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6.1 Lie Groups: Definition and Examples

Lie groups form an important class of smooth (in fact, analytic) manifolds.

(Their prototype is any finite-dimensional group of linear transformations on

a vector space.) The key idea of a Lie group is that it is a group in the usual

sense, but with the additional property that it is also a smooth manifold, and

in such a way that the group operations are smooth. A good example is the

circle S1 = {z ∈ C | |z| = 1}.
Lie groups (and their Lie algebras) play a central role in geometry, topol-

ogy, and analysis, as well as in modern theoretical physics. The precise defi-

nition is given below.

6.1.1 Definition. A (real) Lie group is a smooth manifold G which is

also a group such that the operations

G×G→ G, (g1, g2) 7→ g1g2 and G→ G, g 7→ g−1

are smooth mapings.

6.1.2 Example. The vector space Rm, when equipped with its natural

smooth structure (i.e., viewed as the Euclidean space Rm in the broad sense),

is an m-dimensional (Abelian) Lie group.

6.1.3 Example. The general linear group GL (n,R) is evidently a Lie

group. It is an open subset of (the vector space) Rn×n (and hence a smooth

submanifold of Rn2
) and the group operations are given by rational functions

of the coordinates.

Note : Let V be an n-dimensional vector space (over R). Then the group GL (V )

of all linear transformations on V is an n2-manifold. Any choice of a basis in V

induces a linear isomorphism from GL (V ) onto GL (n,R) ⊆ Rn2

(an hence a global

chart on GL (V )). The coordinates of any product (composition) ST of elements in

GL (V ) are polynomial expressions of the coordinates of S and T , and the coordinates

of S−1 are rational functions of the coordinates of S. It therefore follows that both

group operations (S, T ) 7→ ST and S 7→ S−1 are smooth (in fact, real analytic)

mappings from GL (V )× GL (V ) and GL (V ), respectively, onto GL (V ).
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6.1.4 Example. The special linear group SL (n,R) and the orthogonal

group O (n) are clearly Lie groups. Both subgroups SL (n,R) and O (n)

are smooth submanifolds of (the Lie group) GL (n,R), hence smoothness of

the group operations on GL (n,R) implies smoothness of their restrictions to

SL (n,R) and O (n).

6.1.5 Example. The complex general linear group GL (n,C) ⊆ R2n2
is a

(real) Lie group. In particular, C× = GL (1,C) is a Lie group. The unit circle

S1 ⊆ C× is a subgroup and a (smoothly embedded) submanifold, hence also

a Lie group.

6.1.6 Example. If G1 and G2 are Lie groups, then G1 × G2 is a Lie

group under the usual Cartesian group operations and the smooth product

structure. In particular, the m-dimensional torus

Tm = S1 × · · · × S1

is a Lie group.

6.1.7 Example. Let H denote the division algebra of quaternions. The

nonzero quaternions H× form a multiplicative group and a (smooth) manifold

diffeomorphic to R4 \ {0}. It is clear that the group operations are smooth,

so H× is a Lie group. The 3-sphere S3 ⊆ H× consists of the unit length

quaternions, hence it is closed under multiplication and passing to inverses.

This gives a Lie group structure on S3.

Usually, the identity element of a Lie group will be denoted by e. (For

matrix groups, however, the customary symbol for the identity is I.)

Note : In most of the literature, Lie groups are defined to be real analytic. That

is, G is a manifold with a Cω (real analytic) atlas and the group operations are

real analytic. In fact, no generality is lost by this more restrictive definition. Smooth

Lie groups always support an analytic group structure, and something even stronger

is true. Hilbert’s Fifth problem was to show that if G is only assumed to be

a topological manifold with continuous group operations, then it is, in fact, a real

analytic Lie group. This was finally proven by the combined work of A. Gleason,

D. Montgomery, and L. Zippin (195?).
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6.2 Invariant Vector Fields

One of the most important features of a Lie group is the existence of an

associated Lie algebra that encodes many of the properties of the group. The

crucial property of a Lie group that enables this to occur is the existence of

the left and right translations on the group.

Let G be a Lie group. For any g ∈ G, the mappings

Lg : G→ G, x 7→ gx and Rg : G→ G, x 7→ xg

are called the left and right translation (by g), respectively. For each g ∈ G,

both Lg and Rg are smooth mappings on G.

� Exercise 276 Verify that (for every g1, g2, g, h ∈ G)

(a) Lg1 ◦ Lg2 = Lg1g2 .

(b) Rg1 ◦Rg2 = Rg2g1 .

(c) Le = Re = idG (e ∈ G denotes the identity element).

(d) (Lg)
−1 = Lg−1 and (Rg)

−1 = Rg−1 . (Hence Lg and Rg are diffeomor-

phisms.)

(e) Lg ◦Rh = Rh ◦ Lg.

Note : Given any admissible chart on G, one can construct an entire atlas on the

Lie group G by use of left (or right) translations. Suppose, for example, that (U, φ)

is an admissible chart with e ∈ U . Define a chart (Ug, φg) with g ∈ Ug by letting

Ug : = Lg(U) = {Lg(x) |x ∈ U}

and defining

φg : = φ ◦ Lg−1 : Ug → φ(U), x 7→ φ(g−1x).

The collection of charts {(Ug, φg)}g∈G forms a (smooth) atlas provided one can show

that the transition mappings

φg2 ◦ φ−1
g1 = φ ◦ Lg−1

2 g1
◦ φ−1 : φg1(Ug1 ∩ Ug2)→ φg2(Ug1 ∩ Ug2)

is smooth. But this follows from the smoothness of group multiplication and passing

to inverse.
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By the chain rule,(
Lg−1

)
∗,gh ◦ (Lg)∗,h =

(
Lg−1 ◦ Lg

)
∗,h = idG.

Thus the tangent mapping (Lg)∗,h is invertible and so, in particular,

(Lg)∗ = (Lg)∗,e : TeG→ TgG

is a linear isomorphism. Likewise, (Rg)∗,h is invertible.

6.2.1 Definition. A vector field X on G is called

• left-invariant if for every g ∈ G

(Lg)∗X(e) = X(g).

• right-invariant if for every g ∈ G

(Rg)∗X(e) = X(g).

It follows that a vector field (on G) that is either left- or right-invariant is

determined by its value at the identity.

Note : Recall that smooth vector fields act as derivations on the space of smooth

functions. (If X is a smooth vector field and f is a smooth function on M , then

Xf denotes the (smooth) function x 7→ X(x)f .) For any smooth vector fields X

and Y , their Lie bracket [X,Y ] defined by

[X,Y ]f = Y (Xf)−X(Y f)

is also a smooth vector field. The (vector) space X(M) of all smooth vector space

on M has the structure of a (real) Lie algebra, with the product given by the Lie

bracket.

The set of all left-invariant (respectively, right-invariant) vector fields on a

Lie group G is denoted XL(G) (respectively, XR(G)). Clearly, both XL(G)

and XR(G) are (real) vector spaces (under the pointwise vector addition and

scalar multiplication).

Note : We defined the push forward Φ∗,p : TpM → TΦ(p)N induced by the

(smooth) mapping Φ : M → N (the so-called tangent mapping of Φ at p ∈ M).
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This is a linear mapping between the vector spaces TpM and TΦ(p)N , and the ques-

tion arises of whether it is similarly possible to define an induced mapping between

the (vector) spaces of smooth vector fields X(M) and X(N). Given a vector field

X ∈ X(M) and a smooth mapping Φ : M → N , a natural choice for an induced

vector field Φ∗X ∈ X(N) might appear to be

Φ∗X(Φ(p)) = Φ∗,p(X(p))

but this may fail to be well-defined for two reasons :

• If there are points p1, p2 ∈ M such that Φ(p1) = Φ(p2) (i.e. the mapping

Φ is not one-to-one), then the “definition” above will be ambiguous when

Φ∗X(p1) 6= Φ∗X(p2).

• If Φ is not onto, then the defining equation does not specify the induced vector

field outside the range of Φ.

Observe that if Φ is a diffeomorphism from M to N , then neither of these objec-

tions apply and an induced vector field Φ∗X can be defined via the above equation.

However, it is possible that in certain cases the idea will work, even if Φ is not a dif-

feomeorphism, and this motivates the following definition : vector fields X ∈ X(M)

and Y ∈ X(N) are said to be Φ-related provided Φ∗X(p) = Y (Φ(p)) for all p ∈M .

We then write Φ∗X = Y . It is not difficult to see that if Φ∗X1 = Y1 and Φ∗X2 = Y2,

then [X1, X2] is Φ-related to [Y1, Y2] with

Φ∗[X1, X2] = [Φ∗X1,Φ∗X2].

6.2.2 Proposition. Let X and Y be any left-invariant (respectively, right-

invariant) vector fields. Then [X,Y ] is a left-invariant (respectively, right-

invariant) vector field.

Proof : Let X,Y ∈ XL(G) and g ∈ G. Then (and only then) (Lg)∗X = X

and (Lg)∗Y = Y . Hence

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

and so [X,Y ] ∈ XL(G). The case of right-invariant vector fields is similar. 2

Therefore, both XL(G) and XR(G) are Lie subalgebras of the (infinite

dimensional) Lie algebra X(G) of all smooth vector fields on G.
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For each A ∈ TeG, we define a (smooth) vector field XA on G by letting

XA(g) : = (Lg)∗,eA.

Then

(Lg)∗XA(e) = (Lg)∗ ((Le)∗A)

= (Lg)∗ ◦ (Le)∗A

= (Lge)∗,eA

= (Lg)∗,eA

= XA(g)

which shows that XA is left-invariant. Consider the mappings

ζ1 : XL(G)→ TeG, X 7→ X(e)

and

ζ2 : TeG→ XL(G), A 7→ XA.

� Exercise 277 Verify that ζ1 and ζ2 are linear mappings that satisfy

ζ1 ◦ ζ2 = idTe(G) and ζ2 ◦ ζ1 = idXL(G).

(It is clear that ζ2 is the inverse of ζ1, and hence for a left-invariant vector field X

(Lg)∗X(e) = X(g) and (Lg−1)∗XA(g) = A.)

Therefore, XL(G) and TeG are isomorphic (as vector spaces). It follows

that the dimension of the vector space XL(G) is equal to dimTeG = dimG.

Note : Since, by assumption, G is a (finite-dimensional) manifold it follows that

XL(G) is a finite-dimensional, nontrivial subalgebra of the Lie algebra of all (smoth)

vector fields on G.

For any A,B ∈ TeG, we define their Lie product (bracket) [A,B] by

[A,B] : = [XA, XB](e)

where [XA, XB] is the Lie bracket of vector fields. This makes TeG into a

Lie algebra. We say that this defines a Lie product in TeG via left extension.
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Note : By construction,

[XA, XB ] = X[A,B]

for all A,B ∈ TeG.

6.2.3 Definition. The vector space TeG with this Lie algebra structure

is called the Lie algebra of G and is denoted by g.

� Exercise 278 Let ϕ : G → H be a smooth homomorphism between the Lie

groups G and H. Show that the induced mapping

dϕ = ϕ∗,e : TeG = g→ TeH = h

is a homomorphism between the Lie algebras of the groups.

A similar construction to the above can be carried out with the Lie algebra

XR(G) of right-invariant vector fields on G. In this case, for each A ∈ TeG,

the corresponding right-invariant vector field is defined by

YA(g) : = (Rg)∗,eA.

We have (for A,B ∈ TeG)

[YA, YB](e) = −[XA, XB](e).

Therefore, the Lie product [·, ·]R in g defined by right extension of elements

of g :

[A,B]R : = [YA, YB](e)

is the negative of the one defined by left extension; that is,

[A,B]R = −[A,B].

Note : There is a natural isomorphism between the (Lie algebras) XL(G) and

XR(G). It is equal to the tangent mapping of Φ : G→ G, x 7→ x−1. In particular,

we have (for A ∈ g = TeG )

Φ∗XA = −YA.

Orbits of invariant vector fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.3 The Exponential Mapping

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.4 Matrix Groups as Lie Groups

We have seen that the matrix groups GL (n,k), SL (n, k), and O (n) are all

Lie groups. These examples are typical of what happens for any matrix group

that is a Lie subgroup of GL (n,R). The following important result holds.

6.4.1 Theorem. Let G ≤ GL (n,R) be a matrix group. Then G is a Lie

subgroup of GL (n,R).

Note : In fact, a more general result also holds (but we will not give a proof) :

Every closed subgroup of a Lie group is a Lie subgroup.

Our aim in this section is to prove Theorem 4.5.1.

Let G ≤ GL (n,R) be a matrix group, and let g = TIG denote its Lie

algebra.

6.4.2 Proposition. Let

g̃ : = {A ∈ Rn×n | exp(tA) ∈ G for all t}.

Then g̃ is a Lie subalgebra of Rn×n.

Proof : By definition, g̃ is closed under (real) scalar multiplication. If

U, V ∈ g̃ and r ≥ 1, then the following are in G :

exp

(
1

r
U

)
exp

(
1

r
V

)
,

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
,

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
,(

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

For t ∈ R, by the Lie-Trotter Product Formula we have

exp(tU + tV ) = lim
r→∞

(
exp

(
1

r
tU

)
exp

(
1

r
tV

))r
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and by the Commutator Formula

exp(t[U, V ]) = exp([tU, V ])

= lim
r→∞

(
exp

(
1

r
tU

)
exp

(
1

r
V

)
exp

(
−1

r
tU

)
exp

(
−1

r
V

))r2
.

As these are both limits of elements of the closed subgroup G ≤ GL (n,R),

they are also in G. This shows that g̃ is a Lie subalgebra of gl (n,R) = Rn×n.

2

6.4.3 Corollary. g̃ is a Lie subalgebra of g.

Proof : Let U ∈ g̃. Then the curve

γ : R→ G, t 7→ exp(tU)

has γ(0) = I and γ̇(0) = U , hence U ∈ g. 2

Note : Eventually we will see that g̃ = g.

We will require a technical result.

6.4.4 Lemma. Let (Ar)r≥1 and (λr)r≥1 be sequences in exp−1(G) and

R, respectively. If ‖Ar‖ → 0 and λrAr → A ∈ Rn×n as r →∞, then A ∈ g̃.

Proof : Let t ∈ R. For each r, choose an integer mr ∈ Z so that |tλr −
mr| ≤ 1. Then

‖mrAr − tA‖ ≤ ‖(mr − tλr)Ar‖+ ‖tλrAr − tA‖

= |mr − tλr|‖Ar‖+ ‖tλrAr − tA‖

≤ ‖Ar‖+ |t|‖λrAr −A‖ → 0

as r → ∞, showing that mrAr → tA. Since exp(mrAr) = exp(Ar)
mr ∈ G

and G is closed in GL (n,R), we have

exp(tA) = lim
r→∞

exp(mrAr) ∈ G.

Thus every scalar multiple tA is in exp−1(G), showing that A ∈ g̃. 2
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Proof of Theorem 4.5.1 : Choose a complementary R-subspace w to

g̃ in Rn×n; that is, any vector subspace such that

g̃ + w = Rn×n

dim g̃ + dimw = dimRn×n = n2.

(The second of these conditions is equivalent to g̃ ∩ w = 0.) This gives a a

direct sum decomposition of Rn×n, so every element X ∈ Rn×n has a unique

decomposition of the form

X = U + V (U ∈ g̃, V ∈ w).

Consider the mapping

Φ : Rn×n → GL (n,R), U + V 7→ exp(U) exp(V ).

Φ is a smooth mapping which maps O to I. Observe that the factor exp(U)

is in G. Consider the derivative (at O)

DΦ(O) : Rn×n → Rn×n.

To determine DΦ(O) · (A+B), where A ∈ g̃ and B ∈ h, we differentiate the

curve t 7→ Φ(t(A+B)) at t = 0. Assuming that A and B small enough, for

small t ∈ R, there is a unique matrix C(t) (depending on t) for which

Φ(t(A+B)) = exp(C(t)).

Then (by using the estimate in Proposition 3.5.6)

‖C(t)− tA− tB − t2

2
[A,B]‖ ≤ 65|t|3 (‖A‖+ ‖B‖)3 .

From this we obtain

‖C(t)− tA− tB‖ ≤ t2

2
‖[A,B]‖+ 65|t|3 (‖A‖+ ‖B‖)3

=
t2

2

(
‖[A,B]‖+ 130|t| (‖A‖+ ‖B‖)3

)
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and so

DΦ(O) · (A+B) =
d

dt
Φ(t(A+B))

∣∣∣∣
t=0

=
d

dt
exp(C(t))

∣∣∣∣
t=0

= A+B.

Hence DΦ(O) is the identity mapping on Rn×n, and by the Inverse Map-

ping Theorem, there exists an open neighborhood (and we may take this to

be an open ball) BRn×n(O, δ) of O such that the restriction

Φ1 : = Φ|B(O,δ) : B(O, δ)→ Φ (B(O, δ))

is a smooth diffeomeorphism.

Now we must show that Φ maps some open subset (which we may assume

to be an open ball) of BRn×n(O, δ) ∩ g̃ onto an open neighborhood of I in

G. Suppose not. Then there is a sequence of elements (Ur)r≥1 in G with

Ur → I as r → ∞ but Ur 6∈ Φ(g̃). For large enough r, Ur ∈ Φ(B(O, δ)),

hence there are unique elements Ar ∈ g̃ and Br ∈ w with Φ(Ar +Br) = Ur.

Notice that Br 6= O since otherwise Ur ∈ Φ(g̃). As Φ1 is a diffeomorphism,

Ar + Br → O and this implies that Ar → O and Br → O. By definition of

Φ,

exp(Br) = exp(Ar)
−1Ur ∈ G.

Hence Br ∈ exp−1(G). Consider the elements B̄r = 1
‖Br‖Br of unit norm.

Each B̄r is in the unit sphere in Rn×n, which is compact hence there is a

convergent subsequence of (B̄r)r≥1. By renumbering this subsequence, we

can assume that B̄r → B, where ‖B‖ = 1. Applying Lemma 4.5.4 to the

sequences (Br)r≥1 and
(

1
‖Br‖

)
r≥1

, we find that B ∈ g̃. But each Br (and

hence B̄r ) is in w, so B must be too. Thus B ∈ g̃ ∩ w, which contradicts

the fact that B 6= O.

So there must be an open ball

B g̃(O, δ1) = BRn×n(O, δ1) ∩ g̃

which is mapped by Φ onto an open neighborhood of I in G. So the re-

striction of Φ to this open ball is a local diffeomorphism at O. The inverse
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mapping gives a local chart for G at I (and moreover B g̃(O, δ1) is then a

smooth submanifold of Rn×n). We can use left translation to move this local

chart to a new chart at any other point U ∈ G (by considering LU ◦ Φ).

So we have shown that G ≤ GL (n,R) is a smooth submanifold. The

matrix product (A,B) 7→ AB is clearly a smooth (in fact, analytic) function

of the entries of A and B, and (in light of Cramer’s rule) A 7→ A−1 is a

smooth (in fact, analytic) function of the entries of A. Hence G is a Lie

subgroup, proving Theorem 4.5.1.

2

This is a fundamental result that can be usefully reformulated as follows

: A subgroup of GL (n,R) is a closed Lie subgroup if and only if it is a ma-

trix subgroup. (More generally, a subgroup of a Lie group G is a closed Lie

subgroup if and only if is a closed subgroup.)

Note : Recall that the dimension of a matrix group G (as a manifold) is dim g̃.

By Corollary 4.5.3, g̃ ⊆ g and so dim g̃ ≤ dim g. By definition of g = TIG, these

dimensions are in fact equal, giving

g̃ = g.

Combining with Proposition 3.3.3, this gives the following result : For a matrix

group G ≤ GL (n,R), the exponential mapping

exp : g→ Rn×n

has image in G. Moreover, expG is a local diffeomorphism at the origin (mapping

some open neighborhood of 0 onto an open neighborhood of I in G).

It is a remarkable fact that most of the important examples of Lie groups

are (or can easily be represented as) matrix groups. However, not all Lie

groups are matrix groups. For the sake of completeness, we shall describe the

simplest example of a Lie group which is not a matrix group.

Consider the matrix group (of unipotent 3× 3 matrices)

H (1) =

γ(x, y, t) =

1 x t

0 1 y

0 0 1

 |x, y, t ∈ R

 ≤ GL (3,R)



C.C. Remsing 285

commonly referred to as the Heisenberg group. H (1) is a 3-dimensional Lie

group.

Note : More generally, the Heisenberg group H (n) is defined by

H (n) =

γ(x, y, t) =

1 xT t

0 In y

0 0 1

 | (x, y) ∈ R2n, t ∈ R

 ≤ GL (n+ 2,R).

This (matrix) group is isomorphic to either one of the following groups :

• R2n+1 equipped with the group multiplication

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ + x • y′).

• R2n+1 equipped with the group multiplication

(x, y, t)(x′, y′, t′) =

(
x+ x′, y + y′, t+ t′ +

1

2
(Ω((x, y), (x′, y′)))

)
where Ω((x, y), (x′, y′)) = x • y′ − x′ • y is the standard symplectic form on

R2n.

The Lie algebra h (n) of H (n) is given by

h (n) =

Γ(x, y, t) =

0 xT t

0 On y

0 0 0

 | (x, y) ∈ R2n, t ∈ R

 .

(The Lie algebra h (1), which occurs throughout quantum physics, is essentially the

same as the Lie algebra of operators on differentiable functions f : R → R spanned

by the three operators 1,p,q defined by

1f(x) : = f(x), pf(x) : =
d

dx
f(x), qf(x) : = xf(x).

The non-trivial commutator involving these three operators is given by the canonical

commutation relation [p,q] = pq− qp = 1.)

� Exercise 279 Determine the (group) commutator in H (1) (i.e. the product

γγ′γ−1γ′
−1

for γ, γ′ ∈ H (1)) and hence deduce that the centre Z(H (1)) of H (1) is

Z(H (1)) = {γ(0, 0, t) | t ∈ R} .
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Clearly, there is an isomorphism (of Lie groups) between R and Z(H(1)),

under which the subgroup Z of integers corresponds to the subgroup Z of

Z(H(1)). Thus

Z = {γ(0, 0, t) | t ∈ Z} .

The subgroup Z is discrete and also normal.

Note : (1) By a discrete group Γ is meant a group with a countable number of

elements and the discrete topology (every point is an open set). A discrete group is

a 0-dimensional Lie group. Closed 0-dimensional Lie subgroups of a Lie group are

usually called discrete subgroups. The following remarkable result holds : If Γ is a

discrete subgroup of a Lie group G, then the space of right (or left) cosets G/Γ is a

smooth manifold (and the natural projection G→ G/Γ is a smooth mapping).

(2) A subgroup N of G is normal if for any n ∈ N and g ∈ G we have gng−1 ∈ N .

A kernel of a homomorphism is normal. Conversely, if N is normal, we can define

the quotient group G/N whose elements are equivalence classes [g] of elements in

G, and two elements g, h are equivalent if and only if g = hn for some n ∈ N . The

multiplication is given by [g][h] = [gh] and the fact that N is normal says that this

is well-defined. Thus normal subgroups are exactly kernels of homomorphisms.

Hence we can form the quotient group

H (1)/Z

which is in fact a ( 3-dimensional) Lie group. (Its Lie algebra is h (1).)

The following result (which we will not prove) tells that the Lie group

H (1)/Z cannot be realized as a matrix group.

6.4.5 Proposition. There are no continuous homomorphisms ϕ : H (1)/Z →
GL (n,C) with trivial kernel.

6.5 Hamiltonian Vector Fields

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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6.6 Lie-Poisson Reduction
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