of GL (2n,R) (by

identifying it with its image ρn(G) under ρn). The following characterizations

are sometimes useful :

ρn(Cn×n) =
{
A ∈ Rn×n |AJ = JA

}
ρn(GL (n,C)) = {A ∈ GL (2n,R) |AJ = JA} .

� Exercise 206 Verify the folowing set of equalities :

ρn(U (n)) = O (n) ∩ ρn(GL (n,C))

= O (n) ∩ Sp (2n,R)

= ρn(GL (n,C)) ∩ Sp (2n,R).

Note : In a slight abuse of notation, the real symplectic group Sp (2n,R) is related

to the unitary group U (n) by

Sp (2n,R) ∩ O (2n) = U (n).
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4.3 The Exponential Mapping

Let A ∈ kn×n and consider the matrix series∑
k≥0

1

k!
Ak = In +A+

1

2!
A2 +

1

3!
A3 + · · ·

Note : This matrix series is a series in the complete normed vector space (in fact,

algebra) (kn×n, ‖ · ‖), where ‖ · ‖ is the operator norm (induced by the Euclidean

norm on kn). In a complete normed vector space, an absolutely convergent series∑
k≥0

ak (i.e., such that the series
∑
k≥0

‖ak‖ is convergent) is convergent, and

∥∥∥∥∥
∞∑
k=0

ak

∥∥∥∥∥ ≤
∞∑
k=0

‖ak‖.

(The converse is not true.) Also, every rearrangement of an absolutely convergent

series is absolutely convergent, with same sum. Given two absolutely convergent series∑
k≥0

ak and
∑
k≥0

bk (in a complete normed algebra), their Cauchy product
∑
k≥0

ck, where

ck =
∑
i+j=k

aibj = a0bk + a1bk−1 + · · ·+ akb0 is also absolutely convergent, and

∞∑
k=0

ck =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
.

� Exercise 207 Show that the matrix series
∑
k≥0

1

k!
Ak is absolutely convergent

(and hence convergent).

Let

∞∑
k=0

1

k!
Ak denote the sum of the (absolutely) convergent matrix series∑

k≥0

1

k!
Ak. We set

eA = exp (A) : =
∞∑
k=0

1

k!
Ak.

This matrix is called the matrix exponential of A. It follows that

‖ exp (A)‖ ≤ ‖In‖+ ‖A‖+
1

2!
‖A‖2 + · · · = e‖A‖

and also ‖ exp (A)− In‖ ≤ e‖A‖ − 1.
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� Exercise 208 Show that (for λ, µ ∈ k)

exp ((λ+ µ)A) = exp (λA) exp (µA).

[Hint : These series are absolutely convergent. Think of the Cauchy product.]

It follows that

In = exp (O) = exp ((1 + (−1))A) = exp (A) exp (−A)

and hence exp (A) is invertible with inverse exp (−A). So exp (A) ∈ GL (n,k).

Note : The “group property” exp ((λ+µ)A) = exp (λA) exp (µA) may be rephrased

by saying that, for fixed A ∈ kn×n, the mapping λ 7→ exp (λA) is a (continuous)

homomorphism from the additive group of scalars k into the general linear group

GL (n,k).

4.3.1 Definition. The mapping

exp : kn×n → GL (n, k), A 7→ exp (A)

is called the exponential mapping.

4.3.2 Proposition. If A,B ∈ kn×n commute, then

exp (A+B) = exp (A) exp (B).

Proof : We expand the series and perform a sequence of manipulations that
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are legitimate since these series are absolutely convergent :

exp (A) exp (B) =

( ∞∑
r=0

1

r!
Ar

)( ∞∑
s=0

1

s!
Bs

)

=
∞∑

r,s=0

1

r!s!
ArBs

=

∞∑
k=0

(
k∑
r=0

1

r!(k − r)!
ArBk−r

)

=

∞∑
k=0

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)

=

∞∑
k=0

1

k!
(A+B)k

= exp (A+B).

2

Note : We have made crucial use of the commutativity of A and B in the identity

k∑
r=0

(
k

r

)
ArBk−r = (A+B)k.

In particular, for the (commuting) matrices λA and µA, we reobtain the property

exp ((λ + µ)A) = exp (λA) exp (µA). It is important to realize that, in fact, the

following statements are equivalent (for A,B ∈ kn×n) :

(i) AB = BA.

(ii) exp (λA) exp (µB) = exp (µB) exp (λA) for all λ, µ ∈ k.

(iii) exp (λA+ µB) = exp (λA) exp (µB) for all λ, µ ∈ k.

� Exercise 209 Compute (for a, b ∈ R)

exp

([
a 0

0 a

])
, exp

([
a −b
b a

])
, exp

([
a b

b a

])
, exp

([
a b

0 a

])
.

Note : Every real 2× 2 matrix is conjugate to exactly one of the following types

(with a, b ∈ R, b 6= 0 ) :
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• a

[
1 0

0 1

]
(scalar).

• a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]
(elliptic).

• a

[
1 0

0 1

]
+ b

[
0 1

1 0

]
(hyperbolic).

• a

[
1 0

0 1

]
+ b

[
0 1

0 0

]
(parabolic).

Hermitian and skew-Hermitian matrices. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

� Exercise 210

(a) Show that if A ∈ Rn×n is skew-symmetric, then exp (A) is orthogonal.

(b) Show that if A ∈ Cn×n is skew-Hermitian, then exp (A) is unitary.

� Exercise 211 Let A ∈ kn×n and B ∈ GL (n, k). Show that

exp (BAB−1) = B exp (A)B−1.

Deduce that if B−1AB = diag (λ1, λ2, . . . , λn), then

exp (A) = B diag
(
eλ1 , eλ2 , . . . , eλn

)
B−1.

� Exercise 212 A matrix A ∈ kn×n is nilpotent if Ak = O for some k ≥ 1.

(a) Prove that a nilpotent matrix is singular.

(b) Prove that a strictly upper triangular matrix A =
[
aij

]
(i.e. with aij = 0

whenever i ≥ j ) is nilpotent.

(c) Find two nilpotent matrices whose product is not nilpotent.

� Exercise 213 Suppose that A ∈ kn×n and ‖A‖ < 1.

(a) Show that the matrix series∑
k≥0

Ak = In +A+A2 +A3 + · · ·

converges (in kn×n).

(b) Show that the matrix In − A is invertible and find a formula for (In −
A)−1.
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(c) If A is nilpotent, determine (In −A)−1 and exp (A).

� Exercise 214 Show (for λ ∈ R)

exp



λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
...

...

0 0 0 . . . λ


 =


eλ eλ 1

2!e
λ . . . 1

(n−1)!e
λ

0 eλ eλ . . . 1
(n−2)!e

λ

...
...

...
...

0 0 0 . . . eλ

 .

Note : When the matrix A ∈ kn×n is diagonalizable over C (i.e., A =

C diag (λ1, λ2, . . . , λn)C−1 for some C ∈ GL (n,C)), we have

exp (A) = C diag
(
eλ1 , eλ2 , . . . , eλn

)
C−1.

This means that the problem of calculating the exponential of a diagonalizable matrix

is solved once an explicit diagonalization is found. Many important types of matri-

ces are indeed diagonalizable (over C), including skew-symmetric, skew-Hermitian,

orthogonal, and unitary matrices. However, there are also many non-diagonalizable

matrices. If Ak = O for some positive integer k, then A` = O for all ` ≥ k. In

this case the matrix series which defines exp (A) terminates after the first k terms,

and so can be computed explicitly. A general matrix A may be neither nilpotent

nor diagonalizable. This situation is best discussed in terms of the Jordan canonical

form.

For λ ∈ C and r ≥ 1, we have the Jordan block matrix

J(λ, r) : =



λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ

 ∈ Cr×r.

The characteristic polynomial of J(λ, r) is

charJ(λ,r)(s) : = det (sIr − J(λ, r)) = (s− λ)r

and by the Cayley-Hamilton Theorem, (J(λ, r)− λIr)r = O, which implies that

(J(λ, r)− λIr)r−1 6= O (and hence charJ(λ,r)(s) = minJ(λ,r)(s) ∈ C[s]). The main

result on Jordan form is the following : Given A ∈ Cn×n, there exists a matrix
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P ∈ GL (n,C) such that

P−1AP =


J(λ1, r1) O . . . O

O J(λ2, r2) . . . O
...

...
...

O O . . . J(λm, rm)

 ∈ Cn×n.

This form is unique except for the order in which the Jordan blocks J(λi, ri) ∈ Cri×ri

occur. (The elements λ1, λ2, . . . , λm are the eigenvalues of A and in fact charA(s) =

(s− λ1)r1(s− λ2)r2 · · · (s− λm)rm .)

Using the Jordan canonical form we can see that every matrix A ∈ Cn×n

can be written as A = S + N , where S is diagonalizable (over C), N is

nilpotent, and SN = NS.

� Exercise 215 Let A ∈ kn×n.

(a) Prove that A is nilpotent if and only if all its eigenvalues are equal to

zero.

(b) The matrix A is called unipotent if In−A is nilpotent (i.e. (In−A)k =

O for some k ≥ 1). Prove that A is unipotent if and only if all its

eigenvalues are equal to 1.

(c) If A is a strictly upper triangular matrix, show that exp (A) is unipotent.

� Exercise 216 Compute

exp


λ a b

0 λ c

0 0 λ


 .

� Exercise 217 The power series∑
k≥1

(−1)k+1 (z − 1)k

k
= z − 1− (z − 1)2

2
+

(z − 1)3

3
− (z − 1)4

4
+ · · · , z ∈ C

has radius of convergence 1 and hence defines a complex analytic function

z 7→ log z : =

∞∑
k=1

(−1)k+1 (z − 1)k

k

on the set {z | |z− 1| < 1}. (This function coincides with the usual logarithm for real

z on the interval (0, 2).) Show that
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(a) For all z with |z − 1| < 1,

elog z = z.

(b) For all w with |w| < ln 2, |ew − 1| < 1 and

log (ew) = w.

Let A ∈ kn×n. The matrix series∑
k≥1

(−1)k+1

k
Ak = A− 1

2
A+

1

3
A3 − 1

4
A4 + · · ·

converges (absolutely) for ‖A‖ < 1. We define the logarithm mapping

log : B kn×n(In, 1)→ kn×n, A 7→ log (A) : =

∞∑
k=1

(−1)k+1

k
(A− In)k.

(The notation B kn×n(A, ρ) stands for the open ball of radius ρ around A in

the metric space kn×n; that is,

B kn×n(A, ρ) : =
{
A′ ∈ kn×n | ‖A′ −A‖ < ρ

}
.)

Note : Defining a logarithm for matrices turns out to be at least as difficult as

defining a logarithm for complex numbers, and so we cannot hope to define the matrix

logarithm for all matrices, or even for all invertible matrices. We content ourselves

with defining the logarithm in a neighborhood of the identity matrix. The logarithm

mapping is continuous (on the set of all n× n matrices A with ‖A− In‖ < 1 ) and

log (A) is real if A is real.

� Exercise 218 Show that

(a) For all A with ‖A− In‖ < 1,

exp (log (A)) = A.

(b) For all B with ‖B‖ < ln 2, ‖ exp (B)− In‖ < 1 and

log (exp (B)) = B.
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The exponential and logarithm mappings

exp : kn×n → GL (n,k), and log : B kn×n(In, 1)→ kn×n

are continuous (in fact, infinitely differentiable). Indeed, since any power Ak

is a continuous mapping of A, the sequence of partial sums
(∑r

k=0
1
k!A

k
)
r≥0

consists of continuous mappings. But (it is easy to see that) the matrix series

(defining the exponential matrix) converges uniformly on each set of the form

{A | ‖A‖ ≤ ρ}, and so the sum (i.e., the limit of its sequence of partial sums)

is again continuous. (A similar argument works in the case of the logarithm

mapping.)

By continuity (of the exponential mapping at the origin O), there is a

number δ > 0 such that

B kn×n(O, δ) ⊆ exp−1
(
BGL (n,k)(In, 1)

)
.

In fact we can actually take δ = ln 2 since

exp (B kn×n(O, δ)) ⊆ B kn×n
(
In, e

δ − 1
)
.

Hence we have the following result

4.3.3 Proposition. The exponential mapping exp is injective when re-

stricted to the open subset B kn×n(O, ln 2). (Hence it is locally a diffeomor-

phism at the origin O with local inverse log.)

Let A ∈ kn×n. For every t ∈ R, the matrix series
∑
k≥0

tk

k!
Ak is (absolutely)

convergent and we have

∞∑
k=0

tk

k!
Ak =

∞∑
k=0

1

k!
(tA)k = exp(tA).

So the mapping

α : R→ kn×n, t 7→ exp(tA)

is defined and differentiable with

α̇(t) =

∞∑
k=1

tk−1

(k − 1)!
Ak = exp (tA)A = A exp (tA).
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Note : This mapping can be viewed as a curve in kn×n. The curve is in fact

smooth (i.e., infinitely differentiable) and satisfies the differential equation (in matri-

ces) α̇(t) = α(t)A with initial condition α(0) = In. Also (for t, s ∈ R),

α(t+ s) = α(t)α(s).

In particular, this shows that α(t) is always invertible with α(t)−1 = α(−t).

� Exercise 219 Let A,C ∈ kn×n. Show that the differential equation (in matri-

ces) α̇ = αA has a unique differentiable solution α : R→ kn×n for which α(0) = C.

(This solution is α(t) = C exp (tA).) Furthermore, if C is invertible, then so is α(t)

for t ∈ R, hence α : R→ GL (n, k).

� Exercise 220 Let A ∈ kn×n. Show that the functional equation (in matrices)

α(t + s) = α(t)α(s) has a unique differentiable solution α : R → kn×n for which

α(0) = In and α̇(0) = A. (This solution is α(t) = exp (tA).)

� Exercise 221 If A,B ∈ kn×n commute, show that

d

dt
exp (A+ tB)

∣∣∣∣
t=0

= exp (A)B = B exp (A).

(This is a formula for the derivative of the exponential mapping exp at an arbitrary

A, evaluated only at those B such that AB = BA. The general situation is more

complicated.)

4.4 Lie Algebras for Matrix Groups

One-parameter subgroups

Let G ≤ GL (n, k) be a matrix group and let I denote the identity matrix.

Note : The matrix I is the neutral element of the group G. When k = R, then

I = In whereas when k = C and G ≤ GL (2n,R), then I = I2n =

[
In 0

0 In

]
.

4.4.1 Definition. A one-parameter subgroup of G is a continuous

mapping

γ : R→ G
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which is differentiable at 0 and satisfies (for t, s ∈ R)

γ(s+ t) = γ(s)γ(t).

We refer to the last condition as the homomorphism property.

Note : Recall that R and G can be viewed as matrix groups (isomorphic to

UTu (2,R) and to a subgroup of either GL (n,R) or GL (2n,R), respectively). Hence,

γ is a continuous homomorphism of matrix groups.

It suffices to know γ on some open neighborhood (−ε, ε) of 0 in R. In-

deed, let t ∈ R. Then for some (large enough) natural number m, t
m ∈ (−ε, ε).

Hence

γ

(
t

m

)
,

(
γ

(
t

m

))m
∈ G.

� Exercise 222 Show that (for m,n ∈ N such that t
m ,

t
n ∈ (−ε, ε) )(

γ

(
t

n

))n
=

(
γ

(
t

m

))m
.

The element
(
γ
(
t
m

))m ∈ G is well defined (for every t ∈ R), and so

γ(t) = γ

(
t

m
+

t

m
+ · · ·+ t

m

)
=

(
γ

(
t

m

))m
.

Note : A one-parameter subgroup γ : R → G can be viewed as a collection

(γ(t))t∈R of linear transformations on kn such that (for t, s ∈ R)

• γ(0) = id kn ( = I).

• γ(s+ t) = γ(s)γ(t).

• γ(t) ∈ G depends continuously on t.

Moreover, the curve γ : R→ G in G ⊆ kn×n has a tangent vector γ̇(0) (at γ(0) = I).

4.4.2 Proposition. Let γ : R → G be a one-parameter subgroup of G.

Then γ is differentiable at every t ∈ R and

γ̇(t) = γ̇(0)γ(t) = γ(t)γ̇(0).
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Proof : We have (for t, h ∈ R)

γ̇(t) = lim
h→0

1

h
(γ(t+ h)− γ(t))

= lim
h→0

1

h
(γ(h)γ(t)− γ(t))

=

(
lim
h→0

1

h
(γ(h)− I)

)
γ(t)

= γ̇(0)γ(t)

and similarly

γ̇(t) = γ(t)γ̇(0).

2

We can now determine the form of all one-parameter subgroups of G.

4.4.3 Theorem. Let γ : R→ G be a one-parameter subgroup of G. Then

it has the form

γ(t) = exp(tA)

for some A ∈ kn×n.

Proof : Let A = γ̇(0). This means that γ satisfies (the differential equa-

tion)

γ̇(t) = Aγ(t)

and is subject to (the initial condition)

γ(0) = I.

This initial value problem (IVP) has the unique solution γ(t) = exp(tA). 2

We cannot yet reverse this process and decide for which A ∈ kn×n the

one-parameter subgroup

γ : R→ GL (n,k), t 7→ exp(tA)

actually takes values in G. The answer involves the Lie algebra of G.

Note : We have a curious phenomenon in the fact that although the definition

of a one-parameter group only involves first order differentiability, the general form
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exp (tA) is always infinitely differentiable (and indeed analytic) as a function of t.

This is an important characteristic of much of the Lie theory, namely that condi-

tions of first order diferentiability (and even continuity) often lead to much stronger

conditions.

Lie algebras

Let G ≤ GL (n,k) be a matrix group. Recall that kn×n may be considered

to be some Euclidean space Rm.

4.4.4 Definition. A curve in G is a differentiable mapping

γ : (a, b) ⊆ R→ kn×n

such that (for t ∈ (a, b))

γ(t) ∈ G.

The derivative

γ̇(t) : = lim
h→0

1

h
(γ(t+ h)− γ(t)) ∈ kn×n

is called the tangent vector to γ at γ(t). We will usually assume that

a < 0 < b.

� Exercise 223 Given two curves γ, σ : (a, b)→ G, we define a new curve, the

product curve, by

(γσ)(t) : = γ(t)σ(t).

Show that (for t ∈ (a, b))

(γσ)·(t) = γ(t)σ̇(t) + γ̇(t)σ(t).

� Exercise 224

(a) Let γ : (−1, 1)→ R3×3 be given by

γ(t) : =

1 0 0

0 cos t sin t

0 − sin t cos t

 .
Show that γ is a curve in SO (3) and find γ̇(0). Show that

(γ2)·(0) = 2γ̇(0).
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(b) Let σ : (−1, 1)→ R3×3 be given by

σ(t) : =

0 0 0

0 cos t sin t

0 − sin t cos t

 .
Calculate σ̇(0). Write the matrix γ(t)σ(t) and verify that

(γσ)·(0) = γ̇(0) + σ̇(0).

� Exercise 225 Let α : (−1, 1)→ Cn×n be given by

α(t) : =

eiπt 0

0 ei
πt
2 0

0 0 ei
πt
2

 .
Show that α is a curve in U (3). Calculate α̇(0).

4.4.5 Definition. The tangent space to (the matrix group) G at A ∈ G
is the set

TAG : = {γ̇(0) ∈ kn×n | γ is a curve in G with γ(0) = A}.

4.4.6 Proposition. The set TAG is a real vector subspace of kn×n.

Proof : Let α, β : (a, b) → kn×n be two curves in G through A (i.e.,

α(0) = β(0) = A). Then

γ : (a, b)→ kn×n, t 7→ α(t)A−1β(t)

is also a curve in G with γ(0) = A. We have

γ̇(t) = α̇(t)A−1β(t) + α(t)A−1β̇(t)

and hence

γ̇(0) = α̇(0)A−1β(0) + α(0)A−1β̇(0) = α̇(0) + β̇(0)

which shows that TAG is closed under (vector) addition.

Similarly, if λ ∈ R and α : (a, b)→ kn×n is a curve in G with α(0) = A,

then

η : (a, b)→ kn×n, t 7→ α(λt)
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is another such curve. Since

η̇(0) = λα̇(0)

we see that TAG is closed under (real) scalar multiplication. So TAG is a

(real) vector subspace of kn×n. 2

Note : Since the vector space kn×n is finite dimensional, so is (the tangent space)

TAG.

4.4.7 Definition. If G ≤ GL(n,k) is a matrix group, its dimension is

the dimension of the (real) vector space TIG ( I is the identity matrix). So

dimG : = dimR TIG.

Note : If the matrix group G is complex, then its complex dimension is

dimCG : = dimC TIG.

� Exercise 226 Show that the matrix group U (1) has dimension 1.

Note : The only connected matrix groups (up to isomorphism) of dimension 1

are T1 = U (1) and R, and of dimension 2 are R2,T1 × R,T2, and GA+ (1,R).

4.4.8 Example. The real general linear group GL (n,R) has dimension

n2.

The determinant function det : Rn×n → R is continuous and det (I) = 1.

So there is some ε-ball about I in Rn×n such that for each A in this ball

det (A) 6= 0 (i.e., A ∈ GL (n,R)). If B ∈ Rn×n, then define a curve σ in

Rn×n by

σ(t) : = tB + I.

Then σ(0) = I and σ̇(0) = B, and (for small t) σ(t) ∈ GL (n,R). Hence the

tangent space TIGL (n,R) is all of Rn×n which has dimension n2. So

dimGL (n,R) = n2.

� Exercise 227 Show that the dimension of the complex general linear group

GL (n,C) is 2n2.
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4.4.9 Proposition. Let Sk-sym (n) denote the set of all skew-symmetric

matrices in Rn×n. Then Sk-sym (n) is a linear subspace of Rn×n and its

dimension is n(n−1)
2 ·

Proof : If A,B ∈ Sk-sym (n), then

(A+B)> + (A+B) = A> +A+B> +B = 0

so that Sk-sym (n) is closed under (vector) addition.

It is also closed under scalar multiplication, for if A ∈ Sk-sym (n) and

λ ∈ R, then (λA)> = λA> so that

(λA)> + λA = λ(A> +A) = 0.

To check the dimension of Sk-sym (n) we construct a basis. Let Eij denote

the matrix whose entries are all zero except the ij-entry, which is 1, and the

ji-entry, which is −1. If we define these Eij only for i < j, we can see that

they form a basis for Sk-sym (n).

It is easy to compute that there are

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2

of them. 2

� Exercise 228 Show that if σ is a curve through the identity (i.e., σ(0) = I)

in the orthogonal group O (n), then σ̇(0) is skew-symmetric.

Note : It follows that dim O (n) ≤ n(n−1)
2 · Later we will show that this evaluation

is an equality.

� Exercise 229 A matrix A ∈ Cn×n is called skew-Hermitian if A∗ +A = 0.

(a) Show that the diagonal terms of a skew-Hermitian matrix are purely imag-

inary and hence deduce that the set Sk-Herm (n) of all skew-Hermitian

matrices in Cn×n is not a vector space over C.

(b) Prove that Sk-Herm (n) is a real vector space of dimension

n+ 2
n(n− 1)

2
= n2.
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(c) If σ is a curve through the identity in U (n), show that σ̇(0) is skew-

Hermitian an hence

dim U (n) ≤ n2.

We will adopt the notation g : = TIG for this real vector subspace of

kn×n. In fact, g has a more interesting algebraic structure, namely that of a

Lie algebra.

Note : It is customary to use lower case Gothic (Fraktur) characters (such as a, g

and h ) to refer to Lie algebras.

4.4.10 Definition. A (real) Lie algebra a is a real vector space equipped

with a product

[·, ·] : a× a→ a, (x, y) 7→ [x, y]

such that (for λ, µ ∈ R and x, y, z ∈ a)

(LA1) [x, y] = −[y, x].

(LA2) [λx+ µy, z] = λ[x, z] + µ[y, z].

(LA3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The product [·, ·] is called the Lie bracket of the Lie algebra a.

Note : (1) Condition (LA3) is called the Jacobi identity. So the Lie bracket [·, ·]
of (the Lie algebra) a is a skew-symmetric bilinear mapping (on a ) which satisfies

the Jacobi identity. Hence Lie algebras are nonassociative algebras. The Lie bracket

plays for Lie algebras the same role that the associative law plays for associative

algebras.

(2) While we can define complex Lie algebras (or, more generally, Lie algebras over

any field), we shall only consider Lie algebras over the real field R.

4.4.11 Example. Let a = Rn and set (for all x, y ∈ Rn)

[x, y] : = 0.

The trivial product is a skew-symmetric bilinear multiplication (on Rn) which

satisfies the Jacobi identity and hence is a Lie bracket. Rn equipped with this

product (Lie bracket) is a Lie algebra. Such a Lie algebra is called an Abelian

Lie algebra.
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� Exercise 230 Show that the only Lie algebra structure on (the vector space)

R is the trivial one.

4.4.12 Example. Let a = R3 and set (for x, y ∈ R3)

[x, y] : = x× y (the cross product).

For the standard unit vectors e1, e2, e3 we have

[e1, e2] = −[e2, e1] = e3, [e2, e3] = −[e3, e2] = e1, [e3, e1] = −[e1, e3] = e2.

Then R3 equipped with this bracket operation is a Lie algebra. In fact, as we

will see later, this is the Lie algebra of (the matrix group) SO (3) and also of

SU (2) in disguise.

Given two matrices A,B ∈ kn×n, their commutator is

[A,B] : = AB −BA.

A and B commute (i.e., AB = BA ) if and only if [A,B] = 0. The commu-

tator [·, ·] is a product on kn×n satisfying conditions (LA1)-(LA3).

� Exercise 231 Verify the Jacobi identity for the commutator [·, ·].

The real vector space kn×n equipped with the commutator [·, ·] is a Lie

algebra.

Note : The procedure to give kn×n a Lie algebra structure can be extended to any

associative algebra. A Lie product (bracket) can be defined in any associative algebra

by the comutator [x, y] = xy− yx, making it a Lie algebra. Here the skew-symmetry

condition (axiom) is clearly satisfied, and one can check easily that in this case the

Jacobi identity for the commutator follows from the associtivity law for the ordinary

product.

There is another way in which Lie algebras arise in the study of algebras. A

derivation d of a nonassociative algebra A (i.e., a vector space endowed with a

bilinear mapping A × A → A) is a linear mapping A → A satisfying the formal

analogue of the Leibniz rule for differentiating a product (for all x, y ∈ A )

d(xy) = (dx)y + x(dy).
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(The concept of a derivation is an abstraction of the idea of a first order differential

operator.) The set of all derivations on A is clearly a vector subspace of the algebra

End (A) of all linear mappings A → A. Although the product of derivations is in

general not a derivation, the commutator d1d2 − d2d1 of two derivations is again a

derivation. Thus the set of all derivations of a nonassociative algebra is a Lie algebra,

called the derivation algebra of the given nonassociative algebra.

Suppose that a is a vector subspace of the Lie algebra kn×n. Then a is

a Lie subalgebra of kn×n if it is closed under taking commutators of pairs of

alements in a; that is,

A,B ∈ a ⇒ [A,B] ∈ a.

Of course, kn×n is a Lie subalgebra of itself.

4.4.13 Theorem. If G ≤ GL (n, k) is a matrix group, then the tangent

space g = TIG (at the identity) is a Lie subalgebra of kn×n.

Proof : We will show that two curves α, β in G with α(0) = β(0) = I,

there is such a curve γ with γ̇(0) = [α̇(0), β̇(0)].

Consider the mapping

F : (s, t) 7→ F (s, t) : = α(s)β(t)α(s)−1.

This is clearly (continuous and) differentiable with respect to each of the vari-

ables s, t. For each s (in the domain of α), F (s, ·) is a curve in G with

F (s, 0) = I. Differentiating gives

d

dt
F (s, t)

∣∣∣∣
t=0

= α(s)β̇(0)α(s)−1

and so

α(s)β̇(0)α(s)−1 ∈ g.

Since g is a closed subspace of kn×n (Any vector subspace is an intersection

of hyperplanes), whenever this limit exists we also have

lim
s→0

1

s

(
α(s)β̇(0)α(s)−1 − β̇(0)

)
∈ g.
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� Exercise 232 Verify the following (matrix version of the) usual rule for dif-

ferentiating an inverse :

d

dt

(
α(t)−1

)
= −α(t)−1α̇(t)α(t)−1.

We have

lim
s→0

1

s

(
α(s)β̇(0)α(s)−1 − β̇(0)

)
=

d

ds
α(s)β̇(0)α(s)−1

∣∣∣∣
s=0

= α̇(0)β̇(0)α(0)− α(0)β̇(0)α(0)−1α̇(0)α(0)−1

= α̇(0)β̇(0)α(0)− α(0)β̇(0)α̇(0)

= α̇(0)β̇(0)− β̇(0)α̇(0)

= [α̇(0), β̇(0)].

This shows that [α̇(0), β̇(0)] ∈ g, hence it must be of the form γ̇(0) for some

curve.

2

So for each matrix group G there is a Lie algebra g = TIG. We call g

the Lie algebra of G.

Note : The essential phenomenon behind Lie theory is that one may associate

in a natural way to a matrix group G its Lie algebra g. The Lie algebra is first

of all a (real) vector space and secondly is endowed with a skew-symmetric bilinear

product (called the Lie bracket or commutator). Amazingly, the group G is almost

completely determined by g and its Lie bracket. Thus for many purposes one can

replace G with g. Since G is a complicated nonlinear object and g is just a vector

space, it is usually vastly simpler to work with g. Otherwise intractable computations

may become straightforward linear algebra. This is one source of the power of Lie

theory.

Homomorphisms of Lie algebras

A suitable type of homomorphism G → H between matrix groups gives

rise to a linear mapping g→ h respecting the Lie algebra structures.
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4.4.14 Definition. Let G ≤ GL (n, k), H ≤ GL (m,k) be matrix groups

and let ϕ : G → H be a continuous mapping. Then ϕ is said to be dif-

ferentiable if for every (differentiable) curve γ : (a, b) → G, the composite

mapping ϕ ◦ γ : (a, b)→ H is a (differentiable) curve with derivative

(ϕ ◦ γ)·(t) =
d

dt
ϕ(γ(t))

and if whenever two (differentiable) curves α, β : (a, b)→ G both satisfy the

conditions

α(0) = β(0) and α̇(0) = β̇(0)

then

(ϕ ◦ α)·(0) = (ϕ ◦ β)·(0).

Such a mapping ϕ is a differentiable homomorphism if it is also a group

homomorphism. A continuous homomorphism of matrix groups that is also

differentiable is called a Lie homomorphism.

Note : The “technical restriction” in the definition of a Lie homomorphism is in

fact unnecessary.

If ϕ : G→ H is the restriction of a differentiable mapping Φ : GL (n,k)→
GL (m,k), then ϕ is also a differentiable mapping.

4.4.15 Proposition. Let G,H,K be matrix groups and ϕ : G → H,ψ :

H → K be differentiable homomorphisms.

(a) For each A ∈ G there is a linear mapping dϕA : TAG → Tϕ(A)H

given by

dϕA(γ̇(0)) = (ϕ ◦ γ)·(0).

(b) We have

dψϕ(A) ◦ dϕA = d(ψ ◦ ϕ)A.

(c) For the identity mapping idG : G→ G and A ∈ G,

d idG = idTAG.
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Proof : (a) The definition of dϕA makes sense since (by the definition of

differentiability), given X ∈ TAG, for any curve γ with

γ(0) = A and γ̇(0) = X

(ϕ ◦ γ)·(0) depends only on X and not on γ.

� Exercise 233 Verify that the maping dϕA : TAG→ Tϕ(A)H is linear.

The identities (b) and (c) are straightforward to verify. 2

If ϕ : G → H is a differentiable homomorphism, then (since ϕ(I) = I)

dϕI : TIG→ TIH is a linear mapping, called the derivative of ϕ and usually

denoted by

dϕ : g→ h.

4.4.16 Definition. Let g, h be Lie algebras. A linear mapping Φ : g→ h

is a homomorphism of Lie algebras if (for x, y ∈ g )

Φ([x, y]) = [Φ(x),Φ(y)].

4.4.17 Theorem. Let G,H be matrix groups and ϕ : G → H be a Lie

homomorphism. Then the derivative dϕ : g → h is a homomorphism of Lie

algebras.

Proof : Following ideas and notation in the proof of Theorem 4.4.13, for

curves α, β in G with α(0) = β(0) = I, we can use the composite mapping

ϕ ◦ F : (s, t) 7→ ϕ(F (s, t)) = ϕ(α(s))ϕ(β(t))ϕ(α(s))−1

to deduce

dϕ([α̇(0), β̇(0)]) = [dϕ(α̇(0)), dϕ(β̇(0))].

2

4.4.18 Corollary. Let G,H be matrix groups and ϕ : G → H be an

isomorphism of matrix groups. Then the derivative dϕ : g→ h is an isomor-

phism of Lie algebras.
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Proof : ϕ−1 ◦ ϕ is the identity, so

dϕ−1 ◦ dϕ : TIG→ TIG

is the identity. Thus dϕ−1 is surjective and dϕ is injective.

Likewise, ϕ◦ϕ−1 is the identity, so dϕ◦dϕ−1 is the identity. Thus dϕ−1

is injective, and dϕ is surjective. The result now follows. 2

Note : Isomorphic matrix groups have isomorphic Lie algebras. The converse (i.e.,

matrix groups with isomorphic Lie algebras are isomorphic) is false. For example, the

rotation group SO (2) and the diagonal group

D1 =

{[
1 0

0 ea

]
| a ∈ R

}
≤ GA+ (1,R)

have both Lie algebras isomorphic to R (the only Lie algebra structure on R), but

SO (2) is homeomorphic to a circle, while D1 is homeomorphic to R, so they are

certainly not isomorphic.

However, the converse is – in a sense – almost true, so that the bracket operation

on g almost determine G as a group. After the existence of the Lie algebra, this fact

is the most remarkable in Lie theory. Its precise formulation is known as Lie’s Third

Theorem.

4.5 More Properties of the Exponential Mapping

The following formula can be considered as another definition of the matrix

exponential.

4.5.1 Proposition. Let A ∈ kn×n. Then

exp (A) = lim
r→∞

(
I +

1

r
A

)r
.

Proof : Consider the difference

exp (A)−
(
I +

1

r
A

)r
=
∞∑
k=0

(
1

k!
− 1

rk

(
r

k

))
Ak.
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This matrix series converges since the series for the matrix exponential exp(A)

converges and
(
I + 1

rA
)r

is a polynomial. The coefficients in the rhs are

nonnegative since
1

k!
≥ r(r − 1) · · · (r − k + 1)

r · r · · · r
1

k!
·

Therefore, setting ‖A‖ = a, we get∥∥∥∥exp (A)−
(
I +

1

r
Ar
)r∥∥∥∥ ≤ ∞∑

k=0

(
1

k!
− 1

rk

(
r

k

))
ak = ea −

(
1 +

a

r

)r
where the expression on the right approaches zero (as r → ∞). The result

now follows. 2

4.5.2 Proposition. Let A ∈ kn×n and ε ∈ R. Then

det (I + εA) = 1 + ε trA+O(ε2) (as ε→ 0).

Proof : The determinant of I+εA equals the product of the eigenvalues of

the matrix. But the eigenvalues of I + εA (with due regard for multiplicity)

equal 1 + ε λi, where the λi are the eigenvalues of A. It follows that

det (I + εA) = (1 + ε λ1)(1 + ε λ2) · · · (1 + ε λn)

= 1 + ε (λ1 + λ2 + · · ·+ λn) +O(ε2)

= 1 + ε trA+O(ε2).

2

Note : Whenever we have a mapping Z from some (open) interval (a, b), a <

0 < b into a finite-dimensional normed vector space (e.g. kn×n ), then Z will often

be denoted by O(tk) if t 7→ 1
tk
Z(t) is bounded in an (open) neighborhood of the

origin 0 (i.e. there are constants C1 and C2 such that

‖Z(t)‖ ≤ C1|tk| for |t| < C2.)

Thus O(tk) may denote different mappings at different times. The big-O notation

was first introduced in 1892 by Paul G.H. Bachmann (1837-1920) in a book on

number theory, and is currently used in several areas of mathematics and computer

science (including mathematical analysis and the theory of algorithms).

The following result is useful.
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4.5.3 Lemma. Let α : (a, b)→ kn×n be a curve. Then

d

dt
det α(t)

∣∣∣∣
t=0

= tr α̇(0).

Proof : The operation ∂ : = d
dt

∣∣
t=0

has the derivation property

∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)∂γ2.

Put α(t) =
[
aij

]
and notice that (when t = 0) aij = δij . Write Cij for

the cofactor matrix obtained from α(t) by deleting the ith row and the jth

column. By expanding along the nth row we get

det α(t) =
n∑
j=1

(−1)n+janj det Cnj .

For t = 0 (since α(0) = I) we have

det Cnj = δnj .

Then

∂ det α(t) =
n∑
j=1

(−1)n+j((∂anj) det Cnj + anj(∂ det Cnj))

=
n∑
j=1

(−1)n+j((∂anj) det Cnj) + (∂ det Cnn)

= ∂ann + ∂ det Cnn.

We can repeat this calculation with the (n− 1)× (n− 1) matrix Cnn and so

on. This gives

∂ det α(t) = ∂ann + ∂an−1,n−1 + ∂ det Cn−1,n−1

...

= ∂ann + ∂an−1,n−1 + · · ·+ ∂a11

= tr α̇(0).

2
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We can now prove a remarkable (and very useful) result, known as Liou-

ville’s Formula. Three different proofs will be given.

4.5.4 Theorem. (Liouville’s Formula) For A ∈ kn×n we have

det exp (A) = etrA.

First solution (using the second definition of the exponential) : We have

det exp (A) = det lim
r→∞

(
I +

1

r
A

)r
= lim

r→∞
det

(
I +

1

r
A

)r
since the determinant function det : kn×n → k is continuous. Moreover, by

Proposition 4.5.2,

det

(
I +

1

r
A

)r
=

[
det

(
I +

1

r
A

)]r
=

[
1 +

1

r
trA+O

(
1

r2

)]r
(as r →∞).

It only remains to note that (for any a ∈ k)

lim
r→∞

[
1 +

a

r
+O

(
1

r2

)]r
= ea.

In particular, for a = trA, we get the desired result. 2

Second solution (using differential equations) : Consider the curve

γ : R→ GL (1,k) = k×, t 7→ det exp (tA).

Then (by Lemma 4.5.3 applied to the curve γ)

γ̇(t) = lim
h→0

1

h
[det exp ((t+ h)A)− det exp (tA)]

= det exp (tA) lim
h→0

1

h
[det exp (hA)− 1]

= det exp (tA) trA

= γ(t) trA.

So γ satisfies the same differential equation and initial condition as the curve

t 7→ et trA. By the uniqueness of the solution (see Exercise 219), it follows

that

γ(t) = det exp (tA) = et trA.
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In particular, for t = 1, we get the desired result. 2

Third solution (using Jordan canonical form) : If B ∈ GL (n, k), then (see

Exercise 221)

det exp (BAB−1) = det (B exp (A)B−1)

= det B · det exp(A) · det B−1

= det exp (A)

and

etr (BAB−1) = etrA.

So it suffices to prove the identity for BAB−1 for a suitably chosen invertible

matrix B. Using for example the theory of Jordan canonical forms, there is a

suitable choice of such a B for which

BAB−1 = D +N

with D diagonal and N strictly upper triangular (i.e., Nij = 0 for i ≥ j).

Then N is nilpotent (i.e., Nk = O for some k ≥ 1). We have

exp (BAB−1) =
∞∑
k=0

1

k!
(D +N)k

=
∞∑
k=0

1

k!
Dk +

∞∑
k=0

1

(k + 1)!

(
(D +N)k+1 −Dk+1

)
= exp (D) +

∞∑
k=0

1

(k + 1)!
N(Dk +Dk−1N + · · ·+Nk).

The matrix

N(Dk +Dk−1N + · · ·+Nk)

is strictly upper triangular, and so

exp (BAB−1) = exp (D) +N ′

where N ′ is strictly upper triangular. Now, if D = diag (λ1, λ2, . . . , λn), we
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have

det exp (A) = det exp (BAB−1)

= det exp (D)

= det diag (eλ1 , eλ2 , . . . , eλn)

= eλ1eλ2 · · · eλn

= eλ1+λ2+···+λn

= etrD

= etr (BAB−1)

= etrA.

2

The exponential mapping

exp : kn×n → GL (n, k)

is a basic link between the linear structure on kn×n and the multiplicative

structure on GL (n,k). Let G be a matrix subgroup of GL (n, k). Applying

Proposition 4.3.3, we may choose ρ ∈ R so that 0 < ρ ≤ 1
2 and if A,B ∈

B kn×n(O, ρ), then exp (A) exp (B) ∈ exp
(
B kn×n(O, 1

2)
)
. Since exp is one-to-

one on B kn×n(O, ρ), there is a unique matrix C ∈ kn×n for which

exp (A) exp (B) = exp (C).

Note : There is a beautiful formula, the Baker-Campbell-Hausdorff formula which

expresses C as a universal power series in A and B. To develop this completely would

take too long. Specifically, (one form of) the B-C-H formula says that if X and Y

are sufficiently small, then

exp(X) exp(Y ) = exp(Z) with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

It is not supposed to be evident at the moment what “. . . ” refers to. The only

important point is that all the terms (in the expansion of Z) are given in terms of X
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and Y , Lie brackets of X and Y , Lie brackets of Lie brackets involving X and Y ,

etc. Then it follows that the mapping φ : G→ GL (n,R) “defined” by the relation

φ (exp(X)) = exp (φ(X))

is such that on elements of the form exp(X), with X sufficiently small, is a group

homomorphism. Hence the B-C-H formula shows that all the information about the

group product, a least near the identity, is “encoded” in the Lie algebra.

An interesting special case is the following : If X,Y ∈ Cn×n and X,Y commute

with their commutator (i.e., [X, [X,Y ]] = [Y, [X,Y ] ), then

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

� Exercise 234 Show by direct computation that for

X,Y ∈ heis =


0 a b

0 0 c

0 0 0

 | a, b, c ∈ R


(the Lie algebra of the Heisenberg group Heis)

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

We set

R = C −A−B ∈ kn×n.

For X ∈ kn×n, we have

exp (X) = I +X +R1(X),

where the remainder term R1(X) is given by

R1(X) =
∞∑
k=2

1

k!
Xk.

Hence

‖R1(X)‖ ≤ ‖X‖2
∞∑
k=2

1

k!
‖X‖k−2

and therefore if ‖X‖ < 1, then

‖R1(X)‖ ≤ ‖X‖2
∞∑
k=2

1

k!
= ‖X‖2 (e− 2) < ‖X‖2.
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Now for X = C ∈ B kn×n(O, 1
2), we have

exp (C) = I + C +R1(C)

with

‖R1(C)‖ < ‖C‖2.

Similar considerations lead to

exp (C) = exp (A) exp (B) = I +A+B +R1(A,B),

where

R1(A,B) =

∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
.

This gives

‖R1(A,B)‖ ≤
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
‖A‖r‖B‖k−r

)

=
∞∑
k=0

1

k!
(‖A‖+ ‖B‖)k

= (‖A‖+ ‖B‖)2
∞∑
k=2

1

k!
(‖A‖+ ‖B‖)k−2

≤ (‖A‖+ ‖B‖)2

since ‖A‖+ ‖B‖ < 1.

Combining the two ways of writing exp (C) from above, we have

C = A+B +R1(C)−R1(A,B)

and so

‖C‖ ≤ ‖A‖+ ‖B‖+ ‖R1(A,B)‖+ ‖R1(C)‖

< ‖A‖+ ‖B‖+ (‖A‖+ ‖B‖)2 + ‖C‖2

≤ 2 (‖A‖+ ‖B‖) +
1

2
‖C‖

since ‖A‖, ‖B‖, ‖C‖ ≤ 1
2 . Finally this gives

‖C‖ ≤ 4 (‖A‖+ ‖B‖) .
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We also have

‖R‖ = ‖C −A−B‖ ≤ ‖R1(A,B)‖+ ‖R1(C)‖

≤ (‖A‖+ ‖B‖)2 + (4(‖A‖+ ‖B‖))2

= 17 (‖A‖+ ‖B‖)2 .

We have proved the following result.

4.5.5 Proposition. Let A,B,C ∈ B kn×n(O, 1
2) such that exp (A) exp (B) =

exp (C). Then C = A+B +R, where the remainder term R satisfies

‖R‖ ≤ 17 (‖A‖+ ‖B‖)2 .

We can refine this estimate (to second order). We only point out the

essential steps (details will be omitted). Set

S = C −A−B − 1

2
[A,B] ∈ kn×n

and write

exp (C) = I + C +
1

2
C2 +R2(C)

with

‖R2(C)‖ ≤ 1

3
‖C‖3.

Then

exp(C) = I +A+B +
1

2
[A,B] + S +

1

2
C2 +R2(C)

= I +A+B +
1

2
(A2 + 2AB +B2) + T,

where

T = S +
1

2
(C2 − (A+B)2) +R2(C).

Also

exp (A) exp (B) = I +A+B +
1

2
(A2 + 2AB +B2) +R2(A,B)

with

‖R2(A,B)‖ ≤ 1

3
(‖A‖+ ‖B‖)3 .
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We see that

S = R2(A,B) +
1

2
((A+B)2 − C2)−R2(C)

and by taking norms we get

‖S‖ ≤ ‖R2(A,B)‖+
1

2
‖(A+B)(A+B − C) + (A+B − C)C‖+ ‖R2(C)‖

≤ 1

3
(‖A‖+ ‖B‖)3 +

1

2
(‖A‖+ ‖B‖+ ‖C‖)‖A+B − C‖+

1

3
‖C‖3

≤ 65 (‖A‖+ ‖B‖)3 .

The following estimation holds.

4.5.6 Proposition. Let A,B,C ∈ B kn×n(O, 1
2) such that exp (A) exp (B) =

exp (C). Then C = A+B+ 1
2 [A,B]+S, where the remainder term S satisfies

‖S‖ ≤ 65 (‖A‖+ ‖B‖)3 .

We will derive two main consequences of Proposition 4.5.5 and Propo-

sition 4.5.6. These relate group operations in GL (n, k) to the linear opera-

tions in kn×n and are crucial ingredients in the proof that every matrix group

is a Lie group.

4.5.7 Theorem. (Lie-Trotter Product Formula) For U, V ∈ kn×n

we have

exp (U + V ) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
.

(This formula relates addition in kn×n to multiplication in GL (n, k).)

Proof : For large r we may take A = 1
rU and B = 1

rV and apply Propo-

sition 4.5.5 to give

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp (Cr)

with ∥∥∥∥Cr − 1

r
(U + V )

∥∥∥∥ ≤ 17 (‖U‖+ ‖V ‖)2

r2
·

As r →∞,

‖rCr − (U + V )‖ ≤ 17 (‖U‖+ ‖V ‖)2

r
→ 0
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and hence

rCr → U + V.

Since exp (rCr) = exp (Cr)
r, the Lie-Trotter product formula follows by con-

tinuity of the exponential mapping. 2

4.5.8 Theorem. (Commutator Formula) For U, V ∈ kn×n we have

exp([U, V ]) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

(This formula relates the Lie bracket - or commutator - in kn×n to the group

commutator in GL (n, k).)

Proof : For large r (as in the proof of Theorem 4.5.7) we have

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp(Cr)

with (as r →∞)

rCr → U + V.

We also have

Cr =
1

r
(U + V ) +

1

2r2
[U, V ] + Sr,

where

‖Sr‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Similarly (replacing U, V with −U,−V ) we obtain :

exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(C ′r),

where

C ′r = −1

r
(U + V ) +

1

2r2
[U, V ] + S′r

and

‖S′r‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Combining these we get

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(Cr) exp(C ′r)

= exp(Er),
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where

Er = Cr + C ′r +
1

2
[Cr, C

′
r] + Tr

=
1

r2
[U, V ] +

1

2
[Cr, C

′
r] + Sr + S′r + Tr.

� Exercise 235 Verify that

[Cr, C
′
r] =

1

r3
[U + V, [U, V ]] +

1

r
[U + V, Sr + S′r]

+
1

2r2
[[U, V ], S′r − Sr] + [Sr, S

′
r].

All four of these terms have norm bounded by an expression of the form
constant

r3
so the same is true of [Cr, C

′
r]. Also Sr, S

′
r, Tr have similarly bounded

norms. Setting

Qr : = r2Er − [U, V ]

we obtain (as r →∞)

‖Qr‖ = r2‖Er −
1

r2
[U, V ]‖ ≤ constant

r
→ 0

and hence

exp(Er)
r2 = exp ([U, V ] +Qr)→ exp([U, V ]).

The commutator formula now follows using continuity of the exponential map-

ping.

2

Note : If g, h are elements of a group, then the expression ghg−1h−1 is called

the group commutator of g and h.

There is one further concept involving the exponential mapping that is

basic in Lie theory. It involves conjugation, which is generally referred to as

the “adjoint action”. For g ∈ GL (n,k) and A ∈ kn×n, we can form the

conjugate

Adg(A) : = gAg−1.

� Exercise 236 Let A,B ∈ kn×n and g, h ∈ GL (n,k). Show that (for λ, µ ∈ k)

(a) Adg(λA+ µB) = λAdg(A) + µAdg(B).
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(b) Adg([A,B]) = [Adg(A),Adg(B)].

(c) Adgh(A) = Adg(Adh(A)).

In particular, Ad−1
g = Adg−1 .

Formulas (a) an (b) say that Adg is an automorphism of the Lie algebra

kn×n, and formula (c) says the mapping

Ad : GL (n, k)→ Aut (kn×n), g 7→ Adg

is a group homomorphism. The mapping Ad is called the adjoint represen-

tation of (the matrix group) GL (n, k).

Formula (c) implies in particular that if t 7→ exp (tA) is a one-parameter

subgroup of GL (n,k), then Ad exp (tA) is a one-parameter group (of linear

transformations) in kn×n. Observe that we can identify Aut (kn×n) with

GL (n2, k) (and thus view Aut (kn×n) as a matrix group). Then (by Theorem

4.4.3)

Ad exp (tA) = exp (tA)

for some A ∈ kn2×n2
= End (kn×n). Since

A(B) =
d

dt
Ad exp(tA)(B)

∣∣∣∣
t=0

=
d

dt
exp (tA)B exp (−tA)

∣∣∣∣
t=0

= [A,B]

by setting (for A,B ∈ kn×n)

adA(B) : = [A,B]

we have the following formula

Ad exp (tA) = exp (t adA).

Explicitly, the formula says that

exp (tA)B exp (−tA) =
∞∑
k=0

tk

k!
(adA)k B.
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(Here (adA)0 = A and (adA)k = ad(adA)k−1 for k ≥ 1.)

Note : The mapping

ad : kn×n → End (kn×n), X 7→ adX

is called the adjoint representation of (the Lie algebra) kn×n. From the Jacobi identity

for Lie algebras, we have

adX([Y,Z]) = [adX(Y ), Z] + [Y, adX(Z)].

That is, adX is a derivation of the Lie algebra kn×n. The formula above gives

the relation between the automorphism Ad exp (tX) of the Lie algebra kn×n and the

derivation adX of kn×n. One also has

exp (tAdg(X)) = g exp (tX)g−1.

Using this formula, we can see that [X,Y ] = 0 if and only if exp (tX) and exp (sY )

commute for arbitrary s, t ∈ R.

� Exercise 237 Let A,B ∈ kn×n.

(a) Verify that

ad [A,B] = adA adB − adB adA = [adA, adB] .

(This means that ad : kn×n → End (kn×n) is a Lie algebra homomor-

phism.)

(b) Show by induction that

(adA)
n

(B) =

n∑
k=0

(
n

k

)
AkB(−A)n−k.

(c) Show by direct computation that

exp (adA)(B) = Adexp (A)(B) = exp (A)B exp (−A).
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4.6 Examples of Lie Algebras of Matrix Groups

The Lie algebras of GL (n,R) and GL (n,C)

Let us start with the real general linear group GL (n,R) ⊆ Rn×n. We have

shown (see Example 4.4.8) that TIGL (n,R) = Rn×n. Hence the Lie algebra

gl(n,R) of GL (n,R) consists of all n × n matrices (with real entries), with

the commutator as the Lie bracket. Thus

gl(n,R) = Rn×n.

It follows that

dimGL (n,R) = dim gl(n,R) = n2.

Similarly, the Lie algebra of the complex general linear group GL (n,C) is

gl(n,C) = Cn×n

and

dimGL (n,C) = dimR gl(n,C) = 2n2.

The Lie algebras of SL (n,R) and SL (n,C)

For SL (n,R) ≤ GL (n,R), suppose that

α : (a, b)→ SL (n,R)

is a curve in SL (n,R) with α(0) = I. For t ∈ (a, b) we have det α(t) = 1

and so
d

dt
det α(t) = 0.

Using Lemma 4.5.3, it follows that

tr α̇(0) = 0

and thus

TISL (n,R) ⊆ ker tr : =
{
A ∈ Rn×n | trA = 0

}
.

If A ∈ ker tr ⊆ Rn×n, the curve

α : (a, b)→ Rn×n, t 7→ exp (tA)
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satisfies (the boundary conditions)

α(0) = I and α̇(0) = A.

Moreover, using Liouville’s Formula, we get

det α(t) = det exp (tA) = et trA = 1.

Hence the Lie algebra sl (n,R) of SL (n,R) consists of all n × n matrices

(with real entries) having trace zero, with the commutator as the Lie bracket.

Thus

sl (n,R) = TISL (n,R) = {A ∈ gl (n,R) | trA = 0} .

Since trA = 0 imposes one condition on A, it follows that

dimSL (n,R) = dimR sl(n,R) = n2 − 1.

Similarly, the Lie algebra of the complex special linear group SL (n,C) is

sl (n,C) = TISL (n,C) = {A ∈ gl (n,C) | trA = 0}

and

dimSL (n,C) = dimR sl (n,C) = 2(n2 − 1).

The Lie algebras of O (n) and SO (n)

First, consider the orthogonal group O (n); that is,

O (n) =
{
A ∈ GL (n,R) |A>A = I

}
≤ GL (n,R).

Given a curve α : (a, b)→ O (n) with α(0) = I, we have

d

dt
α(t)Tα(t) = 0

and so

α̇(t)Tα(t) + α(t)T α̇(t) = 0

which implies

α̇(0)T + α̇(0) = 0.
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Thus we must have α̇(0) ∈ Rn×n is skew-symmetric. So

TIO (n) ⊆ Sk-sym (n) =
{
A ∈ Rn×n |A> +A = 0

}
(the set of all n× n skew-symmetric matrices in Rn×n).

On the other hand, if A ∈ Sk-sym (n) ⊆ Rn×n, we consider the curve

α : (a, b)→ GL (n,R), t 7→ exp (tA).

Then

α(t)>α(t) = exp (tA)> exp (tA)

= exp (tA>) exp (tA)

= exp (−tA) exp (tA)

= I.

Hence we can view α as a curve in O (n). Since α̇(0) = A, this shows that

Sk-sym (n) ⊆ TIO (n)

and hence the Lie algebra o(n) of the orthogonal group O (n) consists of all

n×n skew-symmetric matrices, with the usual commutator as the Lie bracket.

Thus

o(n) = TIO (n) = Sk-sym (n) =
{
A ∈ Rn×n |A> +A = 0

}
.

It follows that (see Proposition 4.4.9)

dimO (n) = dim o(n) =
n(n− 1)

2
·

� Exercise 238 Show that if A ∈ Sk-sym (n), then trA = 0.

By Liouville’s Formula, we have

det α(t) = det exp (tA) = 1

and hence α : (a, b) → SO (n), where SO (n) is the special orthogonal group.

We have actually shown that the Lie algebra of the special orthogonal group

SO (n) is

so(n) = o(n) =
{
A ∈ Rn×n |A> +A = 0

}
.
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The Lie algebra of SO (3)

We will discuss the Lie algebra so(3) of the rotation group SO (3) in some

detail.

� Exercise 239 Show that

so(3) =


 0 −c b

c 0 −a
−b a 0

 ∈ R3×3 | a, b, c ∈ R

 .

The Lie algebra so(3) is a 3-dimensional real vector space. Consider the

rotations

R1(t) =

1 0 0

0 cos t − sin t

0 sin t cos t

 , R2(t) =

 cos t 0 sin t

0 1 0

− sin t 0 cos t

 , R3 =

cos t − sin t 0

sin t cos t 0

0 0 1

 .
Then the mappings

ρi : t 7→ Ri(t), i = 1, 2, 3

are curves in SO (3) and clearly ρi(0) = I. It follows that

ρ̇i(0) : = Ai ∈ so(3), i = 1, 2, 3.

These elements (matrices) are

A1 =

0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

0 −1 0

1 0 0

0 0 0

 .
� Exercise 240 Verify that the matrices A1, A2, A3 form a basis for so(3). We

shall refer to this basis as the standard basis.

� Exercise 241 Compute all the Lie brackets (commutators) [Ai, Aj ], i, j =

1, 2, 3 and then determine the coefficients ckij defined by

[Ai, Aj ] = c1ijA1 + c2ijA2 + c3ijA3, i, j = 1, 2, 3.

These coefficients are called the structure constants of the Lie algebra. They determine

completely the Lie bracket [·, ·].



226 M4.3 - Geometry

The Lie algebra so(3) may be identified with (the Lie algebra) R3 as

follows. We define the mapping

̂: R3 → so(3), x = (x1, x2, x3) 7→ x̂ : =

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
This mapping is called the hat mapping.

� Exercise 242 Show that the hat mapping ̂: R3 → so(3) is an isomorphism

of vector spaces.

� Exercise 243 Show that (for x, y ∈ R3)

(a) x× y = x̂ y.

(b) x̂× y = [x̂, ŷ].

(c) x • y = − 1
2 tr (x̂ ŷ).

Formula (b) says that the hat mapping is in fact an isomorphism of Lie

algebras and so we can identify the Lie algebra so(3) with (the Lie algebra)

R3.

Note : For x ∈ R3 and t ∈ R, the matrix exponential exp (t x̂) is a rotation about

(the axis) x through the angle t‖x‖. The following explicit formula for exp (x̂) is

known as Rodrigues’ Formula :

exp (x̂) = I +
sin ‖x‖
‖x‖

x̂+
1

2

 sin
(
‖x‖
2

)
‖x‖
2

2

x̂2.

This result says that the exponential mapping

exp : so(3)→ SO (3)

is onto. Rodrigues’ Formula is useful in computational solid mechanics, along with

its quaternionic counterpart.
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The Lie algebras of U (n) and SU (n)

Consider the unitary group U (n); that is,

U (n) = {A ∈ GL (n,C) |A∗A = I} .

For a curve α in U (n) with α(0) = I, we obtain

α̇(0)∗ + α̇(0) = 0

and so α̇(0) ∈ Cn×n is skew-Hermitian. So

TIU (n) ⊆ Sk-Herm (n) =
{
A ∈ Cn×n |A∗ +A = 0

}
(the set of all n× n skew-Hermitian matrices in Cn×n ).

If H ∈ Sk-Herm (n), then the curve

α : (a, b)→ GL (n,C), t 7→ exp (tH)

satisfies

α(t)∗α(t) = exp (tH)∗ exp (tH)

= exp (tH∗) exp (tH)

= exp (−tH) exp (tH)

= I.

Hence we can view α as a curve in U (n). Since α̇(0) = H, this shows that

Sk-Herm (n) ⊆ TIU (n)

and hence the Lie algebra u(n) of the unitary group U (n) consists of all n×n
skew-Hermitian matrices, with the usual commutator as the Lie bracket. Thus

u(n) = TIU (n) = Sk-Herm (n) =
{
H ∈ Cn×n |H∗ +H = 0

}
.

It follows that (see Exercise 229)

dimU (n) = dimR u(n) = n2.
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The special unitary group SU (n) can be handled in a similar way. Again we

have

su(n) = TISU (n) ⊆ Sk-Herm (n).

But also if α : (a, b) → SU (n) is a curve with α(0) = I then, as in the

analysis for SL (n,R),

tr α̇(0) = 0.

Writing

Sk-Herm0 (n) : = {H ∈ Sk-Herm (n) | trH = 0}

this gives su(n) ⊆ Sk-Herm0 (n). On the other hand, if H ∈ Sk-Herm0 (n)

then the curve

α : (a, b)→ U (n), t 7→ exp (tH)

takes values in SU (n) and α̇(0) = H. Hence

su(n) = TISU (n) = Sk-Herm0 (n) =
{
H ∈ Cn×n |H∗ +H = 0 and trH = 0

}
.

Note : For a matrix group G ≤ GL (n,R) (with Lie algebra g ), the following are

true (and can be used in determining Lie algebras of matrix groups).

• The mapping

expG : g→ GL (n,R), X 7→ exp (X)

has image contained in G, expG (g) ⊆ G. We will normally write expG : g→ G

for the exponential mapping on G (and sometimes even just exp). In general,

the exponential mapping expG is neither one-to-one nor onto.

• If G is compact and connected, then expG is onto.

• The mapping expG maps a neighborhood of 0 in g bijectively onto a neigh-

borhood of I in G.

� Exercise 244 Verify that the exponential mapping

expU (1) : R→ U (1) = S1, t 7→ eit

is onto but not one-to-one.
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4.6.1 Example. The exponential mapping

expSL (2,R) : sl(2,R)→ SL (2,R)

is not onto. Let

A =

[
λ 0

0 1
λ

]
with λ < −1.

We see that A ∈ SL (2,R) and we shall show that A is not of the form

exp (X) with X ∈ sl(2,R). If A = exp (X), then the eigenvalues of A are

of the form ea and eb, where a and b are the eigenvalues of X. Suppose

λ = ea and 1
λ = eb. Then

a = −b+ 2kπ i, k ∈ Z.

However, since λ is negative, a is actually complex and therefore its conjugate

is also an eigenvalue; that is, b = ā. This gives a as pure imaginary. Then

1 = |ea| = |λ| = −λ

which contradicts the assumption that λ < −1.

The Lie algebra of SU (2)

We will discuss the Lie algebra su(2) in some detail.

� Exercise 245 Show that

su(2) =

{[
ci −b+ ai

b+ ai −ci

]
∈ C2×2 | a, b, c ∈ R

}
.

The Lie algebra su(2) is a 3-dimensional real vector space. Consider the

matrices

H1 =
1

2

[
0 i

i 0

]
, H2 =

1

2

[
0 −1

1 0

]
, H3 =

1

2

[
i 0

0 −i

]
.

Clearly,

Hi ∈ su(2), i = 1, 2, 3.



230 M4.3 - Geometry

� Exercise 246 Verify that the matrices H1, H2, H3 form a basis for su(2).

� Exercise 247 Compute all the Lie brackets (commutators) [Hi, Hj ], i, j =

1, 2, 3 and then determine the structure constants of (the Lie algebra) su(2).

Consider the mapping

φ : R3 → su(2), x = (x1, x2, x3) 7→ x1H1 + x2H2 + x3H3.

� Exercise 248 Show that the mapping φ : R3 → su(2) is an isomorphism of

Lie algebras.

Thus we can identify the Lie algebra su(2) with (the Lie algebra) R3.

Note : The Lie algebras su(2) and so(3) look the same algebraically (they are

isomorphic). An explicit isomorphism (of Lie algebras) is given by

ψ : x1H1 + x2H2 + x3H3 7→ x1A1 + x2A2 + x3A3.

This suggests that there might be a close relationship between the matrix groups

themselves. Indeed there is a (surjective) Lie homomorphism SU (2)→ SO (3) whose

derivative (at I ) is ψ. Recall the adjoint representation

Ad : SU (2)→ Aut (su(2)), A 7→ AdA (: U 7→ AUA∗).

Each AdA is a linear isomorphism of su(2). AdA is actually an orthogonal transfor-

mation on su(2) (the mapping (X,Y ) 7→ −tr (XY ) is an inner product on su(2))

and so AdA corresponds to an element of O (3) (in fact, SO (3)). The mapping

Ad : SU (2)→ SO (3), A 7→ AdA

turns out to be a continuous homomorphism of matrix groups that is differentiable

(i.e., a Lie homomorphism) and such that its derivative dAd : su(2)→ so(3) is ψ.

The Lie algebras of UT (n, k) and UTu (n,k)

Let α : (a, b) → UT (n, k) be a curve in UT (n,k) with α(0) = I. Then

α̇(0) is upper triangular. Moreover, using the argument for GL (n,k) we see

that given any upper triangular matrix A ∈ kn×n, there is a curve

σ : (−ε, ε)→ kn×n, t 7→ tA+ I
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such that σ(t) ∈ UT (n, k) and σ̇(0) = A. Hence the Lie algebra ut(n,k)

of UT (n, k) consists of all n × n upper triangular matrices, with the usual

commutator as the Lie bracket. Thus

ut(n, k) = TIUT (n,k) =
{
A ∈ kn×n | aij = 0 for i > j

}
.

It follows that

dimUT (n, k) = dimR ut(n, k) =
n(n+ 1)

2
dimR k.

An upper triangular matrix A ∈ kn×n is strictly upper triangular if all its di-

agonal entries are 0. Then the Lie algebra of the unipotent group UTu (n,k)

consists of all n × n strictly upper triangular matrices, with the usual com-

mutator as the Lie bracket. So

sut(n, k) = TIUT
u (n,k) =

{
A ∈ kn×n | aij = 0 for i ≥ j

}
.

� Exercise 249 Find dimR sut(n,k).

� Exercise 250 For each of the following matrix group G, determine its Lie

algebra g and hence its dimension.

(a) G =
{
A ∈ GL (2,R) |AQA> = Q

}
, where Q =

[
1 0

0 0

]
.

(b) G =
{
A ∈ GL (2,R) |AQA> = Q

}
, where Q =

[
1 0

0 −1

]
.

(c) G = GA (3,R).

(d) G = Heis.

(e) G = G4 ≤ UTu (4,R) from Exercise 199.

(f) G = E (n).

(g) G = SE (n).

� Exercise 251

(a) Show that the Lie algebra of the symplectic group Sp (2n,R) is

sp(2n,R) =
{
A ∈ R2n×2n |A>J + JA = 0

}
.
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(b) If

A =

[
a b

c d

]
∈ sl(2n,R)

show that A ∈ sp(2n,R) if and only if

d = −a>, c = c>, and b = b>.

(c) Calculate the dimension of sp(2n,R).

� Exercise 252 Show that the Lie algebra of the Lorentz group Lor is

lor =
{
A ∈ R4×4 |SA+A>S = 0

}
=




0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

a3 a5 a6 0

 | a1, a2, a3, a4, a5, a6 ∈ R

 .

� Exercise 253 Consider the matrix group k× = GL (1,k). (Its Lie algebra is

clearly k.)

(a) Show that the determinant function

det : GL (n, k)→ k×

is a Lie homomorphism (i.e. a continuous homomorphism of matrix

groups that is also differentiable; cf. Definition 4.4.14).

(b) Show that the induced homomorphism of Lie algebras (i.e. the derivative

of det) is the trace function

tr : kn×n → k.

(c) Derive from (b) that (for A,B ∈ kn×n )

tr (AB) = tr (BA).


