Chapter 5

Manifolds

Topics :

1. Manifolds: Definition and Examples
2. Smooth Functions and Mappings
3. The Tangent and Cotangent Spaces
4. Smooth Submanifolds
5. Vector Fields
6. Differential Forms

Copyright © Claudiu C. Remsing, 2006.
All rights reserved.

5.1 Manifolds: Definition and Examples

Submanifolds (in fact, immersed submanifolds) of Euclidean space \mathbb{R}^{m} are a generalization of the concept of regular curve in the Euclidean 3 -space \mathbb{R}^{3}. The major defect of the definition of a submanifold is its dependence of \mathbb{R}^{m}. Indeed, the natural idea of an ℓ-dimensional smooth submanifold is of a set which is ℓ-dimensional (in a certain sense) and to which the differential calculus of \mathbb{R}^{m} can be applied; the unnecessary presence of \mathbb{R}^{m} is simply an imposition of our physical nature.

Note : In his monograph on surface theory, published in 1827, Carl F. Gauss (1777-1855) developed the geometry on a surface (based on its fundamental form); the necessity of an abstract idea of surface - that is, without involving the ambient space - was already clear to him. This was generalized by Bernhard RieMANN (1826-1866) to m-dimensions in his inaugural lecture (Habilitationschrift) at Göttingen, "On the Hypotheses which lie at the Foundation of Geometry" (1854), marking the birth of modern (differential) geometry. However, it was nearly a century before such an idea attained the definite form that we shall present here.

The concept of manifold is one of the most sophisticated basic concepts in mathematics.

Definition (of a manifold) and examples

Let \mathbb{R}^{m} denote the Euclidean m-space in the broad sense (i.e., the vector space \mathbb{R}^{m} equipped with its canonical topology and natural differentiable structure).

Let M be a set.
5.1.1 Definition. A (coordinate) chart on M is a pair (U, ϕ), where $U \subseteq M$ and $\phi: U \rightarrow \mathbb{R}^{m}$ is a one-to-one mapping onto an open subset $\phi(U)$ of \mathbb{R}^{m}.

One often writes $\phi(p)=\left(\phi_{1}(p), \ldots, \phi_{n}(p)\right)$, viewing this as the coordinate m-tuple of the point $p \in U$. The functions $\phi_{i}: U \rightarrow \mathbb{R}, i=1,2, \ldots, m$ are called the coordinate functions associated with the chart (U, ϕ).

Note : A chart is also called a (local) coordinate system (on M).
Relative to such a coordinatization, one can do calculus in the region U of M. The problem is that the point p will generally belong to infinitely many different coordinate charts and calculus in one of these coordinatizations about p might not agree with calculus in another. One needs the coordinate systems to be smoothly compatible in the following sense.
5.1.2 Definition. Two charts (U, ϕ) and (V, ψ) on M are said to be C^{∞}-related if either $U \cap V=\emptyset$ or

$$
\psi \circ \phi^{-1}: \phi(U \cap V) \rightarrow \psi(U \cap V)
$$

is a smooth diffeomeorphism (between open subsets in \mathbb{R}^{m}).
We think of $\psi \circ \phi^{-1}$ as a smooth change of coordinates (on $\phi(U \cap V)$). Thus, on $U \cap V$, functions are smooth relative to one coordinate system if and only if they are smooth relative to the other. Indeed, differential calculus carried out in $U \cap V$ via the coordinates of $\phi(U \cap V)$ is equivalent to the calculus carried out via the coordinates of $\psi(U \cap V)$. (The explicit formulas will, of course, change from the one coordinate system to the other.) Furthermore, piecing together these local calculi produces a global calculus on M. The concept that allows us to make these remarks precise is that of a smooth atlas.
5.1.3 Definition. A (smooth) atlas on M is a family $\mathcal{A}=\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ of charts (on M) such that

$$
\text { (AT1) } M=\bigcup_{\alpha \in \mathfrak{A}} U_{\alpha} ;
$$

(AT2) $\left(U_{\alpha}, \phi_{\alpha}\right)$ is C^{∞}-related to $\left(U_{\beta}, \phi_{\beta}\right)$ for every $\alpha, \beta \in \mathfrak{A}$.
Two atlases \mathcal{A} and \mathcal{A}^{\prime} on M are compatible provided their union $\mathcal{A} \cup \mathcal{A}^{\prime}$ is also an atlas on M. Compatibility is an equivalence relation (on the set of all atlases on M). Each atlas on M is equivalent to a unique maximal atlas on M. Thus we arrive at the definition of a manifold.
5.1.4 Definition. A maximal atlas \mathcal{A} on M is called a smooth structure on M (also called a differentiable structure or a C^{∞} structure). An n-dimensional smooth (or differentiable or C^{∞}) manifold is a pair (M, \mathcal{A}) (i.e. a set equipped with a smooth structure).

By a typical abuse of notation, we usually write M for the smooth manifold, the presence of the differentiable structure \mathcal{A} being understood. An admissible chart on (the smooth manifold) M is any chart belonging to any (smooth) atlas in the differentiable structure of M.

NOTE : (1) We often refer to m-dimensional smooth manifolds simply as m manifolds.
(2) In practice one defines a manifold M by means of a single (smooth) atlas (not necessarily maximal) on M which completely determines the differentiable structure.

We will now define on a manifold M a canonical topology, one that only depends on the differentiable structure.

Note : One could also have started from a topological space M and required that the domains U_{α} of the charts be open sets in M and that the mappings $\phi_{\alpha}: U_{\alpha} \rightarrow$ $\phi_{\alpha}\left(U_{\alpha}\right)$ be homeomorphisms.
5.1.5 Proposition. Let M be a (smooth) m-manifold. The collection of unions of domains of admissible charts on M forms a topology (called the canonical topology) on M.

Proof : Let \mathcal{O} be the set thus defined. Clearly, $M \in \mathcal{O}$ and we have to show that \mathcal{O} satisfies the two axioms for a topology :
(O1) Every union of elements of \mathcal{O} is an element of \mathcal{O}.
(O2) Every finite intersection of elements of \mathcal{O} is an element of \mathcal{O}.
Clearly (O1) is satisfied, since a set is in \mathcal{O} if and only if it is a union of domains of charts. To show (O2), we just have to consider the intersection of two elements of \mathcal{O}. Let them be $A=\cup_{\alpha \in \mathfrak{A}_{1}} U_{\alpha}$ and $B=\cup_{\beta \in \mathfrak{A}_{2}} U_{\beta}$; then

$$
A \cap B=\bigcup_{(\alpha, \beta) \in \mathfrak{A}_{1} \times \mathfrak{H}_{2}}\left(U_{\alpha} \cap U_{\beta}\right) .
$$

We have to show that each intersection $U_{\alpha} \cap U_{\beta}$ can be taken as the domain of a chart compatible with the differentiable structure (i.e. an admissible chart on $M)$. Let $\left(U_{\alpha}, \phi_{\alpha}\right)$ be an admissible chart on M and set $\psi:=\left.\phi_{\alpha}\right|_{U_{\alpha} \cap U_{\beta}}$; we claim that $\left(U_{\alpha} \cap U_{\beta}, \psi\right)$ is the desired admissible chart. Clearly $\psi\left(U_{\alpha} \cap U_{\beta}\right)=$ $\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$ is open in \mathbb{R}^{m}. If (U, ϕ) is any admissible chart, the composition $\phi \circ \phi_{\alpha}^{-1}$ is a (smooth) diffeomorphism between (the open sets) $\phi_{\alpha}\left(U \cap U_{\alpha}\right)$ and $\phi\left(U \cap U_{\alpha}\right)$, so

$$
\phi \circ \psi^{-1}=\left.\phi \circ \phi_{\alpha}^{-1}\right|_{\phi_{\alpha}\left(U_{\alpha} \cap U_{\beta} \cap U\right)}
$$

is a (smooth) diffeomorphism between $\psi\left(U \cap\left(U_{\alpha} \cap U_{\beta}\right)\right)$ and $\phi\left(U \cap\left(U_{\alpha} \cap U_{\beta}\right)\right)$. Similarly, $\psi \circ \phi^{-1}$ is a (smooth) diffeomorphism between $\phi\left(U \cap\left(U_{\alpha} \cap U_{\beta}\right)\right)$ and $\psi\left(U \cap\left(U_{\alpha} \cap U_{\beta}\right)\right)$. This proves compatibility.

Note : Sometimes it is desirable to characterize the open sets in the canonical topology of M in terms of a single atlas. One can prove that given an atlas $\mathcal{A}=$ $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ on an m-manifold M, a subset $U \subseteq M$ is open if and only if the set $\phi_{\alpha}\left(U \cap U_{\alpha}\right) \subseteq \mathbb{R}^{m}$ is open for every chart $\left(U_{\alpha}, \phi_{\alpha}\right) \in \mathcal{A}$. This result provides another way of defining the (canonical) topology of a manifold : for every chart (U, ϕ) on an m-manifold M, considered with its canonical topology, the mapping $\phi: U \rightarrow \phi(U) \subseteq \mathbb{R}^{m}$ is a homeomorphism.

The canonical topology of a manifold can be quite strange. In particular, it can happen that one (or both) of the following conditions (axioms) not be satisfied :
(A) Hausdorff Axiom : Given two distinct points of M, there exist (open) neighborhoods of these points that do not intersect.
(B) Countable Basis Axiom : M can be covered by a countable number of coordinate neighborhoods (i.e. domains of admissible charts on M). We say then that M has a countable basis (or that M is second countable).

Note : Axiom (A) is essential for the uniqueness of limits of convergent sequences whereas Axiom (B) is essential for the existence of a (smooth) partition of unity, an
almost indispensabil tool for the study of certain questions on manifolds. A topological space which is locally compact (each point has at least one compact neighborhood), Hausdorff, and has a countable basis (of open sets) is paracompact, and hence admits a partition of the unity. For example, a partition of unity is required for piecing together global functions and structures out of local ones, and conversely for representing global structures as locally finite sums of local ones. The following result holds : A (smooth) manifold M has a (smooth) partition of unity if and only if every connected component of M is Hausdorff and has a countable basis.

For all practical purposes, we shall be interested in only (smooth) manifolds that satisfy Axiom (A) and Axiom (B). Henceforth, we shall refer to such objects, simply, as manifolds.

Note : (1) Manifolds are locally Euclidean spaces (A Hausdorff topological space is said to be locally Euclidean of dimension m if each point p has an open neighborhood homeomorphic to an open set of \mathbb{R}^{m}). Second countable locally Euclidean spaces are known as topological manifolds. A topological manifold is smoothable provides it can be given a smooth structure. For $m=1,2,3$ it is known that all topological m-manifolds are smoothable. The first dimension in which there exist nonsmoothable manifolds is $m=4$.
(2) Manifolds are paracompact spaces (A Hausdorff space is called paracompact if every open cover has a locally finite subcover). Moreover, manifolds are metrizable spaces (A topological space is called metrizable if there exists a metric such that its associated metric topology coincides with the space topology; any metrizable space is paracompact).
(3) Any m-manifold admits a finite atlas consisting of $m+1$ (not necessarily connected) charts. This is a consequence of topological dimension theory.
(4) A manifold is connected if and only if it is path-connected. (A path-connected topological space is connected, but the converse is not true in general.)
(5) A natural question in the theory of (differentiable) manifolds is to know whether a given manifold can be immersed (or even embedded) into some Euclidean space. A fundamental result in this direction is the famous theorem of Hassler Whitney (1907-1989) which states the following : Any m-manifold can be immersed in $\mathbb{R}^{2 m}$ and embedded in $\mathbb{R}^{2 m+1}$ (in fact, the theorem can be improved, for $m \geq 2$, to $\mathbb{R}^{2 m-1}$
and $\mathbb{R}^{2 m}$, respectively).
(6) A set M may have more than one inequivalent smooth structure. For instance, the spheres from dimension 7 on have finitely many. A most surprising result is that on \mathbb{R}^{4} there are uncountably many pairwise inequivalent (exotic) smooth structures.

We give now some preliminary examples of manifolds.
5.1.6 Example. (Euclidean space) The standard smooth structure on the Euclidean m-space \mathbb{E}^{m} is obtained by taking the atlas consisting of a single (global) chart $\left(\mathbb{E}^{m}, \iota\right)$, where $\iota: \mathbb{E}^{m} \rightarrow \mathbb{R}^{m}$ is the identity mapping. (Many examples will make it abundantly clear that manifolds in general can not be covered by a single coordinate system nor are there preferred coordinates.)

Note : It is common practice to identify \mathbb{E}^{m} and \mathbb{R}^{m}; however, we DO NOT follow this custom. It is often better in thinking of the Euclidean space \mathbb{E}^{m} as a "flat" Riemannian manifold (i.e. a "geometrical" model for classical geometry, without coordinates; a Riemannian manifold is a manifold equipped with an additional "geometrical" structure, called a Riemannian metric) and of the Cartesian space \mathbb{R}^{m} as a normed vector space (i.e. an "algebraic" model for classical geometry, with coordinates). The additive group of \mathbb{R}^{m}, also denoted by \mathbb{R}^{m}, is a matrix group. This group is isomorphic to (and customarily identified with) the group of all translations on the Euclidean space \mathbb{E}^{m}.
5.1.7 Example. Let V be an m-dimensional vector space (over \mathbb{R}). Then V has a natural manifold structure. Indeed, if $\left\{v_{1}, \ldots, v_{m}\right\}$ is a basis in V, then the correspondence

$$
\phi: p=p_{1} v_{1}+\cdots+p_{m} v_{m} \mapsto\left(p_{1}, \ldots, p_{m}\right)
$$

is a bijection (between V and the open set $\left.\mathbb{R}^{m}\right)$. The pair (V, ϕ) is a (global) chart on V and hence uniquely determines a smooth structure on V. This smooth structure is independent of the choice of the basis, since different bases give C^{∞}-related charts. (In fact, the change of coordinates is given simply by an $m \times m$ invertible matrix.)
5.1.8 Example. (Open submanifolds) An open subset U of a manifold M is itself a manifold. Indeed, if $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ is the (maximal) atlas of admissible charts on M, then the family of charts (atlas)

$$
\mathcal{A}_{U}=\left\{\left(U \cap U_{\alpha}, \phi_{\alpha} \mid U \cap U_{\alpha}\right) \mid\left(U_{\alpha}, \phi_{\alpha}\right) \in \mathcal{A}\right\}
$$

defines a smooth structure on U. Unless otherwise stated, open subsets of manifolds will always be given this natural (induced) smooth structure.

More generally, any ℓ-dimensional smooth submanifold of some Euclidean space \mathbb{E}^{m} is a (smooth) ℓ-manifold.
\diamond Exercise 254 Let S be a (non-empty) subset of the Euclidean space \mathbb{E}^{m} and assume that S satisfies the ℓ-submanifold property (i.e. S is an ell-dimensional submanifold of \mathbb{E}^{m}). Show that S is naturally endowed with a smooth structure, hence it is an ell-manifold.
5.1.9 Example. (The general linear group) The general linear group $\mathrm{GL}(n, \mathbb{R})$ is an open subset of the manifold $\mathbb{E}^{n^{2}}$ (we may identify $\mathbb{R}^{n \times n}$ with the Cartesian space $\left.\mathbb{R}^{n^{2}}\right)$. Hence $G L(n, \mathbb{R})$ is a manifold.
5.1.10 Example. (The sphere) The n-sphere is the set

$$
\mathbb{S}^{n}:=\left\{x \in \mathbb{E}^{n+1} \mid x_{1}^{2}+\cdots+x_{n+1}^{2}=1\right\} .
$$

(We have seen that \mathbb{S}^{n} is an n-dimensional smooth submanifold of \mathbb{E}^{n+1}.) Let $p_{N}=(0, \ldots, 0,1)$ be the north pole and $p_{S}=(0, \ldots, 0,-1)$ the south pole of \mathbb{S}^{n}. Define the mapping $\phi_{1}: U_{1}:=\mathbb{S}^{n} \backslash\left\{p_{N}\right\} \rightarrow \mathbb{R}^{n}$ that takes the point $p=\left(x_{1}, \ldots, x_{n+1}\right)$ in U_{1} into the intersection of the hyperplane $x_{n+1}=0$ with the line that passes through p and p_{N}. This mapping is the so-called stereographic projection from the north pole. In a similar manner one defines the stereographic projection $\phi_{-1}: U_{-1}:=\mathbb{S}^{n} \backslash\left\{p_{S}\right\} \rightarrow \mathbb{R}^{n}$ from the south pole.
\diamond Exercise 255 Show that the stereographic projections (ϕ_{1} and ϕ_{-1}) are given by

$$
\phi_{ \pm 1}\left(x_{1}, \ldots, x_{n+1}\right)=\left(\frac{x_{1}}{1 \mp x_{n+1}}, \cdots, \frac{x_{n}}{1 \mp x_{n+1}}\right) .
$$

Clearly, the stereographic projections are one-to-one and hence the pairs $\left(U_{1}, \phi_{1}\right)$ and $\left(U_{-1}, \phi_{-1}\right)$ are charts on \mathbb{S}^{n}. The domains (coordinate neighborhoods) of these two charts cover \mathbb{S}^{n} and is not difficult to see that they are C^{∞}-related (and hence form a smooth atlas on the sphere). Indeed, the change of coordinates

$$
y_{i}=\frac{x_{i}}{1-x_{n+1}} \longleftrightarrow y_{i}^{\prime}=\frac{x_{i}}{1+x_{n+1}} \quad(i=1,2, \ldots, n)
$$

is given by

$$
y_{i}^{\prime}=\frac{y_{i}}{y_{1}^{2}+\cdots+y_{n}^{2}}
$$

(here we use the fact that $x_{1}^{2}+\cdots+x_{n+1}^{2}=1$). Therefore, the n-sphere \mathbb{S}^{n} is an n-manifold.
5.1.11 EXAMPLE. (Product manifolds) Let M and N be manifolds (of dimension m and n, respectively). Suppose that $\mathcal{A}=\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ and $\mathcal{B}=\left\{\left(V_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in \mathfrak{B}}$ are the maximal atlases on M and N, respectively.
\diamond Exercise 256 Show that the family (of charts)

$$
\left\{\left(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta}\right) \mid\left(U_{\alpha}, \phi_{\alpha}\right) \in \mathcal{A}, \quad\left(V_{\beta}, \psi_{\beta}\right) \in \mathcal{B}\right\}
$$

where $\phi_{\alpha} \times \psi_{\beta}(p, q):=\left(\phi_{\alpha}(p), \psi_{\beta}(q)\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n}$, is a smooth atlas on $M \times N$ (which determines a smooth structure).

With this smooth structure $M \times N$ is an $(m+n)$-manifold, called the product manifold of M and N. An important example is the torus $\mathbb{T}^{2}=$ $\mathbb{S}^{1} \times \mathbb{S}^{1}$, the product of two circles. More generally, the k-dimensional torus $\mathbb{T}^{k}=\mathbb{S}^{1} \times \cdots \times \mathbb{S}^{1}$ is a k-manifold obtained as a Cartesian product.

5.2 Smooth Functions and Mappings

On a topological space the concept of continuity has meaning; in an analogous way, on a manifold we may define the concept of smooth (also called differentiable or C^{∞}) function. Let M be an m-manifold.
5.2.1 Definition. A function $f: M \rightarrow \mathbb{R}$ is said to be smooth if for any point $p \in M$ there is an admissible chart (U, ϕ) on M such that $p \in U$ and the composite function

$$
f \circ \phi^{-1}: \phi(U) \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}
$$

is smooth.
Clearly, a smooth function is continuous. The set of all smooth functions on M will be denoted by $C^{\infty}(M)$. It is a consequence of the definition that if $f \in C^{\infty}(M)$ and $W \subseteq M$ is an open set, then $\left.f\right|_{W}$ is smooth (on the manifold W).

Note : The definition only requires us to be able to find some chart about each point $p \in M$, but the following result assures us that all admissible charts will then work: The function $f: M \rightarrow \mathbb{R}$ is smooth if and only if $f \circ \phi^{-1}$ is smooth for every admissible chart (U, ϕ) on M.

We think of $f \circ \phi^{-1}$ as a formula for $\left.f\right|_{U}$ relative to the coordinate system (U, ϕ). For $x \in U$, with coordinates $\phi(x)=\left(x_{1}, \ldots, x_{m}\right)$, we can write

$$
\begin{aligned}
y & =f(x) \\
& =f \circ \phi^{-1}(\phi(x)) \\
& =f \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right)
\end{aligned}
$$

We shall refer to $f \circ \phi^{-1}$ as the local representation of f with respect to (U, ϕ).
5.2.2 Example. Among the smooth functions on M are the coordinate functions of an admissible chart (U, ϕ). Indeed, for each $i=1,2, \ldots, m$, the local representation of $\phi_{i}=\operatorname{pr}_{i} \circ \phi$ is given by

$$
\begin{aligned}
y & =\phi_{i}(x) \\
& =\phi_{i} \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right) \\
& =\operatorname{pr}_{i} \circ \phi \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right) \\
& =\operatorname{pr}_{i}\left(x_{1}, \ldots, x_{m}\right) \\
& =x_{i}
\end{aligned}
$$

which is clearly smooth (see also Exercise 120).
Just as in the case of (the manifold) \mathbb{E}^{n} we proceed from definition of smooth function to definition of smooth mapping. Suppose that M and N are manifolds.
5.2.3 Definition. A mapping $F: M \rightarrow N$ is said to be smooth if for any point $p \in M$ there is an admissible chart (U, ϕ) on M with $p \in U$ and an admissible chart (V, ψ) on N with $F(p) \in V$ such that $F(U) \subseteq V$ and the composite mapping

$$
\psi \circ F \circ \phi^{-1}: \phi(U) \rightarrow \psi(V)
$$

is smooth.
Smooth mappings are continuous; their restrictions to open subsets are also smooth. The set of all smooth mappings from M into N will be denoted by $C^{\infty}(M, N)$.

NOTE : A smooth mapping is a more general notion than smooth function, the latter being a mapping (from a manifold M) into $N=\mathbb{R}$, which is, of course, the same as (the manifold) \mathbb{E}^{1}.

The local representation of F with respect to (U, ϕ) and (V, ψ) is given by

$$
y_{i}=\psi \circ F \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right), \quad i=1,2, \ldots, n .
$$

\diamond Exercise 257 Prove that a mapping $F: M \rightarrow N$ is smooth if and only if for any smooth function $f: N \rightarrow \mathbb{R}$, the function $f \circ F$ is smooth (on M). (We write $F^{*} f$ for the function $f \circ F$, and shall refer to $F^{*} f$ as the pull-back of f under F.)

An open interval J of \mathbb{R} is an open submanifold of \mathbb{R} (in fact, the Euclidean 1 -space \mathbb{E}^{1}) and hence is a manifold. Then a curve $\sigma: J \rightarrow N$ is smooth if and only if for any smooth function f on N, (the pull-back of f under $\sigma) \sigma^{*} f: J \rightarrow \mathbb{R}$ is a smooth function.
\diamond Exercise 258 Let M and N be manifolds. Prove that the canonical projections

$$
\operatorname{pr}_{M}: M \times N \rightarrow M \quad \text { and } \quad \operatorname{pr}_{N}: M \times N \rightarrow N
$$

are smooth mappings (between manifolds).
\diamond Exercise 259 Let M, N, and P be manifolds. Prove that if $F: M \rightarrow N$ and $G: N \rightarrow P$ are smooth mappings, then $G \circ F: M \rightarrow P$ is also smooth.
\diamond Exercise 260 Let M be a manifold. Show that the set $C^{\infty}(M)$ of all smooth functions on M is an algebra (over \mathbb{R}) under the natural operations of addition, scalar multiplication, and product.

5.3 The Tangent and Cotangent Spaces

The tangent space

There are several alternative ways in which we can define tangent vectors (and hence tangent spaces) to a manifold, independent of any embedding in some Euclidean space.

Note : The whole reason for introducing tangent vectors is to produce linear approximations to nonlinear problems.

An intuitive (and very useful) way to define tangent vectors is as equivalence classes of curves. (Roughly speaking, two curves are equivalent if they have the same velocity vector at some point.)

Let M be an m-manifold and let $\mathbf{C}(p)$ denote the set of all smooth curves $\sigma:(-\varepsilon, \varepsilon) \rightarrow M$ such that $\sigma(0)=p$. Elements (curves) α and β in $\mathbf{C}(p)$ are said to be infinitesimally equivalent at p and we write $\alpha \sim_{p} \beta$ if

$$
\left.\frac{d}{d t} \phi(\alpha(t))\right|_{t=0}=\left.\frac{d}{d t} \phi(\beta(t))\right|_{t=0}
$$

for any admissible chart (U, ϕ) on M.
\diamond Exercise 261 Show that if (U, ϕ) and (V, ψ) are two admissible charts at p (i.e. such that $p \in U \cap V$), then

$$
\left.\frac{d}{d t} \phi \circ \alpha(t)\right|_{t=0}=\left.\frac{d}{d t} \phi \circ \beta(t)\right|_{t=0}
$$

if and only if

$$
\left.\frac{d}{d t} \psi \circ \alpha(t)\right|_{t=0}=\left.\frac{d}{d t} \psi \circ \beta(t)\right|_{t=0}
$$

(The infinitesimal equivalence is well defined.)

It is easy to check that \sim_{p} is an equivalence relation on the set $\mathbf{C}(p)$. The infinitesimal equivalence class of α in $\mathbf{C}(p)$ is denoted by $[\alpha]_{p}$ and is called an infinitesimal curve at p. An infinitesimal curve at p is also called a tangent vector to M at p.
5.3.1 Definition. The (quotient) set $T_{p} M:=\mathbf{C}(p) / \sim_{p}$ of all infinitesimal curves at p is called the tangent space to M at p.

Let (U, ϕ) be any admissible chart on M such that $p \in U$. The mapping

$$
\bar{\phi}: T_{p} M \rightarrow \mathbb{R}^{m},\left.\quad[\alpha]_{p} \mapsto \frac{d}{d t} \phi(\alpha(t))\right|_{t=0}
$$

is one-to-one and onto \mathbb{R}^{m}. In fact, for any $v \in \mathbb{R}^{m}, \alpha(t):=\phi^{-1}(\phi(p)+t v)$ is a curve such that $\bar{\phi}\left([\alpha]_{p}\right)=v$. We define the vector structure on $T_{p} M$ so that $\bar{\phi}$ becomes a linear isomorphism. That is, for $[\alpha]_{p},[\beta]_{p} \in T_{p} M$ and $a \in \mathbb{R}$,

$$
\begin{aligned}
{[\alpha]_{p}+[\beta]_{p} } & :=\bar{\phi}^{-1}\left(\bar{\phi}\left([\alpha]_{p}\right)+\bar{\phi}\left([\beta]_{p}\right)\right) \\
a[\alpha]_{p} & :=\bar{\phi}^{-1}\left(a \bar{\phi}\left([\alpha]_{p}\right)\right) .
\end{aligned}
$$

Under the forgoing addition and scalar multiplication, the tangent space $T_{p} M$ is an m-dimensional vector space over \mathbb{R}.

Note: The linear structure of $T_{p} M$ is canonical in the sense that it is independent of the choice of (local) coordinates. Indeed, let (U, ϕ) and (V, ψ) be two admissible charts at p. Let $\bar{\phi}\left([\alpha]_{p}\right)=v$ and let $\bar{\psi}\left([\alpha]_{p}\right)=w$. It follows that

$$
w=\left.\frac{d}{d t} \psi \circ \alpha(t)\right|_{t=0}=\left.\frac{d}{d t} \psi \circ \phi^{-1} \circ \phi \circ \alpha(t)\right|_{t=0} .
$$

Therefore the coordinates of v and w transform according to the following formula:

$$
w_{i}=\frac{\partial y_{i}}{\partial x_{1}} v_{1}+\cdots+\frac{\partial y_{i}}{\partial x_{m}} v_{m}
$$

where $y_{i}=y_{i}\left(x_{1}, \ldots, x_{m}\right), i=1,2, \ldots, m$ denote the coordinate functions of the mapping $\psi \circ \phi^{-1}$. Hence the vector structure on $T_{p} M$ is independent of the particular chart (used to define it).

The cotangent space

Let M be an m-dimensional manifold and let $\mathbf{F}(p)$ denote the set of all smooth functions f, defined in some (open) neighborhood of $p \in M$, that satisfy $f(p)=0 . \mathbf{F}(p)$ will have a natural vector space structure (in fact, associative algebra with unity) provided that functions that agree on a common domain are regarded as equal. (The domains of elements of $\mathbf{F}(p)$ need not be the same.)

Note : Actually, an element of (the algebra) $\mathbf{F}(p)$ is a certain set (equivalence class) of smooth functions, commonly referred to as a function germ at p, which is conveniently identified with any one of its representatives.

Elements (function germs) f and g in $\mathbf{F}(p)$ are said to be equivalent (at p) and we write $f \approx_{p} g$ if

$$
D\left(f \circ \phi^{-1}\right)(\phi(p))=D\left(g \circ \phi^{-1}\right)(\phi(p))
$$

for any admissible chart (U, ϕ) on M.
Note : We shall write, by a slight abuse of notation,
$f \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right)=f\left(x_{1}, \ldots, x_{m}\right) \quad$ and $\quad D\left(f \circ \phi^{-1}\right)=\frac{\partial f}{\partial x}:=\left[\begin{array}{lll}\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{m}}\end{array}\right]$.

Again, it is easy to check that \approx_{p} is an equivalence relation on the set $\mathbf{F}(p)$. The equivalence class of f in $\mathbf{F}(p)$ is denoted by $[f]_{p}$ and is called a tangent covector to M at p.
5.3.2 Definition. The (quotient) set $T_{p}^{*} M:=\mathbf{F}(p) / \approx_{p}$ is called the cotangent space to M at p.
\diamond Exercise 262 Let $f, \bar{f}, g, \bar{g} \in \mathbf{F}(p)$ and $a \in \mathbb{R}$. Show that
(a) If $f \approx_{p} \bar{f}$ and $g \approx_{p} \bar{g}$, then $f+g \approx_{p} \bar{f}+\bar{g}$.
(b) If $f \approx_{p} \bar{f}$, then $a f \approx_{p} a \bar{f}$.

That is, for $[f]_{p},[g]_{p} \in T_{p}^{*} M$ and $a \in \mathbb{R}$, the following operations

$$
\begin{aligned}
{[f]_{p}+[g]_{p} } & :=[f+g]_{p} \\
a[f]_{p} & :=[a f]_{p}
\end{aligned}
$$

are well-defined. Under the foregoing addition and scalar multiplication, the cotangent space $T_{p}^{*} M$ is a real vector space.

For each admissible chart (U, ϕ) on M such that $p \in U$, the mapping

$$
\underline{\phi}: T_{p}^{*} M \rightarrow\left(\mathbb{R}^{m}\right)^{*}, \quad[f]_{p} \mapsto D\left(f \circ \phi^{-1}\right) \in \mathbb{R}^{1 \times m}
$$

is a linear isomorphism. For each i, the (smooth) function

$$
f_{i}: U \rightarrow \mathbb{R}, \quad x \mapsto f_{i}(x):=\phi_{i}(x)-\phi_{i}(p)
$$

is an element of $\mathbf{F}(p)$ and $\underline{\phi}\left(\left[f_{i}\right]_{p}\right)=\left[\begin{array}{lll}\delta_{i 1} & \cdots & \delta_{i m}\end{array}\right] \in \mathbb{R}^{1 \times m}$. So $\left[f_{1}\right]_{p}, \cdots,\left[f_{m}\right]_{p}$ form a basis for (the vector space) $T_{p}^{*} M$.

Note : The linear structure of $T_{p}^{*} M$ is canonical. Indeed, let (U, ϕ) and (V, ψ) be two admissible charts at p which produce their own bases $\left[f_{1}\right]_{p}, \ldots,\left[f_{m}\right]_{p}$ and $\left[g_{1}\right]_{p}, \ldots,\left[g_{m}\right]_{p}$, respectively. Let $[f]_{p}$ be an arbitrary element of $T_{p}^{*} M$. Then

$$
\begin{aligned}
{[f]_{p} } & =v_{1}\left[f_{1}\right]_{p}+\cdots+v_{m}\left[f_{m}\right]_{p} \\
& =w_{1}\left[g_{1}\right]_{p}+\cdots+w_{m}\left[g_{m}\right]_{p} .
\end{aligned}
$$

It follows that the coordinates $\left(w_{1}, \ldots, w_{m}\right)$ are related to the coordinates $\left(v_{1}, \ldots, v_{m}\right)$ via the following formula

$$
v_{i}=\frac{\partial y_{1}}{\partial x_{i}} w_{1}+\cdots+\frac{\partial y_{m}}{\partial x_{i}} w_{m}
$$

where $y_{i}=y_{i}\left(x_{1}, \ldots, x_{m}\right), i=1,2, \ldots, m$ denote the coordinate functions of the mapping $\psi \circ \phi^{-1}$. Hence the vector structure of $T_{p}^{*} M$ is independent of the particular choice of admissible chart.

We shall show now the duality between the elements of $T_{p} M$ and those of $T_{p}^{*} M$. For any $f \in \mathbf{F}(p)$ and any $\sigma \in \mathbf{C}(p)$, consider the pairing

$$
\left\langle[f]_{p},[\sigma]_{p}\right\rangle:=\left.\frac{d}{d t} f \circ \sigma\right|_{t=0}
$$

Because $f \circ \sigma=f \circ \phi^{-1} \circ \phi \circ \sigma$, it follows that the foregoing pairing is well defined and is bilinear. More explicitly,

$$
\left\langle[f]_{p},[\sigma]_{p}\right\rangle=\frac{\partial f}{\partial x_{1}} \frac{d \sigma_{1}}{d t}+\cdots+\frac{\partial f}{\partial x_{m}} \frac{d \sigma_{m}}{d t}
$$

with

$$
D\left(f \circ \phi^{-1}\right)=\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{m}}
\end{array}\right] \quad \text { and }\left.\quad \frac{d}{d t} \phi \circ \sigma(t)\right|_{t=0}=\left[\begin{array}{c}
\frac{d \sigma_{1}}{d t} \\
\vdots \\
\frac{d \sigma_{m}}{d t}
\end{array}\right]
$$

Therefore, each element of $T_{p}^{*} M$ is a linear functional on $T_{p} M$, and hence

$$
T_{p}^{*} M=\left(T_{p} M\right)^{*}
$$

Note : It is useful to think of tangent vectors as objects that act (linearly) on functions and produce directional derivatives. Let M be a smooth manifold and let $\mathbf{F}(p)$ be the algebra of function germs at $p \in M$. A linear functional $X_{p}: \mathbf{F}(p) \rightarrow \mathbb{R}$ is called a derivation at p if (for every $f, g \in \mathbf{F}(p)$)

$$
X_{p}(f \cdot g)=f(p) \cdot X_{p}(g)+g(p) \cdot X_{p}(f) \quad \text { (Leibniz rule) }
$$

If $f=1$ (i.e. $f(x)=1$ for all $x \in M$), then $X_{p}(f)=2 X_{p}(f)$, and therefore $X_{p}(f)=0$. Thus any derivation of a constant function is zero. It is easy to check that the set of all derivations at p is in fact a vector space (over \mathbb{R}). Moreover, this vector space is isomorphic to (the tangent space) $T_{p} M$. (In general, for manifolds that are not smooth, the space of derivations is an infinite dimensional vector space and so cannot be isomorphic to $T_{p} M$.)

For each $[\alpha]_{p} \in T_{p} M$ and $f \in \mathbf{F}(p)$, let

$$
\left\langle f,[\alpha]_{p}\right\rangle=\left.\frac{d}{d t} f \circ \alpha(t)\right|_{t=0}
$$

Such action is well defined, for if $\alpha \sim_{p} \bar{\alpha}$, then

$$
\begin{aligned}
\left.\frac{d}{d t} f \circ \bar{\alpha}(t)\right|_{t=0} & =\left.\frac{d}{d t} f \circ \phi^{-1} \circ \phi \circ \bar{\alpha}(t)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(f \circ \phi^{-1}\right) \circ \phi \circ \alpha(t)\right|_{t=0} \\
& =\left.\frac{d}{d t} f \circ \alpha(t)\right|_{t=0}
\end{aligned}
$$

$[\alpha]_{p}$ acts linearly on $\mathbf{F}(p)$ and it follows that such an operation is a derivation. Let $D_{[\alpha]_{p}}$ denote the derivation (at p) induced by the foregoing pairing. It can be shown that for each derivation X_{p} at p, there exists an element (infinitesimal curve) $[\alpha]_{p}$
in $T_{p} M$ such that $X_{p}=D_{[\alpha]_{p}}$. (Given a fixed admissible chart (U, ϕ) at p, consider the curves

$$
\alpha_{i}: t \mapsto \alpha_{i}(t):=\phi^{-1}\left(\phi(p)+t e_{i}\right), \quad i=1,2, \ldots, m
$$

Then $\left[\alpha_{1}\right], \cdots,\left[\alpha_{m}\right]_{p}$ form a basis for $T_{p} M$ and $X_{p}=a_{1} D_{\left[\alpha_{1}\right]_{p}}+\cdots+a_{m} D_{\left[\alpha_{m}\right]_{p}}$ for some numbers a_{1}, \ldots, a_{m}.)

Following the usual practice, we shall write $\left.\frac{\partial}{\partial x_{i}}\right|_{p}$ for $D_{\left[\alpha_{i}\right]_{p}}$. Then $\left.\frac{\partial}{\partial x_{1}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{m}}\right|_{p}$ is a basis for the (vector space of) derivations at p, and each derivation is an expression of the form

$$
\left.a_{1} \frac{\partial}{\partial x_{1}}\right|_{p}+\cdots+\left.a_{m} \frac{\partial}{\partial x_{m}}\right|_{p}
$$

We shall find it convenient to use two notations for the tangent vectors at p, each of which is suggestive in its own way. If we think of $T_{p} M$ as the set (vector space) of equivalence classes of curves at p, then we shall denote its elements by

$$
\left.\frac{d \alpha}{d t}\right|_{t=0}
$$

and if we think of $T_{p} M$ as the (vector) space of derivations at p, then we shall denote its elements as

$$
\left.a_{1} \frac{\partial}{\partial x_{1}}\right|_{p}+\cdots+\left.a_{m} \frac{\partial}{\partial x_{m}}\right|_{p}
$$

the meaning being that
$\left.\frac{d \alpha}{d t}\right|_{t=0}=\left.a_{1} \frac{\partial}{\partial x_{1}}\right|_{p}+\cdots+\left.a_{m} \frac{\partial}{\partial x_{m}}\right|_{p} \quad \Longleftrightarrow \quad D_{[\alpha]_{p}}=a_{1} D_{\left[\alpha_{1}\right]_{p}}+\cdots+a_{m} D_{\left[\alpha_{m}\right]_{p}}$.
We shall adopt a similar convention with the elements of (the cotangent space) $T_{p}^{*} M:(d f)_{p}$ is the equivalence class of f in $T_{p}^{*} M$, with the understanding that

$$
\left.(d f)_{p} \cdot \frac{d \alpha}{d t}\right|_{t=0}=\left\langle[f]_{p},[\alpha]_{p}\right\rangle=\left.\frac{d}{d t} f \circ \alpha(t)\right|_{t=0}
$$

In particular, then $\left(d x_{1}\right)_{p}, \cdots,\left(d x_{m}\right)_{p}$ denotes the dual basis of $\left.\frac{\partial}{\partial x_{1}}\right|_{p}, \cdots,\left.\frac{\partial}{\partial x_{m}}\right|_{p}$.
Note : The definition of the tangent space $T_{p} M$ uses only (the algebra) $\mathbf{F}(p)$, not all M; thus if U is any open subset of M containing p, then $T_{p} U$ and $T_{p} M$ are
naturally identified. Also, recall that $T_{p} \mathbb{E}^{m}=\{p\} \times \mathbb{E}^{m}$ is commonly identified with (the vector space) \mathbb{R}^{m}. We can write, for $U \subseteq \mathbb{E}^{m}$ (open),

$$
T_{p} U=T_{p} \mathbb{E}^{m}=\{p\} \times \mathbb{E}^{m}=\mathbb{R}^{m} .
$$

\diamond Exercise 263 Let $U \subseteq \mathbb{E}^{m}$ be open and let $f: U \rightarrow \mathbb{R}$ be a smooth function. Compare $D f(p)$ and $(d f)_{p}$ for $p \in U$.

Tangent mappings (differentials)

For every smooth mapping $F: \mathbb{E}^{m} \rightarrow \mathbb{E}^{n}$ between Euclidean spaces and any point $p \in \mathbb{E}^{m}$, the derivative of F at p is a linear mapping $D F(p)$: $T_{p} \mathbb{E}^{m}=\mathbb{R}^{m} \rightarrow T_{F(p)} \mathbb{E}^{n}=\mathbb{R}^{n}$. Now that we have tangent spaces to manifolds, we are ready to associate analogous (linear) mappings (between tangent spaces) to smooth mappings (between manifolds).

Let M and N be smooth manifolds, and $\Phi: M \rightarrow N$ a smooth mapping. We have already mentioned that Φ pulls back smooth functions on N into smooth functions on M. However, for smooth curves the situation is different : for any smooth curve σ on $M, \Phi \circ \sigma$ is a smooth curve on N. Thus Φ pushes forward curves on M into curves on N. We shall write $\Phi_{*} \sigma$ for the curve $\Phi \circ \sigma$. Both the push-forward Φ_{*} and the pull-back Φ^{*} induce linear mappings between tangent spaces and cotangent spaces, respectively.
5.3.3 Definition. Suppose $\Phi: M \rightarrow N$ is a smooth mapping between manifolds and $p \in M$. The tangent mapping $\Phi_{*, p}: T_{p} M \rightarrow T_{\Phi(p)} N$ (of Φ at p) is defined by

$$
\Phi_{*, p}:[\alpha]_{p} \mapsto\left[\Phi_{*} \alpha\right]_{\Phi(p)}
$$

\diamond Exercise 264 Show that the tangent mapping $\Phi_{*, p}$ is well-defined and is linear.

It is immediate that if $\Phi: M \rightarrow M$ is the identity, then $\Phi_{*, p}: T_{p} M \rightarrow$ $T_{p} M$ is the identity isomorphism.

Exercise 265 Suppose that $\Phi: M \rightarrow N$ and $\Psi: N \rightarrow P$ are smooth mappings between manifolds and $p \in M$. Verify that

$$
(\Psi \circ \Phi)_{*, p}=\Psi_{*, \Phi(p)} \circ \Phi_{*, p}
$$

Note : The linear mapping $\Phi_{*, p}: T_{p} M \rightarrow T_{\Phi(p)} N$ is often called the differential of Φ at p. One frequently sees other notations for $\Phi_{*, p}$, for example $(d \Phi)_{p}, \Phi^{\prime}(p)$, or $T_{p} \Phi$. The * is a subscript since the mapping is in the same "direction" as Φ (i.e. from M to N).

Recall from linear algebra that every linear mapping $\Phi=\Phi_{*}: V \rightarrow W$ between vector spaces induces a dual (linear) mapping $\Phi^{*}: W^{*} \rightarrow V^{*}$ by the prescription

$$
\begin{aligned}
\left(\Phi^{*} \lambda\right)(v) & =\lambda\left(\Phi_{*}(v)\right) \\
& =\lambda \circ \Phi(v) \quad \text { for } v \in V \text { and } \lambda \in W^{*}
\end{aligned}
$$

(or, if one prefers, $\left\langle\Phi^{*}(\lambda), v\right\rangle=\left\langle\lambda, \Phi_{*}(v)\right\rangle$).
Note : The definition of Φ^{*} does not require the choice of a basis; therefore Φ^{*} is naturally (or canonically) determined by Φ_{*}. The vector spaces V and V^{*} have the same dimension, thus they must be isomorphic. There is no natural isomorphism; however, we do have the following property : There is a natural isomorphism between V and $\left(V^{*}\right)^{*}$ given by $v \mapsto\langle\cdot, v\rangle$ (i.e. v is mapped to the linear functional on V^{*} whose value on any $\lambda \in V^{*}$ is $\left.\lambda(v)=\langle\lambda, v\rangle\right)$. Observe that the mapping $(v, \lambda) \mapsto\langle\lambda, v\rangle$ is bilinear (i.e. linear in each variable separately). This shows that the dual of V^{*} is V itself, accounts for the name "dual" space, and validates the use of the symmetric notation $\langle\lambda, v\rangle$ in preference to the functional notation $\lambda(v)$.

We make the following definition.
5.3.4 Definition. Suppose $\Phi: M \rightarrow N$ is a smooth mapping between manifolds and $p \in M$. The cotangent mapping $\Phi_{p}^{*}: T_{\Phi(p)}^{*} N \rightarrow T_{p}^{*} M$ (of Φ at p) is the dual of the tangent mapping $\Phi_{*, p}: T_{p} M \rightarrow T_{\Phi(p)} N$ (i.e. $\left.\Phi_{p}^{*}=\left(\Phi_{*, p}\right)^{*}\right)$.

The cotangent mapping $\Phi_{p}^{*}: T_{\Phi(p)}^{*} N \rightarrow T_{p}^{*} M$ is defined by

$$
\Phi_{p}^{*}:[f]_{\Phi(p)} \mapsto\left[\Phi^{*} f\right]_{p} .
$$

Note : The foregoing mapping (between cotangent spaces) is well-defined and acts like the dual of the tangent mapping (between tangent spaces).
\diamond Exercise 266 Suppose that $\Phi: M \rightarrow N$ and $\Psi: N \rightarrow P$ are smooth mappings between manifolds and $p \in M$. Verify that

$$
(\Psi \circ \Phi)_{p}^{*}=\Psi_{\Phi(p)}^{*} \circ \Phi_{p}^{*}
$$

In terms of the admissible charts (U, ϕ) at $p \in M$ and (V, ψ) at $\Phi(p) \in N$, we have the following formulas. Let

$$
v=\left.\frac{d}{d t} \phi \circ \alpha(t)\right|_{t=0}, \quad w=\left.\frac{d}{d t} \psi \circ \Phi \circ \alpha(t)\right|_{t=0}
$$

and

$$
\phi_{i}\left(x_{1}, \ldots, x_{m}\right)=\psi_{i} \circ \Phi \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right), \quad i=1,2, \ldots, n
$$

Then the local representation of the tangent mapping $\Phi_{*, p}$ is

$$
w_{i}=\frac{\partial \Phi_{i}}{\partial x_{1}} v_{1}+\cdots+\frac{\partial \Phi_{i}}{\partial x_{m}} v_{m}, \quad i=1,2, \ldots, n
$$

We can write (in compact form)

$$
\begin{aligned}
w=\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{n}
\end{array}\right] & =\left[\begin{array}{ccc}
\frac{\partial \Phi}{\partial x_{1}} & \cdots & \frac{\partial \Phi}{\partial x_{m}} \\
\vdots & & \vdots \\
\frac{\partial \Phi}{\partial x_{1}} & \cdots & \frac{\partial \Phi}{\partial x_{m}}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{m}
\end{array}\right] \\
& =\frac{\partial \Phi}{\partial x} v
\end{aligned}
$$

In order to get an analogous expression for the cotangent mapping, let f be a smooth function on N at $\Phi(p)$, and g its pull-back $\Phi^{*} f$. Denote
$g\left(x_{1}, \ldots, x_{m}\right)=\Phi^{*} f \circ \phi^{-1}\left(x_{1}, \ldots, x_{m}\right) \quad$ and $\quad f\left(y_{1}, \ldots, y_{n}\right)=f \circ \psi^{-1}\left(y_{1}, \ldots, y_{n}\right)$.

Then $g\left(x_{1}, \ldots, x_{m}\right)=f\left(\Phi_{1}(x), \ldots, \Phi_{n}(x)\right)$, and hence

$$
\frac{\partial g}{\partial x_{i}}=\frac{\partial \Phi_{1}}{\partial x_{i}} \frac{\partial f}{\partial y_{1}}+\cdots+\frac{\partial \Phi_{n}}{\partial x_{i}} \frac{\partial f}{\partial y_{n}}, \quad i=1,2, \ldots, m
$$

Likewise, we can write (in compact form)

$$
\begin{aligned}
\frac{\partial g}{\partial x}=\left[\begin{array}{lll}
\frac{\partial g}{\partial x_{1}} & \cdots & \frac{\partial g}{\partial x_{m}}
\end{array}\right] & =\left[\begin{array}{lll}
\frac{\partial f}{\partial y_{1}} & \cdots & \frac{\partial f}{\partial y_{n}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial \Phi}{\partial x_{1}} & \cdots & \frac{\partial \Phi}{\partial x_{m}} \\
\vdots & & \vdots \\
\frac{\partial \Phi}{\partial x_{1}} & \cdots & \frac{\partial \Phi}{\partial x_{m}}
\end{array}\right] \\
& =\frac{\partial f}{\partial y} \frac{\partial \Phi}{\partial x} .
\end{aligned}
$$

The tangent bundle and the cotangent bundle

It is natural to assemble all tangent spaces of a (smooth) manifold together into a new structure - and conceivably, this set should again have a natural manifold structure. (We will omit some of the more technical details of this structure.) As discussed earlier, it is desirable to distinguish between tangent vectors at different points.

Let M be a smooth n-manifold, and consider the set

$$
T M:=\left\{\left(p, X_{p}\right) \in M \times \bigcup_{p \in M} T_{p} M \mid X_{p} \in T_{p} M\right\}
$$

which is the (disjoint) union of all tangent spaces to M at all points $p \in M$. Let

$$
\pi: T M \rightarrow M, \quad\left(p, X_{p}\right) \mapsto p
$$

be the projection onto M. The fibre over $\in M$ is the preimage $\pi^{-1}(p)=$ $\{p\} \times T_{p} M$. (Occasionally it is convenient to identify the fibre $\pi^{-1}(p)$ with the tangent space $T_{p} M$ - technically, this includes a tacit projection onto the second factor.) We call $T M$ the tangent bundle of M.

Note : To illustrate the natural manifold structure of tangent bundles, consider the example of $M=\mathbb{S}^{1}$. The naive collection of all tangent lines to the (embedded) circle $\mathbb{S}^{1} \subseteq \mathbb{E}^{2}$ is full of intersections. More suitable for our purposes is to embed the circle in \mathbb{E}^{3} as $\left\{x \in \mathbb{E}^{3} \mid x_{1}^{2}+x_{2}^{2}=1, x_{3}=0\right\}$ and attach at every point $p \in \mathbb{S}^{1}$ a vertical line, yielding a cylinder. As a set, this cylinder is in bijection with the (disjoint) collection of all tangent lines to the circle (embedded in the plane). It is clear that one can
consistently choose an orientation of the lines (and even more a consistent scaling). Intuitively, identify the naive tangent vector $((\cos \theta, \sin \theta),(-L \sin \theta, L \cos \theta))$ with the point $(\cos \theta, \sin \theta, L) \in \mathbb{E}^{3}$.

In complete analogy, we may intuitively think of the tangent bundle $T \mathbb{R}$ of the real line \mathbb{R} as \mathbb{R}^{2}. However, for dimensional reasons it is clear that these two examples are the only tangent bundles amenable to such immediate visualization. How quickly things get complicated becomes clear if one tries to think of $T \mathbb{S}^{2}$ as a sphere with a (different) planes attached to each of its points. A vector field on the sphere simply selects one point on each plane. However, from algebraic topology it is known that there does not exist any continuous vector field on the sphere that vanish nowhere. In our picture this means that it is impossible to continuously select one point on each tangent plane avoiding the origin (zero vector) in each $T_{p} \mathbb{S}^{2}$. Intuitively, $T \mathbb{S}^{2}$ must be nontrivially twisted (when compared to e.g. $T \mathbb{S}^{1}$ which is the very tame cylinder) and hence must be very different from the trivial Cartesian product $\mathbb{S}^{2} \times \mathbb{R}^{2}$.

The set $T M$ has a canonical (smooth) manifold structure of dimension $2 n$.

Note : The key idea is that locally, above an admissible chart (U, ϕ), the tangent bundle "looks like" $\mathbb{R}^{m} \times \mathbb{R}^{m}=\mathbb{R}^{2 m}$. This observation is captured in the concept of local triviality (compare the later short note on vector bundles). Thus the topology and geometry of M are captured, in the global structure of the tangent bundle, by how the trivial bundles are pieced together with twists.

Starting with a (smooth) atlas on M, we shall find it easy to obtain a candidate (smooth) atlas on $T M$. This can be done as follows. Let $\left(U_{\alpha}, \phi_{\alpha}\right) \in$ $\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ be an admissible chart on M with $p \in U_{\alpha}$, and consider the set

$$
\begin{aligned}
T U_{\alpha} & :=\pi^{-1}\left(U_{\alpha}\right) \\
& =\text { the (disjoint) union of all } T_{x} M \text { with } x \in U_{\alpha}
\end{aligned}
$$

To any element $(p, v) \in T U_{\alpha} \subseteq T M$, where $v=X_{p} \in T_{p} M$, we associate the point

$$
\left(\phi_{\alpha}(p), \bar{\phi}_{\alpha}(v)\right) \in \phi_{\alpha}\left(U_{a}\right) \times \mathbb{R}^{m} \subseteq \mathbb{R}^{2 m}
$$

where $\bar{\phi}_{\alpha}: T_{p} M \rightarrow \mathbb{R}^{m}$ is the linear isomorphism asoociated with $\left(U_{\alpha}, \phi_{\alpha}\right)$ at p. The mapping

$$
T \phi_{\alpha}: T U_{\alpha} \rightarrow \mathbb{R}^{2 m}, \quad(p, v) \mapsto\left(\phi_{\alpha}(p), \bar{\phi}_{\alpha}(v)\right)
$$

is one-to-one and onto an open subset $\phi_{\alpha}\left(U_{\alpha}\right) \times \mathbb{R}^{m}$ of $\mathbb{R}^{2 m}$. We claim that the family (of charts) $\left\{\left(T U_{\alpha}, T \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ is a smooth atlas on $T M$, determining a smooth structure.
\diamond Exercise 267 Verify the preceding statement.
The induced canonical topology on $T M$ is such that all the coordinate mappings $T \phi_{\alpha}: T U_{\alpha} \rightarrow T \phi_{\alpha}\left(T U_{\alpha}\right) \subseteq \mathbb{R}^{2 m}$ are homeomorphisms (in fact, it is the weakest topology on $T M$ with this property).

Note : Alternatively, the canonical topology on the tangent bundle $T M$ can be characterized as the strongest topology under which the projection mapping π : $T M \rightarrow M$ is continuous.

Recall that, in order for $T M$ to qualify as a smooth manifold, we still need that the (canonical) topology is reasonably nice - Hausdorff and second countable. (It is easy to see that the topology is Hausdorff; however, the second condition is rather tricky, and we shall skip the details.)
\diamond Exercise 268 Show that (as a mapping between smooth manifolds) the projection mapping $\pi: T M \rightarrow M$ is smooth.
5.3.5 Example. If an m-dimensional vector space V is regarded as a (smooth) manifold (see Example 4.2.7), then the tangent bundle $T V$ is isomorphic to $V \times V$.

Note : It is often convenient to replace $\phi_{\alpha}\left(U_{\alpha}\right) \times \mathbb{R}^{m}$ with $U_{\alpha} \times \mathbb{R}^{m}$, identifying $T \phi_{\alpha}$ with the mapping $v \mapsto\left(p, \bar{\phi}_{\alpha}(v)\right)$. (This minor abuse of notation turns out to be a major convenience.) For each $\alpha \in \mathfrak{A}$, we get a commutative diagram

where $p r_{1}$ denotes projection on the first factor and $T \phi_{\alpha}$ is a diffeomorphism that restricts to be a linear isomorphism $T_{p} M \rightarrow\{p\} \times \mathbb{R}^{m}$ for every $p \in U_{\alpha}$. Thus, $T M$ is "locally" a Cartesian product of M and \mathbb{R}^{m}, the projection π being "locally" the projection of the Cartesian product onto the first factor, and the fiber $\pi^{-1}(p)=T_{p} M$ has a canonical vector space structure, for every $p \in M$.

Tangent bundles are examples of vector bundles. (Vector bundles play a very important role in manifold theory.)

Note : Let M be a smooth m-manifold, E a smooth $(m+k)$-dimensional manifold, and $\pi: E \rightarrow M$ a smooth mapping. The triple (E, M, π) is called a vector bundle over M (of fibre dimension k) if the following properties hold.
(VB1) For each $p \in M$, the fibre $E_{p}:=\pi^{-1}(p)$ has the structure of a (real) k-dimensional vector space.
(VB2) For each $p \in M$, there exist an open neighborhood W and a (smooth) diffeomorphism $\zeta: \pi^{-1}(W) \rightarrow W \times \mathbb{R}^{k}$ such the following diagram commutes

(Any such pair $\left(\pi^{-1}(W), \zeta\right)$ is called a (vector) bundle chart on (E, M, π).)
(VB3) For each $p \in W$, the restriction

$$
\zeta_{p}=\left.\zeta\right|_{E_{p}}: E_{p} \rightarrow\{p\} \times \mathbb{R}^{k}
$$

is a linear isomorphism.
We call E the total space, M the base space, and π the bundle projection. We shall denote a vector bundle (over M), simply, $\pi: E \rightarrow M$. An obvious example of a vector bundle is given by $p r_{1}: M \times \mathbb{R}^{k} \rightarrow M$. Here $\left(M \times \mathbb{R}^{k}, i d\right)$ is a global bundle chart and the vector bundle is said to be trivial.

Given two vector bundles $\pi_{1}: E_{1} \rightarrow M$ and $\pi_{2}: E_{2} \rightarrow M$ over M, a (vector) bundle isomorphism is a commutative diagram

such that φ is a (smooth) diffeomorphism, and carries $E_{1 p}$ isomorphically (as a vector space) onto $E_{2 p}$, for every $p \in M$.

So far, the only real eaxamples of vector bundles that we have seen are the tangent bundles and trivial bundles. The following is the least complicated example of a nontrivial vector bundle. We give an example of a "line" bundle (i.e. of fibre dimension 1) over the circle, known as the Möbius bundle. On $\mathbb{R} \times \mathbb{R}$, define the equivalence relation $(s, t) \sim\left(s+n,(-1)^{n} t\right), n \in \mathbb{Z}$. Observe that $t \mapsto(-1)^{n} t$ is a linear automorphism of \mathbb{R}. The projection $(s, t) \mapsto s$ passes to a well defined mapping $\pi:(\mathbb{R} \times \mathbb{R}) / \sim \rightarrow \mathbb{R} / \mathbb{Z}=\mathbb{S}^{1}$. It should be clear, intuitively, that this is a vector bundle over \mathbb{S}^{1} of fibre dimension 1 , but a rigorous proof of this involves checking many details.

Beyond vector bundles are fibre bundles in which the fibres need not necessarily be vector spaces. Arguably the most important such fibre bundle is the principal bundle in which each fibre is a copy of the general linear group $\mathrm{GL}(k, \mathbb{R})$. (Differential geometry may be described as the study of a connection on a principal bundle.)

In complete analogy to the tangent bundle we assemble all cotangent spaces $T_{p}^{*} M$ into the cotangent bundle, denoted $T^{*} M$. It is a vector bundle (of fibre dimension m) over the (smooth) m-manifold M with bundle projection again denoted by π. The set (total space)

$$
T^{*} M:=\left\{\left(p, \omega_{p}\right) \in M \times \bigcup_{\in M} T_{p}^{*} M \mid \omega_{p} \in T_{p}^{*} M\right\}
$$

has a (smooth) manifold structure of dimension $2 m$, given by the (smooth) atlas $\left\{\left(T^{*} U_{\alpha}, T^{*} \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}$ where $T^{*} U_{\alpha}=\pi^{-1}\left(U_{\alpha}\right) \subseteq T^{*} M$ and

$$
T^{*} \phi_{\alpha}:(p, \omega) \mapsto\left(\phi_{\alpha}(p), \underline{\phi}_{\alpha}(\omega)\right) \in \phi_{\alpha}\left(U_{\alpha}\right) \times\left(\mathbb{R}^{m}\right)^{*} \subseteq \mathbb{R}^{2 m}
$$

$\left(\left\{\left(U_{\alpha}, \phi_{\alpha}\right)\right\}_{\alpha \in \mathfrak{A}}\right.$ is an atlas on $\left.M\right)$.
5.3.6 EXAMPLE. If an m-dimensional vector space V is regarded as a (smooth) manifold, then the cotangent bundle $T^{*} V$ is isomorphic to $V \times V^{*}$.

Note : One can show that the tangent and cotangent bundles are isomorphic, but not canonically. We do not identify these (vector) bundles.

5.4 Smooth Submanifolds

5.5 Vector Fields

Vector fields and flows

Let M be a manifold and let $T M$ be the corresponding tangent bundle.
5.5.1 Definition. A vector field X (on M) is a mapping from M into $T M$ such that for each $p \in M$ the natural projection $\pi: T M \rightarrow M$ projects $X(p)$ to p (i.e. the compositon $\pi \circ X$ is the identity on M).

Rather than considering arbitrary such mappings, our interest is primarily in those that vary smoothly. (In topological considerations continuity may suffice.) Since a vector field is defined as a mapping between (smooth) manifolds M and $T M$, we already have a notion of smoothness: We say that X is a smooth vector field provided $X: M \rightarrow T M$ is a smooth mapping. We shall write $\mathfrak{X}(M)$ for the set of all smooth vector fields on M.

Note : A section of the vector bundle $\pi: E \rightarrow M$ is a smooth mapping $s: M \rightarrow$ E such that $\pi \circ s=i d_{M}$. The set of all such sections is denoted by $\Gamma^{\infty}(E)$. It is easy to verify that the set $\Gamma^{\infty}(E)$ is a $C^{\infty}(M)$-module under the natural (pointwise) operations of addition and (function) multiplication.

Thus, $\mathfrak{X}(M)=\Gamma^{\infty}(T M)$. In complete analogy (to the tangent bundle), the $C^{\infty}(M)$-module of all smooth covector fields on M is

$$
A^{1}(M):=\Gamma^{\infty}\left(T^{*} M\right)
$$

Covector fields are also (and more commonly) called differential 1-forms. If $\omega \in A^{1}(M)$, then $\omega: M \rightarrow T^{*} M$ is writen as

$$
p \mapsto \omega_{p} \in T_{p}^{*} M
$$

Note : Having defined these objects in an "intrinsic" way, let us now examine their meaning in a more intuitive way. It is well known in physics that the position
of a particle is a scalar-like quantity, and its velocity is a vector quantity. Therefore, if $t \mapsto p(t)$ is a curve that describes the position, then the velocity $\frac{d p}{d t}$ is a different object, since it is a vector. These two objects "live" in different spaces. The manifolds formalism clarifies this issue, and it provides a natural point of view from which differential equations (systems) should be studied.

If $\dot{x}=F(x)$ is a differential equation in \mathbb{R}^{m}, then F cannot be viewed as a mapping from \mathbb{R}^{m} into \mathbb{R}^{m}. Rather, it must be viewed as a mapping form \mathbb{R}^{m} (in fact, \mathbb{E}^{m}) into the tangent bundle of \mathbb{R}^{m}, since $F(x(t))$ is equal to the tangent vector of the curve $x(\cdot)$ at $x(t)$. For equations in \mathbb{R}^{m}, it is easy to confuse mappings and vector fields (in much the same way as it is to confuse vectors with their duals). It is only on arbitrary manifolds that the genuine differences of these objects become apparent.

Each vector field $X \in \mathfrak{X}(M)$ in some admissible chart (U, ϕ) becomes an expression of the form

$$
X_{1}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{1}}+X_{2}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{2}}+\cdots+X_{m}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{m}}
$$

The (smooth) functions X_{1}, \ldots, X_{m} are called the coordinate functions of the vector field X. (Strictly speaking, X should be expressed in terms of $2 m$ coordinates; however, because the first m coordinates contain redundant information, they are suppressed.)

Let $\alpha: J=(a, b) \rightarrow M$ be a smooth curve on the manifold M. Then the tangent vector to α at $t \in I$ is given by

$$
\dot{\alpha}(t):=\alpha_{*, t}\left(\frac{d}{d t}\right) \in T_{\alpha(t)} M
$$

(Thus $\dot{\alpha}: J \rightarrow T M$ is a smooth curve in $T M$, commonly referred to as the lift of α.) Let X be a smooth vector field on M. A smooth curve $\alpha: J \rightarrow M$ is an integral curve of X provided the tangent vector to α at each $t \in J$ equals the value of X at $\alpha(t)$ (i.e. $\dot{\alpha}(t)=X(\alpha(t))$ for each $t \in J)$. Thus the accompanying diagram

is commutative. (The lift $\dot{\alpha}$ of α coincides with $X \circ \alpha$.)
Let (U, ϕ) be an admissible chart on M and let $\alpha: J \rightarrow U \subseteq M$ be a smooth curve as before.
\diamond Exercise 269 Verify that (for $t \in J$)

$$
\dot{\alpha}(t)=\left.\frac{d x_{1}}{d t}(t) \frac{\partial}{\partial x_{1}}\right|_{\alpha(t)}+\cdots+\left.\frac{d x_{m}}{d t}(t) \frac{\partial}{\partial x_{m}}\right|_{\alpha(t)}
$$

where $x_{i}=\phi_{i} \circ \alpha, \quad i=1,2, \ldots, m$.
Then $\dot{\alpha}=X \circ \alpha$ yields

$$
\frac{d x_{i}}{d t}=X_{i}\left(x_{1}, \ldots, x_{m}\right), \quad i=1,2, \ldots, m
$$

This system of differential equations admits solution curves in the open set $\phi(U)$. That is, through each point x_{0} in $\phi(U)$ there exists a solution curve $x(\cdot): J_{0} \rightarrow \phi(U) \subseteq \mathbb{R}^{m}$ that passes through x_{0} at $t=0$ (i.e. $x(0)=x_{0}$). Any two such solutions curves agree for values of t for which they are both defined. It follows from the theory of differential equations that for each x_{0} there exist a maximum open interval $J_{\max }$ (that contains 0) and a unique solution curve $x(\cdot): J_{\max } \rightarrow \mathbb{R}^{m}$ such that $x(0)=x_{0}$. We shall refer to such a solution curve as the solution curve through x_{0}.

Any solution curve $x(\cdot)$ in $\phi(U)$ defines an integral curve

$$
t \mapsto p(t)=\phi^{-1}\left(x_{1}(t), \ldots, x_{m}(t)\right)
$$

on M.
Note : Consider another admissible chart (V, ψ) on M such that $p\left(t_{0}\right) \in U \cap V$ for some t_{0}. We denote by $\left(y_{1}, \ldots, y_{m}\right)$ the coordinates on V, and by Y_{1}, \ldots, Y_{m} the coordinate functions of X relative to (V, ψ). The curve $t \mapsto y(t)=\psi \circ p(t)$ is a (smooth) curve in $\psi(V)$ defined in some neighborhood of t_{0}. Furthermore, $y(t)=\psi \circ \phi^{-1}(x(t))$ and

$$
\begin{aligned}
\frac{d y_{i}}{d t} & =\frac{\partial y_{i}}{\partial x_{1}}(x(t)) \frac{d x_{1}}{d t}+\cdots+\frac{\partial y_{i}}{\partial x_{m}}(x(t)) \frac{d x_{m}}{d t} \\
& =\frac{\partial y_{i}}{\partial x_{1}}(x(t)) X_{1}(x(t))+\cdots+\frac{\partial y_{i}}{\partial x_{m}}(x(t)) X_{m}(x(t))
\end{aligned}
$$

Because $\left(Y_{1}, \ldots, Y_{m}\right)$ and $\left(X_{1}, \ldots, X_{m}\right)$ are the coordinates of the same tangent vector $X(p)$, they are related through

$$
Y_{i}(y)=\frac{\partial y_{i}}{\partial x_{1}} X_{1}(x)+\cdots+\frac{\partial y_{i}}{\partial x_{m}} X_{m}(x), \quad i=1,2, \ldots, m .
$$

Therefore, $y(\cdot)$ is a solution curve of the system of differential equations

$$
\frac{d y_{i}}{d t}=Y_{i}\left(y_{1}, \ldots, y_{m}\right), \quad i=1,2, \ldots, m .
$$

Let $\bar{y}(\cdot)$ be the solution curve of this differential system in $\psi(V)$ that passes through $y_{0}=\psi \circ p\left(t_{0}\right)$ at $t=t_{0}$, and denote $\bar{p}(t)=\psi^{-1} \circ \bar{y}(t)$. It then follows that the two integral curves $p(\cdot)$ and $\bar{p}(\cdot)$ on M agree at all values of t for which they are both defined.
5.5.2 Definition. We say that an integral curve $\gamma=\gamma_{p}$ of $X \in \mathfrak{X}(M)$ is the integral curve through $p \in M$ provided $\gamma_{p}(0)=p$ and the domain $J_{p} \subseteq \mathbb{R}$ of γ_{p} is maximal.

That is, if α is any integral curve of X that satisfies $\alpha(0)=p$, then its domain can be extended to J_{p} so that $\alpha(t)=\gamma_{p}(t)$ for all t.

A (smooth) vector field X is called complete if the integral curves γ_{p} through each point $p \in M$ are defined for all values of $t \in \mathbb{R}$. In such case, X is said to define a flow $\Phi=\Phi^{X}$ on M.

Note : A flow on M is a smooth mapping $\Phi: \mathbb{R} \times M \rightarrow M$ such that (for all $t_{1}, t_{2} \in \mathbb{R}$ and all $p \in M$)
(FL1) $\quad \Phi(0, p)=p$.
(FL2) $\quad \Phi\left(t_{1}+t_{2}, p\right)=\Phi\left(t_{1}, \Phi\left(t_{2}, p\right)\right)$.
(If we fix p and let t vary, we get a smooth curve $\Phi(\cdot, p)$ in M; thus as t varies each point of M moves smoothly inside M, and various points move in a coherent fashion, so that we can form a mental picture of them "flowing" through M, each point along its individual path.) For each $t \in \mathbb{R}$, the (smooth) mapping

$$
\varphi_{t}: M \rightarrow M, \quad p \mapsto \Phi(t, p)
$$

is a smooth diffeomorphism of M. We have $\varphi_{0}=i d_{M}$ and (for all $t_{1}, t_{2} \in \mathbb{R}$)

$$
\varphi_{t_{1}+t_{2}}=\varphi_{t_{1}} \circ \varphi_{t_{2}}
$$

Hence the collection $\left\{\varphi_{t} \mid t \in \mathbb{R}\right\}$ forms a group under the composition of mappings. Such a group is called a one-parameter group of diffeomorphisms of M (or a smooth action of \mathbb{R} on $M)$ and is denoted by $\left\{\varphi_{t}\right\}$ or, simply, by φ_{t}.

The flow Φ^{X} (generated by the complete vector field X) is defined by

$$
\Phi^{X}(t, p):=\gamma_{p}(t) .
$$

We shall also use $\exp t X$ to denote the mapping (diffeomorphism) $\varphi_{t}=\varphi_{t}^{X}$. (Each notation is fairly standard, and each has different merits, depending on the context.)

Each (smooth) flow Φ on M is generated by a vector field X, called the infinitesimal generator of Φ. The relation between X and Φ is given by

$$
X(p)=\left.\frac{d}{d t} \Phi(t, p)\right|_{t=0}
$$

$\left(X(p) \in T_{p} M\right.$ is the value of the lift of $\Phi(\cdot, p): \mathbb{R} \rightarrow M$ at $t=0$.) Therefore, there is a one-to-one correspondence between complete vector fields and flows.
Note : The support of a vector field X is the closure of the set $\{p \in M \mid X(p) \neq 0\}$. It can be shown that every vector field with compact support on M is complete. So on a compact manifold M, each vector field is complete. If M is not compact and of dimension ≥ 2 the set of complete vector fields is not even a vector space as the following example (on \mathbb{E}^{2}) shows : the vector fields

$$
X=x_{2} \frac{\partial}{\partial x_{1}} \quad \text { and } \quad Y=\frac{x_{1}^{2}}{2} \frac{\partial}{\partial x_{2}}
$$

are complete, but $X+Y$ is not.
\diamond Exercise 270 Show that the (smooth) vector field

$$
X=-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}
$$

is complete (on \mathbb{E}^{2}). Is the vector field

$$
Y=e^{-x_{1}} \frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}
$$

complete ?

Exercise 271 Consider the (smooth) vector field on \mathbb{E}^{3} defined by

$$
X=x_{2} \frac{\partial}{\partial x_{1}}+x_{3} \frac{\partial}{\partial x_{2}}+x_{1} \frac{\partial}{\partial x_{3}} .
$$

Find the integral curve γ of X so that $\gamma(0)=(-1,1,1)$.
We have seen that not every vector field is complete. If this is the case, then $X \in \mathfrak{X}(M)$ generates (only) a local flow on M.
5.5.3 Example. Let $M=\mathbb{E}^{2}$ and let (the flow) $\Phi: \mathbb{R} \times M \rightarrow M$ be defined by

$$
\left(t,\left(x_{1}, x_{2}\right)\right) \mapsto\left(x_{1}+t, x_{2}\right)
$$

Then the infinitesimal generator is $X=\frac{\partial}{\partial x_{1}}$. Suppose now that we remove the origin $(0,0)$ from \mathbb{E}^{2}; let $M_{0}=\mathbb{E}^{2} \backslash\{(0,0)\}$. For most points (the diffeomorphism) φ_{t} is defined as before; however, we cannot obtain an action of \mathbb{R} on M_{0} by restriction of Φ to $\mathbb{R} \times M_{0}$ since points of the (closed) set

$$
\left\{\left(t,\left(x_{1}, 0\right)\right) \mid x_{1}+t=0\right\}=\Phi^{-1}((0,0)) \subseteq \mathbb{R} \times M
$$

are mapped by Φ to the origin. On the other hand, let $W \subseteq \mathbb{R} \times M_{0}$ be the open set defined by

$$
W=\left(\bigcup_{x_{2} \neq 0} \mathbb{R} \times\left\{\left(x_{1}, x_{2}\right)\right\}\right) \cup\left\{\left(t,\left(x_{1}, 0\right)\right) \mid x_{1}\left(x_{1}+t\right)>0\right\}
$$

Then $\Phi=\left.\Phi\right|_{W}$ maps W onto M_{0} and preserves many of the features of Φ which we have used. For example, let $p=\left(x_{1}, x_{2}\right) \in M_{0}$. Then

- $(0, p) \in W$ and $\Phi(0, p)=p$
- $\Phi\left(t_{1}, \Phi\left(t_{2}, p\right)\right)=\Phi\left(t_{1}+t_{2}, p\right)$
if all terms are defined, and the infinitesimal generator is again $X=\frac{\partial}{\partial x_{1}}$. Finally, we have orbits $t \mapsto \Phi(t, p)$, which are the lines $x_{2}=$ constant (as before) when $p=\left(x_{1}, x_{2}\right), x_{2} \neq 0$, and for $p=\left(x_{1}, 0\right)$ the portion of the x_{1}-axis minus the origin which contains p. This curve is not defined for all values of t in the case of the orbit of a point on the x_{1}-axis.

Note : In order to define the local flow of a vector field at $p \in M$, it is first necessary to define the escape times of the integral curve γ_{p} of X through p. The positive escape time $e^{+}(p)$ is defined to be the supremum of t such that an integral curve passing through p can be defined at t. The negative escape time $e^{-}(p)$ is defined similarly. Let $W:=\left\{(t, p) \mid e^{-}(p)<t, e^{+}(p)\right\}$. Then W is an open subset of $\mathbb{R} \times M$ and a neighborhood of $\{0\} \times M$. The local flow Φ of X is defined on W and it satisfies the following :

- The mapping $\Phi: W \subseteq \mathbb{R} \times M \rightarrow M$ is smooth
- $\Phi(0, p)=p$ for all $p \in W$.
- $\Phi\left(t_{1}+t_{2}, p\right)=\Phi\left(t_{1}, \Phi\left(t_{2}, p\right)\right)$ whenever each of $\left(t_{1}, p\right)$ and $\left(t_{1}, \Phi\left(t_{2}, p\right)\right)$ is contained in W.
- $\frac{d \Phi}{d t}(t, p)=X \circ \Phi(t, p)$.
5.5.4 Example. Let $M=\mathbb{E}^{m}$, and let

$$
X: x \mapsto a=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] \in \mathbb{R}^{m}\left(=\mathbb{R}^{m \times 1}\right)
$$

be a constant (or parallel) vector field on M. Then (in the "derivation notation")

$$
X(x)=\left.a_{1} \frac{\partial}{\partial x_{1}}\right|_{x}+\cdots+\left.a_{m} \frac{\partial}{\partial x_{m}}\right|_{x}
$$

The integral curves of X are parallel lines, all in the direction of a. For each t, the mapping (diffeomorphism) $\varphi_{t}: t \mapsto \Phi(t, x)$ is a translation of x by $t a$. Hence $\left\{\varphi_{t}\right\}$ is a one-parameter group of translations on \mathbb{E}^{m}.
5.5.5 Example. Let $M=\mathbb{E}^{m}$ and $A \in \mathbb{R}^{m \times m}$. Let

$$
X: x=\left(x_{1}, \ldots, x_{m}\right) \mapsto A x:=\left[\begin{array}{c}
a_{11} x_{1}+\cdots+a_{1 m} x_{m} \\
\vdots \\
a_{m 1} x_{1}+\cdots+a_{m m} x_{m}
\end{array}\right] \in \mathbb{R}^{m}\left(=\mathbb{R}^{m \times 1}\right)
$$

be a linear vector field on M. So

$$
X\left(x_{1}, \ldots, x_{m}\right)=\left.X_{1}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{1}}\right|_{x}+\cdots+\left.X_{m}\left(x_{1}, \ldots, x_{m}\right) \frac{\partial}{\partial x_{m}}\right|_{x}
$$

with coordinate functions given by

$$
X_{i}\left(x_{1}, \ldots, x_{m}\right)=a_{i 1} x_{1}+\cdots+a_{i m} x_{m}, \quad i=1,2, \ldots, m .
$$

Each integral curve of X is of the form $t \mapsto \exp (t A) x$, where $\exp (t A)=$ $\sum_{k=0}^{\infty} \frac{t^{k}}{k!} A^{k}$ (the matrix exponential of $t A$). Thus $\varphi_{t}(x)=\exp (t A) x$, and therefore (the one-parameter group of diffeomorphisms) $\left\{\varphi_{t}\right\}$ is a subgroup of the group of all linear transformations on \mathbb{R}^{n} (i.e. a matrix group). Here are two familiar cases (for $n=2$):

- $A=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right], \quad \exp (t A)=\left[\begin{array}{cc}\cos t & \sin t \\ -\sin t & \cos t\end{array}\right]$. (The one-parameter group $\left\{\varphi_{t}\right\}$ is the rotation group SO (2), and the integral curves are concentric circles centered at the origin.)
- $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], \quad \exp (t A)=\left[\begin{array}{cc}\cosh t & \sinh t \\ \sinh t & \cosh t\end{array}\right]$. (The one-parameter group $\left\{\varphi_{t}\right\}$ is a subgroup of $\operatorname{SL}(2, \mathbb{R})$, and the integral curves are hyperbolas.)
5.5.6 Example. Let $M=\mathbb{E}^{3}$ and consider the vector field (on M)

$$
X: x \mapsto X(x):=A x+a
$$

where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad a=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Then

$$
\begin{aligned}
\Phi(t, x)=\varphi_{t}(x) & =\exp (t A) x+t a \\
& =\left[\begin{array}{ccc}
\cos t & \sin t & 0 \\
-\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right] x+t\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
\end{aligned}
$$

Integral curves are helices (with centers along the x_{3}-axis).
5.5.7 Example. Let $M=\mathrm{GL}^{+}(2, \mathbb{R})$. For $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \in \mathbb{R}^{2 \times 2}$, let X be the vector field on M defined by $p \mapsto A p$. Then

$$
\Phi(t, p)=\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right] p, \quad p \in M
$$

$\varphi_{t}(p)$ is the matrix multiplication of $p \in M$ by $\exp (t A)$ from the left for each $t \in \mathbb{R}$.

Vector fields as differential operators

Let M be a manifold and let $T M$ be the corresponding tangent bundle. The algebra of smooth functions on M is denoted by $C^{\infty}(M)$ (see Execise 224).

Recall that tangent vectors act on smooth functions and produce directional derivatives. Specifically, if $X_{p}=\left.\frac{d \alpha}{d t}\right|_{t=0} \in T_{p} M$ and $f \in C^{\infty}(M)$, then

$$
X_{p} f=\left.\frac{d}{d t} f \circ \alpha(t)\right|_{t=0} \in \mathbb{R}
$$

is the directional derivative of f along X_{p}.
\diamond Exercise 272 Given a mapping $X: M \rightarrow T M$, show that the following statements are logically equivalent :
(a) X is smooth (as a mapping between manifolds). In other words, X is a smooth vector field on M.
(b) For each admissible chart (U, ϕ) on M, the coordinate functions X_{i} : $U \rightarrow \mathbb{R}$ of X are smooth.
(c) For each smooth function $f: M \rightarrow \mathbb{R}$, the function $x \mapsto X(x) f$ is also smooth.

Smooth vector fields act as derivations on the space of smooth functions. Indeed, let $X \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$. Then $X f$ will denote the smooth function

$$
x \mapsto(X f)(x):=X(x) f .
$$

The function $X f$ is often known as the Lie derivative of the function f along the vector field X, and is then denoted $\mathfrak{L}_{X} f$. In local coordinates, if X is of the form

$$
X=X_{1} \frac{\partial}{\partial x_{1}}+\cdots+X_{m} \frac{\partial}{\partial x_{m}}
$$

then

$$
\begin{aligned}
\mathfrak{L}_{X} f & =\frac{\partial f}{\partial x_{1}} X_{1}+\cdots+\frac{\partial f}{\partial x_{m}} X_{m} \\
& =\left[\begin{array}{lll}
\frac{\partial f}{\partial x_{1}} & \cdots & \frac{\partial f}{\partial x_{m}}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right] \\
& =\frac{\partial f}{\partial x} X .
\end{aligned}
$$

Note : One can also define the Lie derivative of a function by the formula

$$
\mathfrak{L}_{X} f:=\lim _{t \rightarrow 0} \frac{\varphi_{t}^{*} f-f}{t}
$$

where φ_{t} is the (local) flow of X. (It is then easy to see that $\mathfrak{L}_{X} f=X f$.)
\diamond Exercise 273 Given $X \in \mathfrak{X}(M), f, g \in C^{\infty}(M)$ and $\lambda \in \mathbb{R}$, verify that
(D1) $\quad X(f+g)=X f+X g$;
(D2) $\quad X(\lambda f)=\lambda X f$;
(D3) $\quad X(f \cdot g)=f \cdot X g+g \cdot X f$.
This shows that the mapping $f \mapsto X f$ (i.e. the Lie derivative $\mathfrak{L}_{X}: C^{\infty}(M) \rightarrow$ $\left.C^{\infty}(M)\right)$ is linear and satisfies the Leibniz rule, hence is a derivation of (the ring) $C^{\infty}(M)$.

Note : Derivations of $C^{\infty}(M)$ are also called first order differential operators. The set $\mathfrak{D}(M)$ of all such derivations is a vector space (over \mathbb{R}).

We have a natural inclusion $\left(X \mapsto \mathfrak{L}_{X}\right)$

$$
\mathfrak{X}(M) \subseteq \mathfrak{D}(M)
$$

(every smooth vector field is a derivation). One can prove that all derivations of $C^{\infty}(M)$ are smooth vector fields on M (i.e. the reverse inclusion $\mathfrak{D}(M) \subseteq$ $\mathfrak{X}(M)$ holds $)$.

Note : For this, we need to show that a derivation of $C^{\infty}(M)$ can be localized to a derivation of the algebra $C^{\infty}(p)$ of function germs at each $p \in M$. (Caution : For $f \in C^{\infty}(p)$ we do not require that $f(p)=0$. Such elements form a subalgebra $\mathbf{F}(p)$ of $C^{\infty}(p)$.) This is by no means evident. The "tricky" part is to show that (for $\Delta \in \mathfrak{D}(M)$ and $p \in M)$ the mapping

$$
\Delta_{p}: C^{\infty}(p) \rightarrow \mathbb{R}, \quad f \mapsto \Delta(f)(p)
$$

is well-defined (i.e. depends only on Δ and the function germ $f=\langle f\rangle_{p}$). Then it follows that

$$
\widetilde{\Delta}: p \mapsto \Delta_{p} \in T_{p} M
$$

is a smooth section of (the tangent bundle) $T M$, hence a smooth vector field on M.
Henceforth, we shall regard a smooth vector field (on a given manifold) either as a smooth section of the tangent bundle of the manifold or as a derivation of the algebra of smooth functions on that manifold.

The Lie algebra of vector fields

Given a manifold M, the set of all smooth vector fields on M is denoted by $\mathfrak{X}(M)$. It is itself a vector space (over \mathbb{R}) since any linear combination (with constant coefficients) of two smooth vector fields is also a smooth vector field. More precisely, if $X, Y \in \mathfrak{X}(M)$ and $\lambda, \mu \in \mathbb{R}$, then (for $f \in C^{\infty}(M)$)

$$
\lambda X+\mu Y: f \mapsto(\lambda X+\mu Y) f:=\lambda X f+\mu Y f
$$

is a derivation of $C^{\infty}(M)$, hence a smooth vector field on M.
Note : As a vector space, $\mathfrak{X}(M)$ is not finite-dimensional. In fact, $\mathfrak{X}(M)$ is more than just a vector space; it is a Lie algebra as we shall see.

Let $X, Y \in \mathfrak{X}(M)$ (viewed as derivations of $C^{\infty}(M)$). Then, in general, neither $Y X$ nor $X Y$ is a derivation. However, oddly enough, the operator $Y X-X Y$ is a derivation (of $C^{\infty}(M)$).
\diamond Exercise 274 Given $X, Y \in \mathfrak{X}(M)$, verify that the operator $Y X-X Y$: $C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a derivation, hence is (identified with) a smooth vector field on M.

We make the following definition.
5.5.8 Definition. The smooth vector field $[X, Y] \in \mathfrak{X}(M)$, defined by

$$
[X, Y] f:=Y(X f)-X(Y f)
$$

is called the Lie bracket of X and Y.
It is easy to check that the Lie bracket $[\cdot, \cdot]: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ has the following properties (for $\lambda, \mu \in \mathbb{R}$ and $X, Y, Z \in \mathfrak{X}(M)$):
(LA1) $\quad[X, Y]=-[Y, X] ;$
(LA2) $\quad[X, \lambda Y+\mu Z]=\lambda[X, Y]+\mu[X, Z]$;
(LA3) $\quad[X,[Y, Z]]+[Y,[Z, X]]+[Z,[X, Y]]=0$.
This means that the real vector space $\mathfrak{X}(M)$ equipped with the Lie bracket $[\cdot, \cdot]$ is a Lie algebra.

We may now derive the expression in local coordinates for $[X, Y]$. Let

$$
X=X_{1} \frac{\partial}{\partial x_{1}}+\cdots+X_{m} \frac{\partial}{\partial x_{m}} \quad \text { and } \quad Y=Y_{1} \frac{\partial}{\partial x_{1}}+\cdots+Y_{m} \frac{\partial}{\partial x_{m}}
$$

be local representations of X and Y, respectively (in an admissible chart (U, ϕ) of $M)$. Then

$$
\begin{aligned}
{[X, Y] f } & =Y(X f)-X(Y f) \\
& =\sum_{i, j=1}^{m} Y_{i} \frac{\partial X_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}}-\sum_{i, j=1}^{m} X_{i} \frac{\partial Y_{j}}{\partial x_{i}} \frac{\partial f}{\partial x_{j}} \\
& =\sum_{j=1}^{m}\left(\sum_{i=1}^{m} Y_{i} \frac{\partial X_{j}}{\partial x_{i}}-X_{i} \frac{\partial Y_{j}}{\partial x_{i}}\right) \frac{\partial f}{\partial x_{j}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
{[X, Y] } & =\sum_{j=1}^{m}\left(\sum_{i=1}^{m} Y_{i} \frac{\partial X_{j}}{\partial x_{i}}-X_{i} \frac{\partial Y_{j}}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}} \\
& =\left[\begin{array}{ccc}
\frac{\partial X_{1}}{\partial x_{1}} & \cdots & \frac{\partial X_{1}}{\partial x_{m}} \\
\vdots & & \vdots \\
\frac{\partial X_{m}}{\partial x_{1}} & \cdots & \frac{\partial X_{m}}{\partial x_{m}}
\end{array}\right]\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{m}
\end{array}\right]-\left[\begin{array}{ccc}
\frac{\partial Y_{1}}{\partial x_{1}} & \cdots & \frac{\partial Y_{1}}{\partial x_{m}} \\
\vdots & & \vdots \\
\frac{\partial Y_{m}}{\partial x_{1}} & \cdots & \frac{\partial Y_{m}}{\partial x_{m}}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{m}
\end{array}\right] \\
& =\frac{\partial X}{\partial x} Y-\frac{\partial Y}{\partial x} X .
\end{aligned}
$$

5.5.9 Example. For constant (or parallel) vector fields

$$
X: x \mapsto a=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right] \quad \text { and } \quad Y: x \mapsto b=\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]
$$

on $M=\mathbb{E}^{m}$, we have $[X, Y]=0$.
5.5.10 Example. Let $X, x \mapsto A x$ be a linear vector field and $Y, x \mapsto b$ be a constant vector field on $M=\mathbb{E}^{m}$. Then

$$
\begin{aligned}
X & =\left(a_{11} x_{1}+\cdots+a_{1 m} x_{m}\right) \frac{\partial}{\partial x_{1}}+\cdots+\left(a_{m 1} x_{1}+\cdots+a_{m m} x_{m}\right) \frac{\partial}{\partial x_{m}} \\
Y & =b_{1} \frac{\partial}{\partial x_{1}}+\cdots+b_{m} \frac{\partial}{\partial x_{m}}
\end{aligned}
$$

and so

$$
[X, Y]=\frac{\partial X}{\partial x} Y-\frac{\partial Y}{\partial x} X=A b-0=A b .
$$

Therefore $[X, Y]$ is a constant vector field $x \mapsto c$, with $c=A b$.
5.5.11 Example. If $X, x \mapsto A x$ and $Y, x \mapsto B x$ are both linear vector fields (on $M=\mathbb{E}^{m}$), then

$$
[X, Y]=\frac{\partial X}{\partial x} Y-\frac{\partial Y}{\partial x} X=A B x-B A x=(A B-B A) x \text {. }
$$

Therefore $[X, Y]$ is also a linear vector field $x \mapsto C x$, with $C=[A, B]$ (the commutator of the matrices A and B).

We have seen that the set $\mathfrak{X}(M)$ (of all smooth vector fields on M) has a natural structure of Lie algebra. In addition to this structure, $\mathfrak{X}(M)$ admits another algebraic structure : for any $f \in C^{\infty}(M)$ and any $X \in \mathfrak{X}(M)$,

$$
f X: p \mapsto(f X)(p):=f(p) X(p) \in T_{p} M
$$

is a smooth vector field on M. (Caution : do not confuse $X f$ and $f X$.) With this operation, $\mathfrak{X}(M)$ becomes a module over the ring $C^{\infty}(M)$.

Note : The Lie bracket $[\cdot, \cdot]: C^{\infty}(M) \times C^{\infty}(M) \rightarrow C^{\infty}(M)$ is not $C^{\infty}(M)$ bilinear. In fact (for $g \in C^{\infty}(M)$),

$$
[X, g Y]=g[X, Y]-(X g) Y .
$$

Exercise 275 Let $X, Y \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$. Show that

$$
[f X, g Y]=f g[X, Y]-f(X g) Y+g(Y f) X
$$

Use this formula to derive the formula for the components of $[X, Y]$ in local coordinates.

Commutativity of vector fields

Orbits of vector fields

5.6 Differential Forms

