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234 M4.3 - Geometry

5.1 Manifolds: Definition and Examples

Submanifolds (in fact, immersed submanifolds) of Euclidean space Rm are a

generalization of the concept of regular curve in the Euclidean 3-space R3.

The major defect of the definition of a submanifold is its dependence of Rm.

Indeed, the natural idea of an `-dimensional smooth submanifold is of a set

which is `-dimensional (in a certain sense) and to which the differential cal-

culus of Rm can be applied ; the unnecessary presence of Rm is simply an

imposition of our physical nature.

Note : In his monograph on surface theory, published in 1827, Carl F. Gauss

(1777-1855) developed the geometry on a surface (based on its fundamental form);

the necessity of an abstract idea of surface – that is, without involving the ambi-

ent space – was already clear to him. This was generalized by Bernhard Rie-

mann (1826-1866) to m-dimensions in his inaugural lecture (Habilitationschrift)

at Göttingen, “On the Hypotheses which lie at the Foundation of Geometry” (1854),

marking the birth of modern (differential) geometry. However, it was nearly a century

before such an idea attained the definite form that we shall present here.

The concept of manifold is one of the most sophisticated basic concepts in

mathematics.

Definition (of a manifold) and examples

Let Rm denote the Euclidean m-space in the broad sense (i.e., the vec-

tor space Rm equipped with its canonical topology and natural differentiable

structure).

Let M be a set.

5.1.1 Definition. A (coordinate) chart on M is a pair (U, φ), where

U ⊆M and φ : U → Rm is a one-to-one mapping onto an open subset φ(U)

of Rm.

One often writes φ(p) = (φ1(p), . . . , φn(p)), viewing this as the coordinate

m-tuple of the point p ∈ U . The functions φi : U → R, i = 1, 2, . . . ,m are

called the coordinate functions associated with the chart (U, φ).
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Note : A chart is also called a (local) coordinate system (on M).

Relative to such a coordinatization, one can do calculus in the region U of

M . The problem is that the point p will generally belong to infinitely many

different coordinate charts and calculus in one of these coordinatizations about

p might not agree with calculus in another. One needs the coordinate systems

to be smoothly compatible in the following sense.

5.1.2 Definition. Two charts (U, φ) and (V, ψ) on M are said to be

C∞-related if either U ∩ V = ∅ or

ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

is a smooth diffeomeorphism (between open subsets in Rm).

We think of ψ ◦ φ−1 as a smooth change of coordinates (on φ(U ∩ V )).

Thus, on U ∩ V , functions are smooth relative to one coordinate system if

and only if they are smooth relative to the other. Indeed, differential calculus

carried out in U ∩ V via the coordinates of φ(U ∩ V ) is equivalent to the

calculus carried out via the coordinates of ψ(U ∩ V ). (The explicit formulas

will, of course, change from the one coordinate system to the other.) Further-

more, piecing together these local calculi produces a global calculus on M .

The concept that allows us to make these remarks precise is that of a smooth

atlas.

5.1.3 Definition. A (smooth) atlas on M is a family A = {(Uα, φα)}α∈A
of charts (on M) such that

(AT1) M =
⋃
α∈A

Uα;

(AT2) (Uα, φα) is C∞-related to (Uβ, φβ) for every α, β ∈ A.

Two atlases A and A′ on M are compatible provided their union A∪A′

is also an atlas on M . Compatibility is an equivalence relation (on the set of

all atlases on M). Each atlas on M is equivalent to a unique maximal atlas

on M . Thus we arrive at the definition of a manifold.
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5.1.4 Definition. A maximal atlas A on M is called a smooth struc-

ture on M (also called a differentiable structure or a C∞ structure). An

n-dimensional smooth (or differentiable or C∞) manifold is a pair (M,A)

(i.e. a set equipped with a smooth structure).

By a typical abuse of notation, we usually write M for the smooth man-

ifold, the presence of the differentiable structure A being understood. An

admissible chart on (the smooth manifold) M is any chart belonging to

any (smooth) atlas in the differentiable structure of M .

Note : (1) We often refer to m-dimensional smooth manifolds simply as m-

manifolds.

(2) In practice one defines a manifold M by means of a single (smooth) atlas (not

necessarily maximal) on M which completely determines the differentiable structure.

We will now define on a manifold M a canonical topology, one that only

depends on the differentiable structure.

Note : One could also have started from a topological space M and required that

the domains Uα of the charts be open sets in M and that the mappings φα : Uα →
φα(Uα) be homeomorphisms.

5.1.5 Proposition. Let M be a (smooth) m-manifold. The collection of

unions of domains of admissible charts on M forms a topology (called the

canonical topology) on M .

Proof : Let O be the set thus defined. Clearly, M ∈ O and we have to

show that O satisfies the two axioms for a topology :

(O1) Every union of elements of O is an element of O.

(O2) Every finite intersection of elements of O is an element of O.

Clearly (O1) is satisfied, since a set is in O if and only if it is a union of

domains of charts. To show (O2), we just have to consider the intersection of

two elements of O. Let them be A = ∪α∈A1Uα and B = ∪β∈A2Uβ; then

A ∩B =
⋃

(α,β)∈A1×A2

(Uα ∩ Uβ).
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We have to show that each intersection Uα∩Uβ can be taken as the domain of

a chart compatible with the differentiable structure (i.e. an admissible chart on

M). Let (Uα, φα) be an admissible chart on M and set ψ : = φα|Uα∩Uβ ; we

claim that (Uα∩Uβ, ψ) is the desired admissible chart. Clearly ψ(Uα∩Uβ) =

φα(Uα∩Uβ) is open in Rm. If (U, φ) is any admissible chart, the composition

φ ◦ φ−1
α is a (smooth) diffeomorphism between (the open sets) φα(U ∩ Uα)

and φ(U ∩ Uα), so

φ ◦ ψ−1 = φ ◦ φ−1
α

∣∣
φα(Uα∩Uβ∩U)

is a (smooth) diffeomorphism between ψ(U∩(Uα∩Uβ)) and φ(U∩(Uα∩Uβ)).

Similarly, ψ ◦ φ−1 is a (smooth) diffeomorphism between φ(U ∩ (Uα ∩ Uβ))

and ψ(U ∩ (Uα ∩ Uβ)). This proves compatibility.

2

Note : Sometimes it is desirable to characterize the open sets in the canonical

topology of M in terms of a single atlas. One can prove that given an atlas A =

{(Uα, φα)}α∈A on an m-manifold M , a subset U ⊆ M is open if and only if the

set φα(U ∩ Uα) ⊆ Rm is open for every chart (Uα, φα) ∈ A. This result provides

another way of defining the (canonical) topology of a manifold : for every chart

(U, φ) on an m-manifold M , considered with its canonical topology, the mapping

φ : U → φ(U) ⊆ Rm is a homeomorphism.

The canonical topology of a manifold can be quite strange. In particular,

it can happen that one (or both) of the following conditions (axioms) not be

satisfied :

(A) Hausdorff Axiom : Given two distinct points of M , there exist

(open) neighborhoods of these points that do not intersect.

(B) Countable Basis Axiom : M can be covered by a countable number

of coordinate neighborhoods (i.e. domains of admissible charts on

M). We say then that M has a countable basis (or that M is

second countable).

Note : Axiom (A) is essential for the uniqueness of limits of convergent sequences

whereas Axiom (B) is essential for the existence of a (smooth) partition of unity, an
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almost indispensabil tool for the study of certain questions on manifolds. A topological

space which is locally compact (each point has at least one compact neighborhood),

Hausdorff, and has a countable basis (of open sets) is paracompact, and hence admits a

partition of the unity. For example, a partition of unity is required for piecing together

global functions and structures out of local ones, and conversely for representing

global structures as locally finite sums of local ones. The following result holds : A

(smooth) manifold M has a (smooth) partition of unity if and only if every connected

component of M is Hausdorff and has a countable basis.

For all practical purposes, we shall be interested in only (smooth) manifolds

that satisfy Axiom (A) and Axiom (B). Henceforth, we shall refer to such

objects, simply, as manifolds.

Note : (1) Manifolds are locally Euclidean spaces (A Hausdorff topological space

is said to be locally Euclidean of dimension m if each point p has an open neighbor-

hood homeomorphic to an open set of Rm). Second countable locally Euclidean spaces

are known as topological manifolds. A topological manifold is smoothable provides it

can be given a smooth structure. For m = 1, 2, 3 it is known that all topological

m-manifolds are smoothable. The first dimension in which there exist nonsmoothable

manifolds is m = 4.

(2) Manifolds are paracompact spaces (A Hausdorff space is called paracompact if

every open cover has a locally finite subcover). Moreover, manifolds are metrizable

spaces (A topological space is called metrizable if there exists a metric such that its

associated metric topology coincides with the space topology; any metrizable space is

paracompact).

(3) Any m-manifold admits a finite atlas consisting of m+ 1 (not necessarily con-

nected) charts. This is a consequence of topological dimension theory.

(4) A manifold is connected if and only if it is path-connected. (A path-connected

topological space is connected, but the converse is not true in general.)

(5) A natural question in the theory of (differentiable) manifolds is to know whether

a given manifold can be immersed (or even embedded) into some Euclidean space. A

fundamental result in this direction is the famous theorem of Hassler Whitney

(1907-1989) which states the following : Any m-manifold can be immersed in R2m

and embedded in R2m+1 (in fact, the theorem can be improved, for m ≥ 2, to R2m−1
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and R2m, respectively).

(6) A set M may have more than one inequivalent smooth structure. For instance,

the spheres from dimension 7 on have finitely many. A most surprising result is that

on R4 there are uncountably many pairwise inequivalent (exotic) smooth structures.

We give now some preliminary examples of manifolds.

5.1.6 Example. (Euclidean space) The standard smooth structure on the

Euclidean m-space Em is obtained by taking the atlas consisting of a single

(global) chart (Em, ι), where ι : Em → Rm is the identity mapping. (Many

examples will make it abundantly clear that manifolds in general can not be

covered by a single coordinate system nor are there preferred coordinates.)

Note : It is common practice to identify Em and Rm; however, we DO NOT

follow this custom. It is often better in thinking of the Euclidean space Em as

a “flat” Riemannian manifold (i.e. a “geometrical” model for classical geometry,

without coordinates; a Riemannian manifold is a manifold equipped with an additional

“geometrical” structure, called a Riemannian metric) and of the Cartesian space

Rm as a normed vector space (i.e. an “algebraic” model for classical geometry, with

coordinates). The additive group of Rm, also denoted by Rm, is a matrix group. This

group is isomorphic to (and customarily identified with) the group of all translations

on the Euclidean space Em.

5.1.7 Example. Let V be an m-dimensional vector space (over R). Then

V has a natural manifold structure. Indeed, if {v1, . . . , vm} is a basis in V ,

then the correspondence

φ : p = p1v1 + · · ·+ pmvm 7→ (p1, . . . , pm)

is a bijection (between V and the open set Rm). The pair (V, φ) is a (global)

chart on V and hence uniquely determines a smooth structure on V . This

smooth structure is independent of the choice of the basis, since different bases

give C∞-related charts. (In fact, the change of coordinates is given simply by

an m×m invertible matrix.)
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5.1.8 Example. (Open submanifolds) An open subset U of a manifold

M is itself a manifold. Indeed, if {(Uα, φα)}α∈A is the (maximal) atlas of

admissible charts on M , then the family of charts (atlas)

AU = {(U ∩ Uα, φα|U ∩ Uα) | (Uα, φα) ∈ A}

defines a smooth structure on U . Unless otherwise stated, open subsets of

manifolds will always be given this natural (induced) smooth structure.

More generally, any `-dimensional smooth submanifold of some Euclidean

space Em is a (smooth) `-manifold.

� Exercise 254 Let S be a (non-empty) subset of the Euclidean space Em

and assume that S satisfies the `-submanifold property (i.e. S is an ell-dimensional

submanifold of Em). Show that S is naturally endowed with a smooth structure,

hence it is an ell-manifold.

5.1.9 Example. (The general linear group) The general linear group GL (n,R)

is an open subset of the manifold En2
(we may identify Rn×n with the Carte-

sian space Rn2
). Hence GL (n,R) is a manifold.

5.1.10 Example. (The sphere) The n-sphere is the set

Sn : =
{
x ∈ En+1 |x2

1 + · · ·+ x2
n+1 = 1

}
.

(We have seen that Sn is an n-dimensional smooth submanifold of En+1.) Let

pN = (0, . . . , 0, 1) be the north pole and pS = (0, . . . , 0,−1) the south pole

of Sn. Define the mapping φ1 : U1 : = Sn \ {pN} → Rn that takes the point

p = (x1, . . . , xn+1) in U1 into the intersection of the hyperplane xn+1 = 0

with the line that passes through p and pN . This mapping is the so-called

stereographic projection from the north pole. In a similar manner one defines

the stereographic projection φ−1 : U−1 : = Sn \ {pS} → Rn from the south

pole.

� Exercise 255 Show that the stereographic projections (φ1 and φ−1 ) are

given by

φ±1(x1, . . . , xn+1) =

(
x1

1∓ xn+1
, · · · , xn

1∓ xn+1

)
.
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Clearly, the stereographic projections are one-to-one and hence the pairs

(U1, φ1) and (U−1, φ−1) are charts on Sn. The domains (coordinate neigh-

borhoods) of these two charts cover Sn and is not difficult to see that they

are C∞-related (and hence form a smooth atlas on the sphere). Indeed, the

change of coordinates

yi =
xi

1− xn+1
←→ y′i =

xi
1 + xn+1

(i = 1, 2, . . . , n)

is given by

y′i =
yi

y2
1 + · · ·+ y2

n

(here we use the fact that x2
1 + · · ·+ x2

n+1 = 1). Therefore, the n-sphere Sn

is an n-manifold.

5.1.11 Example. (Product manifolds) Let M and N be manifolds (of

dimension m and n, respectively). Suppose that A = {(Uα, φα)}α∈A and

B = {(Vβ, ψβ)}β∈B are the maximal atlases on M and N , respectively.

� Exercise 256 Show that the family (of charts)

{(Uα × Vβ , φα × ψβ) | (Uα, φα) ∈ A, (Vβ , ψβ) ∈ B}

where φα × ψβ(p, q) : = (φα(p), ψβ(q)) ∈ Rm × Rn, is a smooth atlas on M × N

(which determines a smooth structure).

With this smooth structure M × N is an (m + n)-manifold, called the

product manifold of M and N . An important example is the torus T2 =

S1 × S1, the product of two circles. More generally, the k-dimensional torus

Tk = S1 × · · · × S1 is a k-manifold obtained as a Cartesian product.

5.2 Smooth Functions and Mappings

On a topological space the concept of continuity has meaning; in an analo-

gous way, on a manifold we may define the concept of smooth (also called

differentiable or C∞) function. Let M be an m-manifold.
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5.2.1 Definition. A function f : M → R is said to be smooth if for any

point p ∈M there is an admissible chart (U, φ) on M such that p ∈ U and

the composite function

f ◦ φ−1 : φ(U) ⊆ Rm → R

is smooth.

Clearly, a smooth function is continuous. The set of all smooth functions

on M will be denoted by C∞(M). It is a consequence of the definition that

if f ∈ C∞(M) and W ⊆ M is an open set, then f |W is smooth (on the

manifold W ).

Note : The definition only requires us to be able to find some chart about each

point p ∈ M , but the following result assures us that all admissible charts will then

work : The function f : M → R is smooth if and only if f ◦φ−1 is smooth for every

admissible chart (U, φ) on M .

We think of f ◦φ−1 as a formula for f |U relative to the coordinate system

(U, φ). For x ∈ U , with coordinates φ(x) = (x1, . . . , xm), we can write

y = f(x)

= f ◦ φ−1(φ(x))

= f ◦ φ−1(x1, . . . , xm).

We shall refer to f ◦ φ−1 as the local representation of f with respect to

(U, φ).

5.2.2 Example. Among the smooth functions on M are the coordinate

functions of an admissible chart (U, φ). Indeed, for each i = 1, 2, . . . ,m, the

local representation of φi = pri ◦ φ is given by

y = φi(x)

= φi ◦ φ−1(x1, . . . , xm)

= pri ◦ φ ◦ φ−1(x1, . . . , xm)

= pri(x1, . . . , xm)

= xi
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which is clearly smooth (see also Exercise 120).

Just as in the case of (the manifold) En we proceed from definition of

smooth function to definition of smooth mapping. Suppose that M and N

are manifolds.

5.2.3 Definition. A mapping F : M → N is said to be smooth if for

any point p ∈M there is an admissible chart (U, φ) on M with p ∈ U and

an admissible chart (V, ψ) on N with F (p) ∈ V such that F (U) ⊆ V and

the composite mapping

ψ ◦ F ◦ φ−1 : φ(U)→ ψ(V )

is smooth.

Smooth mappings are continuous; their restrictions to open subsets are

also smooth. The set of all smooth mappings from M into N will be denoted

by C∞(M,N).

Note : A smooth mapping is a more general notion than smooth function, the

latter being a mapping (from a manifold M) into N = R, which is, of course, the

same as (the manifold) E1.

The local representation of F with respect to (U, φ) and (V, ψ) is given

by

yi = ψ ◦ F ◦ φ−1(x1, . . . , xm), i = 1, 2, . . . , n.

� Exercise 257 Prove that a mapping F : M → N is smooth if and only if for

any smooth function f : N → R, the function f ◦ F is smooth (on M). (We write

F ∗f for the function f ◦ F , and shall refer to F ∗f as the pull-back of f under F .)

An open interval J of R is an open submanifold of R (in fact, the Eu-

clidean 1-space E1) and hence is a manifold. Then a curve σ : J → N is

smooth if and only if for any smooth function f on N , (the pull-back of f

under σ) σ∗f : J → R is a smooth function.

� Exercise 258 Let M and N be manifolds. Prove that the canonical projec-

tions

prM : M ×N →M and prN : M ×N → N
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are smooth mappings (between manifolds).

� Exercise 259 Let M,N , and P be manifolds. Prove that if F : M → N

and G : N → P are smooth mappings, then G ◦ F : M → P is also smooth.

� Exercise 260 Let M be a manifold. Show that the set C∞(M) of all smooth

functions on M is an algebra (over R) under the natural operations of addition, scalar

multiplication, and product.

5.3 The Tangent and Cotangent Spaces

The tangent space

There are several alternative ways in which we can define tangent vectors

(and hence tangent spaces) to a manifold, independent of any embedding in

some Euclidean space.

Note : The whole reason for introducing tangent vectors is to produce linear ap-

proximations to nonlinear problems.

An intuitive (and very useful) way to define tangent vectors is as equiva-

lence classes of curves. (Roughly speaking, two curves are equivalent if they

have the same velocity vector at some point.)

Let M be an m-manifold and let C(p) denote the set of all smooth curves

σ : (−ε, ε) → M such that σ(0) = p. Elements (curves) α and β in C(p)

are said to be infinitesimally equivalent at p and we write α ∼p β if

d

dt
φ(α(t))

∣∣∣∣
t=0

=
d

dt
φ(β(t))

∣∣∣∣
t=0

for any admissible chart (U, φ) on M .

� Exercise 261 Show that if (U, φ) and (V, ψ) are two admissible charts at p

(i.e. such that p ∈ U ∩ V ), then

d

dt
φ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
φ ◦ β(t)

∣∣∣∣
t=0

if and only if
d

dt
ψ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
ψ ◦ β(t)

∣∣∣∣
t=0

.

(The infinitesimal equivalence is well defined.)
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It is easy to check that ∼p is an equivalence relation on the set C(p).

The infinitesimal equivalence class of α in C(p) is denoted by [α]p and is

called an infinitesimal curve at p. An infinitesimal curve at p is also called a

tangent vector to M at p.

5.3.1 Definition. The (quotient) set TpM : = C(p)/∼p of all infinitesimal

curves at p is called the tangent space to M at p.

Let (U, φ) be any admissible chart on M such that p ∈ U . The mapping

φ̄ : TpM → Rm, [α]p 7→
d

dt
φ(α(t))

∣∣∣∣
t=0

is one-to-one and onto Rm. In fact, for any v ∈ Rm, α(t) : = φ−1 (φ(p) + tv)

is a curve such that φ̄([α]p) = v. We define the vector structure on TpM

so that φ̄ becomes a linear isomorphism. That is, for [α]p, [β]p ∈ TpM and

a ∈ R,

[α]p + [β]p : = φ̄−1
(
φ̄([α]p) + φ̄([β]p)

)
a[α]p : = φ̄−1

(
aφ̄([α]p)

)
.

Under the forgoing addition and scalar multiplication, the tangent space TpM

is an m-dimensional vector space over R.

Note : The linear structure of TpM is canonical in the sense that it is independent

of the choice of (local) coordinates. Indeed, let (U, φ) and (V, ψ) be two admissible

charts at p. Let φ̄([α]p) = v and let ψ̄([α]p) = w. It follows that

w =
d

dt
ψ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
ψ ◦ φ−1 ◦ φ ◦ α(t)

∣∣∣∣
t=0

.

Therefore the coordinates of v and w transform according to the following formula :

wi =
∂yi
∂x1

v1 + · · ·+ ∂yi
∂xm

vm

where yi = yi(x1, . . . , xm), i = 1, 2, . . . ,m denote the coordinate functions of the

mapping ψ◦φ−1. Hence the vector structure on TpM is independent of the particular

chart (used to define it).

The cotangent space
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Let M be an m-dimensional manifold and let F(p) denote the set of all

smooth functions f , defined in some (open) neighborhood of p ∈ M , that

satisfy f(p) = 0. F(p) will have a natural vector space structure (in fact,

associative algebra with unity) provided that functions that agree on a common

domain are regarded as equal. (The domains of elements of F(p) need not be

the same.)

Note : Actually, an element of (the algebra) F(p) is a certain set (equivalence

class) of smooth functions, commonly referred to as a function germ at p, which is

conveniently identified with any one of its representatives.

Elements (function germs) f and g in F(p) are said to be equivalent (at

p) and we write f ≈p g if

D
(
f ◦ φ−1

)
(φ(p)) = D

(
g ◦ φ−1

)
(φ(p))

for any admissible chart (U, φ) on M .

Note : We shall write, by a slight abuse of notation,

f ◦ φ−1(x1, . . . , xm) = f(x1, . . . , xm) and D(f ◦ φ−1) =
∂f

∂x
: =
[
∂f
∂x1

· · · ∂f
∂xm

]
.

Again, it is easy to check that ≈p is an equivalence relation on the set

F(p). The equivalence class of f in F(p) is denoted by [f ]p and is called a

tangent covector to M at p.

5.3.2 Definition. The (quotient) set T ∗pM : = F(p)/≈p is called the cotan-

gent space to M at p.

� Exercise 262 Let f, f̄ , g, ḡ ∈ F(p) and a ∈ R. Show that

(a) If f ≈p f̄ and g ≈p ḡ, then f + g ≈p f̄ + ḡ.

(b) If f ≈p f̄ , then af ≈p af̄ .

That is, for [f ]p, [g]p ∈ T ∗pM and a ∈ R, the following operations

[f ]p + [g]p : = [f + g]p

a[f ]p : = [af ]p
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are well-defined. Under the foregoing addition and scalar multiplication, the

cotangent space T ∗pM is a real vector space.

For each admissible chart (U, φ) on M such that p ∈ U , the mapping

φ : T ∗pM → (Rm)∗, [f ]p 7→ D
(
f ◦ φ−1

)
∈ R1×m

is a linear isomorphism. For each i, the (smooth) function

fi : U → R, x 7→ fi(x) : = φi(x)− φi(p)

is an element of F(p) and φ ([fi]p) =
[
δi1 · · · δim

]
∈ R1×m. So [f1]p, · · · , [fm]p

form a basis for (the vector space) T ∗pM .

Note : The linear structure of T ∗pM is canonical. Indeed, let (U, φ) and (V, ψ)

be two admissible charts at p which produce their own bases [f1]p, . . . , [fm]p and

[g1]p, . . . , [gm]p, respectively. Let [f ]p be an arbitrary element of T ∗pM . Then

[f ]p = v1[f1]p + · · ·+ vm[fm]p

= w1[g1]p + · · ·+ wm[gm]p.

It follows that the coordinates (w1, . . . , wm) are related to the coordinates (v1, . . . , vm)

via the following formula

vi =
∂y1

∂xi
w1 + · · ·+ ∂ym

∂xi
wm

where yi = yi(x1, . . . , xm), i = 1, 2, . . . ,m denote the coordinate functions of the

mapping ψ◦φ−1. Hence the vector structure of T ∗pM is independent of the particular

choice of admissible chart.

We shall show now the duality between the elements of TpM and those of

T ∗pM . For any f ∈ F(p) and any σ ∈ C(p), consider the pairing

〈[f ]p, [σ]p〉 : =
d

dt
f ◦ σ

∣∣∣∣
t=0

.

Because f ◦ σ = f ◦ φ−1 ◦ φ ◦ σ, it follows that the foregoing pairing is well

defined and is bilinear. More explicitly,

〈[f ]p, [σ]p〉 =
∂f

∂x1

dσ1

dt
+ · · ·+ ∂f

∂xm

dσm
dt
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with

D
(
f ◦ φ−1

)
=
[
∂f
∂x1

· · · ∂f
∂xm

]
and

d

dt
φ ◦ σ(t)

∣∣∣∣
t=0

=


dσ1
dt
...

dσm
dt

 .
Therefore, each element of T ∗pM is a linear functional on TpM , and hence

T ∗pM = (TpM)∗ .

Note : It is useful to think of tangent vectors as objects that act (linearly) on

functions and produce directional derivatives. Let M be a smooth manifold and let

F(p) be the algebra of function germs at p ∈M . A linear functional Xp : F(p)→ R
is called a derivation at p if (for every f, g ∈ F(p))

Xp(f · g) = f(p) ·Xp(g) + g(p) ·Xp(f) (Leibniz rule).

If f = 1 (i.e. f(x) = 1 for all x ∈ M), then Xp(f) = 2Xp(f), and therefore

Xp(f) = 0. Thus any derivation of a constant function is zero. It is easy to check

that the set of all derivations at p is in fact a vector space (over R). Moreover, this

vector space is isomorphic to (the tangent space) TpM . (In general, for manifolds

that are not smooth, the space of derivations is an infinite dimensional vector space

and so cannot be isomorphic to TpM .)

For each [α]p ∈ TpM and f ∈ F(p), let

〈f, [α]p〉 =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

Such action is well defined, for if α ∼p ᾱ, then

d

dt
f ◦ ᾱ(t)

∣∣∣∣
t=0

=
d

dt
f ◦ φ−1 ◦ φ ◦ ᾱ(t)

∣∣∣∣
t=0

=
d

dt
(f ◦ φ−1) ◦ φ ◦ α(t)

∣∣∣∣
t=0

=
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

[α]p acts linearly on F(p) and it follows that such an operation is a derivation. Let

D[α]p denote the derivation (at p) induced by the foregoing pairing. It can be shown

that for each derivation Xp at p, there exists an element (infinitesimal curve) [α]p
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in TpM such that Xp = D[α]p . (Given a fixed admissible chart (U, φ) at p, consider

the curves

αi : t 7→ αi(t) : = φ−1 (φ(p) + tei) , i = 1, 2, . . . ,m.

Then [α1], · · · , [αm]p form a basis for TpM and Xp = a1D[α1]p + · · ·+amD[αm]p for

some numbers a1, . . . , am.)

Following the usual practice, we shall write ∂
∂xi

∣∣∣
p

for D[αi]p . Then ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xm

∣∣∣
p

is a basis for the (vector space of) derivations at p, and each derivation is an expression

of the form

a1
∂

∂x1

∣∣∣∣
p

+ · · ·+ am
∂

∂xm

∣∣∣∣
p

.

We shall find it convenient to use two notations for the tangent vectors at

p, each of which is suggestive in its own way. If we think of TpM as the set

(vector space) of equivalence classes of curves at p, then we shall denote its

elements by
dα

dt

∣∣∣∣
t=0

and if we think of TpM as the (vector) space of derivations at p, then we

shall denote its elements as

a1
∂

∂x1

∣∣∣∣
p

+ · · ·+ am
∂

∂xm

∣∣∣∣
p

the meaning being that

dα

dt

∣∣∣∣
t=0

= a1
∂

∂x1

∣∣∣∣
p

+· · ·+am
∂

∂xm

∣∣∣∣
p

⇐⇒ D[α]p = a1D[α1]p+· · ·+amD[αm]p .

We shall adopt a similar convention with the elements of (the cotangent space)

T ∗pM : (df)p is the equivalence class of f in T ∗pM , with the understanding

that

(df)p ·
dα

dt

∣∣∣∣
t=0

= 〈[f ]p, [α]p〉 =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

.

In particular, then (dx1)p, · · · , (dxm)p denotes the dual basis of ∂
∂x1

∣∣∣
p
, · · · , ∂

∂xm

∣∣∣
p
.

Note : The definition of the tangent space TpM uses only (the algebra) F(p), not

all M ; thus if U is any open subset of M containing p, then TpU and TpM are
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naturally identified. Also, recall that TpEm = {p} × Em is commonly identified with

(the vector space) Rm. We can write, for U ⊆ Em (open),

TpU = TpEm = {p} × Em = Rm.

� Exercise 263 Let U ⊆ Em be open and let f : U → R be a smooth function.

Compare Df(p) and (df)p for p ∈ U .

Tangent mappings (differentials)

For every smooth mapping F : Em → En between Euclidean spaces and

any point p ∈ Em, the derivative of F at p is a linear mapping DF (p) :

TpEm = Rm → TF (p)En = Rn. Now that we have tangent spaces to mani-

folds, we are ready to associate analogous (linear) mappings (between tangent

spaces) to smooth mappings (between manifolds).

Let M and N be smooth manifolds, and Φ : M → N a smooth mapping.

We have already mentioned that Φ pulls back smooth functions on N into

smooth functions on M . However, for smooth curves the situation is different

: for any smooth curve σ on M , Φ ◦ σ is a smooth curve on N . Thus Φ

pushes forward curves on M into curves on N . We shall write Φ∗σ for the

curve Φ ◦ σ. Both the push-forward Φ∗ and the pull-back Φ∗ induce linear

mappings between tangent spaces and cotangent spaces, respectively.

5.3.3 Definition. Suppose Φ : M → N is a smooth mapping between

manifolds and p ∈M . The tangent mapping Φ∗,p : TpM → TΦ(p)N (of Φ

at p) is defined by

Φ∗,p : [α]p 7→ [Φ∗α]Φ(p).

� Exercise 264 Show that the tangent mapping Φ∗,p is well-defined and is

linear.

It is immediate that if Φ : M → M is the identity, then Φ∗,p : TpM →
TpM is the identity isomorphism.
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� Exercise 265 Suppose that Φ : M → N and Ψ : N → P are smooth

mappings between manifolds and p ∈M . Verify that

(Ψ ◦ Φ)∗,p = Ψ∗,Φ(p) ◦ Φ∗,p.

Note : The linear mapping Φ∗,p : TpM → TΦ(p)N is often called the differential

of Φ at p. One frequently sees other notations for Φ∗,p , for example (dΦ)p,Φ
′(p),

or TpΦ. The ∗ is a subscript since the mapping is in the same “direction” as Φ (i.e.

from M to N).

Recall from linear algebra that every linear mapping Φ = Φ∗ : V → W

between vector spaces induces a dual (linear) mapping Φ∗ : W ∗ → V ∗ by the

prescription

(Φ∗λ) (v) = λ (Φ∗(v))

= λ ◦ Φ(v) for v ∈ V and λ ∈W ∗

(or, if one prefers, 〈Φ∗(λ), v〉 = 〈λ,Φ∗(v)〉).

Note : The definition of Φ∗ does not require the choice of a basis; therefore Φ∗

is naturally (or canonically) determined by Φ∗. The vector spaces V and V ∗ have

the same dimension, thus they must be isomorphic. There is no natural isomorphism;

however, we do have the following property : There is a natural isomorphism between

V and (V ∗)∗ given by v 7→ 〈·, v〉 (i.e. v is mapped to the linear functional on

V ∗ whose value on any λ ∈ V ∗ is λ(v) = 〈λ, v〉). Observe that the mapping

(v, λ) 7→ 〈λ, v〉 is bilinear (i.e. linear in each variable separately). This shows that

the dual of V ∗ is V itself, accounts for the name “dual” space, and validates the use

of the symmetric notation 〈λ, v〉 in preference to the functional notation λ(v).

We make the following definition.

5.3.4 Definition. Suppose Φ : M → N is a smooth mapping between

manifolds and p ∈ M . The cotangent mapping Φ∗p : T ∗Φ(p)N → T ∗pM

(of Φ at p) is the dual of the tangent mapping Φ∗,p : TpM → TΦ(p)N (i.e.

Φ∗p = (Φ∗,p)
∗).

The cotangent mapping Φ∗p : T ∗Φ(p)N → T ∗pM is defined by

Φ∗p : [f ]Φ(p) 7→ [Φ∗f ]p.
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Note : The foregoing mapping (between cotangent spaces) is well-defined and acts

like the dual of the tangent mapping (between tangent spaces).

� Exercise 266 Suppose that Φ : M → N and Ψ : N → P are smooth

mappings between manifolds and p ∈M . Verify that

(Ψ ◦ Φ)
∗
p = Ψ∗Φ(p) ◦ Φ∗p.

In terms of the admissible charts (U, φ) at p ∈M and (V, ψ) at Φ(p) ∈ N ,

we have the following formulas. Let

v =
d

dt
φ ◦ α(t)

∣∣∣∣
t=0

, w =
d

dt
ψ ◦ Φ ◦ α(t)

∣∣∣∣
t=0

and

φi(x1, . . . , xm) = ψi ◦ Φ ◦ φ−1(x1, . . . , xm), i = 1, 2, . . . , n.

Then the local representation of the tangent mapping Φ∗,p is

wi =
∂Φi

∂x1
v1 + · · ·+ ∂Φi

∂xm
vm, i = 1, 2, . . . , n.

We can write (in compact form)

w =


w1

...

wn

 =


∂Φ
∂x1

· · · ∂Φ
∂xm

...
...

∂Φ
∂x1

· · · ∂Φ
∂xm



v1

...

vm


=

∂Φ

∂x
v.

In order to get an analogous expression for the cotangent mapping, let f be

a smooth function on N at Φ(p), and g its pull-back Φ∗f . Denote

g(x1, . . . , xm) = Φ∗f◦φ−1(x1, . . . , xm) and f(y1, . . . , yn) = f◦ψ−1(y1, . . . , yn).

Then g(x1, . . . , xm) = f(Φ1(x), . . . ,Φn(x)), and hence

∂g

∂xi
=
∂Φ1

∂xi

∂f

∂y1
+ · · ·+ ∂Φn

∂xi

∂f

∂yn
, i = 1, 2, . . . ,m.
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Likewise, we can write (in compact form)

∂g

∂x
=
[
∂g
∂x1

· · · ∂g
∂xm

]
=

[
∂f
∂y1

· · · ∂f
∂yn

]
∂Φ
∂x1

· · · ∂Φ
∂xm

...
...

∂Φ
∂x1

· · · ∂Φ
∂xm


=

∂f

∂y

∂Φ

∂x
·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The tangent bundle and the cotangent bundle

It is natural to assemble all tangent spaces of a (smooth) manifold together

into a new structure – and conceivably, this set should again have a natural

manifold structure. (We will omit some of the more technical details of this

structure.) As discussed earlier, it is desirable to distinguish between tangent

vectors at different points.

Let M be a smooth n-manifold, and consider the set

TM : =

(p,Xp) ∈M ×
⋃
p∈M

TpM |Xp ∈ TpM


which is the (disjoint) union of all tangent spaces to M at all points p ∈M .

Let

π : TM →M, (p,Xp) 7→ p

be the projection onto M . The fibre over ∈ M is the preimage π−1(p) =

{p} × TpM . (Occasionally it is convenient to identify the fibre π−1(p) with

the tangent space TpM – technically, this includes a tacit projection onto the

second factor.) We call TM the tangent bundle of M .

Note : To illustrate the natural manifold structure of tangent bundles, consider the

example of M = S1. The naive collection of all tangent lines to the (embedded) circle

S1 ⊆ E2 is full of intersections. More suitable for our purposes is to embed the circle in

E3 as {x ∈ E3 |x2
1 +x2

2 = 1, x3 = 0} and attach at every point p ∈ S1 a vertical line,

yielding a cylinder. As a set, this cylinder is in bijection with the (disjoint) collection

of all tangent lines to the circle (embedded in the plane). It is clear that one can
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consistently choose an orientation of the lines (and even more a consistent scaling).

Intuitively, identify the naive tangent vector ((cos θ, sin θ), (−L sin θ, L cos θ)) with

the point (cos θ, sin θ, L) ∈ E3.

In complete analogy, we may intuitively think of the tangent bundle TR of the

real line R as R2. However, for dimensional reasons it is clear that these two examples

are the only tangent bundles amenable to such immediate visualization. How quickly

things get complicated becomes clear if one tries to think of TS2 as a sphere with a

(different) planes attached to each of its points. A vector field on the sphere simply

selects one point on each plane. However, from algebraic topology it is known that

there does not exist any continuous vector field on the sphere that vanish nowhere. In

our picture this means that it is impossible to continuously select one point on each

tangent plane avoiding the origin (zero vector) in each TpS2. Intuitively, TS2 must

be nontrivially twisted (when compared to e.g. TS1 which is the very tame cylinder)

and hence must be very different from the trivial Cartesian product S2 × R2.

The set TM has a canonical (smooth) manifold structure of dimension

2n.

Note : The key idea is that locally, above an admissible chart (U, φ), the tangent

bundle “looks like” Rm ×Rm = R2m. This observation is captured in the concept of

local triviality (compare the later short note on vector bundles). Thus the topology

and geometry of M are captured, in the global structure of the tangent bundle, by

how the trivial bundles are pieced together with twists.

Starting with a (smooth) atlas on M , we shall find it easy to obtain a

candidate (smooth) atlas on TM . This can be done as follows. Let (Uα, φα) ∈
{(Uα, φα)}α∈A be an admissible chart on M with p ∈ Uα, and consider the

set

TUα : = π−1(Uα)

= the (disjoint) union of all TxM with x ∈ Uα.

To any element (p, v) ∈ TUα ⊆ TM , where v = Xp ∈ TpM , we associate the

point (
φα(p), φ̄α(v)

)
∈ φα(Ua)× Rm ⊆ R2m
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where φ̄α : TpM → Rm is the linear isomorphism asoociated with (Uα, φα)

at p. The mapping

Tφα : TUα → R2m, (p, v) 7→
(
φα(p), φ̄α(v)

)
is one-to-one and onto an open subset φα(Uα)×Rm of R2m. We claim that the

family (of charts) {(TUα, Tφα)}α∈A is a smooth atlas on TM , determining a

smooth structure.

� Exercise 267 Verify the preceding statement.

The induced canonical topology on TM is such that all the coordinate

mappings Tφα : TUα → Tφα(TUα) ⊆ R2m are homeomorphisms (in fact, it

is the weakest topology on TM with this property).

Note : Alternatively, the canonical topology on the tangent bundle TM can be

characterized as the strongest topology under which the projection mapping π :

TM →M is continuous.

Recall that, in order for TM to qualify as a smooth manifold, we still

need that the (canonical) topology is reasonably nice – Hausdorff and second

countable. (It is easy to see that the topology is Hausdorff; however, the

second condition is rather tricky, and we shall skip the details.)

� Exercise 268 Show that (as a mapping between smooth manifolds) the pro-

jection mapping π : TM →M is smooth.

5.3.5 Example. If an m-dimensional vector space V is regarded as a

(smooth) manifold (see Example 4.2.7), then the tangent bundle TV is

isomorphic to V × V .

Note : It is often convenient to replace φα(Uα)×Rm with Uα ×Rm, identifying

Tφα with the mapping v 7→ (p, φ̄α(v)). (This minor abuse of notation turns out to

be a major convenience.) For each α ∈ A, we get a commutative diagram

TUα
Tφα−−−−→ Uα × Rm

π

y ypr1
Uα −−−−→

id
Uα
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where pr1 denotes projection on the first factor and Tφα is a diffeomorphism that

restricts to be a linear isomorphism TpM → {p}×Rm for every p ∈ Uα. Thus, TM

is “locally” a Cartesian product of M and Rm, the projection π being “locally” the

projection of the Cartesian product onto the first factor, and the fiber π−1(p) = TpM

has a canonical vector space structure, for every p ∈M .

Tangent bundles are examples of vector bundles. (Vector bundles play a

very important role in manifold theory.)

Note : Let M be a smooth m-manifold, E a smooth (m+ k)-dimensional man-

ifold, and π : E → M a smooth mapping. The triple (E,M, π) is called a vector

bundle over M (of fibre dimension k) if the following properties hold.

(VB1) For each p ∈ M , the fibre Ep : = π−1(p) has the structure of a (real)

k-dimensional vector space.

(VB2) For each p ∈ M , there exist an open neighborhood W and a (smooth)

diffeomorphism ζ : π−1(W )→W × Rk such the following diagram com-

mutes

π−1(W )
ζ−−−−→ W × Rk

π

y ypr1
W −−−−→

id
W

(Any such pair (π−1(W ), ζ) is called a (vector) bundle chart on (E,M, π).)

(VB3) For each p ∈W , the restriction

ζp = ζ|Ep : Ep → {p} × Rk

is a linear isomorphism.

We call E the total space, M the base space, and π the bundle projection. We shall

denote a vector bundle (over M), simply, π : E → M . An obvious example of a

vector bundle is given by pr1 : M × Rk →M . Here (M × Rk, id) is a global bundle

chart and the vector bundle is said to be trivial.

Given two vector bundles π1 : E1 → M and π2 : E2 → M over M , a (vector)

bundle isomorphism is a commutative diagram

E1
ϕ−−−−→ E2

π1

y yπ2

M −−−−→
id

M
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such that ϕ is a (smooth) diffeomorphism, and carries E1p isomorphically (as a

vector space) onto E2p, for every p ∈M .

So far, the only real eaxamples of vector bundles that we have seen are the tangent

bundles and trivial bundles. The following is the least complicated example of a

nontrivial vector bundle. We give an example of a “line” bundle (i.e. of fibre dimension

1) over the circle, known as the Möbius bundle. On R × R, define the equivalence

relation (s, t) ∼ (s + n, (−1)nt), n ∈ Z. Observe that t 7→ (−1)nt is a linear

automorphism of R. The projection (s, t) 7→ s passes to a well defined mapping

π : (R×R)/∼ → R/Z = S1. It should be clear, intuitively, that this is a vector bundle

over S1 of fibre dimension 1, but a rigorous proof of this involves checking many

details.

Beyond vector bundles are fibre bundles in which the fibres need not necessarily be

vector spaces. Arguably the most important such fibre bundle is the principal bundle

in which each fibre is a copy of the general linear group GL (k,R). (Differential

geometry may be described as the study of a connection on a principal bundle.)

In complete analogy to the tangent bundle we assemble all cotangent spaces

T ∗pM into the cotangent bundle, denoted T ∗M . It is a vector bundle (of

fibre dimension m) over the (smooth) m-manifold M with bundle projection

again denoted by π. The set (total space)

T ∗M : =

{
(p, ωp) ∈M ×

⋃
∈M

T ∗pM |ωp ∈ T ∗pM

}

has a (smooth) manifold structure of dimension 2m, given by the (smooth)

atlas {(T ∗Uα, T ∗φα)}α∈A where T ∗Uα = π−1(Uα) ⊆ T ∗M and

T ∗φα : (p, ω) 7→ (φα(p), φ
α
(ω)) ∈ φα(Uα)× (Rm)∗ ⊆ R2m

({(Uα, φα)}α∈A is an atlas on M).

5.3.6 Example. If an m-dimensional vector space V is regarded as a

(smooth) manifold, then the cotangent bundle T ∗V is isomorphic to V ×V ∗.

Note : One can show that the tangent and cotangent bundles are isomorphic, but

not canonically. We do not identify these (vector) bundles.
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5.4 Smooth Submanifolds

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.5 Vector Fields

Vector fields and flows

Let M be a manifold and let TM be the corresponding tangent bundle.

5.5.1 Definition. A vector field X (on M) is a mapping from M into

TM such that for each p ∈M the natural projection π : TM →M projects

X(p) to p (i.e. the compositon π ◦X is the identity on M).

Rather than considering arbitrary such mappings, our interest is primarily

in those that vary smoothly. (In topological considerations continuity may

suffice.) Since a vector field is defined as a mapping between (smooth) mani-

folds M and TM , we already have a notion of smoothness : We say that X

is a smooth vector field provided X : M → TM is a smooth mapping. We

shall write X(M) for the set of all smooth vector fields on M .

Note : A section of the vector bundle π : E →M is a smooth mapping s : M →
E such that π ◦ s = idM . The set of all such sections is denoted by Γ∞(E). It is

easy to verify that the set Γ∞(E) is a C∞(M)-module under the natural (pointwise)

operations of addition and (function) multiplication.

Thus, X(M) = Γ∞(TM). In complete analogy (to the tangent bundle),

the C∞(M)-module of all smooth covector fields on M is

A1(M) : = Γ∞(T ∗M).

Covector fields are also (and more commonly) called differential 1-forms.

If ω ∈ A1(M), then ω : M → T ∗M is writen as

p 7→ ωp ∈ T ∗pM.

Note : Having defined these objects in an “intrinsic” way, let us now examine

their meaning in a more intuitive way. It is well known in physics that the position
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of a particle is a scalar-like quantity, and its velocity is a vector quantity. Therefore,

if t 7→ p(t) is a curve that describes the position, then the velocity dp
dt is a different

object, since it is a vector. These two objects “live” in different spaces. The manifolds

formalism clarifies this issue, and it provides a natural point of view from which

differential equations (systems) should be studied.

If ẋ = F (x) is a differential equation in Rm, then F cannot be viewed as a

mapping from Rm into Rm. Rather, it must be viewed as a mapping form Rm (in

fact, Em) into the tangent bundle of Rm, since F (x(t)) is equal to the tangent vector

of the curve x(·) at x(t). For equations in Rm, it is easy to confuse mappings and

vector fields (in much the same way as it is to confuse vectors with their duals). It

is only on arbitrary manifolds that the genuine differences of these objects become

apparent.

Each vector field X ∈ X(M) in some admissible chart (U, φ) becomes an

expression of the form

X1(x1, . . . , xm)
∂

∂x1
+X2(x1, . . . , xm)

∂

∂x2
+ · · ·+Xm(x1, . . . , xm)

∂

∂xm
·

The (smooth) functions X1, . . . , Xm are called the coordinate functions of

the vector field X. (Strictly speaking, X should be expressed in terms of

2m coordinates; however, because the first m coordinates contain redundant

information, they are suppressed.)

Let α : J = (a, b)→M be a smooth curve on the manifold M . Then the

tangent vector to α at t ∈ I is given by

α̇(t) : = α∗,t

(
d

dt

)
∈ Tα(t)M.

(Thus α̇ : J → TM is a smooth curve in TM , commonly referred to as the

lift of α.) Let X be a smooth vector field on M . A smooth curve α : J →M

is an integral curve of X provided the tangent vector to α at each t ∈ J

equals the value of X at α(t) (i.e. α̇(t) = X(α(t)) for each t ∈ J). Thus

the accompanying diagram

TM

MI α

α̇
X

-

6

�
�
�
��3
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is commutative. (The lift α̇ of α coincides with X ◦ α.)

Let (U, φ) be an admissible chart on M and let α : J → U ⊆ M be a

smooth curve as before.

� Exercise 269 Verify that (for t ∈ J)

α̇(t) =
dx1

dt
(t)

∂

∂x1

∣∣∣∣
α(t)

+ · · ·+ dxm
dt

(t)
∂

∂xm

∣∣∣∣
α(t)

where xi = φi ◦ α, i = 1, 2, . . . ,m.

Then α̇ = X ◦ α yields

dxi
dt

= Xi(x1, . . . , xm), i = 1, 2, . . . ,m.

This system of differential equations admits solution curves in the open set

φ(U). That is, through each point x0 in φ(U) there exists a solution curve

x(·) : J0 → φ(U) ⊆ Rm that passes through x0 at t = 0 (i.e. x(0) = x0).

Any two such solutions curves agree for values of t for which they are both

defined. It follows from the theory of differential equations that for each x0

there exist a maximum open interval Jmax (that contains 0 ) and a unique

solution curve x(·) : Jmax → Rm such that x(0) = x0. We shall refer to such

a solution curve as the solution curve through x0.

Any solution curve x(·) in φ(U) defines an integral curve

t 7→ p(t) = φ−1(x1(t), . . . , xm(t))

on M .

Note : Consider another admissible chart (V, ψ) on M such that p(t0) ∈ U ∩ V
for some t0. We denote by (y1, . . . , ym) the coordinates on V , and by Y1, . . . , Ym

the coordinate functions of X relative to (V, ψ). The curve t 7→ y(t) = ψ ◦ p(t)
is a (smooth) curve in ψ(V ) defined in some neighborhood of t0. Furthermore,

y(t) = ψ ◦ φ−1(x(t)) and

dyi
dt

=
∂yi
∂x1

(x(t))
dx1

dt
+ · · ·+ ∂yi

∂xm
(x(t))

dxm
dt

=
∂yi
∂x1

(x(t))X1(x(t)) + · · ·+ ∂yi
∂xm

(x(t))Xm(x(t)).
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Because (Y1, . . . , Ym) and (X1, . . . , Xm) are the coordinates of the same tangent

vector X(p), they are related through

Yi(y) =
∂yi
∂x1

X1(x) + · · ·+ ∂yi
∂xm

Xm(x), i = 1, 2, . . . ,m.

Therefore, y(·) is a solution curve of the system of differential equations

dyi
dt

= Yi(y1, . . . , ym), i = 1, 2, . . . ,m.

Let ȳ(·) be the solution curve of this differential system in ψ(V ) that passes through

y0 = ψ ◦ p(t0) at t = t0, and denote p̄(t) = ψ−1 ◦ ȳ(t). It then follows that the two

integral curves p(·) and p̄(·) on M agree at all values of t for which they are both

defined.

5.5.2 Definition. We say that an integral curve γ = γp of X ∈ X(M)

is the integral curve through p ∈ M provided γp(0) = p and the domain

Jp ⊆ R of γp is maximal.

That is, if α is any integral curve of X that satisfies α(0) = p, then its

domain can be extended to Jp so that α(t) = γp(t) for all t.

A (smooth) vector field X is called complete if the integral curves γp

through each point p ∈ M are defined for all values of t ∈ R. In such case,

X is said to define a flow Φ = ΦX on M .

Note : A flow on M is a smooth mapping Φ : R ×M → M such that (for all

t1, t2 ∈ R and all p ∈M)

(FL1) Φ(0, p) = p.

(FL2) Φ(t1 + t2, p) = Φ(t1,Φ(t2, p)).

(If we fix p and let t vary, we get a smooth curve Φ(·, p) in M ; thus as t varies

each point of M moves smoothly inside M , and various points move in a coherent

fashion, so that we can form a mental picture of them “flowing” through M , each

point along its individual path.) For each t ∈ R, the (smooth) mapping

ϕt : M →M, p 7→ Φ(t, p)

is a smooth diffeomorphism of M . We have ϕ0 = idM and (for all t1, t2 ∈ R)

ϕt1+t2 = ϕt1 ◦ ϕt2 .
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Hence the collection {ϕt | t ∈ R} forms a group under the composition of mappings.

Such a group is called a one-parameter group of diffeomorphisms of M (or a smooth

action of R on M) and is denoted by {ϕt} or, simply, by ϕt.

The flow ΦX (generated by the complete vector field X) is defined by

ΦX(t, p) : = γp(t).

We shall also use exp tX to denote the mapping (diffeomorphism) ϕt = ϕXt .

(Each notation is fairly standard, and each has different merits, depending on

the context.)

Each (smooth) flow Φ on M is generated by a vector field X, called the

infinitesimal generator of Φ. The relation between X and Φ is given by

X(p) =
d

dt
Φ(t, p)

∣∣∣∣
t=0

.

(X(p) ∈ TpM is the value of the lift of Φ(·, p) : R→M at t = 0.) Therefore,

there is a one-to-one correspondence between complete vector fields and flows.

Note : The support of a vector field X is the closure of the set {p ∈M |X(p) 6= 0}.
It can be shown that every vector field with compact support on M is complete. So

on a compact manifold M , each vector field is complete. If M is not compact and

of dimension ≥ 2 the set of complete vector fields is not even a vector space as the

following example (on E2) shows : the vector fields

X = x2
∂

∂x1
and Y =

x2
1

2

∂

∂x2

are complete, but X + Y is not.

� Exercise 270 Show that the (smooth) vector field

X = −x2
∂

∂x1
+ x1

∂

∂x2

is complete (on E2). Is the vector field

Y = e−x1
∂

∂x1
+

∂

∂x2

complete ?
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� Exercise 271 Consider the (smooth) vector field on E3 defined by

X = x2
∂

∂x1
+ x3

∂

∂x2
+ x1

∂

∂x3
·

Find the integral curve γ of X so that γ(0) = (−1, 1, 1).

We have seen that not every vector field is complete. If this is the case,

then X ∈ X(M) generates (only) a local flow on M .

5.5.3 Example. Let M = E2 and let (the flow) Φ : R × M → M be

defined by

(t, (x1, x2)) 7→ (x1 + t, x2).

Then the infinitesimal generator is X = ∂
∂x1
· Suppose now that we remove

the origin (0, 0) from E2; let M0 = E2 \ {(0, 0)}. For most points (the

diffeomorphism) ϕt is defined as before; however, we cannot obtain an action

of R on M0 by restriction of Φ to R×M0 since points of the (closed) set

{(t, (x1, 0)) |x1 + t = 0} = Φ−1((0, 0)) ⊆ R×M

are mapped by Φ to the origin. On the other hand, let W ⊆ R×M0 be the

open set defined by

W =

 ⋃
x2 6=0

R× {(x1, x2)}

 ∪ {(t, (x1, 0)) |x1(x1 + t) > 0}.

Then Φ = Φ|W maps W onto M0 and preserves many of the features of Φ

which we have used. For example, let p = (x1, x2) ∈M0. Then

• (0, p) ∈W and Φ(0, p) = p

• Φ(t1,Φ(t2, p)) = Φ(t1 + t2, p)

if all terms are defined, and the infinitesimal generator is again X = ∂
∂x1
·

Finally, we have orbits t 7→ Φ(t, p), which are the lines x2 = constant (as

before) when p = (x1, x2), x2 6= 0, and for p = (x1, 0) the portion of the

x1-axis minus the origin which contains p. This curve is not defined for all

values of t in the case of the orbit of a point on the x1-axis.
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Note : In order to define the local flow of a vector field at p ∈ M , it is first

necessary to define the escape times of the integral curve γp of X through p. The

positive escape time e+(p) is defined to be the supremum of t such that an integral

curve passing through p can be defined at t. The negative escape time e−(p) is

defined similarly. Let W : = {(t, p) | e−(p) < t, e+(p)}. Then W is an open subset of

R ×M and a neighborhood of {0} ×M . The local flow Φ of X is defined on W

and it satisfies the following :

• The mapping Φ : W ⊆ R×M →M is smooth

• Φ(0, p) = p for all p ∈W .

• Φ(t1 + t2, p) = Φ(t1,Φ(t2, p)) whenever each of (t1, p) and (t1,Φ(t2, p))

is contained in W .

• dΦ
dt (t, p) = X ◦ Φ(t, p).

5.5.4 Example. Let M = Em, and let

X : x 7→ a =


a1

...

am

 ∈ Rm
(

= Rm×1
)

be a constant (or parallel) vector field on M . Then (in the “derivation nota-

tion”)

X(x) = a1
∂

∂x1

∣∣∣∣
x

+ · · ·+ am
∂

∂xm

∣∣∣∣
x

.

The integral curves of X are parallel lines, all in the direction of a. For each

t, the mapping (diffeomorphism) ϕt : t 7→ Φ(t, x) is a translation of x by ta.

Hence {ϕt} is a one-parameter group of translations on Em.

5.5.5 Example. Let M = Em and A ∈ Rm×m. Let

X : x = (x1, . . . , xm) 7→ Ax : =


a11x1 + · · ·+ a1mxm

...

am1x1 + · · ·+ ammxm

 ∈ Rm
(

= Rm×1
)

be a linear vector field on M . So

X(x1, . . . , xm) = X1(x1, . . . , xm)
∂

∂x1

∣∣∣∣
x

+ · · ·+Xm(x1, . . . , xm)
∂

∂xm

∣∣∣∣
x
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with coordinate functions given by

Xi(x1, . . . , xm) = ai1x1 + · · ·+ aimxm, i = 1, 2, . . . ,m.

Each integral curve of X is of the form t 7→ exp(tA)x, where exp(tA) =
∞∑
k=0

tk

k!
Ak (the matrix exponential of tA). Thus ϕt(x) = exp(tA)x, and there-

fore (the one-parameter group of diffeomorphisms) {ϕt} is a subgroup of the

group of all linear transformations on Rn (i.e. a matrix group). Here are two

familiar cases (for n = 2):

• A =

[
0 1

−1 0

]
, exp(tA) =

[
cos t sin t

− sin t cos t

]
. (The one-parameter

group {ϕt} is the rotation group SO (2), and the integral curves

are concentric circles centered at the origin.)

• A =

[
0 1

1 0

]
, exp(tA) =

[
cosh t sinh t

sinh t cosh t

]
. (The one-parameter

group {ϕt} is a subgroup of SL (2,R), and the integral curves are

hyperbolas.)

5.5.6 Example. Let M = E3 and consider the vector field (on M)

X : x 7→ X(x) : = Ax+ a

where

A =

 0 1 0

−1 0 0

0 0 0

 and a =

0

0

1

 .
Then

Φ(t, x) = ϕt(x) = exp(tA)x+ ta

=

 cos t sin t 0

− sin t cos t 0

0 0 1

x+ t

0

0

1

 .
Integral curves are helices (with centers along the x3-axis).
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5.5.7 Example. Let M = GL+ (2,R). For A =

[
0 1

0 0

]
∈ R2×2, let X be

the vector field on M defined by p 7→ Ap. Then

Φ(t, p) =

[
1 t

0 1

]
p, p ∈M.

ϕt(p) is the matrix multiplication of p ∈M by exp(tA) from the left for each

t ∈ R.

Vector fields as differential operators

Let M be a manifold and let TM be the corresponding tangent bundle.

The algebra of smooth functions on M is denoted by C∞(M) (see Execise

224).

Recall that tangent vectors act on smooth functions and produce direc-

tional derivatives. Specifically, if Xp = dα
dt

∣∣
t=0
∈ TpM and f ∈ C∞(M),

then

Xpf =
d

dt
f ◦ α(t)

∣∣∣∣
t=0

∈ R

is the directional derivative of f along Xp.

� Exercise 272 Given a mapping X : M → TM , show that the following

statements are logically equivalent :

(a) X is smooth (as a mapping between manifolds). In other words, X is a

smooth vector field on M .

(b) For each admissible chart (U, φ) on M , the coordinate functions Xi :

U → R of X are smooth.

(c) For each smooth function f : M → R, the function x 7→ X(x)f is also

smooth.

Smooth vector fields act as derivations on the space of smooth functions.

Indeed, let X ∈ X (M) and f ∈ C∞(M). Then Xf will denote the smooth

function

x 7→ (Xf)(x) : = X(x)f.
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The function Xf is often known as the Lie derivative of the function f

along the vector field X, and is then denoted LXf . In local coordinates, if

X is of the form

X = X1
∂

∂x1
+ · · ·+Xm

∂

∂xm
then

LXf =
∂f

∂x1
X1 + · · ·+ ∂f

∂xm
Xm

=
[
∂f
∂x1

· · · ∂f
∂xm

]
X1

...

Xm


=

∂f

∂x
X.

Note : One can also define the Lie derivative of a function by the formula

LXf : = lim
t→0

ϕ∗t f − f
t

where ϕt is the (local) flow of X. (It is then easy to see that LXf = Xf .)

� Exercise 273 Given X ∈ X (M), f, g ∈ C∞(M) and λ ∈ R, verify that

(D1) X(f + g) = Xf +Xg ;

(D2) X(λf) = λXf ;

(D3) X(f · g) = f ·Xg + g ·Xf .

This shows that the mapping f 7→ Xf (i.e. the Lie derivative LX : C∞(M) →
C∞(M)) is linear and satisfies the Leibniz rule, hence is a derivation of (the ring)

C∞(M).

Note : Derivations of C∞(M) are also called first order differential operators.

The set D (M) of all such derivations is a vector space (over R).

We have a natural inclusion (X 7→ LX )

X (M) ⊆ D (M)

(every smooth vector field is a derivation). One can prove that all derivations

of C∞(M) are smooth vector fields on M (i.e. the reverse inclusion D (M) ⊆
X (M) holds).
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Note : For this, we need to show that a derivation of C∞(M) can be localized

to a derivation of the algebra C∞(p) of function germs at each p ∈ M . (Caution :

For f ∈ C∞(p) we do not require that f(p) = 0. Such elements form a subalgebra

F(p) of C∞(p).) This is by no means evident. The “tricky” part is to show that (for

∆ ∈ D (M) and p ∈M) the mapping

∆p : C∞(p)→ R, f 7→ ∆(f)(p)

is well-defined (i.e. depends only on ∆ and the function germ f = 〈f〉p). Then it

follows that

∆̃ : p 7→ ∆p ∈ TpM

is a smooth section of (the tangent bundle) TM , hence a smooth vector field on M .

Henceforth, we shall regard a smooth vector field (on a given manifold)

either as a smooth section of the tangent bundle of the manifold or as a

derivation of the algebra of smooth functions on that manifold.

The Lie algebra of vector fields

Given a manifold M , the set of all smooth vector fields on M is denoted

by X (M). It is itself a vector space (over R ) since any linear combination

(with constant coefficients) of two smooth vector fields is also a smooth vector

field. More precisely, if X,Y ∈ X (M) and λ, µ ∈ R, then (for f ∈ C∞(M))

λX + µY : f 7→ (λX + µY )f : = λXf + µY f

is a derivation of C∞(M), hence a smooth vector field on M .

Note : As a vector space, X (M) is not finite-dimensional. In fact, X (M) is more

than just a vector space; it is a Lie algebra as we shall see.

Let X,Y ∈ X (M) (viewed as derivations of C∞(M)). Then, in general,

neither Y X nor XY is a derivation. However, oddly enough, the operator

Y X −XY is a derivation (of C∞(M)).

� Exercise 274 Given X,Y ∈ X (M), verify that the operator Y X − XY :

C∞(M) → C∞(M) is a derivation, hence is (identified with) a smooth vector field

on M .
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We make the following definition.

5.5.8 Definition. The smooth vector field [X,Y ] ∈ X (M), defined by

[X,Y ]f : = Y (Xf)−X(Y f)

is called the Lie bracket of X and Y .

It is easy to check that the Lie bracket [·, ·] : X (M)×X (M)→ X (M) has

the following properties (for λ, µ ∈ R and X,Y, Z ∈ X (M)) :

(LA1) [X,Y ] = −[Y,X] ;

(LA2) [X,λY + µZ] = λ[X,Y ] + µ[X,Z] ;

(LA3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0.

This means that the real vector space X (M) equipped with the Lie bracket

[·, ·] is a Lie algebra.

We may now derive the expression in local coordinates for [X,Y ]. Let

X = X1
∂

∂x1
+ · · ·+Xm

∂

∂xm
and Y = Y1

∂

∂x1
+ · · ·+ Ym

∂

∂xm

be local representations of X and Y , respectively (in an admissible chart

(U, φ) of M). Then

[X,Y ]f = Y (Xf)−X(Y f)

=

m∑
i,j=1

Yi
∂Xj

∂xi

∂f

∂xj
−

m∑
i,j=1

Xi
∂Yj
∂xi

∂f

∂xj

=

m∑
j=1

(
m∑
i=1

Yi
∂Xj

∂xi
−Xi

∂Yj
∂xi

)
∂f

∂xj
·

Thus

[X,Y ] =

m∑
j=1

(
m∑
i=1

Yi
∂Xj

∂xi
−Xi

∂Yj
∂xi

)
∂

∂xj

=


∂X1
∂x1

· · · ∂X1
∂xm

...
...

∂Xm
∂x1

· · · ∂Xm
∂xm



Y1

...

Ym

−

∂Y1
∂x1

· · · ∂Y1
∂xm

...
...

∂Ym
∂x1

· · · ∂Ym
∂xm



X1

...

Xm


=

∂X

∂x
Y − ∂Y

∂x
X.



270 M4.3 - Geometry

5.5.9 Example. For constant (or parallel) vector fields

X : x 7→ a =


a1

...

am

 and Y : x 7→ b =


b1
...

bm


on M = Em, we have [X,Y ] = 0.

5.5.10 Example. Let X,x 7→ Ax be a linear vector field and Y, x 7→ b

be a constant vector field on M = Em. Then

X = (a11x1 + · · ·+ a1mxm)
∂

∂x1
+ · · ·+ (am1x1 + · · ·+ ammxm)

∂

∂xm

Y = b1
∂

∂x1
+ · · ·+ bm

∂

∂xm

and so

[X,Y ] =
∂X

∂x
Y − ∂Y

∂x
X = Ab− 0 = Ab.

Therefore [X,Y ] is a constant vector field x 7→ c, with c = Ab.

5.5.11 Example. If X,x 7→ Ax and Y, x 7→ Bx are both linear vector

fields (on M = Em), then

[X,Y ] =
∂X

∂x
Y − ∂Y

∂x
X = ABx−BAx = (AB −BA)x.

Therefore [X,Y ] is also a linear vector field x 7→ Cx, with C = [A,B] (the

commutator of the matrices A and B).

We have seen that the set X (M) (of all smooth vector fields on M) has a

natural structure of Lie algebra. In addition to this structure, X (M) admits

another algebraic structure : for any f ∈ C∞(M) and any X ∈ X (M),

fX : p 7→ (fX)(p) : = f(p)X(p) ∈ TpM

is a smooth vector field on M . (Caution : do not confuse Xf and fX.) With

this operation, X (M) becomes a module over the ring C∞(M).

Note : The Lie bracket [·, ·] : C∞(M) × C∞(M) → C∞(M) is not C∞(M)-

bilinear. In fact (for g ∈ C∞(M)),

[X, gY ] = g[X,Y ]− (Xg)Y.
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� Exercise 275 Let X,Y ∈ X (M) and f, g ∈ C∞(M). Show that

[fX, gY ] = fg[X,Y ]− f(Xg)Y + g(Y f)X.

Use this formula to derive the formula for the components of [X,Y ] in local coordi-

nates.

Commutativity of vector fields
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Orbits of vector fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.6 Differential Forms

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


