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The most practical solution is a good theory.

Albert Einstein

Once upon a time, it is said, in the Good Old Days (read nineteenth century),

there was only Mathematics, a subject intimately bound up with the ways of

Mother Nature. Today this subject has fragmented into two ideological blocs,

labelled Pure and Applied. Each views the other with an element of distrust

[. . . ] Each side has the conviction of the True Believer in its own moral supe-

riority. The Applied Mathematicians accuse the Pure of a lack of contact with

reality; the Pure Mathematicians feel that Applied are altogether too slapdash

and have never quite grasped the rules of the game [. . . ] There is without

doubt a great difference in attitudes between those who called themselves pure

and those who called themselves applied. Halmos reckons that the main differ-

ence is that the applied mathematicians are convinced there is no difference,

whereas the pure mathematicians know perfectly well there is. A more salient

difference is one of intention. The applied mathematician wants an an-

swer; the pure mathematician wants to understand the problem. The

pure mathematician observes that sometimes the applied one is so keen to an-

swer that he doesn’t worry much whether it’s the right answer. The applied

mathematician observes that when the pure one can’t understand a problem

he moves on to another one and tries again. Perhaps the true difference is

that applied mathematicians devote a lot of thought to the modelling process –

devising an effective mathematical model of a natural phenomenon – whereas

this step is largely absent from pure mathematicians.

Ian Stewart
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Scientists use mathematics to build mental universes.

They write down mathematical descriptions – mod-

els – that capture essential fragments of how they

think this world behaves. Then they analyse their

consequences. This is called “theory”. They test

their theories against observations : this is called

“experiment”. Depending on the result, they may

modify the mathematical model and repeat the cy-

cle until theory and experiment agree. Not that it’s

really that simple; but that’s the general gist of it,

the essence of the scientific method.

I. Stewart and M. Golubitsky

Differential equations are the particular dialect of

the language of mathematics that most effectively

describes how nature works.

J.D. Barrow

What is Mathematical Control Theory ?

Mathematical control theory is the area of application-oriented mathemat-

ics that deals with the basic principles underlying the analysis and design of

control systems. To control an object means to influence its behaviour so as to

achieve a desired goal. In order to implement this influence, control engineers

build devices that incorporate various mathematical techniques. These de-

vices range from Watt’s steam engine governor, designed during the English

Industrial Revolution, to the sophisticated microprocessor controllers found

in items – such as CD players and automobiles – or in industrial robots and

airplane autopilots.

Control theory was originally developed to satisfy the design needs of ser-
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vomechanisms, under the name of “automatic control theory”. The clas-

sical theory of automatic control mostly deals with linear feedback control

systems with single input and single output. Mathematical structures of such

systems must be, in principle, described in terms of linear ordinary differen-

tial equations (ODEs) with constant coefficients. Hence control engineers use

block diagrams to describe systems, and operational calculus based on Laplace

transforms to obtain response characteristics. Thus the input/output relation

of a system is described in terms of transfer functions. One of the remarkable

contributions to classical control theory is Nyquist’s criterion (after its origi-

nator, Harry Nyquist (1889-1976)) for stability testing of linear feedback

systems. The test consists of plotting the Nyquist diagram of a transfer func-

tion in the frecquency domain (complex plane), and differs essentially from

the Routh-Hurwitz stability test for linear ODEs with constant coefficients.

Control theory became recognized as a mathematical subject in the 1960’s.

Around 1960 three remarkable contributions were made concurently; they are

• dynamic programming – Richard E. Bellman (1920-1984)

• Pontryagin’s principle – Lev S. Pontryagin (1908-1988)

• linear system theory – Rudolf E. Kalman (1930).

The first two give rise to mathematical tools to solve optimal control prob-

lems and to design optimal controllers and regulators. In contrast to the

classical theory of control, optimal control problems are formulated in terms

of systems of linear or nonlinear multivariable ODEs with multiinput (control)

variables. Linear system theory derives from the concepts of controllability and

observability. These two concepts are concerned with the interaction between

(internal) states of a system and its inputs and outputs.

R.E. Kalman challenged the accepted approach to control theory of that

period (limited to the use of Laplace transforms and the frecquency domain)

by showing that the basic control problems could be studied effectively through

the notion of a state of the system that evolves in time according to ODEs
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in which controls appear as parameters. Aside from drawing attention to

the mathematical content of control problems, Kalman’s work served as a

catalyst for further growth of the subject. Liberated from the confines of

the frecquency domain and further inspired by the development of computers,

automatic control theory became the subject matter of a new science called

systems theory.

Systems theory grew out of a desire to merge automata theory, and ar-

tificial intelligence, and discrete and continuous control into a single subject

concerned with input/output relations parametrized by the states of the sys-

tem. The level of generality required to keep these subjects together was well

beyond the realm of differential equations, and control theory quickly evolved

into topological dynamical systems. Systems theory, itself a hybrid of control

and automata theory, in its formative period looked to abstract dynamical

systems and mathematical logic for its further growth.

Around 1970 the significance of the Lie bracket for problems of control be-

came clear thanks to efforts made by R.M. Hermann, R.W. Brockett, C.

Lobry, H.J. Sussmann, V. Jurdjevic, and others. As a result, differential

geometry entered into an exciting partnership with control theory, marking

the birth of geometric control theory.

Present day theoretical research in control theory involves a variety of areas

of pure mathematics (e.g. linear and multilinear algebra, Lie semigroups and

Lie groups, algebraic geometry, dynamical systems, complex analysis, func-

tional analysis, calculus of variations, topology, differential geometry, proba-

bility theory, etc.). Concepts and results from these areas find applications in

control theory; conversely, questions about control systems give rise to new

open problems in mathematics.
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◦ © ◦

A control system can be viewed informally as a dynamical object (e.g. ordinary dif-

ferential equation) containing a parameter (control) which can be manipulated to

influence the behaviour of the system so as to achieve a desired goal. In order to

implement this influence, engineers build devices that incorporate various mathemat-

ical techniques. Mathematical control theory is today a well-established branch of

application-oriented mathematics that deals with the basic principles underlying the

analysis and design of control systems.

◦ © ◦
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1.1 Motivation and Basic Concepts

Mathematical control theory is a rapidly growing field which provides theo-

retical and computational tools for dealing with a variety of problems arising

in electrical and aerospace engineering, automatics, robotics, management,

economics, applied chemistry, biology, ecology, medicine, etc. Selected such

problems, to mention but a few, are the following : stable performance of

motors and machinery, optimal guidance of rockets, optimal exploitation of

natural resources, optimal investment or production strategies, regulation of

physiological functions, and fight against insects, epidemics.

All these (and many other) problems require a specific approach, the aim

being to compel or control a system to behave in some desired fashion.

Systems

A system is something having parts which is perceived as a single entity.

Note : Not everything is a system (for instance, a point or the empty set). How-

ever, most things can usefully be seen as systems of some kind. A system is, so to

speak, a world.

The parts making up a system may be clearly or vaguely defined. The

interesting thing about a system is the way the parts are related to each

other. For the systems studied in mathematics, the parts and their relations

must be so clearly defined that we can single out a particular set of relations as

completely characterizing the state of the system; then we identify the system

with the collection of all its conceivable states. It seems to be necessary that

the state space be clearly and unambiguously defined. Unfortunately this

usually means that the mathematical system is drastically oversimplified in

comparison with the natural system being modelled.

When attempting to study the behaviour of certain systems, it is conve-

nient to consider the ideal case of an “isolated system” – i.e. a number of

interacting elements which do not have any interaction with the rest of the
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world. In reality, no system is ever completely isolated, but in many cases

the interactions with the rest of the world can be neglected in a reasonable

approximation. In such “isolated systems” the conditions are simpler, and

therefore easier to study.

Note : Our Universe is, by definition, an isolated system.

Dynamical and control systems

A dynamical system is one which changes in time (in some well defined

way); what changes is the state of the system. For such systems, the basic

problem is to predict the future behaviour. For this purpose the differential

equations are exactly tailored. The differential equation itself represents the

(physical or otherwise) law governing the evolution of the system; this plus

the initial conditions should determine uniquely the future evolution of the

system.

Note : Philosophically this leads to determinism, and is independent of any (hu-

man) observer. Modern physics changed this view, to some extent, by making the

observer a much more active participant in the possible outcome of future measure-

ments. But even within classical physics, the prediction of future evolution is not the

only meaningful problem to be posed. The whole field of engineering and technology

deals, to a large extent, with the“inverse” problem : given a desired future evolution,

how should we construct the system?

One can introduce some way of acting upon a (dynamical) system and

influence its evolution (behaviour). We think of this outside action, also called

input (or control), as the result of decisions of a “controller” (possibly human),

who may have some definite goal in mind or not. But this last is irrelevant

and the important information we need is a rule, within the description of the

system, of which inputs are possible and which are not; the possible inputs will

then be called “admissible”. A simple example of such systems (with inputs)

is a car, whose motion depends on the input of all the actions by which we

drive it. In most cases, it is possible to change the state of the system in any
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prescribed fashion by properly choosing the inputs, at least within reasonable

limits. In other words, one may exert influence on the system state by means of

intelligent manipulation of its inputs. This then, in a general sense, constitutes

a control system.

The control engineer develops the techniques and hardware necessary for

the implementation of the control laws to the specific systems in question.

Note : The complexity of many systems in present-day world is such that it is

often desirable for control to be carried out automatically, without direct human

intervention. To take a simple example, the room thermostat in a domestic central

heating system turns the boiler on and off so as to maintain room temperature at a

predetermined level. Nature provides many examples of remarkable self-regulation,

such as the way in which body temperature is kept constant despite large variations

in external conditions.

Some basic control-theoretic concepts

We summarize some of the main features of a control system.

The state variables x1, x2, . . . , xm describe the condition (or state) of the

system, and provide the information which (together with the knowledge of the

equations describing the system) enables us to calculate the future behaviour

from the knowledge of the control variables (or inputs) u1, u2, . . . , u`. In

practice, it is often not possible to determine the values of the state vari-

ables directly; instead, only a set of controlled variables (or outputs)

y1, y2, . . . , yn, which depend in some way on the state variables, is measured.

In general, the aim is to make a system perform in some required way by suit-

ably manipulating the inputs, this being done by some controlling device (or

“controller”).

If the controller operates according to some pre-set pattern without taking

account of the output or state, the system is called open loop. If, however,

there is feedback of information concerning the outputs to controller, which

then appropriately modifies its course of action, the system is called closed

loop.
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We assume that our system models have the property that, given an initial

state and any input, the resulting state and output at some specified later time

are uniquely determined.

1.2 Mathematical Formulation of the Control Prob-

lem

Roughly speaking, a control system is a dynamical system together with a

class of “admissible inputs”. We whish to make this idea more precise, without

striving for full generality.

Control systems

We assume that the dynamics of the system, that is, the evolution of the

state vector x(t) =


x1(t)

...

xm(t)

 ∈ Rm×1 = Rm under a given input (or

control) vector u(t) =


u1(t)

...

u`(t)

 ∈ R`×1 = R` is determined by a (vector)

ordinary differential equation

ẋ = F (t, x, u). (1.1)

The input vector u(·) is assumed to be an “arbitrary” vector-valued map-

ping, but some restrictions must be imposed. First of all, its components

– the input functions u1(·), u2(·), . . . , u`(·) – must be measurable (think of

piecewise-continuous functions), since otherwise the differential equation (1.1)

wouldn’t make sense.

Note : To restrict the control to be a continuous mapping, would be too much,

since in many cases the piecewise-continuous inputs (with some points of discontinu-

ity) are the most interesting controls.
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Another restriction of the input vector is the requirement that the values

of u(·) belong to a specified set U . (For example, when turning a steering

wheel of a car, we are restricted to a maximum turning angle to either side.)

Such a restriction is then of the form

u(t) ∈ U ⊆ R`. (1.2)

An admissible input is therefore a piecewise-continuous (vector-valued) map-

ping u(·) satisfying (1.2). We denote by U the set of all these admissible

inputs.

Furthermore, it is assumed that the vector-valued mapping F : J ×Rm ×
U → Rm, J ⊆ R satisfies certain standard conditions (such as having contin-

uous first order partial derivatives).

Note : This assumption guarantees local existence and uniqueness of the solution

of (1.1) (subject to initial condition x(t0) = x0) for a given u(·) ∈ U .

A control system is a 4-tuple

Σ = (M, U, U , F ).

In this case, the set M = Rm is the state space, the set U ⊆ R` is the

control set, U is the input class, and the mapping F is the dynamics of

Σ. We say that the control system Σ is defined (or described) by the state

equation (1.1) and write (in classical notation) :

Σ : ẋ = F (t, x, u), x ∈M, u ∈ U ⊆ R`.

Note : (1) In fact, such a system is a continuous-time, time-varying, finite di-

mensional, differentiable (nonlinear) control system.

(2) The state space M carries certain (geometric) “structure”. It is natural to as-

sume that M is a differentiable manifold (think of an open subset of some Euclidean

space). The dynamics F is then best viewed as a family of (nonautonomous) vector

fields on (the manifold) M , parametrized by controls.
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The control system Σ is linear if U = R` and the dynamics F : R ×
Rm × R` → Rm has the form

F (t, x, u) = A(t)x+B(t)u

where A(t) ∈ Rm×m and B(t) ∈ Rm×` are matrices each of whose entries is

a (continuous) function R → R; that is, the dynamics F is linear in (x, u)

for each fixed t ∈ R.

One distinguishes controls of two types : open and closed loop. An open

loop control can be basically an “arbitrary” function u : [t0,∞) → U for

which the initial value problem (IVP)

ẋ = F (t, x, u) , x(t0) = x0

has a well defined solution.

A closed loop control can be identified with a mapping k : M → U

(which may depend on t ≥ t0) such that the initial value problem (IVP)

ẋ = F (t, x, k(x(·))) , x(t0) = x0

has a well defined solution. The mapping k(·) is called feedback.

One of the main aims of control theory is to find a strategy (input) such

that the corresponding output has desired properties. Depending on the prop-

erties involved one gets more specific questions. Concepts like controllability,

observability, stabilizability, realization, as well as optimality are fundamental

in control theory.

Controllability

One say that a state xf ∈ Rn is reachable from x0 in time T if there

exists an open loop control u(·) such that

x(0) = x0 and x(T ) = xf .
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If an arbitrary state xf is reachable from an arbitrary state x0 in time T ,

then the control system Σ is called (completely) controllable. In several

situations one requires a weaker property of transfering an arbitrary state into

a given one, in particular the origin. A formulation of effective characteriza-

tions of controllable systems is an important task of control theory.

Observability

In many situations of practical interest one observes not the state x(·) but

its function t 7→ h(t, x(t)) , t ≥ t0. It is therefore often necessary to investigate

the pair of equations (i.e. the state equation and the observation equation)
ẋ = F (t, x, u)

y = h(t, x).

This is a control system with outputs; that is, a 6-tuple

Σ = (M, U, U , F, Rn, h).

In this case, (M, U, U , F ) is the underlying control system and h is the mea-

surement mapping. We use the same symbol for the control system with

outputs and its underlying control system. The mapping h = (h1, h2, . . . hn) :

R×M → Rn represents the vector of n measurements (observations).

The control system with outputs Σ is linear if its underlying system is

linear and the measurement mapping h : R × Rm → Rn is linear for each

t ∈ R.

This new system is said to be (completely) observable if, knowing a

control u(·) and an observation y(·), on a given interval [t0, T ], one can

determine uniquely the initial condition x0.
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Stabilizability

Another important issue is that of stabilizability. Assume that for some

x̄ ∈ Rn and ū ∈ U , F (x̄, ū) = 0. A function k : M → U such that k(x̄) = ū

is called a stabilizing feedback if x̄ is a stable equilibrium for the system

ẋ = F (t, x, k(x(·))).

In the theory of (ordinary) differential equations there exist several methods

to determine whether a given equilibrium state is a stable one.

Realization

For a given initial condition x0 ∈ Rn, the control system with outputs
ẋ = F (t, x, u), x(t0) = x0

y = h(t, x)

defines a mapping which transforms open loops controls u(·) onto outputs

y(t) = h(t, x(t)) , t ∈ [t0, T ].

Denote this transformation by R. What are its properties ? What conditions

should a transformation R satisfy to be given by such a control system ?

How, among all the possible “realizations” Σ of a transformation R, do we

find the simplest one ?

Optimality

Besides the above problems of structural character, in control theory one

also asks optimality questions. In the so-called time-optimal problem one is

looking for control which not only transfers a state x0 onto xf but does it in

the minimal time T . More generally, one is looking for a control u(·) which

minimizes a functional of the form

J : = φ(x(T ), T ) +

∫ T

t0

L(t, x, u)dt.
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1.3 Examples

We shall mention several specific models of control systems.

Example 1. (Moving car) Suppose a car is to be driven along a straight road,

and let its distance from an initial point 0 be s(t) at time t. For simplicity,

assume that the car is controlled only by the throttle, producing an accelerating

force of u1(t) per unit mass, and by brake wich produces a retarding force of

u2(t) per unit mass. Suppose that the only factors of interest are the car’s

position x1(t) : = s(t) and velocity x2(t) : = ṡ(t). Ignoring other forces such

as road friction, wind resistance, etc. the equations which describe the state

of the car at time t are 
ẋ1 = x2

ẋ2 = u1 − u2

or, in matrix form,

ẋ = Ax+Bu(t)

where

x =

[
x1

x2

]
, u =

[
u1

u2

]
, A =

[
0 1

0 0

]
, B =

[
0 0

1 −1

]
.

It may be required to start from rest at 0 and reach some fixed point in

the least possible time, or perhaps with minimum consumption of fuel. The

mathematical problems are firstly to determine whether such objectives are

achievable with the selected control variables, and if so, to find appropriate

expressions for u1(·) and u2(·) as functions of time and/or x1(·) and x2(·).

Note : The complexity of the model could be increased so as to take into account

factors such as engine speed and temperature, vehicle interior temperature, and so

on.

Example 2. (Electrically heated oven) Let us consider a simple model of an

ellectrically heated oven, which consists of a jacket with a coil directly heating

the jacket and of an interior part.
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T2

T1

T0

heating coil

Let T0 denote the outside temperature. We make a simplifying assumption,

that at an arbitrary moment t ≥ 0, temperature in the jacket and in the

interior part are uniformly distributed and equal to T1(t), T2(t). We assume

also that the flow of heat through a surface is proportional to the area of the

surface and to the difference of temperature between the separated media.

Let u(t) be the intensity of the heat input produced by the coil at moment

t ≥ 0. Let moreover a1, a2 denote the area of exterior and interior surfaces

of the jacket, respectively, c1, c2 denote heat capacities of the jacket and the

interior of the oven, respectively, and r1, r2 denote radiation coefficients of

the exterior and interior surfaces of the jacket, respectively. An increase of

heat in the jacket is equal to the amount of heat produced by the coil reduced

by the amount of heat which entered the interior and exterior of the oven.

Therefore, for the interval [t, t+ ∆t], we have the following balance :

c1 (T1(t+ ∆t)− T1(t)) ≈ u(t)∆t−(T1(t)− T2(t)) a1r1∆t−(T1(t)− T0) a2r2∆t .

Similarly, an increase of heat in the interior of the oven is equal to the amount

of heat radiated by the jacket :

c2 (T2(t+ ∆t)− T2(t)) = (T1(t)− T2(t)) a1r2∆t .

Dividing the obtained identities by ∆t and taking the limit, as ∆ → 0, we
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obtain :
c1Ṫ1 = u− (T1 − T2)a1r1 − (T1 − T0)a2r2 (for the jacket)

c2Ṫ2 = (T1 − T2)a1r1 (for the oven interior).

Les us notice that, according to the physical interpretation, u(t) ≥ 0 for t ≥ 0.

Let the state variables be the excesses of temperature over the exterior, that

is

x1 : = T1 − T0 and x2 : = T2 − T0.

Then we can write the equations above in matrix form, namely

ẋ = Ax+Bu(t)

where

x =

[
x1

x2

]
, u =

[
u
]
, A =


−a1r1 + a2r2

c1

a1r1

c1

a1r1

c2
−a1r1

c2

 , B =


1

c1

0

 .
It is natural to limit the considerations to the case when x1(0) ≥ 0 and

x2(0) ≥ 0. It is physically obvious that if u(t) ≥ 0 for t ≥ 0, then also

x1(t) ≥ 0, x2(t) ≥ 0 for t ≥ 0.

Two interesting aspects to be discussed are firstly whether it is possible

to maintain the temperature of the oven interior at any desired level merely

by altering u, and secondly, to determine whether the value of T2 can be

determined even if it is not possible to measure it directly.

Note : If the desired objective is attainable, then there may well be many different

suitable control schemes, and considerations of economy, practicability of application,

and so on will then determine how control is actually applied.

Example 3. (Controlled environment) Consider a controlled environment

consisting of rabbits and foxes, the number of each at time t being x1(t) and
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x2(t), respectively. Suppose that without the presence of foxes the number

of rabbits would grow exponentially, but that the rate of growth of rabbit

population is reduced by an amount proportional to the number of foxes.

Furthermore, suppose that, without rabbits to eat, the fox population would

decrease exponentially, but the rate of growth in the number of foxes is in-

creased by an amount proportional to the number of rabbits present. Under

these assumptions, the system of equations can be written
ẋ1 = a1x1 − a2x2

ẋ2 = a3x1 − a4x2

where a1, a2, a3 and a4 are positive constants.

Example 4. (Satellite problem) We shall consider a point mass in an inverse

square law force field. The motion of a unit mass is governed by a pair of

second order equations in the radius r and the angle θ (polar coordinates). If

we assume that the unit mass (say a satellite) has the capability of thrusting

in the radial direction with the thrust u1(·) and thrusting in the tangential

direction with thrust u2(·), then we have
r̈ = rθ̇2 − k

r2
+ u1(t)

θ̈ = −2θ̇ṙ

r
+

1

r
u2(t).

If u1(t) = u2(t) = 0, these equations admit the solution

r(t) = σ (σ constant) and θ(t) = ωt (ω constant) ; σ3ω2 = k .

That is, circular orbits are possible. If we let x1, x2, x3, and x4 be given by

x1 : = r − σ, x2 : = ṙ, x3 : = σ(θ − ωt), x4 : = σ(θ̇ − ω)
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and normalize σ to 1, then it is easy to see that the linearized equations of

motion about the given solution are
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0




x1

x2

x3

x4

+


0 0

1 0

0 0

0 1


[
u1(t)

u2(t)

]
.

Example 5. (Market economy) Suppose that the sales S(t) of a product

are affected by the amount of advertising A(t) in such a way that the rate of

change of sales decreases by an amount proportional to the advertising applied

to the share of the market not already purchasing the product. If the total

extent of the market is M , the state equation is therefore

Ṡ = −aS + bA(t)

(
1− S

M

)
subject to

S(0) = S0

where a and b are positive constants. In practice, the amount of advertising

will be limited (that is, 0 ≤ A(t) ≤ K, where K is a constant), and the aim

would be to find the advertising schedule (that is, the function A(t) which

maximizes the sales over some period of time).

Example 6. (Soft landing) Let us consider a spacecraft of total mass M

moving vertically with the gas thruster directed toward the landing surface.

Let h(·) be the height of the spacecraft above the surface, u(·) the thrust of

its engine produced by the expulsion of gas from the jet. The gas is a product

of the combustion of the fuel. The combustion decreases the total mass of the

spacecraft, and the thrust u is proportionalto the speed with which the mass

decreases. Assuming that there is no atmosphere above the surface and that
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g is gravitational acceleration, one arrives at the following equations :
Mḧ = −gM + u(t)

Ṁ = −ku(t) (k > 0)

with the initial conditions

M(0) = M0 , h(0) = h0 , ḣ(0) = h1.

One imposes additional constraints on the control parameter of the type

0 ≤ u ≤ α and M ≥ m,

where m is the mass of the spacecraft without fuel. Let us fix T > 0. The soft

landing problem consists of finding a control u(·) such that for the solutions

M(·), h(·) of the above equations

M(t) ≥ m, h(t) ≥ 0 , t ∈ [0, T ] , and h(T ) = ḣ(T ) = 0.

Note : A natural optimization question arises when the moment T is not fixed

and one is minimizing the landing time.

1.4 Matrix Theory (review)

Matrices and determinants

We write a matrix as follows

A =
[
aij

]
(i = 1, 2, . . . ,m ; j = 1, 2, . . . , n)

where aij is the element (entry) in its ith row and jth column, and A thus

has m rows and n columns; we use to say that A is an m×n matrix. We

shall denote by Rm×n the set (vector space) of all m× n matrices with real

entries.
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Note : (1) It is convenient to identify the set (vector space) Rm of all m-tuples

of real numbers with the set (vector space) Rm×1 of all column m-matrices (or

column m-vectors).

(2) There is a natural one-to-one correspondence between m×n matrices and linear

mappings from Rn to Rm: the vector spaces Rm×n and L(Rn, Rm) are isomorphic.

The transpose AT of A is obtained by interchanging the rows and

columns of A =
[
aij

]
, so AT : =

[
aji

]
is an n × m matrix. If λ is a

scalar (real number), and A and B are matrices of appropriate size, then :

(a) (AT )T = A.

(b) (A+B)T = AT +BT .

(c) (λA)T = λAT .

(d) (AB)T = BTAT .

If A is invertible, then AT is invertible, too and (AT )−1 = (A−1)T .

We can write a matrix A =
[
aij

]
∈ Rm×n in the following forms :

• A =
[
a1 a2 . . . an

]
with aj =


a1j

a2j

...

amj

 ∈ Rm×1 (j = 1, 2, . . . , n)

• A =


a1

a2

...

am

 with ai =
[
ai1 ai2 . . . ain

]
∈ R1×n (i = 1, 2, . . . ,m).

When m = n, A is said to be square of order n. We shall write

In =
[
δij

]
=


1 0 · · · 0 0

0 1 · · · 0 0
...

... · · ·
...

...

0 0 · · · 0 1

 ∈ Rn×n
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for the unit matrix (or identity matrix) of order n. Here, δij stands for

Kronecker’s symbol; that is,

δij : =

{
1 if i = j

0 if i 6= j.

The unit matrix In has all its elements zero except those on the main diagonal ;

any (square) matrix of this form is called a diagonal matrix, written

diag (a11, a22, . . . , ann) .

Two n× n matrices A and B related by

B = S−1AS

are called similar. This is a basic equivalence relation on matrices.

Note : Two matrices are similar if and only if they represent the same linear

mapping in different bases. Any matrix property that is preserved under similarity is

a property of the underlying linear mapping.

If A =
[
aij

]
∈ Rn×n, then its trace is the sum of all elements on the main

diagonal; that is,

tr (A) : =
n∑
i=1

aii.

The trace operator has some important properties :

(a) tr (λA) = λ tr (A), where λ is a scalar.

(b) tr (A+B) = tr (A) + tr (B).

(c) tr (In) = n.

(d) tr (AB) = tr (BA).

(e) tr (AT ) = tr (A).

(f) tr (ATA) ≥ 0.



C.C. Remsing 19

Exercise 1 Given A,S ∈ Rn×n with S invertible, show that

tr
(
SAS−1

)
= tr (A).

That is, similar matrices have the same trace.

We recall briefly the main properties of the determinant function

det : Rn×n → R , A 7→ det (A).

These are :

(a) det (AB) = det (A) · det (B).

(b) det (In) = 1.

(c) det (A) 6= 0 if and only if A is invertible.

Note : There is a unique function det : Rn×n → R having these three properties.

For A =
[
aij

]
∈ Rn×n we have

det (A) =
∑
α

sgn(α) a1α(1)a2α(2) · · · anα(n)

where the sum is taken over the n! permutations (on n elements) α ∈ Sn.

Exercise 2 Given A,S ∈ Rn×n with S invertible, show that

det
(
SAS−1

)
= det (A).

That is, similar matrices have the same determinant.

If det (A) = 0, A is singular, otherwise nonsingular (or invertible); in

the latter case, the inverse of A is

A−1 =
1

det (A)
adj (A)

where adj (A) : =
[
Aij

]T
is the adjoint of A; here,

Aij : = (−1)i+jMij ( the cofactor of aij )
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and Mij is the determinant of the submatrix formed by deleting the ith row

and the jth column of A.

Note : Let A ∈ Rn×n. Then det (A) = 0 (the matrix A is singular) if and only

if Ax = 0 for some nonzero column n-vector x ∈ Rn×1.

Linear dependence and rank

Consider a set of column m-vectors

a1 =


a11

a21

...

am1

 , a2 =


a12

a22

...

am2

 , . . . , an =


a1n

a2n

...

amn

 .

If α1, α2, . . . , αn are scalars, then the vector

α1a1 + α2a2 + · · ·+ αnan =


α1a11 + α2a12 + · · ·+ αna1n

α1a21 + α2a22 + · · ·+ αna2n

...

α1am1 + α2am2 + · · ·+ αnamn


is called a linear combination of a1, a2, . . . , an. If there exist scalars

α1, α2, . . . , αn, not all zero, such that

α1a1 + α2a2 + · · ·+ αnan =


0

0
...

0


then the vectors a1, a2, . . . , an are said to be linearly dependent; other-

wise, they are linearly independent.

Note : We can equally well consider row n-vectors.
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Let A =
[
aij

]
∈ Rm×n. The rank of A, denoted by rank (A), is defined

as the maximum number of linearly independent columns (or rows) of A.

Clearly, rank (A) ≤ min{m,n}. Consider the kernel (or null-space)

ker (A) : = {x ∈ Rn |Ax = 0} ⊆ Rn

and the image space (or column space)

im (A) : = {Ax |x ∈ Rn} ⊆ Rm.

The dimension of ker (A) is termed the nullity of A. im (A) is nothing more

than the (vector) space spanned by the columns of A; that is,

im (A) = span {a1, a2, . . . , an} : = {α1a1 + α2a2 · · ·+ αnan |α1, . . . , αn ∈ R}

where A =
[
a1 a2 · · · an

]
. Hence the dimension of im (A) is equal to

rank (A).

Note : im (AT ) is also known as the row space of A; it is the (vector) space

spanned by the rows of A (i.e. the columns of AT ).

An important result states that (for a matrix A ∈ Rm×n) :

rank (A) + dim ker (A) = n.

Rank is invariant under multiplication by a nonsingular matrix. In particu-

lar, rank is invariant under similarity. However, multiplication by rectangular

or singular matrices can alter the rank, and the following formula shows ex-

actly how much alteration occurs.

If A ∈ Rm×n and B ∈ Rn×p, then :

rank (AB) = rank (B)− dim ker (A) ∩ im (B).

Exercise 3 Given A ∈ Rm×n and B ∈ Rn×p, show that :

(a) rank (AB) ≤ min{rank (A), rank (B)}.

(b) rank (A) + rank (B)− n ≤ rank (AB).
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Suppose now that aij (i = 1, 2, . . . ,m ; j = 1, 2, . . . , n) are the coeffi-

cients in a set of m linear algebraic equations in n unknowns

n∑
j=1

aijxj = bi , i = 1, 2, . . . ,m.

These equations can be written in matrix form as

Ax = b

where

A =
[
aij

]
, x =


x1

x2

...

xn

 , b =


b1

b2
...

bm

 .
Such a linear system (of equations) possesses a solution if and only if

rank (A) = rank
[
A b

]
where

[
A b

]
is the m × (n + 1) matrix obtained by appending b to A as

an extra column.

Two particular cases should be mentioned :

• When A ∈ Rn×n, the linear system Ax = b has a unique solution

if and only if A is nonsingular.

• When A ∈ Rm×n, the homogeneous linear system Ax = 0 has a

nonzero solution if and only if rank (A) < n.

Note : Similar remarks apply to the set of equations

yA = c

where

A =
[
aij

]
, y =

[
y1 y2 · · · ym

]
, c =

[
c1 c2 . . . cn

]
.
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Eigenvalues and eigenvectors

Let A =
[
aij

]
∈ Rn×n. A nonzero vector w ∈ Rn×1 is called an eigenvector

(or characteristic vector) of A if there is a scalar (real number) λ such

that

Aw = λw.

The scalar λ is called the eigenvalue (or characteristic value) associated

with the eigenvector w. Geometrically, Aw = λw says that under the (linear)

mapping x 7→ Ax the eigenvectors experience only changes in magnitude or

sign. The eigenvalue λ is simply the amount of “stretch” or “shrink” to which

the eigenvector w is subjected when acted upon by A.

Note : The words eigenvalue and eigenvector are derived from the German word

eigen, which means “owen by” or “peculiar to”.

The set of distinct eigenvalues, denoted by σ(A), is called the spectrum

of A. We have

λ ∈ σ(A) ⇐⇒ λIn −A is singular ⇐⇒ det (λIn −A) = 0.

The set (vector space) of all eigenvectors with eigenvalue λ, together with

the zero vector, is called the λ-eigenspace of A and is denoted by Eλ. That

is,

Eλ : = ker (λIn −A).

The eigenvectors w ∈ Eλ are found by solving the equation

(λIn −A)w = 0.

This matrix equation is equivalent to a system of n linear algebraic equations;

the solution space is exactly the λ-eigenspace Eλ.

Exercise 4 Let A ∈ Rn×n. If λ1, λ2, . . . , λr are r (r ≤ n) distinct eigenval-

ues of A with corresponding eigenvectors w1, w2, . . . , wr, show that the vectors

w1, w2, . . . , wr are linearly independent.
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The characteristic polynomial of A ∈ Rn×n is

charA(λ) : = det (λIn −A).

The algebraic equation

charA(λ) ≡ λn + k1λ
n−1 + · · ·+ kn−1λ+ kn = 0

is called the characteristic equation of A.

Note : The degree of the characteristic polynomial (equation) is n and the leading

term is λn. The eigenvalues of A are exactly the real roots of charA(λ).

The fundamental theorem of algebra insures that the characteristic poly-

nomial charA(λ) has n roots, but some roots may be complex numbers, and

some roots may be repeated. A complex root of the characteristic polynomial

is called a complex eigenvalue of A. The complex eigenvalues must occur

in conjugate pairs. If λ is a complex eigenvalue of the matrix A, we write

λ ∈ σC(A). Henceforth, we shall refer to both sets σ(A) and σC(A) as the

spectrum of A. (In fact, σC(A) is the spectrum of the “complexification” of

(the linear mapping) A : ξ + i η 7→ Aξ + iAη).

An important result is the following : If the matrix A is symmetric (i.e.

A = AT ), then all its eigenvalues are real.

A useful result is the Cayley-Hamilton Theorem, which states that

every square matrix satisfies its own characteristic equation; that is, if A ∈
Rn×n, then :

charA(A) ≡ An + k1A
n−1 + · · ·+ kn−1A+ knIn = O.

Let λ ∈ σC(A).

• The algebraic multiplicity mλ of λ is the number of times it is

repeated as a root of the characteristic polynomial.
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• The geometric multiplicity dλ of λ is the dimension of the λ-

eigenspace Eλ. In other words, dλ is the maximum number of

linearly independent eigenvectors associated with λ.

In general, dλ ≤ mλ. The following remarkable result holds :

The matrix A ∈ Rn×n is diagonalizable (that is, A is similar to a diagonal

matrix) if and only if dλ = mλ. If all the eigenvalues of A are real and

distinct, then A is diagonalizable. The converse is not true.

Exercise 5 Let A ∈ Rn×n with complex eigenvalues λ1, λ2, . . . , λn (listed with

their algebraic multiplicities). Show that :

(a) λ1 + λ2 + · · ·+ λn = tr (A).

(b) λ1 · λ2 · · ·λn = det (A).

Quadratic forms

Let A =
[
aij

]
∈ Rn×n be a symmetric matrix. A function q : Rn = Rn×1 →

R defined by

q(x) : = xTAx =
n∑
i=1

n∑
j=1

aijxixj

= a11x
2
1 + a22x

2
2 + · · ·+ annx

2
n + 2a12x1x2 + 2a13x1x3 + · · ·

is called a quadratic form (on Rn ). Clearly, q(0) = 0.

A quadratic form q is said to be :

(a) positive definite provided q(x) > 0 for all nonzero x ∈ Rn×1.

(b) negative definite provided q(x) < 0 for all nonzero x ∈ Rn×1.

(c) positive semi-definite provided q(x) ≥ 0 for all x ∈ Rn×1.

(d) negative semi-definite provided q(x) ≤ 0 for all x ∈ Rn×1.
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Finally, we call q indefinite provided q takes positive as well as negative

values.

Note : (1) The terms describing the quadratic form q are also applied to the

(symmetric) matrix A associated with the form.

(2) The definitions on definiteness and semi-definiteness can be extended to scalar

functions (defined on some Rn) which are not necessarily quadratic.

One simple way of determining the sign properties of a quadratic form is the

following:

The quadratic form q : x 7→ xTAx (or, equivalently, the matrix A ) is :

• positive definite if and only if all the eigenvalues of A are positive.

• negative definite if and only if all the eigenvalues of A are negative.

• positive semi-definite if and only if all the eigenvalues of A are

nonnegative.

• negative semi-definite if and only if all the eigenvalues of A are

nonpositive.

An alternative approach involves the principal minors Pi of A, these

being any ith order minors whose main diagonal is part of the main diagonal

of A. In particular, the leading principal minors of A are

∆1 : = a11 , ∆2 : =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ , ∆3 : =

∣∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣ , etc.

The Sylvester conditions state that the quadratic form q : x 7→ xTAx

(or, equivalently, the matrix A ) is :

• positive definite if and only if ∆i > 0 , i = 1, 2, . . . , n;

• negative definite if and only if (−1)i∆i > 0 , i = 1, 1, . . . , n;

• positive semi-definite if and only if Pi ≥ 0 for all principal minors;
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• negative semi-definite if and only if (−1)iPi ≥ 0 for all principal

minors.

If q satisfies none of the above conditions, then it is indefinite.

Let A ∈ Rn×n be a symmetric matrix such that rank (A) = r. Then A is

positive semi-definite (AT = A ≥ 0 ) if and only if A = BTB for some matrix

B with rank (B) = r.

The matrix exponential

In order to define the exponential of a matrix, we need to discuss the conver-

gence of (infinite) sequences and series involving matrices.

Because Rm×n is a vector space of dimension mn, magnitudes of matrices

A ∈ Rm×n can be “measured” by employing any norm on Rmn. One of the

simplest matrix norms is the following :

‖A‖ : =

√√√√ m∑
i=1

n∑
j=1

a2
ij =

√
tr (ATA) for A =

[
aij

]
∈ Rm×n.

For a column matrix (vector) x ∈ Rm×1 this gives the Euclidean norm

‖x‖e : =
√
x2

1 + x2
2 + · · ·+ x2

m.

Note : (1) Other matrix norms can also be defined. For example, any norm

‖ · ‖∗ that is defined on Rm and Rn induces a matrix norm on Rm×n by setting

‖A‖∗ : = max
‖x‖∗=1

‖Ax‖∗ for A ∈ Rm×n and x ∈ Rn×1.

(2) The matrix norm ‖ · ‖ and the Euclidean norm ‖ · ‖e are compatible :

‖Ax‖e ≤ ‖A‖ ‖x‖e.

The matrix norm has all the usual properties of a norm; that is (for A,B ∈
Rm×n and λ ∈ R) :
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(a) ‖A‖ ≥ 0 , and ‖A‖ = 0 ⇐⇒ A = 0.

(b) ‖λA‖ = |λ|‖A‖.

(c) ‖A+B‖ ≤ ‖A‖+ ‖B‖.

Also, the following two relations hold (provided that the product AB is de-

fined) :

(d) ‖AB‖ ≤ ‖A‖ ‖B‖.

(e) ‖Ak‖ ≤ ‖A‖k , k = 0, 1, 2, . . . .

A sequence (Ak)k∈N of matrices in Rm×n is said to converge to the limit

A ∈ Rm×n, denoted by

lim
k→∞

Ak = A,

if the sequence (‖Ak −A‖)k∈N of (positive) real numbers converges to 0; that

is, for every ε > 0 there exists an ν ∈ N such that for k ≥ ν, ‖A−Ak|| < ε.

A necessary and sufficient condition for convergence is that each entry of

Ak tends (converges) to the corresponding entry of A as k →∞.

The (infinite) matrix series
∑
k≥0

Ak converges provided the sequence of

partial sums (Sk)k∈N, where Sk : = A1 + A2 + · · · + Ak, converges to a limit

S (as k → ∞); if a limit exists, then it is unique and we shall write S =
∞∑
k=0

Ak. The series is absolutely convergent if the scalar series
∑
k≥0

‖Ak‖ is

convergent; an absolutely convergent matrix series is convergent.

Consider now a matrix A ∈ Rn×n.

Exercise 6 Show that the matrix power series
∑
k≥0

tk

k!
Ak is convergent (in fact,

absolutely convergent) for every t ∈ R.

We define the matrix exponential of A by

exp(tA) : = In + tA+ t2

2!A
2 + · · · =

∞∑
k=0

tk

k!
Ak.
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The matrix exponential has a number of important properties.

(a)
d

dt
(exp(tA)) = A exp(tA) = exp(tA)A.

(b) exp ((t+ s)A) = exp(tA) · exp(sA).

(c) exp(A) = lim
k→∞

(
In +

A

k

)k
.

(d) det (exp(A)) = etr (A).

From (b) it follows that

exp(tA) · exp(−tA) = In

and thus

exp(tA)−1 = exp(−tA).

1.5 Exercises

Exercise 7 Suppose A, S ∈ Rn×n and S is invertible. Show that

(S−1AS)2 = S−1A2S.

Generalize to (S−1AS)n.

Exercise 8 Set

u =


u1

u2
...

un

 , n ≥ 2.

Write A = uuT ∈ Rn×n and show that A is singular.

Exercise 9 Let A ∈ Rn×n and 0 6= b ∈ Rn×1 such that

Arb 6= 0 , Ar+1b = 0

for some positive integer r < n. By considering the equation

c0b+ c1Ab+ c2A
2b+ · · ·+ crA

rb = 0
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where the coefficients ci ∈ R, deduce that the (column) vectors

b, Ab, A2b, · · · , Arb

are linearly independent.

Exercise 10 Verify that

rank (ATA) = rank (A) = rank (AAT )

for the matrix

A =


1 3 1 −4

−1 −3 1 0

2 6 2 −8

 ∈ R3×4.

Exercise 11 Find the characteristic polynomial, the eigenvalues and the corre-

sponding eigenvectors for each given matrix.

(a)

[
1 4

2 3

]
.

(b)

[
2 0

0 −1

]
.

(c)

[
2 2

−1 −1

]
.

(d)

[
2 −2

2 2

]
.

(e)

[
0 −1

ab a+ b

]
.

(f)


2 2 0

1 2 1

1 2 1

.

(g)


1 1 0

0 1 0

0 0 1

.

(h)


1 1 1

1 1 1

1 1 1

.
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(i)


−1 3 0

3 7 0

0 0 6

.

(j)

[
cos θ sin θ

− sin θ cos θ

]
.

Exercise 12 Let A ∈ Rn×n.

(a) How are the eigenvalues of A− µIn related to those of A ?

(b) How are the eigenvalues of µA related to those of A ?

(c) How are the eigenvalues of An related to those of A ?

(d) How are the eigenvalues of A−1 related to those of A ?

Exercise 13 Consider a matrix A ∈ Rn×n. Show that :

(a) The characteristic polynomials of A and AT are the same.

(b) The characteristic polynomials of A and S−1AS are the same.

(c) If n = 2, the characteristic polynomial of A can be written as follows

charA(λ) = λ2 − tr (A)λ+ det (A).

Exercise 14 Let the matrix A ∈ Rn×n be invertible and w an eigenvector of A

with associated eigenvalue λ.

(a) Is w an eigenvector of A3 ? If so, what is the eigenvalue ?

(b) Is w an eigenvector of A−1 ? If so, what is the eigenvalue ?

(c) Is w an eigenvector of A+ 2In ? If so, what is the eigenvalue ?

(d) Is w an eigenvector of 7A ? If so, what is the eigenvalue ?

Exercise 15

(a) A skew-symmetric matrix S ∈ Rn×n is defined by ST = −S. If

q = xTSx show (by considering qT ) that q = 0 for all (column) vectors

x ∈ Rn×1.
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(b) Show that any matrix A ∈ Rn×n can be written as A = A1 +A2, where

A1 is symmetric and A2 is skew-symmetric. Hence (using the result of

(a)) deduce that

xTAx = xTA1x for all (column) vectors x ∈ Rn×1.

Exercise 16 Prove that

exp((t+ s)A) = exp(tA) exp(sA).

[Hint: Multiply the series in powers of A formally; the legitimacy of the term-by-term

multiplication is assured by the fact that exp(tA) is absolutly convergent.]

Exercise 17

(a) Show that exp(tA) · exp(tB) does not have to be either exp (t(A+B))

or exp(tB) · exp(tA) by calculating all three, where

A =

[
0 1

0 0

]
and B =

[
1 0

0 0

]
.

(b) Suppose that AB = BA. Show that

exp (t(A+B)) = exp(tA) · exp(tB) = exp(tB) · exp(tA).

[Hint: Show that if P (t) = exp (t(A+B)) · exp(−tA) · exp(−tB), then Ṗ (t) = 0 for

all t. Since P (0) = In, we must have P (t) = In.]

Exercise 18

(a) Find exp(tA) if

A =

[
a 0

0 b

]
.

Generalize to A = diag (a1, a2, . . . , an) (the diagonal matrix with diago-

nal elements a1, a2, . . . , an).

(b) Consider the matrix

A =

[
a b

0 a

]
.

Show that

exp(tA) =

 eat bteat

0 eat

 .
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(c) A matrix A is nilpotent if some power Ak is the zero matrix. Then the

matrix exponential exp(tA) can be calculated easily because the series

stops with the power Ak−1. That is, we have Ak = Ak+1 = · · · = 0, so

exp(tA) = In + tA+
t2

2!
A2 + · · ·+ tk−1

(k − 1)!
Ak−1 ·

Find exp(tA) for

i. A =


0 1 0

0 0 1

0 0 0

.

ii. A =


0 0 0

2 0 0

3 4 0

.

Exercise 19 Find exp(tA), where A is given.

(a) A =

[
1 0

0 2

]
.

(b) A =

[
0 1

0 0

]
.

(c) A =

[
0 1

−1 0

]
.

(d) A =

[
−1 1

0 −1

]
.

(e) A =

[
1 1

1 1

]
.

(f) A =


0 1 1

0 0 1

0 0 0

.

(g) A =


2 0 0

0 −3 0

0 0 7

.
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Exercise 20 TRUE or FALSE ? Motivate your answers.

(a) If A ∈ Rn×n and λ ∈ R, then

det (λA) = λ det (A).

(b) If A, B ∈ Rn×n then

det (A+B) = det (A) + det (B).

(c) If A ∈ Rn×n then

det (AAT ) = det (ATA).

(d) If A ∈ Rm×n then

rank (ATA) = rank (A) = rank (AAT ).

(e) A matrix A ∈ Rn×n is invertible if and only if 0 is not an eigenvalue of

A.

(f) If t ∈ R then

exp

(
t

[
0 1

−1 0

])
=

[
cos t sin t

− sin t cos t

]
.

(g) If A, B ∈ Rn×n then

exp(A+B) = exp(A) · exp(B).

(h) If A ∈ Rn×n then

det (exp(A)) 6= 0.
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◦ © ◦

A control system (with outputs) Σ = (Rm, R`, U , F, Rn, h) is linear if the dynamics

F is linear in (x, u) , and the measurement function h is linear, for each fixed t ∈ R.

Such a control system is described by (state equation and observation equation)

ẋ = A(t)x+B(t)u(t) and y = C(t)x

where A(t) ∈ Rm×m, B(t) ∈ Rm×`, and C(t) ∈ Rn×m, each of whose entries is a

(continuous) function of time. The system is called time-invariant if the structure

is independent of time. A system that is not necessarily time-invariant is sometimes

called, to emphasize the fact, a time-varying system. Sets of (scalar) state equations

describing a linear (time-invariant) control system are the easiest to manage analyt-

ically and numerically, and the first model of a situation is often constructed to be

linear for this reason.

◦ © ◦
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2.1 Solution of Uncontrolled System

To begin with we shall consider dynamical systems (i.e. systems without

the presence of control variables). We may also refer to such systems as

uncontrolled (or unforced) systems.

We discuss methods of finding the solution (state vector) x(t) =


x1(t)

...

xm(t)

 ∈
Rm×1 of the (initialized) linear dynamical system described by

ẋ = Ax, x(0) = x0. (2.1)

Here A =
[
aij

]
∈ Rm×m (x 7→ Ax represents the linear dynamics F ) and

x0 ∈ Rm is the initial state.

Note : We identify the column matrix (or vector)


a1
...

am

 ∈ Rm×1 with the m-tuple

(or point) (a1, a2, . . . , am) ∈ Rm, whenever appropriate. However, we do not identify

the row matrix (or covector)
[
a1 a2 · · · an

]
∈ R 1×n with (a1, a2, . . . , an) (but

rather with the linear functional (x1, x2, · · · , xn) 7→ a1x1 + a2x2 + · · ·+ anxn ).

We shall assume that all the eigenvalues λ1, λ2, . . . , λm of A are distinct.

Note : In fact, in real-life situations, this is not too severe a restriction, since if

A does have repeated eigenvalues, very small perturbations in a few of its elements

(which will only be known to a certain degree of accuracy) will suffice to separate

these equal eigenvalues.

Spectral form

If wi is an eigenvector corresponding to λi, then w1, w2, . . . , wm are lin-

early independent (see Exercise 4), so we can express the solution of (2.1)
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as

x(t) = c1(t)w1 + c2(t)w2 + · · ·+ cm(t)wm (2.2)

where ci = ci(t) , i = 1, 2, . . . ,m are scalar functions of time.

Differentiation of (2.2) and substitution into (2.1) gives :

m∑
i=1

ċi(t)wi = A

m∑
i=1

ci(t)wi =

m∑
i=1

ci(t)λiwi.

Hence, by the independence of the wi (i = 1, 2, . . . ,m)

ċi = λi ci , i = 1, 2, . . . ,m

and these equations have the solution

ci(t) = ci(0) eλit , i = 1, 2, . . . ,m

giving

x(t) =
m∑
i=1

ci(0) eλitwi. (2.3)

Let W denote the matrix whose columns are w1, w2, . . . , wm; that is,

W =
[
w1 w2 . . . wm

]
.

We shall denote by v1, v2, . . . , vm the rows of the matrix W−1; that is,

[
w1 w2 . . . wm

]−1
=


v1

v2

...

vm

 .

Since we have

viwj = δij =

{
1 if i = j

0 if i 6= j

multiplying (2.3) on the left by vi and setting t = 0 in the resulting expression

gives

vix(0) = ci(0) , i = 1, 2, . . . ,m.
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Thus the solution of (2.1) is

x(t) =

m∑
i=1

(vix(0)) eλitwi. (2.4)

Expression (2.4) depends only upon the initial condition and the eigenvalues

and eigenvectors of A, and for this reason is referred to as the spectral form

solution.

2.1.1 Example. Find the general solution of the uncontrolled system :[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

Solution : The characteristic equation of A is

| λI2 −A |=

∣∣∣∣∣ λ −1

2 λ+ 3

∣∣∣∣∣ = 0 ⇐⇒ λ2 + 3λ+ 2 = 0

which gives

λ1 = −2 and λ2 = −1 .

(i) λ = −2.[
2 1

−2 −1

] w11

w21

 =

[
0

0

]
⇐⇒

 2w11 + w21 = 0

−2w11 − w21 = 0

which implies

w21 = −2w11

and thus (we can choose)

w1 =

[
1

−2

]
.

(ii) λ = −1.[
1 1

−2 −2

] w12

w22

 =

[
0

0

]
⇐⇒

 w12 + w22 = 0

−2w12 − 2w22 = 0
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which implies

w22 = −w12

and thus (we can choose)

w2 =

[
1

−1

]
.

We have

W =
[
w1 w2

]
=

[
1 1

−2 −1

]
⇒W−1 =

[
−1 −1

2 1

]
;

so

v1 =
[
−1 −1

]
and v2 =

[
2 1

]
.

Finally, we get

x(t) = (v1x(0)) e−2tw1 + (v2x(0)) e−tw2

= (−x1(0)− x2(0)) e−2t

[
1

−2

]
+ (2x1(0) + x2(0)) e−t

[
1

−1

]

or 
x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

Exponential form

We now present a different approach to solving equation (2.1) which avoids

the need to calculate the eigenvectors of A.

Recall the definition of the matrix exponential

exp(tA) : = Im + tA+
t2

2!
A2 +

t3

3!
A3 + · · · (2.5)
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2.1.2 Lemma. Let A ∈ Rm×m. Then

d

dt
(exp(tA)) = A exp(tA) = exp(tA)A.

Proof : We have

d

dt
exp(tA) = lim

h→0

1

h
(exp((t+ h)A)− exp(tA))

= lim
h→0

1

h
(exp(tA) · exp(hA)− exp(tA))

= exp(tA) lim
h→0

1

h
(exp(hA)− Im)

= exp(tA) lim
h→0

lim
k→∞

(
A+

h

2!
A+ · · ·+ hk−1

k!
Ak
)

= exp(tA)A.

(Two convergent limit processes can be interchanged if one of them converges

uniformly.) Observe that A commutes with each term of the (absolutely

convergent) series for exp(tA), hence with exp(tA). This proves the lemma.2

By the preceding lemma, if x(t) = exp(tA)x0, then

ẋ(t) =
d

dt
exp(tA)x0 = A exp(tA)x0 = Ax(t)

for all t ∈ R. Also,

x(0) = Imx0 = x0.

Thus x(t) = exp(tA)x0 is a solution of (2.1).

To see that this is the only solution, let x(·) be any solution of (2.1) and

set

y(t) = exp(−tA)x(t).

Then (from the above lemma and the fact that x(·) is a solution of (2.1))

ẏ(t) = −A exp(−tA)x(t) + exp(−tA)ẋ(t)

= −A exp(−tA)x(t) + exp(−tA)Ax(t)

= 0
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for all t ∈ R since exp(−tA) and A commute. Thus, y(t) is a constant.

Setting t = 0 shows that y(t) = x0 and therefore any solution of (2.1) is

given by

x(t) = exp(tA)y(t) = exp(tA)x0.

Hence

x(t) = exp (tA)x0 (2.6)

does represent the solution of (2.1).

Note : In case the initial condition x(0) = x0 is replaced by the slighty more

general one x(t0) = x0, the solution is often written as

x(t) = Φ(t, t0)x0. (2.7)

One refers to (the matrix)

Φ(t, t0) : = exp ((t− t0)A) (2.8)

as the state transition matrix (since it relates the state at any time t to the state

at any other time t0).

2.1.3 Proposition. The state transition matrix Φ(t, t0) has the following

properties :

(a)
d

dt
Φ(t, t0) = AΦ(t, t0).

(b) Φ(t0, t0) = Im.

(c) Φ(t0, t) = Φ−1(t, t0).

(d) Φ(t, t0) = Φ(t, t1)Φ(t1, t0).

Proof : We have

(a)
d

dt
Φ(t, t0) =

d

dt
exp ((t− t0)A) = A exp ((t− t0)A) = AΦ(t, t0).

(b) Φ(t, t) = exp ((t− t)A) = exp(0) = Im.

(c) Φ−1(t, t0) = (exp((t− t0)A))−1 = exp (−(t− t0)A) = exp ((t0 − t)A) =

Φ(t0, t).



C.C. Remsing 43

(d) Φ(t, t1)Φ(t1, t0) = exp((t−t1)A)·exp((t1−t0)A) = exp ((t− t1 + t1 − t0)A) =

exp((t− t0)A) = Φ(t, t0).

2

Note : The matrix-valued mapping X(t) = Φ(t, t0) (or curve in Rm×m ) is the

unique solution of the matrix differential equation

Ẋ = AX, X ∈ Rm×m

subject to the initial condition X(t0) = Im.

2.1.4 Example. (Simple harmonic motion) Consider a unit mass con-

nected to a support through a spring whose spring constant is unity. If z

measures the displacement of the mass from equilibrium, then

z̈ + z = 0.

Letting x1 = z and x2 = ż gives[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−1 0

][
x1(t)

x2(t)

]
.

Note : The associated transition matrix Φ(t, t0) has the form

Φ(t, t0) =


φ11(t, t0) φ12(t, t0)

φ21(t, t0) φ22(t, t0)


and therefore satisfies

φ̇11(t, t0) φ̇12(t, t0)

φ̇21(t, t0) φ̇22(t, t0)

 =


0 1

−1 0



φ11(t, t0) φ12(t, t0)

φ21(t, t0) φ22(t, t0)


with the initial condition

Φ(t0, t0) = Im.

What is the physical interpretation of Φ(t, t0) in this case ? The first column of

Φ(t, t0) has as its first entry the position as a function of time which results when
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the mass is displaced by one unit and released at t0 with zero velocity. The second

entry in the first column is the corresponding velocity. The second column of Φ(t, t0)

has as its first entry the position as a function of time which results when the mass

is started from zero displacement but with unit velocity at t = t0. The second entry

in the second column is the corresponding velocity.

The series for computing Φ(t, t0) in this case is easily summed because

Ak =


A if k = 4p+ 1

−I2 if k = 4p+ 2

−A if k = 4p+ 3

I2 if k = 4p.

A short calculation gives

Φ(t, t0) =

[
cos(t− t0) sin(t− t0)

− sin(t− t0) cos(t− t0)

]
.

Exercise 21 Work out the preceding computation.

2.1.5 Example. (Satellite problem) In section 1.3 we introduced the equa-

tions of a unit mass in an inverse square law force field. These were then

linearized about a circular orbit to get


ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0




x1(t)

x2(t)

x3(t)

x4(t)

+


0

u1(t)

0

u2(t)

 .
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The series for computing Φ(t, 0) can be summed to get

Φ(t, 0) =



4− 3 cosωt
sinωt

ω
0

2(1− cosωt)

ω

3ω sinωt cosωt 0 2 sinωt

6(−ωt+ sinωt) −2(1− cosωt)

ω
1
−3ωt+ 4 sinωt

ω

6ω(−1 + cosωt) −2 sinωt 0 −3 + 4 cosωt


.

Evaluation of the matrix exponential

Evaluation of exp(tA), when all the eigenvalues λ1, λ2, . . . , λm are dis-

tinct, can be achieved by Sylvester’s formula which gives

exp(tA) =

m∑
k=1

eλkt Zk (2.9)

where

Zk =

m∏
i=1
i6=k

A− λiIm
λk − λi

, k = 1, 2, . . . ,m.

Note : Since the Zk (k = 1, 2, . . . ,m) in (2.9) are constant matrices depend-

ing only on A and its eigenvalues, the solution in the form given in (2.9) requires

calculation of only the eigenvalues of A.

2.1.6 Example. Consider again the uncontrolled system[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

The solution is

x(t) = exp (tA)x0 =

(
2∑

k=1

eλktZk

)
x0
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where

Zk =

2∏
i=1
i 6=k

A− λiI2

λk − λi
, k = 1, 2.

We have

Z1 =
A− (−1)I2

−2− (−1)
=

[
−1 −1

2 2

]
; Z2 =

A− (−2)I2

−1− (−2)
=

[
2 1

−2 −1

]
.

Hence,

x(t) =
(
e−2tZ1 + e−tZ2

)
x0

=

(
e−2t

[
−1 −1

2 2

]
+ e−t

[
2 1

−2 −1

])[
x1(0)

x2(0)

]
or 

x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

An alternative way of evaluating exp(tA) (again, when all the eigenvalues

λ1, λ2, . . . , λm are distinct), is as follows.

We can write

etλ = q(λ) · charA(λ) + r(λ) (2.10)

where deg (r) < m. Since (2.10) is an identity, we have

exp(tA) ≡ q(A) · charA(A) + r(A)

which by the Cayley-Hamilton Theorem reduces to

exp(tA) ≡ r(A)

showing that exp(tA) can be represented by a finite sum of powers of A of

degree not exceeding m − 1. Then m coefficients of r(λ) are functions of t

obtained from the solution of the system of m linear equations

eλit = r(λi) , i = 1, 2, . . . ,m.
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2.1.7 Example. Consider once again the uncontrolled system[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

Since m = 2, the polynomial r(λ) can be written

r(λ) = r0λ+ r1

and so we have 
e−t = r1 − r0

e−2t = r1 − 2r0

which gives r0 = e−t − e−2t and r1 = 2e−t − e−2t. Hence, the solution is

x(t) = exp (tA)x0 = (r0A+ r1I2)x0

=

(
(e−t − e−2t)

[
0 1

−2 −3

]
+ (2e−t − e−2t)

[
1 0

0 1

])[
x1(0)

x2(0)

]
or 

x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

2.2 Solution of Controlled System

Consider the (initialized) linear control system, written in state space form,

ẋ = Ax+Bu(t) , x(0) = x0 (2.11)

where A ∈ Rm×m, B ∈ Rm×`, and ` ≤ m.

After multiplication of both sides of (2.11), on the left, by exp(−tA), the

equation can be written

d

dt
(exp(−tA)x) = exp(−tA)Bu (2.12)
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which produces

x(t) = exp(tA)

[
x0 +

∫ t

0
exp(−τA)Bu(τ) dτ

]
. (2.13)

If the initial condition is x(t0) = x0, then integration of (2.12) from t0 to t

and use of the definition of Φ gives

x(t) = Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)Bu(τ) dτ

]
. (2.14)

Note : If u(t) is known for t ≥ t0, then x(t) can be determined by finding the

state transition matrix and carrying out the integration in (2.14).

2.2.1 Example. Consider the equation of motion

z̈ = u(t)

of a unit mass moving in a straight line, subject to an external force u(t), z(t)

being the displacement from some fixed point. In state space form, taking

x1 = z and x2 = ż

as state variables, this becomes

ẋ =

[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

1

]
u(t) = Ax+Bu(t).

Since here we have A2 = 0, exp(tA) = I2 + tA, and so[
x1(t)

x2(t)

]
=

[
1 t

0 1

][
x1(0)

x2(0)

]
+

[
1 t

0 1

]∫ t

0

[
1 −τ
0 1

][
0

1

]
u(τ) dτ.

Solving for x1(t) leads to

z(t) = z(0) + tż(0) +

∫ t

o
(t− τ)u(τ) dτ

where ż(0) denotes the initial velocity of the mass.
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2.2.2 Example. We are now in a position to express the solution of the

linearized equations describing the motion of a satellite in a near circular orbit.

We have

x1(t)

x2(t)

x3(t)

x4(t)


=



4− 3 cosωt sinωt
ω 0 2(1−cosωt)

ω

3ω sinωt cosωt 0 2 sinωt

6(−ωt+ sinωt) −2(1−cosωt)
ω 1 −3ωt+4 sinωt

ω

6ω(−1 + cosωt) −2 sinωt 0 −3 + 4 cosωt





x1(0)

x2(0)

x3(0)

x4(0)


+

+

∫ t

0





sinω(t−τ)
ω

cosω(t− τ)

−2(1−cosω(t−τ))
ω

−2 sinω(t− τ)


u1(τ) +



2(1−cosω(t−τ))
ω

2 sinω(t− τ)

−3ω(t−τ)+4 sinω(t−τ)
ω

−3 + 4 cosω(t− τ)


u2(τ)


dτ.

2.3 Time-varying Systems

Of considerable importance in many applications are linear systems in which

the elements of A and B are (continuous) functions of time for t ≥ 0.

Note : In general, it will not be possible to give explicit expressions for solutions

and we shall content ourselves with obtaining some general properties.

We first consider the uncontrolled case

ẋ = A(t)x , x(0) = x0. (2.15)

2.3.1 Theorem. (Existence and Uniqueness Theorem) If the matrix-

valued mapping

A : [0,∞)→ Rm×m, t 7→ A(t)
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is continuous, then (2.15) has a unique solution

x(t) = X(t)x0, t ≥ 0

where X(·) is the unique matrix-valued mapping (or curve in Rm×m) satis-

fying

Ẋ = A(t)X, X(0) = Im. (2.16)

Proof : We shall use the method of successive approximations to establish

the existence of a solution of (2.16). In place of (2.16), we consider the integral

equation

X = Im +

∫ t

0
A(τ)X dτ. (2.17)

Define the sequence (Xk)k≥0 of matrices (in fact, of matrix-valued mappings)

as follows :

X0 = Im

Xk+1 = Im +

∫ t

0
A(τ)Xk dτ , k = 0, 1, 2, . . .

Then we have

Xk+1 −Xk =

∫ t

0
A(τ)(Xk −Xk−1) dτ , k = 1, 2, . . .

Let

ν = max
0≤t≤t1

‖A(t)‖

where

‖A(t)‖ : =
m∑

i,j=1

|aij(t)|.

Note : Any matrix norm (on Rm×m) will do.

We have

‖Xk+1 −Xk‖ = ‖
∫ t

0
A(τ)(Xk −Xk−1) dτ‖

≤
∫ t

0
‖A(τ)‖‖Xk −Xk−1‖ dτ

≤ ν

∫ t

0
‖Xk −Xk−1‖ dτ
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for 0 ≤ t ≤ t1. Since, in this same interval,

‖X1 −X0‖ ≤
∫ t

0
‖A(τ)‖ dτ ≤ νt

we have inductively

‖Xk+1 −Xk‖ ≤Mk+1 : =
νk+1tk+1

1

(k + 1)!
for 0 ≤ t ≤ t1.

Note : The Weierstrass M-test states that if ξk : [t0, t1] → Rm×m are con-

tinuous and

• ‖ξk(t)‖ ≤Mk for every k

•
∞∑
k=0

Mk <∞

then the series
∑
k≥0

ξk(t) converges uniformly and absolutely on the interval [t0, t1].

Hence, the (matrix-valued mapping) series

X0 +
∑
k≥0

(Xk+1 −Xk)

converges uniformly for 0 ≤ t ≤ t1. Consequently, (Xk) converges uniformly

and absolutely to a matrix-valued mapping X(·), which satisfies (2.17), and

thus (2.16).

Since, by assumption, A(·) is continuous for t ≥ 0, we must take t1

arbitrarily large. We thus obtain a solution valid for t ≥ 0.

It is easy to verify that x(t) = X(t)x0 is a solution of (2.15), satisfying

the required initial condition.

Let us now establish uniqueness of this solution. Let Y be another solution

of (2.16). Then Y satisfies (2.17), and thus we have the relation

X − Y =

∫ t

0
A(τ)(X(τ)− Y (τ)) dτ.

Hence

‖X − Y ‖ ≤
∫ t

0
‖A(τ)‖‖X(τ)− Y (τ)‖ dτ.
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Since Y is differentiable, hence continuous, define

ν1 : = max
0≤t≤t1

‖X(t)− Y (t)‖.

We obtain

‖X − Y ‖ ≤ ν1

∫ t

0
‖A(τ)‖ dτ, 0 ≤ t ≤ t1.

Using this bound, we obtain

‖X − Y ‖ ≤ ν1

∫ t

0
‖A(τ)‖

(∫ τ

0
‖A(σ)‖ dσ

)
dτ

≤
ν1

(∫ t
0 ‖A(τ)‖ dτ

)2

2
·

Iterating, we get

‖X − Y ‖ ≤
νk1

(∫ t
0 ‖A(τ)‖ dτ

)k+1

(k + 1)!
·

Letting k →∞, we see that ‖X − Y ‖ ≤ 0. Hence X ≡ Y .

Exercise 22 Show that

lim
k→∞

αk

(k + 1)!
= 0 (α > 0).

Having obtained the matrix X, it is easy to see that x(t) = X(t)x0 is

a solution of (2.15). Since the uniqueness of solutions of (2.15) is readily

established by means of the same argument as above, it is easy to see that

x(t) = X(t)x0 is the solution.

2

Note : We can no longer define a matrix exponential, but there is a result corre-

sponding to the fact that exp(tA) is nonsingular when A is constant. We can write

x(t) = Φ(t, 0)x0, where Φ(t, 0) has the form

Im+

∫ t

0

A(τ) dτ+

∫ t

0

A(τ1)

∫ τ1

0

A(τ2) dτ2 dτ1+

∫ t

0

A(τ1)

∫ τ1

0

A(τ2)

∫ τ2

0

A(τ3) dτ3 dτ2 dτ1 · · ·

(the Peano-Baker series).

Some remarks and corollaries
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2.3.2 Proposition. In the Existence and Uniqueness Theorem the

matrix X(t) is nonsingular (for every t ≥ 0).

Proof : Define a matrix-valued mapping Y (·) as the solution of

Ẏ = −Y A(t), Y (0) = Im. (2.18)

(Such a mapping exists and is unique by an argument virtually identical to that

which is used in the proof of the Existence and Uniqueness Theorem.)

Now
d

dt
(Y X) = Ẏ X + Y Ẋ = −Y AX + Y AX = 0

so Y (t)X(t) is equal to a constant matrix, which must be the unit matrix

because of condition at t = 0.

Exercise 23 Show that (for every t ≥ 0)

det (X(t)) 6= 0.

Hence X(t) is nonsingular (and its inverse is in fact Y (t)). 2

We can also generalize the idea of state transition matrix by writing

Φ(t, t0) : = X(t)X−1(t0) (2.19)

which exists for all t, t0 ≥ 0. It is easy to verify that

x(t) = Φ(t, t0)x0 (2.20)

is the solution of (2.15). Also, Φ(t, t0)−1 = Φ(t0, t).

Note : The expression (2.20) has the same form as that for the time invariant case.

However, it is most interesting that although, in general, it is not possible to obtain

an analytic expression for the solution of (2.16), and therefore for Φ(t, t0) in (2.20),

this latter matrix possesses precisely the same properties as those for the constant

case.
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When m = 1, we can see that

Φ(t, t0) = exp

(∫ t

t0

A(τ) dτ

)
.

Note that the formula above is generally not true. However, one can show that

it does hold if

A(t)

∫ t

t0

A(τ) dτ =

(∫ t

t0

A(τ) dτ

)
A(t) for all t.

Otherwise this is not necessarily true and the state transition matrix is not

necessarily the exponential of the integral of A.

The following result is interesting. We shall omit the proof.

2.3.3 Proposition. If Φ(t, t0) is the state transition matrix for

ẋ = A(t)x , x(t0) = x0

then

det (Φ(t, t0)) = e
∫ t
t0

tr (A(τ)) dτ
.

A further correspondence with the time-invariant case is the following re-

sult.

2.3.4 Proposition. The solution of

ẋ = A(t)x+B(t)u(t) , x(t0) = x0 (2.21)

is given by

x(t) = Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
(2.22)

where Φ(t, t0) is defined in (2.19).

Proof : Put

x = X(t)w ⇐⇒ X−1(t)x = w
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where X(t) is defined in (2.16). Substitution into (2.21) produces

ẋ = AXw +Xẇ = AXw +Bu(t).

Hence X(t)ẇ = Bu(t) and so ẇ = X−1(t)Bu(t), which gives

w(t) = w(t0) +

∫ t

t0

X−1(τ)B(τ)u(τ) dτ.

The desired expression then follows using x0 = X(t0)w(t0) and (2.19). Indeed,

x0 = x(t0) = X(t0)w(t0) ⇒ w(t0) = X−1(t0)x0

and we have

x(t) = X(t)w = X(t)

[
X−1(t0)x0 +

∫ t

t0

X−1(τ)B(τ)u(τ) dτ

]
= X(t)X−1(t0)

[
x0 +

∫ t

t0

X(t0)X−1(τ)B(τ)u(τ) dτ

]
= Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
.

2

2.4 Relationship between State Space and Classical

Forms

Classical linear control theory deals with scalar ODEs of the form

z(m) + k1z
(m−1) + · · ·+ km−1z

(1) + kmz = β0u
(`) + β1u

(`−1) + · · ·+ β`u

where k1, k2, . . . , km and β0, β1, . . . , β` are constants; it is assumed that ` <

m.

We shall consider a simplified form

z(m) + k1z
(m−1) + · · ·+ kmz = u(t) (2.23)

where u(·) is the single control variable.
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It is easy to write (2.23) in matrix form by taking as state variables

w1 = z, w2 = z(1), . . . , wm = z(m−1). (2.24)

Since

ẇi = wi+1 , i = 1, 2, . . . ,m− 1

(2.23) and (2.24) lead to the state space form

ẇ = Cw + du(t) (2.25)

where

C =



0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 1

−km −km−1 −km−2 . . . −k1


, w =


w1

w2

...

wm

 , d =


0

0
...

1

 .

(2.26)

The matrix C is called the companion form matrix.

Exercise 24 Show that the characteristic polynomial of C is

charC(λ) = λm + k1λ
m−1 + k2λ

m−2 + · · ·+ km (2.27)

which has the same coefficients as those in (2.23).

The state space form (2.25) is very special; we call it the canonical form.

Note : The classical form (2.23) and the canonical form are equivalent.

Having seen that (2.23) can be put into matrix form, a natural question is

to ask whether the converse hold : can any linear system in state space form

with a single control variable

ẋ = Ax+ bu(t)

be put into the classical form (2.23) ?
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2.4.1 Example. Consider the linear system in state space form with a

single control variable[
ẋ1

ẋ2

]
=

[
−2 2

1 −1

][
x1

x2

]
+

[
1

0

]
u(t). (2.28)

The (state) equations describing the system are
ẋ1 = −2x1 + 2x2 + u(t)

ẋ2 = x1 − x2.

Differentiating the second equation we get

ẍ2 = ẋ1 − ẋ2 = (−2x1 + 2x2 + u(t))− (x1 − x2) = −3x1 + 3x2 + u(t).

Hence

ẍ2 + 3ẋ2 = u(t).

This second-order ODE for x2 has the form (2.23) for m = 2. Its associated

canonical form is

ẇ =

[
0 1

0 −3

]
w +

[
0

1

]
u(t) . (2.29)

We expect that there is a transformation on R2 that transforms our origi-

nal control system (2.28) to the canonical form (2.29). Since the differential

equations are linear, we expect that the transformation is linear, say w = Tx.

Differentiation than gives

ẇ = TAT−1w + Tbu(t).

If we set

w1 = x2 and w2 = ẋ2

then 
w1 = x2

w2 = x1 − x2
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so a transformation transforming (2.28) into (2.29) is given by the matrix

T =

[
0 1

1 −1

]
.

2.4.2 Example. The control system in state space form

ẋ =

[
1 0

0 1

]
x+ bu(t)

(where b ∈ R2×1) cannot be transformed to the canonical form (or, equiva-

lently, to the classical form).

Exercise 25 Prove the preceding statement.

We would like to determine when and how such a procedure can be carried

out in general. Thus the natural questions concerning existence, uniqueness,

and computation of T arise. The answer to these questions is provided by

the following result.

2.4.3 Theorem. A linear control system in state space form

ẋ = Ax+ bu(t)

(where A ∈ Rm×m and 0 6= b ∈ Rm×1 ) can be transformed by a linear

transformation (i.e. invertible linear mapping)

w = Tx

into the canonical form

ẇ = Cw + du(t)

where C and d are given by (2.26), provided

rank
[
b Ab A2b . . . Am−1b

]
= m. (2.30)

Conversely, if such a transformation T exists, then (2.30) holds.
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Proof : (⇐) Sufficiency. Substitution of w = Tx into

ẋ = Ax+ bu

produces

ẇ = TAT−1w + Tbu.

We take

T =



τ

τA

τA2

...

τAm−1


where τ is any row m-vector such that T is nonsingular, assuming for the

present that at least one suitable τ exists.

Denote the columns of T−1 by s1, s2, . . . , sm and consider

TAT−1 =


τAs1 τAs2 . . . τAsm

τA2s1 τA2s2 . . . τA2sm
...

...
...

τAms1 τAms2 . . . τAmsm

 .

Comparison with the identity TT−1 = Im (that is,
τs1 τs2 . . . τsm

τAs1 τAs2 . . . τAsm
...

...
...

τAm−1s1 τAm−1s2 . . . τAm−1sm

 =


1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

)

establishes that the ith row of TAT−1 is the (i + 1)th row of Im (1 =

1, 2, . . . ,m− 1), so TAT−1 has the same form as C in (2.26), with last row

given by

ki = −τAmsm−i+1 , i = 1, 2, . . . ,m.
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For

ẇ = TAT−1w + Tbu

to be identical to

ẇ = Cw + du

we must also have

Tb = d

and substitution of T into this relation gives

τb = 0, τAb = 0, . . . , τAm−2b = 0, τAm−1b = 1

or

τ
[
b Ab A2b . . . Am−1b

]
= dT

which has a unique solution for τ (in view of condition (2.30)).

It remains to prove that (the matrix) T is nonsingular ; we shall show that

its rows are linearly independent. Suppose that

α1τ + α2τA+ · · ·+ αmτA
m−1 = 0

for some scalars αi , i = 1, 2, . . . ,m. Multiplying this relation on the right

by b gives αm = 0. Similarly, multiplying on the right successively by

Ab, A2b, . . . , Am−1b gives αm−1 = 0, . . . , α1 = 0. Thus, the rows of T are

linearly independent.

(⇒) Necessity. Conversely, if such a transformation T exists, then

rank
[
b Ab . . . Am−1b

]
= rank

[
Tb TAb TA2b . . . TAm−1b

]
= rank

[
Tb (TAT−1)Tb . . . (TAT−1)m−1Tb

]
= rank

[
d Cd C2d . . . Cm−1d

]
.
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It is easy to verify that this last matrix has the triangular form



0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1


and therefore has full rank. This completes the proof. 2

Note : T can be constructed using

T =


τ

τA
...

τAm−1

 and τ
[
b Ab A2b . . . Am−1b

]
= dT .

However, we can also give an explicit expression for the matrix in the

transformation x = T−1w. We have seen that

T
[
b Ab A2b . . . Am−1b

]
=



0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1


.

This latter matrix has elements given by

θi = −k1θi−1 − k2θi−2 − · · · − ki , i = 1, 2, . . . ,m− 1.
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It is straightforward to verify that

0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1



−1

=



km−1 km−2 . . . k1 1

km−2 km−3 . . . 1 0
...

...
...

...

k1 1 . . . 0 0

1 0 . . . 0 0


.

Finally,

T−1 =
[
b Ab A2b . . . Am−1b

]


km−1 km−2 . . . k1 1

km−2 km−3 . . . 1 0
...

...
...

...

k1 1 . . . 0 0

1 0 . . . 0 0


.

(2.31)

(k1, k2, . . . , km−1 are the coefficients in the characteristic equation of C.)

2.4.4 Example. Consider a system in the form

ẋ = Ax+ bu(t)

where

A =

[
1 −3

4 2

]
and b =

[
1

1

]
.

Find the matrix T and the transformed system.

Solution : From

τb = 0 , τAb = 1

with τ =
[
τ1 τ2

]
we have{

τ1 + τ2 = 0

−2τ1 + 6τ2 = 1
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whence

τ1 = −1

8
and τ2 =

1

8
·

Now

T =

[
τ

τA

]
=

1

8

[
−1 1

3 5

]

and

T−1 =

[
−5 1

3 1

]
.

Then

TAT−1 =
1

8

[
−1 1

3 5

][
1 −3

4 2

][
−5 1

3 1

]
=

[
0 1

−14 3

]
.

Thus the transformed system is

ẇ = TAT−1w + Tbu =

[
0 1

−14 3

][
w1

w2

]
+

1

8

[
−1 1

3 5

][
1

1

]
u;

that is,  ẇ1 = w2

ẇ2 = −14w1 + 3w2 + u

or (for w1 = z, w2 = ż )

z̈ − 3ż + 14z = u .

A result similar to Theorem 2.4.3 can be obtained for systems having

zero input and scalar output, so that the system equations are
ẋ = Ax

y = cx

(2.32)

where A ∈ Rm×m, c ∈ R1×m, and y(·) is the output variable.
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2.4.5 Theorem. Any system described by (2.32) can be transformed by

x = Sv, with S nonsingular, into the canonical form

v̇ = Ev, y = fv (2.33)

where

E =



0 0 0 . . . 0 −em
1 0 0 . . . 0 −em−1

0 1 0 . . . 0 −em−2

...
...

...
...

...

0 0 0 . . . 1 −e1


and f =

[
0 0 . . . 1

]
(2.34)

provided that

rank



c

cA

cA2

...

cAm−1


= m. (2.35)

Conversely, if such a transformation S exists, then condition (2.35) holds.

The proof is very similar to that of Theorem 2.4.3 and will be omitted.

Note : E is also a companion matrix because its characteristic polynomial is

charE(λ) = det (λIm − E) = λm + e1λ
m−1 + · · ·+ em

which again is identical to the characteristic polynomial of A.

2.5 Exercises

Exercise 26 Find the general solution, in spectral form, of the (initialized) uncon-

trolled system

ẋ = Ax , x(0) = x0

in each of the following cases :
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(a) A =

[
−1 −1

2 −4

]
.

(b) A =

[
2 −1

−1 2

]
.

(c) A =

[
0 1

1 0

]
.

(d) A =


1 0 −1

1 2 1

2 2 3

.

(e) A =


2 1 1

0 0 1

0 1 0

.

Exercise 27 Find the general solution, in exponential form, of the (initialized) un-

controlled system

ẋ = Ax , x(0) = x0

in each of the cases given in Exercise 26.

Exercise 28 Consider the equation of simple harmonic motion

z̈ + ω2z = 0.

Take as state variables x1 = z and x2 =
1

ω
ż, and find the state transition matrix

Φ(t, 0).

Exercise 29 Use the exponential matrix to solve the rabbit-fox environment prob-

lem [
ẋ1

ẋ2

]
=

[
a1 −a2
a3 −a4

][
x1

x2

]
(a1, a2, a3, a4 > 0)

subject to the condition
a1
a3

=
a2
a4
·

Show that for arbitrary initial conditions, the populations will attain a steady state

as t → ∞ only if a1 − a4 < 0, and give an expression for the ultimate size of the

rabbit population in this case. Finally, deduce that if the environment is to reach a

steady state in which both rabbits and foxes are present, then x1(0) >
a1
a3
x2(0).
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Exercise 30 A linear control system is described by the equations
ẋ1 = x1 + 4x2 + u(t)

ẋ2 = 3x1 + 2x2.

Determine the state transition matrix and write down the general solution.

Exercise 31 A linear control system is described by

z̈ + 3ż + 2z = u , z(0) = ż(0) = 0

where

u(t) =


1 if 0 ≤ t < 1

0 if t ≥ 1.

Calculate the state transition matrix and determine z(2).

Exercise 32 Verify that the solution of the matrix differential equation

Ẇ = AW +WB, W (0) = C

(where A,B ∈ Rm×m) is

W (t) = exp(tA)C exp(tB).

Exercise 33 Consider the linear control system

ẋ = Ax+ bu(t)

where

A =

[
1 2

0 1

]
, b =

[
2

1

]
and take

u(t) =


1 if t ≥ 0

0 if t < 0.

Evaluate exp(tA) and show that the solution of this problem, subject to

x(0) =

[
1

0

]
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is

x(t) =


1 + 3t+ 5

2 t
2 + 7

6 t
3 + · · ·

t+ 1
2 t

2 + 1
6 t

3 + · · ·

 .
Exercise 34 Consider the matrix differential equation

Ẋ = A(t)X, X(0) = Im.

Show that, when m = 2,

d

dt
det (X(t)) = tr (A(t)) · det (X(t))

and hence deduce that X(t) is nonsingular, t ≥ 0.

Exercise 35 Verify that the properties of the state transition matrix

(a) d
dtΦ(t, t0) = AΦ(t, t0).

(b) Φ(t0, t0) = Im.

(c) Φ(t0, t) = Φ−1(t, t0).

(d) Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

do carry over to the time varying case.

Exercise 36 Consider the (initialized) uncontrolled system

ẋ = A(t)x, x(0) = x0.

If B(t) =
∫ t
0
A(τ) dτ , show that the solution in this case is

x(t) = exp(B(t))x0

provided B(t) and A(t) commute with each other (for all t ≥ 0).

Exercise 37 Verify that the solution of the matrix differential equation

Ẇ = A(t)W +WAT (t), W (t0) = C

is

W (t) = Φ(t, t0)CΦT (t, t0).
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Exercise 38 For the linear control system

ẋ =

[
−1 −4

−1 −1

]
x+

[
1

1

]
u(t)

determine Φ(t, 0). If

x(0) =

[
1

2

]
and u(t) = e2t, t ≥ 0

use formula

x(t) = Φ(t, 0)

[
x0 +

∫ t

0

Φ(0, τ)Bu(τ) dτ

]
to obtain the expression for x(t).

Exercise 39 Consider a single-input control system, written in state space form,

ẋ = Ax+ bu(t).

Find the matrix T of the linear tansformation w = Tx and the transformed system

(the system put into canonical form)

ẇ = Cw + du(t)

for each of the following cases :

(a) A =

[
−1 −1

2 −4

]
, b =

[
1

3

]
.

(b) A =


1 0 −1

1 2 1

2 2 3

 , b =


1

0

1

.

Exercise 40 Consider a single-output (uncontrolled) system, written in state space

form,

ẋ = Ax, y = cx.

Find the matrix P of the linear transformation x = Pv and the transformed system

(the system put into the canonical form)

v̇ = Ev, y = fv
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when

A =


1 2 0

3 −1 1

0 2 0

 , c =
[

0 0 2
]
.
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Intuitively, a control system should be designed so that the input u(·) “controls” all

the states; and also so that all states can be “observed” from the output y(·). The

concepts of (complete) controllability and observability formalize these ideas.

Another two fundamental concepts of control theory – feedback and realization –

are introduced. Using (linear) feedback it is possible to exert a considerable influence

on the behaviour of a (linear) control system.

◦ © ◦
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3.1 Controllability

An essential first step in dealing with many control problems is to determine

whether a desired objective can be achieved by manipulating the chosen control

variables. If not, then either the objective will have to be modified or control

will have to be applied in some different fashion.

We shall discuss the general property of being able to transfer (or steer) a

control system from any given state to any other by means of a suitable choice

of control functions.

3.1.1 Definition. The linear control system Σ defined by

ẋ = A(t)x+B(t)u(t) (3.1)

where A(t) ∈ Rm×m and B(t) ∈ Rm×`, is said to be completely control-

lable (c.c.) if for any t0, any initial state x(t0) = x0, and any given final state

xf , there exist a finite time t1 > t0 and a control u : [t0, t1] → R` such that

x(t1) = xf .

Note : (1) The qualifying term “completely” implies that the definition holds for

all x0 and xf , and several other types of controllability can be defined.

(2) The control u(·) is assumed piecewise-continuous in the interval [t0, t1].

3.1.2 Example. Consider the control system described by
ẋ1 = a1x1 + a2x2 + u(t)

ẋ2 = x2.

Clearly, by inspection, this is not completely controllable (c.c.) since u(·) has

no influence on x2, which is entirely determined by the second equation and

x2(t0).

We have

xf = Φ(t1, t0)

[
x0 +

∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
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or

0 = Φ(t1, t0)

[
x0 − Φ(t0, t1)xf +

∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
.

Since Φ(t1, t0) is nonsingular it follows that if u(·) transfers x0 to xf , it also

transfers x0−Φ(t0, t1)xf to the origin in the same time interval. Since x0 and

xf are arbitrary, it therefore follows that – in the controllability definition –

the given final state can be taken to be the zero vector without loss of generality.

Note : For time-invariant control systems – in the controllability definition – the

initial time t0 can be set equal to zero.

The Kalman rank condition

For linear time-invariant control systems a general algebraic criterion (for

complete controllability) can be derived.

3.1.3 Theorem. The linear time-invariant control system

ẋ = Ax+Bu(t) (3.2)

(or the pair (A, B) ) is c.c. if and only if the (Kalman) controllability

matrix

C = C(A,B) : =
[
B AB A2B . . . Am−1B

]
∈ Rm×m`

has rank m.

Proof : (⇒ ) We suppose the system is c.c. and wish to prove that

rank (C) = m. This is done by assuming rank (C) < m, which leads to a

contradiction.

Then there exists a constant row m-vector q 6= 0 such that

qB = 0, qAB = 0, . . . , qAm−1B = 0.

In the expression

x(t) = exp(tA)

[
x0 +

∫ t

0
exp(−τA)Bu(τ) dτ

]
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for the solution of (3.2) subject to x(0) = x0, set t = t1, x(t1) = 0 to obtain

(since exp(t1A) is nonsingular)

−x0 =

∫ t1

0
exp(−τA)Bu(τ) dτ.

Now, exp(−τA) can be expressed as some polynomial r(A) in A having

degree at most m− 1, so we get

−x0 =

∫ t1

0
(r0Im + r1A+ · · ·+ rm−1A

m−1)Bu(τ) dτ.

Multiplying this relation on the left by q gives

qx0 = 0.

Since the system is c.c., this must hold for any vector x0, which implies q = 0,

contradiction.

(⇐) We asume rank (C) = m, and wish to show that for any x0 there is

a function u : [0, t1]→ R`, which when substituted into

x(t) = exp(tA)

[
x0 +

∫ t

0
exp(−τA)Bu(τ) dτ

]
(3.3)

produces

x(t1) = 0.

Consider the symmetric matrix

Wc : =

∫ t1

0
exp(−τA)BBT exp(−τAT ) dτ.

One can show that Wc is nonsingular. Indeed, consider the quadratic form

associated to Wc

αTWcα =

∫ t1

0
ψ(τ)ψT (τ) dτ

=

∫ t1

0
‖ψ(τ)||2e dτ ≥ 0

where α ∈ Rm×1 is an arbitrary column vector and ψ(τ) : = αT exp (−τA)B.

It is clear that Wc is positive semi-definite, and will be singular only if there
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exists an ᾱ 6= 0 such that ᾱTWcᾱ = 0. However, in this case, it follows (using

the properties of the norm) that ψ(τ) ≡ 0, 0 ≤ τ ≤ t1. Hence, we have

ᾱT
(
Im − τA+

τ2

2!
A2 − τ3

3!
A3 + · · ·

)
B = 0 , 0 ≤ τ ≤ t1

from which it follows that

ᾱTB = 0 , ᾱTAB = 0 , ᾱTA2B = 0 , · · ·

This implies that ᾱTC = 0. Since by assumption C has rank m, it follows

that such a nonzero vector ᾱ cannot exist, so Wc is nonsingular.

Now, if we choose as the control vector

u(t) = −BT exp(−tAT )W−1
c x0 , t ∈ [0, t1]

then substitution into (3.3) gives

x(t1) = exp(t1A)

[
x0 −

∫ t1

0
exp(−τA)BBT exp(−τAT ) dτ · (W−1

c x0)

]
= exp(t1A)

[
x0 −WcW

−1
c x0

]
= 0

as required. 2

3.1.4 Corollary. If rank (B) = r, then the condition in Theorem 3.1.3

reduces to

rank
[
B AB . . . Am−rB

]
= m.

Proof : Define the matrix

Ck : =
[
B AB · · · AkB

]
, k = 0, 1, 2 . . .

If rank (Cj) = rank (Cj+1) it follows that all the columns of Aj+1B must be

linearly dependent on those of Cj . This then implies that all the columns of

Aj+2B, Aj+3B, . . . must also be linearly dependent on those of Cj , so that

rank (Cj) = rank (Cj+1) = rank (Cj+2) = · · ·
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Hence the rank of Ck increases by at least one when the index k is increased

by one, until the maximum value of rank (Ck) is attained when k = j. Since

rank (C0) = rank (B) = r and rank (Ck) ≤ m it follows that r+ j ≤ m, giving

j ≤ m− r as required. 2

3.1.5 Example. Consider the linear control system Σ described by

ẋ =

[
−2 2

1 −1

]
x+

[
1

0

]
u(t) .

The (Kalman) controllability matrix is

C = CΣ =

[
1 −2

0 1

]

which has rank 2, so the control system Σ is c.c.

Note : When ` = 1, B reduces to a column vector b and Theorem 2.4.3 can be

restated as : A linear control system in the form

ẋ = Ax+ bu(t)

can be transformed into the canonical form

ẇ = Cw + du(t)

if and only if it is c.c.

Controllability criterion

We now give a general criterion for (complete) controllability of control

systems (time-invariant or time-varying) as well as an explicit expression for

a control vector which carry out a required alteration of states.

3.1.6 Theorem. The linear control system Σ defined by

ẋ = A(t)x+B(t)u(t)
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is c.c. if and only if the symmetric matrix, called the controllability Gramian,

Wc(t0, t1) : =

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) dτ ∈ Rm×m (3.4)

is nonsingular. In this case the control

u∗(t) = −BT (t)ΦT (t0, t)Wc(t0, t1)−1 [x0 − Φ(t0, t1)xf ] , t ∈ [t0, t1]

transfers x(t0) = x0 to x(t1) = xf .

Proof : (⇐) Sufficiency. If Wc(t0, t1) is assumed nonsingular, then the

control defined by

u∗(t) = −BT (t)ΦT (t0, t)Wc(t0, t1)−1 [x0 − Φ(t0, t1)xf ] , t ∈ [t0, t1]

exists. Now, substitution of the above expression into the solution

x(t) = Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
of

ẋ = A(t)x+B(t)u(t)

gives

x(t1) = Φ(t1, t0)

[
x0 +

∫ t1

t0

Φ(t0, τ)B(τ)(−BT (τ)ΦT (t0, τ)Wc(t0, t1)−1·

[x0 − Φ(t0, t1)xf ]) dτ ]

= Φ(t1, t0)
[
x0 −Wc(t0, t1)Wc(t0, t1)−1 [x0 − Φ(t0, t1)xf ]

]
= Φ(t1, t0) [x0 − x0 + Φ(t0, t1)xf ]

= Φ(t1, t0)Φ(t0, t1)xf

= xf .

(⇒) Necessity. We need to show that if Σ is c.c., then Wc(t0, t1) is nonsin-

gular. First, notice that if α ∈ Rm×1 is an arbitrary column vector, then from
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(3.4) since W = Wc(t0, t1) is symmetric we can construct the quadratic form

αTWα =

∫ t1

t0

θT (τ, t0)θ(τ, t0) dτ

=

∫ t1

t0

‖θ‖2e dτ ≥ 0

where θ(τ, t0) : = BT (τ)ΦT (t0, τ)α, so that Wc(t0, t1) is positive semi-definite.

Suppose that there exists some ᾱ 6= 0 such that ᾱTWᾱ = 0. Then we get

(for θ̄ = θ when α = ᾱ) ∫ t1

t0

‖θ̄‖2e dτ = 0

which in turn implies (using the properties of the norm) that θ̄(τ, t0) ≡
0 , t0 ≤ τ ≤ t1. However, by assumption Σ is c.c. so there exists a control

v(·) making x(t1) = 0 if x(t0) = ᾱ. Hence

ᾱ = −
∫ t1

t0

Φ(t0, τ)B(τ)v(τ) dτ.

Therefore

‖ᾱ‖2e = ᾱT ᾱ

= −
∫ t1

t0

vT (τ)BT (τ)ΦT (t0, τ)ᾱ dτ

= −
∫ t1

t0

vT (τ)θ̄(τ, t0) dτ = 0

which contradicts the assumption that ᾱ 6= 0. Hence Wc(t0, t1) is positive

definite and is therefore nonsingular. 2

3.1.7 Example. The control system is

ẋ =

[
−2 2

1 −1

]
x+

[
1

1

]
u(t).

Observe that λ = 0 is an eigenvalue of A, and b =

[
1

1

]
is a corresponding

eigenvector, so the controllability rank condition does not hold. However, A is
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similar to its companion matrix. Using the matrix T =

[
0 1

1 −1

]
computed

before (see Example 2.5.1) and w = Tx we have the system

ẇ =

[
0 1

0 −3

]
w +

[
1

0

]
u .

Differentiation of the w1 equation and substitution produces a second-order

ODE for w1 :

ẅ1 + 3ẇ1 = 3u+ u̇.

One integration produces a first-order ODE

ẇ1 + 3w1 = 3

∫
u(τ) dτ + u

which shows that the action of arbitrary inputs u(·) affects the dynamics in

only a one-dimensional space. The original x equations might lead us to

think that u(·) can fully affect x1 and x2, but notice that the w2 equation

says that u(·) has no effect on the dynamics of the difference x1 − x2 = w2.

Only when the initial condition for w involves w2(0) = 0 can u(·) be used

to control a trajectory. That is, the inputs completely control only the states

that lie in the subspace

span [ b Ab ] = span {b} = span

[
1

1

]
.

Solutions starting with x1(0) = x2(0) satisfy

x1(t) = x2(t) =

∫ t

0
u(τ) dτ + x1(0).

One can steer along the line x1 = x2 from any initial point to any final point

x1(t1) = x2(t1) at any finite time t1 by appropriate choice of u(·). On the

other hand, if the initial condition lies off the line x1 = x2, then the difference

w2 = x1 − x2 decays exponentially so there is no chance of steering to an

arbitrarily given final state in finite time.
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Note : The control function u∗(·) which transfers the system from x0 = x(t0)

to xf = x(t1) requires calculation of the state transition matrix Φ(·, t0) and the

controllability Gramian Wc(·, τ0). However, this is not too dificult for linear time-

invariant control systems, although rather tedious. Of course, there will in general be

many other suitable control vectors which achieve the same result .

3.1.8 Proposition. If u(·) is any other control taking x0 = x(t0) to

xf = x(t1), then ∫ t1

t0

‖u(τ)‖2e dτ >
∫ t1

t0

‖u∗(τ)‖2e dτ.

Proof : Since both u∗ and u satisfy

xf = Φ(t1, t0)

[
x0 +

∫ t1

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
we obtain after subtraction

0 =

∫ t1

t0

Φ(t0, τ)B(τ) [u(τ)− u∗(τ)] dτ.

Multiplication of this equation on the left by

[x0 − Φ(t0, t1)xf ]T
[
Wc(t0, t1)−1

]T
gives ∫ t1

t0

(u∗)T (τ) [u∗(τ)− u(τ)] dτ = 0

and thus ∫ t1

t0

‖u∗(τ)‖2e dτ =

∫ t1

t0

(u∗)T (τ)u(τ) dτ.

Therefore

0 <

∫ t1

t0

‖u∗(τ)− u(τ)‖2e dτ =

∫ t1

t0

[u∗(τ)− u(τ)]T [u∗(τ)− u(τ)] dτ

=

∫ t1

t0

(
‖u(τ)‖2e + ‖u∗(τ)‖2e − 2(u∗)T (τ)u(τ)

)
dτ

=

∫ t1

t0

(
‖u(τ)‖2e − ‖u∗(τ)‖2e

)
dτ
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and so∫ t1

t0

‖u(τ)‖2e dτ =

∫ t1

t0

(
‖u∗(τ)‖2e + ‖u∗(τ)− u(τ)‖2e

)
dτ >

∫ t1

t0

‖u∗(τ)‖2e dτ

as required. 2

Note : This result can be interpreted as showing that the control

u∗(t) = −BT (t)ΦT (t0, t)Wc(t0, t1)−1 [x0 − Φ(t0, t1)xf ]

is “optimal”, in the sense that it minimizes the integral∫ t1

t0

‖u(τ)‖2e dτ =

∫ t1

t0

(
u21(τ) + u22(τ) + · · ·+ u2`(τ)

)
dτ

over the set of all (admissible) controls which transfer x0 = x(t0) to xf = x(t1), and

this integral can be thought of as a measure of control “energy” involved.

Algebraic equivalence and decomposition of control systems

We now indicate a further aspect of controllability. Let P (·) be a matrix-

valued mapping which is continuous and such that P (t) is nonsingular for all

t ≥ t0. (The continuous maping P : [t0,∞) → GL (m,R) is a path in the

general linear group GL (m,R).) Then the system Σ̃ obtained from Σ by the

transformation

x̃ = P (t)x

is said to be algebraically equivalent to Σ.

3.1.9 Proposition. If Φ(t, t0) is the state transition matrix for Σ, then

P (t)Φ(t, t0)P−1(t0) = Φ̃(t, t0)

is the state transition matrix for Σ̃.

Proof : We recall that Φ(t, t0) is the unique matrix-valued mapping sat-

isfying

Φ̇(t, t0) = A(t)Φ(t, t0), Φ(t0, t0) = Im
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and is nonsingular. Clearly,

Φ̃(t0, t0) = Im ;

differentiation of

x̃ = P (t)x

gives

˙̃x = Ṗ x+ Pẋ

= (Ṗ + PA)x+ PBu

= (Ṗ + PA)P−1x̃+ PBu.

We need to show that Φ̃ is the state transition matrix for

˙̃x = (Ṗ + PA)P−1x̃+ PBu .

We have

˙̃
Φ(t, t0) =

d

dt

[
P (t)Φ(t, t0)P−1(t0)

]
= Ṗ (t)Φ(t, t0)P−1(t0) + P (t)Φ̇(t, t0)P−1(t0)

=
[(
Ṗ (t) + P (t)A(t)

)
P−1(t)

]
P (t)Φ(t, t0)P−1(t0)

=
[(
Ṗ (t) + P (t)A(t)

)
P−1(t)

]
Φ̃(t, t0).

2

3.1.10 Proposition. If Σ is c.c., then so is Σ̃.

Proof : The system matrices for Σ̃ are

Ã = (Ṗ + PA)P−1 and B̃ = PB

so the controllability matrix for Σ̃ is

W̃ =

∫ t1

t0

Φ̃(t0, τ)B̃(τ)B̃T (τ)Φ̃T (t0, τ) dτ

=

∫ t1

t0

P (t0)Φ(t0, τ)P−1(τ)P (τ)B(τ)BT (τ)P T (τ)
(
P−1(τ)

)T
ΦT (t0, τ)P T (t0) dτ

= P (t0)Wc(t0, t1)P T (t0).
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Thus the matrix W̃ = W̃c(t0, t1) is nonsingular since the matrices Wc(t0, t1)

and P (t0) each have rank m. 2

The following important result on system decomposition then holds :

3.1.11 Theorem. When the linear control system Σ is time-invariant

then if the controllability matrix CΣ has rank m1 < m there exists a con-

trol system, algebraically equivalent to Σ, having the form[
ẋ(1)

ẋ(2)

]
=

[
A1 A2

0 A3

][
x(1)

x(2)

]
+

[
B1

0

]
u(t)

y =
[
C1 C2

]
x

where x(1) and x(2) have orders m1 and m−m1, respectively, and (A1, B1)

is c.c.

We shall postpone the proof of this until a later section (see the proof of

Theorem 3.4.5) where an explicit formula for the transformation matrix will

also be given.

Note : It is clear that the vector x(2) is completely unaffected by the control u(·).

Thus the state space has been divided into two parts, one being c.c. and the other

uncontrollable.

3.2 Observability

Closely linked to the idea of controllability is that of observability, which in

general terms means that it is possible to determine the state of a system by

measuring only the output.

3.2.1 Definition. The linear control system (with outputs) Σ described

by 
ẋ = A(t)x+B(t)u(t)

y = C(t)x

(3.5)
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is said to be completely observable (c.o.) if for any t0 and any initial state

x(t0) = x0, there exists a finite time t1 > t0 such that knowledge of u(·) and

y(·) for t ∈ [t0, t1] suffices to determine x0 uniquely.

Note : There is in fact no loss of generality in assuming u(·) is identically zero

throughout the interval. Indeed, for any input u : [t0, t1] → R` and initial state x0,

we have

y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ = C(t)Φ(t, t0)x0.

Defining

ŷ(t) : = y(t)−
∫ t

t0

C(t)Φ(t, τ)B(τ)u(τ) dτ

we get

ŷ(t) = C(t)Φ(t, t0)x0.

Thus a linear control system is c.o. if and only if knowledge of the output ŷ(·) with

zero input on the interval [t0, t1] allows the initial state x0 to be determined.

3.2.2 Example. Consider the linear control system described by

ẋ1 = a1x1 + b1u(t)

ẋ2 = a2x2 + b2u(t)

y = x1.

The first equation shows that x1(·) (= y(·)) is completely determined by

u(·) and x1(t0). Thus it is impossible to determine x2(t0) by measuring the

output, so the system is not completely observable (c.o.).

3.2.3 Theorem. The linear control system Σ is c.o. if and only if the

symmetric matrix, called the observability Gramian,

Wo(t0, t1) : =

∫ t1

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0) dτ ∈ Rm×m (3.6)

is nonsingular.
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Proof : (⇐) Sufficiency. Assuming u(t) ≡ 0, t ∈ [t0, t1], we have

y(t) = C(t)Φ(t, t0)x0 .

Multiplying this relation on the left by ΦT (t, t0)CT (t) and integrating pro-

duces ∫ t1

t0

ΦT (τ, t0)CT (τ)y(τ) dτ = Wo(t0, t1)x0

so that if Wo(t0, t1) is nonsingular, the initial state is

x0 = Wo(t0, t1)−1

∫ t1

t0

ΦT (τ, t0)CT (τ)y(τ) dτ

so Σ is c.o.

(⇒) Necessity. We now assume that Σ is c.o. and prove that W = Wo(t0, t1)

is nonsingular. First, if α ∈ Rm×1 is an arbitrary column vector,

αTWα =

∫ t1

t0

(C(τ)Φ(τ, t0)α)T C(τ)Φ(τ, t0)αdτ ≥ 0

so Wo(t0, t1) is positive semi-definite. Next, suppose there exists an ᾱ 6= 0

such that ᾱTWᾱ = 0. It then follows that

C(τ)Φ(τ, t0)ᾱ ≡ 0 , t0 ≤ τ ≤ t1.

This implies that when x0 = ᾱ the output is identically zero throughout the

time interval, so that x0 cannot be determined in this case from the knowledge

of y(·). This contradicts the assumption that Σ is c.o., hence Wo(t0, t1) is

positive definite, and therefore nonsingular. 2

Note : Since the observability of Σ is independent of B, we may refer to the

observability of the pair (A,C).

Duality

3.2.4 Theorem. The linear control system (with outputs) Σ defined by
ẋ = A(t)x+B(t)u(t)

y = C(t)x
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is c.c. if and only if the dual system Σ◦ defined by
ẋ = −AT (t)x+ CT (t)u(t)

y = BT (t)x

is c.o.; and conversely.

Proof : We can see that if Φ(t, t0) is the state transition matrix for the

system Σ, then ΦT (t0, t) is the state transition matrix for the dual system

Σ◦. Indeed, differentiate Im = Φ(t, t0)Φ(t, t0)−1 to get

0 =
d

dt
Im = Φ̇(t, t0)Φ(t, t0)−1 + Φ(t, t0)Φ̇(t0, t)

= A(t)Φ(t, t0)Φ(t, t0)−1 + Φ(t, t0)Φ̇(t0, t)

= A(t) + Φ(t, t0)Φ̇(t0, t).

This implies

Φ̇(t0, t) = −Φ(t0, t)A(t)

or

Φ̇T (t0, t) = −AT (t)ΦT (t0, t).

Furthermore, the controllability matrix

WΣ
c (t0, t1) =

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ) dτ

(associated with Σ ) is identical to the observability matrix WΣ
o (t0, t1) (asso-

ciated with Σ◦).

Conversely, the observability matrix

WΣ
o (t0, t1) =

∫ t1

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0) dτ

(associated with Σ ) is identical to the controllability matrix WΣ◦
c (t0, t1) (as-

sociated with Σ◦). 2
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Note : This duality theorem is extremely useful, since it enables us to deduce

immediately from a controllability result the corresponding one on observability (and

conversely). For example, to obtain the observability criterion for the time-invariant

case, we simply apply Theorem 3.1.3 to Σ◦ to obtain the following result.

3.2.5 Theorem. The linear time-invariant control system
ẋ = Ax+Bu(t)

y = Cx

(3.7)

(or the pair (A,C)) is c.o. if and only if the (Kalman) observability

matrix

O = O(A,C) : =



C

CA

CA2

...

CAm−1


∈ Rmn×m

has rank m.

3.2.6 Example. Consider the linear control system Σ described by
ẋ =

[
−2 2

1 −1

]
x+

[
1

0

]
u(t)

y = x1.

The (Kalman) observability matrix is

O = OΣ =

[
1 0

−2 2

]

which has rank 2. Thus the control system Σ is c.o.
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In the single-output case (i.e. n = 1), if u(·) = 0 and y(·) is known in

the form

γ1e
λ1t + γ2e

λ2t + · · ·+ γme
λmt

assuming that all the eigenvalues λi of A are distinct, then x0 can be ob-

tained more easily than by using

x0 = Wo(t0, t1)−1

∫ t1

t0

ΦT (τ, t0)CT (τ)y(τ) dτ.

For suppose that t0 = 0 and consider the solution of ẋ = Ax in the spectral

form, namely

x(t) = (v1x(0)) eλ1tw1 + (v2x(0)) eλ2tw2 + · · ·+ (vmx(0)) eλmtwm.

We have

y(t) = (v1x(0)) (cw1)eλ1t + (v2x(0)) (cw2)eλ2t + · · ·+ (vmx(0)) (cwm)eλmt

and equating coefficients of the exponential terms gives

vix(0) =
γi
cwi

(i = 1, 2, . . . ,m).

This represents m linear equations for the m unknown components of x(0)

in terms of γi, vi and wi (i = 1, 2, . . . ,m).

Again, in the single-output case, C reduces to a row matrix c and The-

orem 3.2.5 can be restated as :

A linear system (with outputs) in the form
ẋ = Ax

y = cx

can be transformed into the canonical form
v̇ = Ev

y = fv

if and only if it is c.o.
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Decomposition of control systems

By duality, the result corresponding to Theorem 3.1.11 is :

3.2.7 Theorem. When the linear control system Σ is time-invariant then

if the observability matrix OΣ has rank m1 < m there exists a control system,

algebraically equivalent to Σ, having the form[
ẋ(1)

ẋ(2)

]
=

[
A1 0

A2 A3

][
x(1)

x(2)

]
+

[
B1

B2

]
u(t)

y = C1x(1)

where x(1) and x(2) have orders m1 and m−m1 , respectively and (A1, C1)

is c.o.

We close this section with a decomposition result which effectively combines

together Theorems 3.1.11 and 3.2.7 to show that a linear time-invariant

control system can split up into four mutually exclusive parts, respectively

• c.c. but unobservable

• c.c. and c.o.

• uncontrollable and unobservable

• c.o. but uncontrollable.

3.2.8 Theorem. When the linear control system Σ is time-invariant it is

algebraically equivalent to
ẋ(1)

ẋ(2)

ẋ(3)

ẋ(4)

 =


A11 A12 A13 A14

0 A22 0 A24

0 0 A33 A34

0 0 0 A44




x(1)

x(2)

x(3)

x(4)

+


B1

B2

0

0

u(t)

y = C2x(2) + C4x(4)

where the subscripts refer to the stated classification.
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3.3 Linear Feedback

Consider a linear control system Σ defined by

ẋ = Ax+Bu(t) (3.8)

where A ∈ Rm×m and B ∈ Rm×`. Suppose that we apply a (linear) feed-

back, that is each control variable is a linear combination of the state variables,

so that

u(t) = Kx(t)

where K ∈ R`×m is a feedback matrix. The resulting closed loop system is

ẋ = (A+BK)x. (3.9)

The pole-shifting theorem

We ask the question whether it is possible to exert some influence on the

behaviour of the closed loop system and, if so, to what extent. A some-

what surprising result, called the Spectrum Assignment Theorem, says in

essence that for almost any linear control system Σ it is possible to obtain

arbitrary eigenvalues for the matrix A+BK (and hence arbitrary asymptotic

behaviour) using suitable feedback laws (matrices) K, subject only to the ob-

vious constraint that complex eigenvalues must appear in pairs. “Almost any”

means that this will be true for (completely) controllable systems.

Note : This theorem is most often referred to as the Pole-Shifting Theorem, a

terminology that is due to the fact that the eigenvalues of A+BK are also the poles

of the (complex) function

z 7→ 1

det (zIn −A−BK)
·

This function appears often in classical control design.

The Pole-Shifting Theorem is central to linear control systems theory and is

itself the starting point for more interesting analysis. Once we know that arbitrary

sets of eigenvalues can be assigned, it becomes of interest to compare the performance
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of different such sets. Also, one may ask what happens when certain entries of K are

restricted to vanish, which corresponds to constraints on what can be implemented.

3.3.1 Theorem. Let Λ = {θ1, θ2, . . . , θm} be an arbitrary set of m com-

plex numbers (appearing in conjugate pairs). If the linear control system Σ

is c.c., then there exists a matrix K ∈ R`×m such that the eigenvalues of

A+BK are the set Λ.

Proof (when ` = 1) : Since ẋ = Ax + Bu(t) is c.c., it follows that there

exists a (linear) transformation w = Tx such that the given system is trans-

formed into

ẇ = Cw + du(t)

where

C =



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1

−km −km−1 −km−2 . . . −k1


, d =



0

0
...

0

1


.

The feedback control u = kw, where

k : =
[
km km−1 . . . k1

]
produces the closed loop matrix C + dk, which has the same companion form

as C but with last row −
[
γm γm−1 · · · γ1

]
, where

ki = ki − γi , i = 1, 2, . . . ,m. (3.10)

Since

C + dk = T (A+ bkT )T−1

it follows that the desired matrix is

K = kT
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the entries ki (i = 1, 2, . . . ,m) being given by (3.10).

In this equation ki (i = 1, 2, . . . ,m) are the coefficients in the character-

istic polynomial of A ; that is,

det (λIm −A) = λm + k1λ
m−1 + · · ·+ km

and γi (i = 1, 2, . . . ,m) are obtained by equating coefficients of λ in

λm + γ1λ
m−1 + · · ·+ γm ≡ (λ− θ1)(λ− θ2) · · · (λ− θm).

2

Note : The solution of (the closed loop system)

ẋ = (A+BK)x

depends on the eigenvalues of A + BK, so provided the control system Σ is c.c.,

the theorem tells us that using linear feedback it is possible to exert a considerable

influence on the time behaviour of the closed loop system by suitably choosing the

numbers θ1, θ2, . . . , θm.

3.3.2 Corollary. If the linear time-invariant control system
ẋ = Ax+Bu(t)

y = cx

is c.o., then there exists a matrix L ∈ Rm×1 such that the eigenvalues of

A+ Lc are the set Λ.

This result can be deduced from Theorem 3.3.1 using the Duality The-

orem.

3.3.3 Example. Consider the linear control system

ẋ =

[
1 −3

4 2

]
x+

[
1

1

]
u(t) .
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The characteristic equation of A is

charA(λ) ≡ λ2 − 3λ+ 14 = 0

which has roots 3±i
√

47
2 .

Suppose we wish the eigenvalues of the closed loop system to be −1 and

−2, so that the characteristic polynomial is

λ2 + 3λ+ 2 .

We have

k1 = k1 − γ1 = −3− 3 = −6

k2 = k2 − γ2 = 14− 2 = 12.

Hence

K = kT =
1

8

[
12 −6

] [ −1 1

3 5

]
= −

[
15
4

9
4

]
.

It is easy to verify that

A+ bK =
1

4

[
−11 −21

1 −1

]
does have the desired eigenvalues.

3.3.4 Lemma. If the linear control system Σ defined by

ẋ = Ax+Bu(t)

is c.c. and B =
[
b1 b2 · · · b`

]
with bi 6= 0, i = 1, 2, . . . , `, then there

exist matrices Ki ∈ R`×m, i = 1, 2, . . . , ` such that the systems

ẋ = (A+BKi)x+ biu(t)

are c.c.

Proof : For convenience consider the case i = 1. Since the matrix

C =
[
B AB A2B . . . Am−1B

]
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has full rank, it is possible to select from its columns at least one set of m

vectors which are linearly independent. Define an m × m matrix M by

choosing such a set as follows :

M =
[
b1 Ab1 . . . Ar1−1b1 b2 Ab2 . . . Ar2−1b2 . . .

]
where ri is the smallest integer such that Aribi is linearly dependent on all

the preceding vectors, the process continuing until m columns of U are taken.

Define an `×m matrix N having its rth1 column equal to e2, the second

column of I`, its (r1 + r2)th column equal to e3, its (r1 + r2 + r3)th column

equal to e4 and so on, all its other columns being zero.

It is then not difficult to show that the desired matrix in the statement of

the Lemma is

K1 = NM−1.

2

Proof of Theorem 3.3.1 when ` > 1 :

Let K1 be the matrix in the proof of Lemma 3.3.4 and define an ` × m

matrix K ′ having as its first row some vector k, and all its other rows zero.

Then the control

u = (K1 +K ′)x

leads to the closed loop system

ẋ = (A+BK1)x+BK ′x = (A+BK1)x+ b1kx

where b1 is the first column of B.

Since the system

ẋ = (A+BK1)x+ b1u

is c.c., it now follows from the proof of the theorem when ` = 1, that k can

be chosen so that the eigenvalues of A + BK1 + b1k are the set Λ, so the

desired feedback control is indeed u = (K1 +K ′)x. 2
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If y = Cx is the output vector, then again by duality we can immediately

deduce

3.3.5 Corollary. If the linear control system
ẋ = Ax+Bu(t)

y = Cx

is c.o., then there exists a matrix L ∈ Rm×n such that the eigenvalues of

A+ LC are the set Λ.

Algorithm for constructing a feedback matrix

The following method gives a practical way of constructing the feedback

matrix K. Let all the eigenvalues λ1, λ2, . . . , λm of A be distinct and let

W =
[
w1 w2 . . . wm

]
where wi is an eigenvector corresponding to the eigenvalue λi. With linear

feedback u = −Kx, suppose that the eigenvalues of A and A − BK are

ordered so that those of A−BK are to be

µ1, µ2, . . . , µr, λr+1, . . . , λm (r ≤ m).

Then provided the linear system Σ is c.c., a suitable matrix is

K = fg W̃

where W̃ consists of the first r rows of W−1, and

g =

[
α1

β1

α2

β2
· · · αr

βr

]

αi =



r∏
j=1

(λi − µj)

r∏
j=1
j 6=i

(λi − λj)
if r > 1

λ1 − µ1 if r = 1

β =
[
β1 β2 . . . βr

]T
= W̃Bf
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f being any column `-vector such that all βi 6= 0.

3.3.6 Example. Consider the linear system

ẋ =

[
0 1

−2 −3

]
x+

[
2

1

]
u(t) .

We have

λ1 = −1, λ2 = −2 and

W =

[
1 1

−1 −2

]
, W−1 =

[
2 1

−1 −1

]
.

Suppose that

µ1 = −3, µ2 = −4, so W̃ = W−1 .

We have

α1 = 6, α2 = −2

and β = W̃Bf gives[
β1

β2

]
=

[
2 1

−1 −1

][
2

1

]
f =

[
5f1

−3f1

]
.

Hence we can take f1 = 1, which results in

g =
[

6
5

2
3

]
.

Finally, the desired feedback matrix is

K = 1 ·
[

6
5

2
3

]
W−1 =

[
26
15

8
15

]
.

3.3.7 Example. Consider now the linear control system

ẋ =

[
0 1

−2 −3

]
x+

[
2 1

1 0

]
u(t) .

We now obtain [
β1

β2

]
=

[
5f1 + 2f2

−3f1 − f2

]



C.C. Remsing 97

so that f1 = 1, f2 = 0 gives

K =


26
15

8
15

0 0

 .
However f1 = 1, f2 = −1 gives

β1 = 3, β2 = −2 so that g =
[

2 1
]

and from K = fgW̃ we now have

K =

[
1

−1

] [
2 1

]
W−1 =

[
3 1

−3 −1

]
.

3.4 Realization Theory

The realization problem may be viewed as “guessing the equations of motion

(i.e. state equations) of a control system from its input/output behaviour” or,

if one prefers, “setting up a physical model which explains the experimental

data”.

Consider the linear control system (with outputs) Σ described by
ẋ = Ax+Bu(t)

y = Cx

(3.11)

where A ∈ Rm×m, B ∈ Rm×` and C ∈ Rn×m.

Taking Laplace transforms of (3.11) and assuming zero initial conditions

gives

sx(s) = Ax(s) +Bu(s)

and after rearrangement

x(s) = (sIm −A)−1Bu(s).
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The Laplace transform of the output is

y(s) = Cx(s)

and thus

y(s) = C (sIm −A)−1Bu(s) = G(s)u(s)

where the n× ` matrix

G(s) : = C (sIm −A)−1B (3.12)

is called the transfer function matrix since it relates the Laplace transform

of the output vector to that of the input vector.

Exercise 41 Evaluate (the Laplace transform of the exponential)

L
[
eat
]

(s) : =

∫ ∞
0

e−steat dt

and then show that (for A ∈ Rm×m) :

L [exp(tA)] (s) = (sIm −A)
−1
.

Using relation

(sIm −A)−1 =
sm−1Im + sm−2B1 + sm−3B2 + · · ·+Bm−1

charA(s)
(3.13)

where the ki and Bi are determined successively by

B1 = A+ k1Im, Bi = ABi−1 + kiIm ; i = 2, 3, . . . ,m− 1

k1 = −tr (A), ki = −1
i tr (ABi−1) ; i = 2, 3, . . . ,m

the expression (3.12) becomes

G(s) =
sm−1G0 + sm−2G1 + · · ·+Gm−1

χ(s)
=
H(s)

χ(s)
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where χ(s) = charA(s) and Gk =
[
g

(k)
ij

]
∈ Rn×` , k = 0, 1, 2, . . . ,m−1. The

n × ` matrix H(s) is called a polynomial matrix, since each of its entries

is itself a polynomial; that is,

hij = sm−1g
(0)
ij + sm−2g

(1)
ij + · · ·+ g

(m−1)
ij .

Note : The formulas above, used mainly for theoretical rather than computational

purposes, constitute Leverrier’s algorithm.

3.4.1 Example. Consider the electrically-heated oven described in section

1.3, and suppose that the values of the constants are such that the state

equations are

ẋ =

[
−2 2

1 −1

]
x+

[
1

0

]
u(t).

Suppose that the output is provided by a thermocouple in the jacket measuring

the jacket (excess) temperature, i.e.

y =
[
1 0

]
x.

The expression (3.12) gives

G(s) =
[

1 0
] [ s+ 2 −2

−1 s+ 1

]−1 [
1

0

]
=

s+ 1

s2 + 3s

using

(sI2 −A)−1 =
1

charA(s)
adj (sI2 −A).

Realizations

In practice it often happens that the mathematical description of a (linear

time-invariant) control system – in terms of differential equations – is not

known, but G(s) can be determined from experimental measurements or other

considerations. It is then useful to find a system – in our usual state space

form – to which G(·) corresponds.
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In formal terms, given an n× ` matrix G(s), whose elements are rational

functions of s, we wish to find (constant) matrices A,B,C having dimensions

m×m, m× ` and n×m, respectively, such that

G(s) = C(sIm −A)−1B

and the system equations will then be
ẋ = Ax+Bu(t)

y = Cx.

The triple (A,B,C) is termed a realization of G(·) of order m, and is not,

of course, unique. Amongst all such realizations some will include matrices A

having least dimensions – these are called minimal realizations, since the

corresponding systems involve the smallest possible number of state variables.

Note : Since each element in

(sIm −A)−1 =
adj (sIm −A)

det (sIm −A)

has the degree of the numerator less than that of the denominator, it follows that

lim
s→∞

C(sIm −A)−1B = 0

and we shall assume that any given G(s) also has this property, G(·) then being

termed strictly proper.

3.4.2 Example. Consider the scalar transfer function

g(s) =
2s+ 7

s2 − 5s+ 6
·

It is easy to verify that one realization of g(·) is

A =

[
0 1

−6 5

]
, b =

[
0

1

]
, c =

[
7 2

]
.

It is also easy to verify that a quite different triple is

A =

[
2 0

0 3

]
, b =

[
1

1

]
, c =

[
−11 13

]
.
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Note : Both these realizations are minimal, and there is in consequence a simple

relationship between them, as we shall see later.

Algebraic equivalence and realizations

It is now appropriate to return to the idea of algebraic equivalence of linear

control systems (defined in section 3.1), and discuss its implications for the

realization problem. The (linear) transformation

x̃ = Px

produces a linear control system with matrices

Ã = PAP−1, B̃ = PB, C̃ = CP−1. (3.14)

Exercise 42 Show that if (A,B,C) represents a c.c. (or c.o.) linear control system,

then so does (Ã, B̃, C̃).

Exercise 43 Show that if two linear control systems are algebraically equivalent,

then their transfer function matrices are identical (i.e.

C(sIm −A)−1B = C̃(sIm − Ã)−1B̃).

Characterization of minimal realizations

We can now state and prove the central result of this section, which links

together the three basic concepts of controllability, observability, and realiza-

tion.

3.4.3 Theorem. A realization (A,B,C) of a given transfer function ma-

trix G(·) is minimal if and only if the pair (A,B) is c.c. and the pair (A,C)

is c.o.
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Proof : (⇐) Sufficiency. Let C and O be the controllability and ob-

servability matrices, respectively; that is,

C = C(A,B) =
[
B AB A2B . . . Am−1B

]
and O = O(A,C) =



C

CA

CA2

...

CAm−1


.

We wish to show that if these both have rank m, then (the realization of)

G(·) has least order m. Suppose that there exists a realization (Ã, B̃, C̃) of

G(·) with Ã having order m̃. Since

C(sIm −A)−1B = C̃(sIm − Ã)−1B̃

it follows that

C exp(tA)B = C̃ exp(tÃ)B̃

which implies that

CAiB = C̃ÃiB̃ , i = 0, 1, 2, . . . .
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Consider the product

OC =


C

CA
...

CAm−1


[
B AB . . . An−1B

]

=


CB CAB . . . CAm−1B

CAB CA2B . . . CAmB
...

...
...

CAm−1B CAmB . . . CA2m−2B



=


C̃

C̃Ã
...

C̃Ãm−1


[
B̃ ÃB̃ . . . Ãm−1B̃

]

= ÕC̃.

Exercise 44 Given A ∈ R`×m and B ∈ Rm×n, show that if rank (A) = rank (B) =

m, then rank (AB) = m. [Hint : Use the results of Exercise 3.]

The matrix OC has rank m, so the matrix ÕC̃ also has rank m. However,

the rank of ÕC̃ cannot be greater than m̃. That is, m ≤ m̃, so there can be

no realization of G(·) having order less than m.

(⇒) Necessity. We show that if the pair (A,B) is not completely control-

lable, then there exists a realization of G(·) having order less than m. The

corresponding part of the proof involving observability follows from duality.

Let the rank of C be m1 < m and let u1, u2, . . . , um1 be any set of m1

linearly independent columns of C. Consider the (linear) transformation

x̃ = Px

with the m×m matrix P defined by

P−1 =
[
u1 u2 . . . um1 um1+1 . . . um

]
(3.15)
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where the columns um1+1, . . . , um are any vectors which make the matrix

P−1 nonsingular. Since C has rank m1 it follows that all its columns can be

expressed as a linear combination of the basis u1, u2, . . . , um1 . The matrix

AC =
[
AB A2B . . . AmB

]
contains all but the first ` columns of C, so in particular it follows that the

vectors Aui, i = 1, 2, . . . ,m1 can be expressed in terms of the same basis.

Multiplying both sides of (3.15) on the left by P shows that Pui is equal to

the ith column of Im. Combining these facts together we obtain

Ã = PAP−1

= P
[
Au1 . . . Aum1 . . . Aum

]
=

[
A1 A2

0 A3

]

where A1 is m1 ×m1. Similarly, since u1, u2, . . . , um1 also forms a basis for

the columns of B we have from (3.14) and (3.15)

B̃ = PB =

[
B1

0

]

where B1 is m1 × `. Writing

C̃ = CP−1 =
[
C1 C2

]
we have (see Exercise 43 and also Exercise 60)

G(s) = C̃(sIm − Ã)−1B̃

=
[
C1 C2

] [ sIm1 −A1 −A2

0 sIm−m1 −A3

]−1 [
B1

0

]

=
[
C1 C2

] [ (sIm1 −A1)−1 (sIm1 −A1)−1A2(sIm−m1 −A3)−1

0 (sIm−m1 −A3)−1

][
B1

0

]
= C1(sIm1 −A1)−1B1
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showing that (A1, B1, C1) is a realization of G(·) having order m1 < m. This

contradicts the assumption that (A,B,C) is minimal, hence the pair (A,B)

must be c.c. 2

3.4.4 Example. We apply the procedure introduced in the second part of

the proof of Theorem 3.4.5 to split up the linear control system

ẋ =


4 3 5

1 −2 −3

2 1 8

x+


2

1

−1

u(t) (3.16)

into its controllable and uncontrollable parts, as displayed below :

[
ẋ(1)

ẋ(2)

]
=

[
A1 A2

0 A3

][
x(1)

x(2)

]
+

[
B1

0

]
u(t)

where x(1), x(2) have orders m1 and m −m1, respectively, and (A1, B1) is

c.c.

The controllability matrix for (3.16) is

[
B AB A2B

]
=


2 6 18

1 3 9

−1 −3 −9


which clearly has rank m1 = 1. For the transformation x̃ = Px we follow

(3.15) and set

P−1 =


2 1 0

1 0 1

−1 0 0


where the column in (3.16) has been selected, and the remaining columns are

simply arbitrary choices to produce a nonsingular matrix. It is then easy to
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compute the inverse of the matrix above, and from (3.14)

Ã = PAP−1 =


3 −2 −1

0 8 5

0 3 −1

 =

[
A1 A2

0 A3

]

B̃ = PB =


1

0

0

 =

[
B1

0

]
.

Notice that the transformation matrix is not unique. However, all possible

matrices Ã will be similar to 3×3 matrix above. In particular, the eigenvalues

of the uncontrollable part are those of A3, namely the roots of

0 = det (λI2 −A3) =

∣∣∣∣∣ λ− 8 −5

−3 λ+ 1

∣∣∣∣∣ = λ2 − 7λ− 23

and these roots cannot be altered by applying linear feedback to (3.16).

Note : For any given transfer function matrix G(·) there are an infinite number

of minimal realizations satisfying the conditions of Theorem 3.4.3. However, one

can show that the relationship between any two minimal realizations is just that

of algebraic equivalence : If R = (A,B,C) is a minimal realization of G(·), then

R̃ = (Ã, B̃, C̃) is also a minimal realization if and only if the following holds :

Ã = PAP−1, B̃PB, C̃ = CP−1.

Algorithm for constructing a minimal realization

We do not have room to discuss the general problem of efficient construc-

tion of minimal realizations. We will give here one simple but nevertheless

useful result.

3.4.5 Proposition. Let the denominators of the elements gij(s) of G(s) ∈
Rn×` have simple roots s1, s2, . . . , sq. Define

Ki : = lim
s→si

(s− si)G(s), i = 1, 2, . . . , q
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and let

ri : = rank (Ki), i = 1, 2, . . . , q.

If Li and Mi are n× ri and ri × ` matrices, respectively, each having rank

ri such that

Ki = LiMi

then a minimal realization of G(·) is

A =


s1Ir1 O

s2Ir2
. . .

O sqIrq

 , B =


M1

M2

...

Mq

 , C =
[
L1 L2 . . . Lq

]
.

(To verify that (A,B,C) is a realization of G(·) is straightforward. Indeed,

C(sIm −A)−1B =
[
L1 · · · Lq

]
1

s−s1 Ir1 · · · 0
. . .

0 · · · 1
s−sq Irq



M1

...

Mq


=

L1M1

s− s1
+ · · ·+ LqMq

s− sq
=

K1

s− s1
+ · · ·+ Kq

s− sq
= G(s).

Since rank C(A,B) = rank O(A,C) = m, this realization is minimal.)

3.4.6 Example. Consider the scalar transfer function

g(s) =
2s+ 7

s2 − 5s+ 6
·

We have

K1 = lim
s→2

(s− 2)(2s+ 7)

(s− 2)(s− 3)
= −11 , r1 = 1

K2 = lim
(s− 3)(2s+ 7)

(s− 2)(s− 3)
= 13 , r2 = 1.

Taking

L1 = K1, M1 = 1, L2 = K2, M2 = 1
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produces a minimal realization

A =

[
2 0

0 3

]
, b =

[
1

1

]
, c =

[
−11 13

]
.

However,

b =

[
m1

m2

]
and c =

[
− 11
m1

13
m2

]
can be used instead, still giving a minimal realization for arbitrary nonzero

values of m1 and m2.

3.5 Exercises

Exercise 45 Verify that the control system described by[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0 0

1 −1

][
u1(t)

u2(t)

]

is c.c.

Exercise 46 Given the control system described by

ẋ =

[
−1 −1

2 −4

]
x+ bu(t)

find for what vector b the system is not c.c.

Exercise 47 For the (initialized) control system

ẋ =

[
−4 2

4 −6

]
x+

[
1

2

]
u(t) , x(0) =

[
2

3

]

apply a control in the form

u(t) = c1 + c2e
−2t

so as to bring the system to the origin at time t = 1. Obtain, but do not solve, the

equations which determine the constants c1 and c2.
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Exercise 48 For each of the following cases, determine for what values of the real

parameter α the control system is not c.c.

(1) ẋ =


−1 1 −1

0 −1 α

0 1 3

x+


0

2

1

u(t) ;

(2) ẋ =

[
2 α− 3

0 2

]
x+

[
1 1

0 α2 − α

]
u(t).

In part (2), if the first control variable u1(·) ceases to operate, for what additional

values (if any) of α the system is not c.c. under the remaining scalar control u2(·) ?

Exercise 49 Consider the control system defined by[
ẋ1

ẋ2

]
=

[
−1 0

0 −2

][
x1

x2

]
+

[
1

3

]
u(t).

Such a system could be thought of as a simple representation of a vehicle suspension

system: in this interpretation, x1 and x2 are the displacements of the end points

of the platform from equilibrium. Verify that the system is c.c. If the ends of the

platform are each given an initial displacement of 10 units, find using

u∗(t) = −BT (t)ΦT (t0, t)W
−1
c (t0, t1)[x0 − Φ(t0, t1)xf ]

a control function which returns the system to equilibrium at t = 1.

Exercise 50 Prove that U(t0, t1) defined by

U(t0, t1) =

∫ t1

t0

Φ(t0, τ)B(τ)BT (τ)ΦT (t0, τ)dτ

satisfies the matrix differential equation

U̇(t, t1) = A(t)U(t, t1) + U(t, t1)AT (t)−B(t)BT (t), U(t1, t1) = 0.

Exercise 51 In the preceding exercise let A and B be time-invariant, and put

W (t, t1) = U(t, t1)− U0

where the constant matrix U0 satisfies

AU0 + U0A
T = BBT .



110 AM3.2 - Linear Control

Write down the solution of the resulting differential equation for W using the result

in Exercise 32 and hence show that

U(t, t1) = U0 − exp ((t− t1)A)U0 exp
(
(t− t1)AT

)
.

Exercise 52 Consider again the rabbit-fox environment problem described in sec-

tion 1.3 (see also, Exercise 29). If it is possible to count only the total number of

animals, can the individual numbers of rabbits and foxes be determined ?

Exercise 53 For the system (with outputs)

ẋ =

[
−1 −1

2 −4

]
x , y =

[
1 2

]
x

find x(0) if y(t) = −20e−3t + 21e−2t.

Exercise 54 Show that the control system described by

ẋ1 = x2, ẋ2 = −2x1 − 3x2 + u, y = x1 + x2

is not c.o. Determine initial states x(0) such that if u(t) = 0 for t ≥ 0, then the

output y(t) is identically zero for t ≥ 0.

Exercise 55 Prove that V (t0, t1) defined by

V (t0, t1) =

∫ t1

t0

ΦT (τ, t0)CT (τ)C(τ)Φ(τ, t0)dτ

satisfies the matrix differential equation

V̇ (t, t1) = −AT (t)V (t, t1)− V (t, t1)A(t)− CT (t)C(t), V (t1, t1) = 0.

Exercise 56 Consider the time-invariant control system

ẋ =

[
−1 −1

2 −4

]
x+

[
1

3

]
u(t).

Find a 1 × 2 matrix K such that the closed loop system has eigenvalues −4 and

−5.
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Exercise 57 For the time-invariant control system

ẋ =


1 0 −1

1 2 1

2 2 3

x+


1

0

1

u(t)

find a suitable matrix K so as to make the closed loop eigenvalues −1,−1± 2i.

Exercise 58 Given the time-invariant control system

ẋ = Ax+Bu(t)

where

A =


0 1 0

0 0 1

6 −11 6

 , B =


1 0

0 1

1 1


find a suitable matrix K which makes the eigenvalues of A−BK equal to 1, 1, 3.

Exercise 59 Determine whether the system described by

ẋ =


−1 0 3

0 −3 0

1 0 −3

x+


1

1

−1

u(t)

is c.c. Show that under (linear) feedback of the form u = αx1 + βx3, the closed

loop system has two fixed eigenvalues, one of which is equal to −3. Determine the

second fixed eigenvalue, and also values of α and β such that the third closed loop

eigenvalue is equal to −4.

Exercise 60 Show that if X =

[
A B

0 C

]
is a block matrix with A and C invert-

ible, then X is invertible and

X−1 =

[
A−1 −A−1BC−1

0 C−1

]
.

Exercise 61 Use Proposition 3.4.5 to obtain a minimal realization of

G(s) =
1

g(s)

[
(s2 + 6) (s2 + s+ 4)

(2s2 − 7s− 2) (s2 − 5s− 2)

]

where g(s) = s3 + 2s2 − s− 2.
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Exercise 62 Show that the order of a minimal realization of

G(s) =
1

s2 + 3s+ 2

[
(s+ 2) 2(s+ 2)

−1 (s+ 1)

]

is three. (Notice the fallacy of assuming that the order is equal to the degree of the

common denominator.)

Exercise 63 If (A1, B1, C1) and (A2, B2, C2) are realizations of G1(·) and G2(·),
respectively, show that

A =

[
A1 B1C2

0 A2

]
, B =

[
0

B2

]
, C =

[
C1 0

]
is a realization of G1(·)G2(·), assuming that this product exists.

Exercise 64 Verify that algebraic equivalence

Ã = PAP−1, B̃ = PB, C̃ = CP−1

can be written as the transformation[
P 0

0 In

][
sIn −A B

−C 0

][
P−1 0

0 In

]
=

[
sIn − Ã B̃

−C̃ 0

]
.

Exercise 65 Determine values of b1, b2, c1 and c2 such that

R =

([
−2 0

0 −3

]
,

[
b1

b2

]
,
[

1 1
])

and

R̃ =

([
0 1

−6 −5

]
,

[
0

1

]
,
[
c1 c2

])
are realizations of the transfer function

g(s) =
s+ 4

s2 + 5s+ 6
·

Determine a matrix P such that the algebraic equivalence relationship holds between

the two realizations.
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◦ © ◦

Stability was probably the first question in classical dynamical systems which was

dealt with in a satisfactory way. Stability questions motivated the introduction of

new mathematical concepts (tools) in engineeering, particularly in control engineering.

Stability theory has been of interest to mathematicians and astronomers for a long

time and has had a stimulating impact on these fields. The specific problem of

attempting to prove that the solar system is stable accounted for the introduction of

many new methods.

Our treatment of stability will apply to (control) systems described by sets of

linear or nonlinear equations. As is to be expected, however, our most explicit results

will be obtained for linear systems.

◦ © ◦
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4.1 Basic Concepts

Consider the nonlinear dynamical system Σ described by

ẋ = F (t, x), x ∈ Rm (4.1)

where x(·) is a curve in the state space Rm and F is a vector-valued mapping

having components Fi, i = 1, 2, . . . ,m.

Note : We shall assume that the components Fi are continuous and satisfy stan-

dard conditions, such as having continuous first order partial derivatives so that the

solution curve of (4.1) exists and is unique for any given initial condition (state).

From a geometric point of view, the right-hand side (rhs) F can be interpreted as

a time-dependent vector field on Rm. So a (nonlinear) dynamical system is essentially

the same as (and thus can be identified with) a vector field on the state space. This

point of view is very fruitfull and extremely useful in investigating the properties of

the dynamical system (especially when the state space is a manifold).

If the functions Fi do not depend explicitly on t, then system Σ is called

autonomous (or time-independent); otherwise, nonautonomous (or time-dependent).

Equilibrium states

4.1.1 Definition. If F (t, c) = 0 for all t, then c ∈ Rm is said to be an

equilibrium (or critical) state.

It follows at once from (4.1) that (for an equilibrium state c ) if x(t0) = c,

then x(t) = c for all t ≥ t0. Thus solution curves starting at c remain there.

Clearly, by introducing new variables x′i = xi − ci we can arrange for the

equilibrium state to be transferred to the origin (of the state space Rm ); we

shall assume that this has been done for any equilibrium state under consid-

eration (there may well be several for a given system Σ), so that we then

have

F (t, 0) = 0
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for all t ≥ t0.

We shall also assume that there is no other constant solution curve in the

neighborhood of the origin, so this is an isolated equilibrium state.

4.1.2 Example. The intuitive idea of stability in a dynamical setting is

that for “small ” perturbations from the equilibrium state at some time t0,

subsequent motions t 7→ x(t), t ≥ t0 should not be too “large”. Consider a

ball resting in equilibrium on a sheet of metal bent into various shapes with

cross-sections as shown.

u

u
u

(i) (ii) (iii)

If frictional forces can be neglected, then small perturbations lead to :

• oscillatory motion about equilibrium (case (i)) ;

• the ball moving away without returning to equilibrium (case (ii));

• oscillatory motion about equilibrium, unless the initial perturbation

is so large that the ball is forced to oscillate about a new equilibrium

position (case (iii)).

If friction is taken into account then the oscillatory motions steadily decrease

until the equilibrium state is returned to.

Stability

There is no single concept of stability, and many different definitions are

possible. We shall consider only the following fundamental statements.
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4.1.3 Definition. An equilibrium state x = 0 is said to be :

(a) stable if for any positive scalar ε there exists a positive scalar δ

such that ‖x(t0)‖ < δ implies ‖x(t)‖ < ε for all t ≥ t0.

(b) asymptotically stable if it is stable and if in addition x(t) → 0

as t→∞.

(c) unstable if it is not stable; that is, there exists an ε > 0 such that

for every δ > 0 there exists an x(t0) with ‖x(t0)‖ < δ, ‖x(t1)‖ ≥ ε
for some t1 > t0.

(d) completely unstable if there exists an ε > 0 such that for every

δ > 0 and for every x(t0) with ‖x(t0)‖ < δ, ‖x(t1)‖ ≥ ε for some

t1 > t0.

Note : The definition (a) is often called “stability in the sense of Lyapunov”

(stability i.s.L.) after the Russian mathematician Aleksandr M. Lyapunov (1857-

1918), whose important work features prominently in current control theory.

In Example 4.1.2, case (i) represents stability i.s.L. if friction is ig-

nored, and asymptotic stability if friction is taken into account, whereas case

(ii) represents instability. If the metal sheet in (i) were thought to extend

indefinitely then, if friction is present, the ball would eventually return to

equilibrium no matter how large the disturbance. This is an illustration of

asymptotic stability in the large, which means that every motion converges to

a single equilibrium point (state) as t→∞, and clearly does not apply to case

(iii). Asymptotic stability in the large implies that all motions are bounded.

Generally,

4.1.4 Definition. An equilibrium state x = 0 is said to be bounded (or

Lagrange stable) if there exists a constant M , which may depend on t0 and

x(t0), such that ‖x(t)‖ ≤M for all t ≥ t0.

Some remarks can be made at this stage.
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1. Regarded as a function of t in the (n-dimensional) state space, the solu-

tion x(·) of (4.1) is called a trajectory (or motion). In two dimensions

we can give the definitions a simple geometric interpretation.

• If the origin O is stable, then given the outer circle C, radius ε,

there exists an inner circle C1, radius δ1, such that trajectories

starting within C1 never leave C.

• If O is asymptotically stable, then there is some circle C2, radius

δ2, having the same property as C1 but, in addition, trajectories

starting inside C2 tend to O as t→∞.

2. We refer to the stability of an equilibrium state of Σ, not the system

itself, as different equilibrium states may have different stability proper-

ties.

3. A weakness of the definition of stability i.s.L. for practical purposes is

that only the existence of some positive δ is required, so δ may be very

small compared to ε; in other words, only very small disturbances from

equilibrium may be allowable.

4. In engineering applications, asymptotic stability is more desirable than

stability since it ensures eventual return to equilibrium, whereas stability

allows continuing deviations “not to far” from the equilibrium state.

Examples

Some further aspects of stability are now illustrated through some exam-

ples.

4.1.5 Example. We return again to the environment problem involving

rabbits anf foxes, and let the equations have the following numerical form
ẋ1 = 2x1 − 3x2

ẋ2 = 2x1 − x2.
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These equations have a single equilibrium point (state) at the origin. With

arbitrary initial numbers x1(0) and x2(0) of rabbits and foxes, respectively,

the solution is

x1(t) = x1(0)e
t
2

(
cos

√
15

2
t+

3√
15

sin

√
15

2
t

)
− 6x2(0)√

15
e

t
2 sin

√
15

2
t

with a similar expression for x2(t). Clearly, x1(t) tends to infinity as t→∞,

irrespective of the initial state, so the origin is unstable.

4.1.6 Example. Consider the (initialized) dynamical system on R de-

scribed by

ẋ = x2, x(0) = x0 ∈ R.

It is clear that the solution exists and is unique; in fact, by integrating, we

easily obtain

−1

x
= t− 1

x0
·

Hence

x(t) =
1

1
x0
− t

so that if x0 > 0, x(t) → ∞ as t → 1
x0

. The solution is said to “escape” to

infinity in a finite time, or to have a finite escape time. We shall henceforth

exclude this situation and assume that (4.1) has a finite solution for all finite

t ≥ t0, for otherwise (4.1) cannot be a mathematical model of a real-life

situation.

4.1.7 Example. We demonstrate that the origin is a stable equilibrium

state for the (initialized) system described by

ẋ = (1− 2t)x, x(t0) = x0 ∈ R

by determining explicitly the scalar δ in the definition. Integrating the equa-

tion gives

x(t) = x0e
t−t2et

2
0−t0 .
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The condition |x(t)| < ε leads to

|x0| < ε et
2−tet0−t

2
0 .

Since t 7→ et
2−t has a minimum value of e−

1
4 when t = 1

2 , it follows that we

can take

δ = ε e−(t0− 1
2)

2

.

In general, δ will depend upon ε, but in this example it is also a function of

the initial time. If δ is independent of t0, the stability is called uniform.

4.1.8 Example. Consider the (initialized) dynamical system on R de-

scribed by

ẋ(t) =


x(t)− 2 if x(t) > 2

0 if x(t) ≤ 2.

, x(t0) = x0 ∈ R.

The solution is easily found to be

x(t) =


2 + (x0 − 2)et−t0 if x0 > 2

x0 if x0 ≤ 2.

The condition |x(t)| < ε is implied by |x0| < 2 when ε ≥ 2, for then |x(t)| =
|x0| < 2 < ε. When ε < 2, |x(t)| < ε is implied by |x0| < ε, for then

again |x(t)| = |x0| < ε. Thus according to the definition, the origin is a stable

equilibrium point (state). However, if x0 > 2 then x(t) → ∞, so for initial

perturbations x0 > 2 from equilibrium motions are certainly unstable in a

practical sense.

4.1.9 Example. Consider the equation

ẋ = f(t)x, x(0) = x0 ∈ R
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where

f(t) =


ln 10 if 0 ≤ t ≤ 10

−1 if t > 10.

The solution is

x(t) =


10t x0 if 0 ≤ t ≤ 10

1010x0e
10−t if t > 10.

Clearly, x(t)→ 0 as t→∞, and the origin is asymptotically stable. However,

if x0 changes by a very small amount, say 10−5, then the corresponding

change in x(t) is relatively large – for example, when t = 20, the change in

x(t) is 101010−5e10−20 ≈ 4.5.

Note : Examples 4.1.8 and 4.1.9 show that an equilibrium state may be stable

according to Lyapunov’s definitions and yet the system’s behaviour may be unsatis-

factory from a practical point of view. The converse situation is also possible, and

this has led to a definition of “practical stability” being coined for systems which

are unstable in Lyapunov’s sense but have an acceptable performance in practice,

namely that for pre-specified deviations from equilibrium the subsequent motions also

lie within specified limits.

4.2 Algebraic Criteria for Linear Systems

We return to the general linear (time-invariant) system given by

ẋ = Ax, x ∈ Rm (4.2)

where A ∈ Rm×m and (4.2) may represent the closed or open loop system.

Provided the matrix A is nonsingular, the only equilibrium state of (4.2) is

the origin, so it is meaningful to refer to the stability of the system (4.2). If

the system is stable (at the origin) but not asymptotically stable we shall call

it neutrally stable.
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One of the basic results on which the development of linear system stability

theory relies is now given. The proof will be omitted.

4.2.1 Theorem. (Stability Properties of a Linear System) Consider

the linear system (4.2), and for each eigenvalue λ of A, suppose that mλ de-

notes the algebraic multiplicity of λ and dλ the geometric multiplicity of λ.

Then :

(a) The system is asymptotically stable if and only if A is a stability

matrix; that is, every eigenvalue of A has a negative real part.

(b) The system is neutrally stable if and only if

• every eigenvalue of A has a nonpositive real part, and

• at least one eigenvalue has a zero real part, and dλ = mλ for

every eigenvalue λ with a zero real part.

(c) The system is unstable if and only if

• some eigenvalue of A has a positive real part, or

• there is an eigenvalue λ with a zero real part and dλ < mλ.

Note : (1) Suppose all the eigenvalues of A have nonpositive real parts. One

can prove that if all eigenvalues having zero real parts are distinct, then the origin is

neutrally stable.

(2) Also, if every eigenvalue of A has a positive real part, then the system is com-

pletely unstable.

4.2.2 Example. In Example 4.1.5 the system matrix is of the form

A =

[
a1 −a2

a3 −a4

]

where a1, a2, a3, a4 > 0. It is easy to show that

det (λI2 −A) = λ(λ− d)
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using the condition
a1

a3
=
a2

a4
·

Hence A has a single zero eigenvalues, so the system is neutrally stable provided

d( = a1 − a4) is negative. (If a1 = a4 then the system is unstable.)

Note : The preceding theorem applies if A is real or complex, so the stability

determination of (4.2) can be carried out by computing the eigenvalues using one of

the powerful standard computer programs now available. However, if m is small (say

less than six), or if some of the elements of A are in parametric form, or if access to

a digital computer is not possible, then the classical results given below are useful.

Because of its practical importance the linear system stability problem has

attracted attention for a considerable time, an early study being by James C.

Maxwell (1831-1879) in connection with the governing of steam engines.

The original formulation of the problem was not of course in matrix terms,

the system model being

z(m) + k1z
(m−1) + · · ·+ kmz = u(t). (4.3)

This is equivalent to working with the characteristic polynomial of A, which

we shall write in this section as

a(λ) : = det (λIm −A) = λm + a1λ
m−1 + · · ·+ am−1λ+ am. (4.4)

The first solutions giving necessary and sufficient conditions for all the roots of

a(λ) in (4.4) to have negative real parts were given by Augustin L. Cauchy

(1789-1857), Jacques C.F. Sturm (1803-1855), and Charles Hermite

(1822-1901).

We give here a well-known result due to Adolf Hurwitz (1859-1919)

for the case when all the coefficients ai are real. The proof will be omitted.

4.2.3 Theorem. (Hurwitz) The m × m Hurwitz matrix associated
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with the characteristic polynomial a(λ) of A in (4.4) is

H : =



a1 a3 a5 . . . a2m−1

1 a2 a4 . . . a2m−2

0 a1 a3 . . . a2m−3

0 1 a2 . . . a2m−4

...
...

...
...

0 0 0 . . . am


(4.5)

where ar = 0, r > m. Let Hi denote the ith leading principal minor of

H. Then all the roots of a(λ) have negative real parts ( a(λ) is a Hurwitz

polynomial ) if and only if Hi > 0, i = 1, 2, . . . ,m.

Note : A disadvantage of Theorem 4.2.3 is the need to evaluate determinants of

increasing order, and a convenient way of avoiding this is due to Edward J. Routh

(1831-1907). We will give only the test as it applies to polynomials of degree no

more than four, although the test can be extended to any polynomial.

4.2.4 Proposition. (The Routh Test) All the roots of the polynomial

a(λ) (with real coefficients) have negative real parts precisely when the given

conditions are met.

• λ2 + a1λ+ a2 : all the coefficients are positive ;

• λ3 + a1λ
2 + a2λ+ a3 : all the coefficients are positive and a1a2 > a3 ;

• λ4 + a1λ
3 + a2λ

2 + a3λ+ a4 : all the coefficients are positive, a1a2 > a3

and a1a2a3 > a2
1a4 + a2

3.

Note : The Hurwitz and Routh tests can be useful for determining stability

of (4.3) and (4.2) in certain cases. However, it should be noted that a practical

disadvantage of application to (4.2) is that it is very difficult to calculate accurately

the ai in (4.4). This is important because small errors in the ai can lead to large

errors in the roots of a(λ).
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4.2.5 Example. Investigate the stability of the linear system whose char-

acteristic equation is

λ4 + 2λ3 + 9λ2 + 4λ+ 1 = 0.

Solution : The polynomial a(λ) = λ4 + 2λ3 + 9λ2 + 4λ + 1 has positive

coefficients, and since a1 = 2, a2 = 9, a3 = 4 and a4 = 1, the polynomial

meets the Routh conditions :

18 = a1a2 > a3 = 4 and 72 = a1a2a3 > a2
1a4 + a2

3 = 20 .

So all the roots have negative real parts, and hence the linear system is asymp-

totically stable.

Since we have assumed that the coefficients ai are real it is easy to derive

a simple necessary condition for asymptotic stability :

4.2.6 Proposition. If the coefficients ai in (4.4) are real and a(λ) cor-

responds to an asymptotically stable system, then

ai > 0 , i = 1, 2, . . . ,m.

Proof : Any complex root of a(λ) will occur in conjugate pairs α± iβ, the

corresponding factor of a(λ) being

(λ− α− iβ)(λ− α+ iβ) = λ2 − 2αλ+ α2 + β2 .

By Theorem 4.2.1, α < 0, and similarly any real factor of a(λ) can be

written (λ+ γ) with γ > 0. Thus

a(λ) =
∏

(λ+ γ)
∏

(λ2 − 2αλ+ α2 + β2)

and since all the coefficients above are positive, ai must also all be positive.2

Note : Of course the condition above is not a sufficient condition, but it provides a

useful initial check : if any ai are negative or zero, then a(λ) cannot be asymptotically

stable.
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When we turn to linear time-varying systems

ẋ = A(t)x , x(t0) = x0 (4.6)

the situation is much more complicated. In view of Theorem 4.2.1 it might

be thought that if the eigenvalues of A(t) all have negative real parts for all

t ≥ t0, then the origin of (4.6) would be asymptotically stable. Unfortunately,

this conjecture is not true (see Exercise 73).

4.3 Lyapunov Theory

We shall develop the so-called “direct” method of Lyapunov in relation to the

(initialized) nonlinear autonomous dynamical system Σ given by

ẋ = F (x), x(0) = x0 ∈ Rm ; F (0) = 0. (4.7)

Note : Modifications needed to deal with the (nonautonomous) case

ẋ = F (t, x), x(t0) = x0

are straightforward.

The aim is to determine the stability nature of the equilibrium state (at

the origin) of system Σ without obtaining the solution x(·). This of course

has been done algebraically for linear time invariant systems in section 4.2.

The essential idea is to generalize the concept of energy V for a conservative

system in mechanics, where a well-known result states that an equilibrium

point is stable if the energy is minimum. Thus V is a positive function which

has V̇ negative in the neighborhood of a stable equilibrium point. More

generally,

4.3.1 Definition. We define a Lyapunov function V : Rm → R as

follows :

• V and all its partial derivatives
∂V

∂xi
are continuous ;
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• V is positive definite; that is, V (0) = 0 and V (x) > 0 for x 6= 0 in

some neighborhood {x | ‖x‖ ≤ k} of the origin.

Consider now the (directional) derivative of V with respect to (the vector

field) F , namely

V̇ : =
∂V

∂x
F =

[
∂V
∂x1

· · · ∂V
∂xm

]
F1

...

Fm


=

∂V

∂x1
F1 +

∂V

∂x2
F2 + · · ·+ ∂V

∂xm
Fm.

A Lyapunov function V for the system (4.7) is said to be

• strong if the derivative V̇ is negative definite; that is, V̇ (0) = 0 and

V̇ (x) < 0 for x 6= 0 such that ‖x‖ ≤ k.

• weak if the derivative V̇ is negative semi-definite; that is, V̇ (0) = 0

and V̇ (x) ≤ 0 for all x such that ‖x‖ ≤ k.

Note : The definitions for positive or negative definiteness or semi-definiteness are

generalizations of those for quadratic forms. Here is the definiteness test for planar

quadratic forms : Suppose that Q = Q(x, y) is the quadratic form ax2 + 2bxy + cy2,

where a, b, c ∈ R. Then Q is :

• positive definite ⇐⇒ a, c > 0 and b2 < ac ;

• positive semi-definite ⇐⇒ a, c ≥ 0 and b2 ≤ ac ;

• negative definite ⇐⇒ a, c < 0 and b2 < ac ;

• negative semi-definite ⇐⇒ a, c ≤ 0 and b2 ≤ ac.

Otherwise, Q is indefinite.

The Lyapunov stability theorems

The statements of the two basic theorems of Lyapunov are remarkably

simple. The proofs will be omitted.
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4.3.2 Theorem. (Lyapunov’s First Theorem) Suppose that there is a

strong Lyapunov function V for system Σ. Then system Σ is asymptotically

stable.

The conclusion of this theorem is plausible, since the values of the strong

Lyapunov function V (x(t)) must continually diminish along each orbit x =

x(t) as t increases (since V̇ is negative definite). This means that the orbit

x = x(t) must cut across level sets V (x) = C with ever smaller values of C.

In fact, limt→∞ V (x(t)) = 0, which implies that x(t) → 0 as t → ∞ since

x(t) and V (x) are continuous and V has value zero only at the origin (that’s

where the positive definiteness of V comes into play).

4.3.3 Theorem. (Lyapunov’s Second Theorem) Suppose that there is

a weak Lyapunov function V for system Σ. Then system Σ is stable.

The result seems reasonable since the negative semi-definiteness of V̇ keeps

an orbit that starts near the origin close to the origin as t increases. But orbits

don’t have to cut across level sets of V .

Note : If the conditions on V in Theorem 4.3.2 hold everywhere in state space

it does not necessarily follow that the origin is asymptotically stable in the large.

For this to be the case V must have the additional property that it is radially

unbounded, which means that

V (x)→∞ for all x such that ‖x‖ → ∞ .

For instance,

V = x21 + x22

is radially unbounded, but

V =
x21

1 + x21
+ x22

is not since, for example,

V → 1 as x1 →∞, x2 → 0.

A similar line of reasoning shows that if Ω is the set of points “outside” a bounded

region containing the origin, and if throughout Ω, V > 0, V̇ ≤ 0 and V is radially

unbounded, then the origin is Lagrange stable.
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4.3.4 Example. Consider a unit mass suspended from a fixed support by

a spring, z being the displacement from the equilibrium. If first the spring is

assumed to obey Hooke’s law, then the equation of motion is

z̈ + kz = 0 (4.8)

where k is the spring constant. Taking x1 : = z, x2 : = ż, (4.8) becomes
ẋ1 = x2

ẋ2 = −kx1.

Since the system is conservative, the total energy

E =
1

2
kx2

1 +
1

2
x2

2

is a Lyapunov function and it is easy to see that

Ė = kx1x2 − kx2x1 = 0

so by Lyapunov’s Second Theorem the origin is stable. (Of course, this is

trivial since (4.8) represents simple harmonic motion.)

Suppose now that the force exerted by the spring, instead of being linear

is some function x1k(x1) satisfying

k(0) = 0 , k(x1) > 0 for x1 6= 0.

The total energy is now

E =
1

2
x2

2 +

∫ x1

0
τk(τ) dτ

and

Ė = −kx1x2 + kx1ẋ1 = 0.

So again by Lyapunov’s Second Theorem the origin is stable for any non-

linear spring satisfying the above conditions.
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4.3.5 Example. Consider now the system of the previous example but

with a damping force dż added, so that the equation of motion is

z̈ + dż + kz = 0. (4.9)

(Equation (4.9) can also be used to describe an LCR series circuit, motion of

a gyroscope, and many other problems.)

Assume first that both d and k are constant, and for simplicity let d =

1, k = 2. The system equations in state space form are
ẋ1 = x2

ẋ2 = −2x1 − x2

and the total energy is

E = x2
1 +

1

2
x2

2

so that

Ė = 2x1x2 + x2(−2x1 − x2) = −x2
2

which is negative semi-definite, so by Lyapunov’s Second Theorem the

origin is stable. However, now consider the function

V = 7x2
1 + 2x1x2 + 3x2

2.

Then

V̇ = −4x2
1 − 4x2

2.

Clearly, V̇ is negative definite and it is easy to verify that the quadratic

form V is positive definite, so by Lyapunov’s First Theorem the origin is

asymptotically stable (in fact, in the large).

This example illustrates that a suitably-chosen Lyapunov function can pro-

vide more information than the energy function. However, when V̇ is only

negative semi-definite, the following result is often useful.
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4.3.6 Proposition. Suppose that there is a (weak) Lyapunov function V

such that V̇ does not vanish identically on any nontrivial trajectories of Σ.

Then (the origin of) system Σ is asymptotically stable.

4.3.7 Example. Consider again the damped mass-spring system described

by (4.9), but now suppose that both d and k are not constant. Let k(x1)

be as defined in Example 4.3.4 and let d(x2) have the property

d(x2) > 0 for x2 6= 0; d(0) = 0.

The state equations are
ẋ1 = x2

ẋ2 = −x1k(x1)− x2d(x2).

So, if E is

E =
1

2
x2

2 +

∫ x1

0
τk(τ) dτ

then

Ė = x2(−x1k − dx2) + x1kẋ1 = −x2
2d ≤ 0.

Now E is positive definite and Ė vanishes only when x2(t) ≡ 0, which

implies k(x1) ≡ 0, which in turn implies x1(t) ≡ 0. Thus Ė vanishes only

on the trivial solution of (4.9), and so by Proposition 4.3.6 the origin is

asymptotically stable.

4.3.8 Example. The van der Pol equation

z̈ + ε (z2 − 1)ż + z = 0 (4.10)

where ε is a constant, arises in a number of engineering problems. (In a

control context it can be thought of as application of nonlinear feedback

u = −z + ε (1− z2)ż
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to the (linear) system described by

z̈ = u.)

We shall assume that ε < 0. As usual take x1 : = z, x2 : = ż to transform

(4.10) into 
ẋ1 = x2

ẋ2 = −x1 − ε (x2
1 − 1)x2.

(The only equilibrium state of this system is the origin.) Try as a potential

Lyapunov function V = x2
1 + x2

2 which is obviously positive definite. Then

V̇ = 2x1ẋ1 + 2x2ẋ2

= 2ε x2
2(1− x2

1).

Thus V̇ ≤ 0 if x2
1 < 1, and then by Proposition 4.3.6 the origin is

asymptotically stable. It follows that all trajectories starting inside the re-

gion Γ : x2
1 + x2

2 < 1 converge to the origin as t → ∞, and Γ is therefore

called a region of asymptotic stability.

Note : You may be tempted to think that the infinite strip S : x21 < 1 is a region

of asymptotic stability. This is not in fact true, since a trajectory starting outside Γ

can move inside the strip whilst continuing in the direction of decreasing V circles,

and hence lead to divergence.

In general, if a closed region

R : V (x) ≤ constant

is bounded and has V̇ negative throughout, then region R is a region of asymp-

totic stability.

Suppose that we now take as state variables

x1 : = z, x3 : =

∫ t

0
z(τ) dτ.
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The corresponding state equations are
ẋ1 = −x3 − ε

(
1
3x

3
1 − x1

)
ẋ3 = x1.

Indeed,

ẋ1 = ż

= −
∫ t

0
z dτ − ε

∫ t

0
(z2 − 1)ż dτ

= −x3 − ε
(

1

3
z3 − z

)
= −x3 − ε

(
1

3
x3

1 − x1

)
.

Hence, using V = x2
1 + x2

3, we have

V̇ = 2x1

(
−x3 −

1

3
ε x3

1 + ε x1

)
+ 2x3x1

= 2ε x2
1

(
1− 1

3
x2

1

)
≤ 0 if x2

1 < 3

so the region of asymptotic stability obtained by this different set of state

variables is R : x2
1 + x2

3 < 3, larger than before.

Note : In general, if the origin is an asymptotically stable equilibrium point (state),

then the total set of initial points (states) from which trajectories converge to the

origin as t → ∞ is called the domain of attraction. Knowledge of this domain

is of great value in practical problems since it enables permissible deviations from

equilibrium to be determined. However, Example 4.3.8 illustrates the fact that since

a particular Lyapunov function gives only sufficient conditions for stability, the region

of asymptotic stability obtained can be expected to be only part of the domain of

attraction. Different Lyapunov functions or different sets of state variables may well

yield different stability regions.

The general problem of finding “optimum” Lyapunov functions, which give best

possible estimates for the domain of attraction, is a difficult one.
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It may be a waste of effort trying to determine the stability properties of

an equilibrium point, since the point may be unstable. The following result is

then useful :

4.3.9 Theorem. (Lyapunov’s Third Theorem) Let a function V : Rm →
R with V (0) = 0 have continuous first order partial derivatives. If there is

some neighborhood containing the origin in which V takes negative values,

and if in addition V̇ is negative semi-definite, then the origin of (4.7) is not

asymptotically stable. If V̇ is negative definite, the origin is unstable, and if

both V and V̇ are negative definite, the origin is completely unstable.

Note : In all three Lyapunov’s theorems the terms “positive” and “negative” can

be interchanged simply by using −V instead of V . It is only the relative signs of the

Lyapunov function and its derivative which matter.

Application to linear systems

We now return to the linear time-invariant system

ẋ = Ax, x ∈ Rm. (4.11)

In section 4.2 we gave algebraic criteria for determining asymptotic stability

via the characteristic equation of A. We now show how Lyapunov theory can

be used to deal directly with (4.11) by taking as a potential Lyapunov function

the quadratic form

V = xTPx (4.12)

where the matrix P ∈ Rm×m is symmetric. The (directional) derivative of V

with respect to (4.11) (in fact, with respect to the vector field x 7→ Ax ) is

V̇ = ẋTPx+ xTPẋ

= xTATPx+ xTPAx

= −xTQx
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where

ATP + PA = −Q (4.13)

and it is easy to see that Q is also symmetric. If P and Q are both positive

definite, then by Lyapunov’s First Theorem the (origin of) system (4.11)

is asymptotically stable. If Q is positive definite and P is negative definite or

indefinite, then in both cases V can take negative values in the neighborhood

of the origin so by Lyapunov’s Third Theorem, (4.11) is unstable. We

have therefore proved :

4.3.10 Proposition. The matrix A ∈ Rm×m is a stability matrix if and

only if for any given positive definite symmetric matrix Q, there exists a posi-

tive definite symmetric matrix P that satisfies the Lyapunov matrix equation

(4.13).

Moreover, if the matrix A is a stability matrix, then P is the unique

solution of the Lyapunov matrix equation (see Exercise 77).

It would be no use choosing P to be positive definite and calculating Q

from (4.13). For unless Q turned out to be definite or semi-definite (which

is unlikely) nothing could be inferred about asymptotic stability from the

Lyapunov theorems.

Note : Equations similar in form to (4.13) also arise in other areas of control

theory. However, it must be admitted that since a digital computer will be required

to solve (4.13) except for small values of n, so far as stability determination of (4.11)

is concerned it will be preferable instead to find the eigenvalues of A. The true value

and importance of Proposition 4.3.10 lies in its use as a theoretical tool.

Linearization

The usefulness of linear theory can be extended by use of the idea of

linearization. Suppose the components of (the vector field) F in

ẋ = F (x), x(0) = x0 ; F (0) = 0
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are such that we can apply Taylor’s theorem to obtain

F (x) = Ax+ g(x). (4.14)

Here A = DF (0) : = ∂F
∂x

∣∣
x=0
∈ Rm×m, g(0) = 0 ∈ Rm, and the components

of g have power series expansions in x1, x2, . . . , xm beginning with terms of

at least second degree. The linear system

ẋ = Ax (4.15)

is called the linearization (or first approximation) of the given (nonlinear)

system (at the origin). We then have:

4.3.11 Theorem. (Lyapunov’s Linearization Theorem) If (4.15) is

asymptotically stable or unstable, then the origin for ẋ = F (x), where F

is given by (4.14), has the same stability property.

Proof : Consider the function

V = xTPx

where P satisfies

ATP + PA = −Q

Q being an arbitrary positive definite symmetric matrix. If (4.15) is asymp-

totically stable, then by Proposition 4.3.10 P is positive definite. The

derivative of V with respect to (4.14) is

V̇ = −xTQx+ 2gTPx .

Because of the nature of g, the term 2gTPx has degree three at least, and so

for x sufficiently close to the origin, V̇ < 0.

Exercise 66 Let a, b > 0 and consider the function

f : R→ R, t 7→ −at2 + bt3.

Show that, for t sufficiently close to the origin (i.e. for |t| < ε), we have f(t) < 0.
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Hence, by Lyapunov’s First Theorem, the origin of (4.14) is asymp-

totically stable.

If (4.15) is unstable, V̇ remains negative definite but P is indefinite, so V

can take negative values and therefore satisfies the conditions of Lyapunov’s

Third Theorem for instability. 2

Note : If (4.15) is stable but not asymptotically stable, Lyapunov’s Lineariza-

tion Theorem provides no information about the stability of the origin of (4.14),

and other methods must be used.

Furthermore, it is clear that linearization cannot provide any information

about regions of asymptotic stability for nonlinear systems, since if the first

approximation is asymptotically stable, then it is so in the large. Thus the

extent of asymptotic stability for

ẋ = F (x), F (0) = 0

is determined by the nonlinear terms in (4.14).

4.3.12 Example. Consider the differential equation

z̈ + aż + bz + g(z, ż) = 0

or 
ẋ1 = x2

ẋ2 = −bx1 − ax2 − g(x1, x2).

The linear part of this system is asymptotically stable if and only if a > 0

and b > 0, so if g is any function of x1 and x2 satisfying the conditions of

Theorem 4.3.11, the origin of the system is also asymptotically stable.

4.4 Stability and Control

We now consider some stability problems associated explicitly with the control

variables.
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Input-output stability

Our definitions in section 4.1 referred to stability with respect to pertur-

bations from an equilibrium state. When a system is subject to inputs it is

useful to define a new type of stability.

4.4.1 Definition. The control system (with outputs) Σ described by
ẋ = F (t, x, u) , F (t, 0, 0) = 0

y = h(t, x, u)

is said to be bounded input-bounded output stable (b.i.b.o. stable) if

any bounded input produces a bounded output; that is, given

‖u(t)‖ < L1 , t ≥ t0

where L1 is any positive constant, then there exists a number L2 > 0 such

that

‖y(t)‖ < L2 , t ≥ t0

regardless of initial state x(t0). The problem of studying b.i.b.o. stability for

nonlinear systems is a difficult one, but we can give some results for the usual

linear time-invariant system
ẋ = Ax+Bu(t)

y = Cx.

(4.16)

Exercise 67 Let A ∈ Rm×m be a matrix having m distinct eigenvalues with

negative real parts. Show that (for all t ≥ 0)

‖ exp (tA)‖ ≤ Ke−at

for some constants K, a > 0. (The result remains valid for any stability matrix, but

the proof is more difficult.)
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4.4.2 Proposition. If the linear system

ẋ = Ax

is asymptotically stable, then the system described by (4.16) is b.i.b.o. stable.

Proof : Using

x(t) = exp(tA)

[
x0 +

∫ t

0
exp(−τA)Bu(τ) dτ

]
and properties of norms, we have

‖y(t)‖ ≤ ‖C‖ ‖x(t)‖

≤ ‖C‖ ‖ exp(tA)x0‖+ ‖C‖
∫ t

0
‖ exp(t− τ)A‖‖Bu‖ dτ.

If A is a stability matrix, then

‖ exp (tA)‖ ≤ K e−at ≤ K , t ≥ 0

for some positive constants K and a. Thus

‖y(t)‖ ≤ ‖C‖
[
K‖x0‖+ L1K‖B‖

1− e−at

a

]
≤ ‖C‖

[
K‖x0‖+

L1K‖B‖
a

]
, t ≥ 0

showing that the output is bounded, since ‖C‖ and ‖B‖ are positive numbers.2

The converse of this result holds if (A,B,C) is a minimal realization. In

other words,

4.4.3 Proposition. If the control system described by (4.16) is c.c. and

c.o. and b.i.b.o. stable, then the linear (dynamical) system

ẋ = Ax

is asymptotically stable.
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We shall not give a proof.

Note : For linear time-varying systems Proposition 4.4.2 is not true, unless for

all t the norms of B(t) and C(t) are bounded and the norm of the state transition

matrix Φ(t, t0) is bounded and tends to zero as t→∞ independently of t0.

In the definition of complete controllability no restrictions were applied to

u(·), but in practical situations there will clearly always be finite bounds on the

magnitudes of the control variables and on the duration of their application. It

is then intuitively obvious that this will imply that not all states are attainable.

As a trivial example, if a finite thrust is applied to a rocket for a finite time,

then there will be a limit to the final velocity which can be achieved. We give

here one formal result for linear systems.

4.4.4 Proposition. If A ∈ Rm×m is a stability matrix, then the linear

control system Σ given by

ẋ = Ax+Bu(t)

with u(·) bounded is not completely controllable.

Proof : Let V be a quadratic form Lyapunov function (i.e. V = xTPx,

where P is a symmetric matrix) for the (unforced) system ẋ = Ax. Then

(with respect to Σ) we have

V̇ = V̇ T = (Ax+Bu)T (∇V )

= xTAT (∇V ) + uTBT (∇V )

= −xTQx+ uTBT (∇V )

where P and Q satisfy (the Lyapunov matrix equation)

ATP + PA = −Q

and

∇V : =

[
∂V

∂x1

∂V

∂x2
. . .

∂V

∂xm

]T
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is the gradient of V . The term uTBT (∇V ) is linear in x and since u(·) is

bounded, it follows that for ‖x‖ sufficiently large, V̇ = ẋT (∇V ) is negative.

This shows that ẋ(·) points into the interior of the region R : V (x) = M for

some M sufficiently large. Hence points outside this region cannot be reached,

so by definition the system is not c.c. 2

Linear feedback

Consider again the linear system (4.16). If the open loop system is unstable

(for instance, by Theorem 4.2.1, if one or more of the eigenvalues of A has

a positive real part), then an essential practical objective would be to apply

control so as to stabilize the system; that is, to make the closed loop system

asymptotically stable.

If (4.16) is c.c., then we saw (Theorem 3.1.3) that stabilization can always

be achieved by linear feedback u = Kx, since there are an infinity of matrices

K which will make A+BK a stability matrix.

If the pair (A,B) is not c.c., then we can define the weaker property that

(A,B) is stabilizable if (and only if) there exists a constant matrix K such

that A+BK is asymptotically stable.

4.4.5 Example. Return to the linear system Σ described by

ẋ =


4 3 5

1 −2 −3

2 1 8

x+


2

1

−1

u(t)

in Example 3.4.4. The eigenvalues of the uncontrollable part are the roots

of the polynomial

p(λ) = λ2 − 7λ− 23

which is not asymptotically stable since it has negative coefficients (Propo-

sition 4.2.6). The system Σ is not stabilizable.

By duality (see Theorem 3.2.4) we define the pair (A,C) to be de-

tectable if (and only if) the pair (AT , CT ) is stabilizable.
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4.4.6 Example. Consider the linear control system (with outputs)
ẋ = Ax+ bu(t)

y = cx

where

A =

[
−2 2

1 −1

]
, b =

[
1

1

]
, c =

[
1 0

]
.

This system is both stabilizable and detectable : using the feedback matrix K

and the observer matrix L given by

K =
[
−2 0

]
, L =

[
0

−1

]

the matrix A+ bK then has eigenvalues −3, −2 and the matrix A+Lc has

eigenvalues −2, −1. (Other choices for K and L are also possible.)

Stabilizability and detectability are not guaranteed.

4.4.7 Example. Consider the linear control system (with outputs)
ẋ = Ax+ bu(t)

y = cx

where

A =

[
0 1

0 0

]
, b =

[
1

0

]
, c =

[
0 1

]
.

In this case, any 1 × 2 feedback matrix K produces a closed loop matrix

A+ bK with zero as an eigenvalue; therefore, the system is not stabilizable.

Also, any 2×1 matrix L yields a matrix A+Lc with zero as an eigenvalue;

therefore, the system is not detectable.

The following simple test for stabilizability holds :
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4.4.8 Proposition. Suppose A ∈ Rm×m and B ∈ Rm×`. The pair (A,B)

is stabilizable if and only if

rank
[
sIm −A B

]
= m

for all s ∈ Ce+ : = {s |Re (s) ≥ 0}.

The proof is not difficult and will be omitted.

4.4.9 Corollary. The pair (A,B) is stabilizable if and only if

rank
[
λIm −A B

]
= m

for all eigenvalues λ ∈ Ce+ of A.

Note : It can be proved that the pair (A,B) is c.c. if and only if

rank
[
λIm −A B

]
= m

for all eigenvalues λ of A. (The eigenvalues at which the rank drops below m

are the so-called uncontrollable modes.) Clearly, if the pair (A,B) is c.c., then it is

stabilizable.

By duality, the following (test for detectability) is now immediate.

4.4.10 Proposition. Suppose A ∈ Rm×m and C ∈ R`×m. The pair

(A,C) is detectable if and only if

rank

[
sIm −A

C

]
= m

for all s ∈ Ce+ : = {s |Re (s) ≥ 0}.

4.4.11 Corollary. The pair (A,C) is detectable if and only if

rank

[
λIm −A

C

]
= m

for all eigenvalues λ ∈ Ce+ of A.
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Note : By duality again, the pair (A,C) is c.o. if and only if

rank

[
λIm −A

C

]
= m

for all eigenvalues λ of A. (The eigenvalues at which the rank drops below m

are the so-called unobservable modes.) Clearly, if the pair (A,C) is c.o., then it is

detectable.

Let A ∈ Rm×m, B ∈ Rm×`, and C ∈ Rn×m. Recall that if A is a stability

(or Hurwitz) matrix, then the usual (time-invariant) linear control system with

outputs

ẋ = Ax+Bu

y = Cx

is b.i.b.o. stable (see Proposition 4.4.2). As we know, the converse is not

true, in general. (For example, the usual linear control system with A =[
2 0

0 −1

]
, b =

[
1

1

]
, and c =

[
0 1

]
is b.i.b.o. stable but not asymptotically

stable.)

The following interesting result is given without a proof.

4.4.12 Proposition. Suppose a usual linear control system Σ is stabi-

lizable and detectable. Σ is asymptotically stable if and only if it is b.i.b.o.

stable.

Application

It is interesting to consider here a simple application of the Lyapunov meth-

ods. First notice that if the linear system

ẋ = Ax

is asymptotically stable with Lyapunov function V = xTPx, where P satisfies

ATP + PA = −Q
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then
V̇

V
= −x

TQx

xTPx
≤ −σ

where σ is the minimum value of the ratio xTQx
xTPx

(in fact, this is equal to the

smallest eigenvalue of QP−1). Integrating with respect to t gives

V (x(t)) ≤ e−σtV (x(0)).

Since V (x(t)) → 0 as t → ∞, this can be regarded as a measure of the way

in which trajectories approach the origin, so the larger σ the “faster” does

x(t)→ 0.

Suppose now we apply the control

u = (S −Q1)BTPx (4.17)

to (4.16), where P is the solution of

ATP + PA = −Q

and S and Q1 are arbitrary skew-symmetric and positive definite symmetric

matrices, respectively. The closed loop system is thus

ẋ =
(
A+B(S −Q1)BTP

)
x (4.18)

and it is easy to verify that if V = xTPx, then the (directional) derivative

with respect to (4.18) is

V̇ = −xTQx− 2xTPBQ1B
TPx < −xTQx

since PBQ1B
TP = (PB)Q1(PB)T is positive definite. Hence, by the argu-

ment just developed, it follows that (4.18) is “more stable” than the open loop

system

ẋ = Ax

in the sense that trajectories will approach the origin more quickly.
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Note : (4.17) is of rather limited practical value because it requires asymptotic

stability of the open loop system, but nevertheless the power of Lyapunov theory is

apparent by the ease with which the asymptotic stability of (4.18) can be established.

This would be impossible using the classical methods requiring the calculation of the

characteristic equation of (4.18). Furthermore, the Lyapunov approach often enables

extensions to nonlinear problems to be made.

4.5 Exercises

Exercise 68 Determine the equilibrium point (other than the origin) of the system

described by 
ẋ1 = x1 − 2x1x2

ẋ2 = −2x2 + x1x2.

Apply a transformation of coordinates which moves this point to the origin, and

find the new system equations. (The equations are an example of a predator-pray

population model due to Vito Volterra (1860-1940) and used in biology, and are

more general than the simple linear rabbit-fox model.)

Exercise 69 Determine whether the following polynomials are asymptotically sta-

ble :

(a) λ3 + 17λ2 + 2λ+ 1.

(b) λ4 + λ3 + 4λ2 + 4λ+ 3.

(c) λ4 + 6λ3 + 2λ2 + λ+ 3.

Exercise 70 Determine for what range of values of k the polynomial

(3− k)λ3 + 2λ2 + (5− 2k)λ+ 2

is asymptotically stable.

Exercise 71 Determine for what range of values of k ∈ R the linear (dynamical)

system

ẋ =


0 1 0

0 0 1

−k −1 −2

x
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is asymptotically stable. If k = −1, and a control term
0

1

0

u(t)

is added, find a linear feedback control which makes all the eigenvalues of the closed

loop system equal to −1.

Exercise 72 Verify that the eigenvalues of

A(t) =

[
−4 3e−8t

−e8t 0

]
are both constant and negative, but the solution of the linear time-varying system

ẋ = A(t)x

diverges as t→∞.

Exercise 73 Write the system

z̈ + ż + z3 = 0

in state space form. Let

V = ax41 + bx21 + cx1x2 + dx22

and choose the constants a, b, c, d such that

V̇ = −x41 − x22.

Hence investigate the stability nature of the equilibrium point at the origin.

Exercise 74 Using the function

V = 5x21 + 2x1x2 + 2x22

show that the origin of
ẋ1 = x2

ẋ2 = −x1 − x2 + (x1 + 2x2)
(
x22 − 1

)
is asymptotically stable by considering the region |x2| < 1. State the region of

asymptotic stability thus determined.
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Exercise 75 Investigate the stability nature of the origin of the system
ẋ1 = x21 − x22

ẋ2 = −2x1x2

using the function

V = 3x1x
2
2 − x31.

Exercise 76 Given the matrix

A =

[
−1 −1

2 −4

]

and taking

P =

[
p1 p2

p2 p3

]
solve the equation

ATP + PA = −I2.

Hence determine the stability nature of A.

Exercise 77 Integrate both sides of the matrix ODE

Ẇ (t) = AW (t) +W (t)B , W (0) = C

with respect to t from t = 0 to t =∞. Hence deduce that if A is a stability matrix,

the solution of the equation

ATP + PA = −Q

can be written as

P =

∫ ∞
0

exp(tAT )Q exp(tA) dt.

Exercise 78 Convert the second order ODE

z̈ + a1ż + a2z = 0

into the state space form. Using V = xTPx with V̇ = −x22, obtain the necessary

and sufficient conditions a1 > 0, a2 > 0 for asymptotic stability.
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Exercise 79 By using the quadratic Lyapunov function V = V (x1, x2) which has

derivative −2(x21 + x22), determine the stability of the system
ẋ1 = −kx1 − 3x2

ẋ2 = kx1 − 2x2

when k = 1. Using the same function V , obtain sufficient conditions on k for the

system to be asymptotically stable.

Exercise 80 Investigate the stability nature of the equilibrium state at the origin

for the system 
ẋ1 = 7x1 + 2 sinx2 − x42

ẋ2 = ex1 − 3x2 − 1 + 5x21.

Exercise 81 Investigate the stability nature of the origin.

(a) 
ẋ1 = −x1 + x2

ẋ2 = (x1 + x2) sinx1 − 3x2.

(b) 
ẋ1 = −x31 + x2

ẋ2 = −ax1 − bx2; a, b > 0.

Exercise 82 Show that the system described by
ẋ =


0 −1 0

1 0 0

0 0 −1

x+


0

0

1

u(t)

y = x

is stable i.s.L. and b.i.b.o. stable, but not asymptotically stable. [It is easy to verify

that this system is not completely controllable.]
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Exercise 83 Consider the system described by the ODE

ẋ = − 1

t+ 3
x+ u(t), x(0) = x0 ∈ R.

Show that if u(t) ≡ 0, t ≥ 0 then the origin is asymptotically stable, but that if u(·)
is the unit step function, then lim

t→∞
x(t) =∞.

Exercise 84 A system is described by the equations
ẋ1 = x2 − x1

ẋ2 = −x1 − x2 − x21.

Determine the equilibrium state which is not at the origin. Transform the system

equations so that this point is transferred to the origin, and hence verify that this

equilibrium state is unstable.

Exercise 85 Determine for what range of values of the real parameter k the linear

system

ẋ =


0 1 0

0 0 1

−5 −k k − 6

x
is asymptotically stable.

Exercise 86 A particle moves in the xy-plane so that its position in any time t is

given by

ẍ+ ẏ + 3x = 0, ÿ + λẋ+ 3y = 0.

Determine the stability nature of the system if (a) λ = −4 and (b) λ = 16.

Exercise 87 Use the Lyapunov function

V = 2x21 + x22

to find a region of asymptotic stability for the origin of the system
ẋ1 = x31 − 3x1 + x2

ẋ2 = −2x1.
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Exercise 88 Use Lyapunov’s Linearization Theorem to show that the origin

for the system 
ẋ1 = −3x2

ẋ2 = x1 − α
(
2x32 − x2

)
is asymptotically stable provided the real parameter α is negative. Use the Lyapunov

function

V =
1

2

(
x21 + 3x22

)
to determine a region of asymptotic stability about the origin.

Exercise 89 A system has state equations

ẋ1 = −x1 + x2 − x3 + αx31

ẋ2 = −x1 − x2

ẋ3 = x1 − x2 − β x3 + u(t).

(a) If α = 0 show that the system is b.i.b.o. stable for any output which is

linear in the state variables, provided β > −1.

(b) If α = β = 1 and u(·) = 0, investigate the stability nature of the equi-

librium state at the origin by using the Lyapunov function

V = x21 + x22 + x23.

Exercise 90 Investigate for stabilizability and detectability the following control

systems.

(a)

ẋ =

[
2 0

0 −1

]
x+

[
1

1

]
u(t)

y =
[
0 1

]
x.

(b)

ẋ =

[
0 0

0 −1

]
x+

[
0

1

]
u(t)

y =
[
1 1

]
x.
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This section deals with the problem of compelling a system to behave in some “best

possible” way. Of course, the precise control strategy will depend upon the criterion

used to decide what is meant by “best”, and we first discuss some choices for mea-

sures of system performance. This is followed by a description of some mathematical

techniques for determining optimal control policies, including the special case of lin-

ear systems with quadratic performance index when a complete analytical solution is

possible.

◦ © ◦
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5.1 Performance Indices

Consider a (nonlinear) control system Σ described by

ẋ = F (t, x, u), x(t0) = x0 ∈ Rm. (5.1)

Here x(t) =


x1(t)

...

xm(t)

 is the state vector, u(t) =


u1(t)

...

u`(t)

 is the control vector,

and F is a vector-valued mapping having components

Fi : t 7→ Fi(t, x1(t), x2(t), . . . , xm(t), u1(t), . . . , u`(t)), i = 1, 2, . . . ,m.

Note : We shall assume that the Fi are continuous and satisfy standard condi-

tions, such as having continuous first order partial derivatives (so that the solution

exists and is unique for the given initial condition). We say that F is continuously

differentiable (or of class C1 ).

The optimal control problem

The general optimal control problem (OCP) concerns the minimization of

some function (functional) J = J [u], the performance index (or cost

functional); or, one may want to maximize instead a “utility” functional J ,

but this amounts to minimizing the cost −J . The performance index J
provides a measure by which the performance of the system is judged. We

give several examples of performance indices.

(1) Minimum-time problems.

Here u(·) is to be chosen so as to transfer the system from an initial state

x0 to a specified state in the shortest possible time. This is equivalent to

minimizing the performance index

J : = t1 − t0 =

∫ t1

t0

dt (5.2)

where t1 is the first instant of time at which the desired state is reached.
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5.1.1 Example. An aircraft pursues a ballistic missile and wishes to inter-

cept it as quickly as possible. For simplicity neglect gravitational and aero-

dynamic forces and suppose that the trajectories are horizontal. At t = 0

the aircraft is at a distance a from the missile, whose motion is known to be

described by x(t) = a + bt2, where b is a positive constant. The motion of

the aircraft is given by ẍ = u, where the thrust u(·) is subject to |u| ≤ 1,

with suitably chosen units. Clearly the optimal strategy for the aircraft is to

accelerate with maximum thrust u(t) = 1. After a time t the aircraft has

then travelled a distance ct+ 1
2 t

2, where ẋ(0) = c, so interception will occur

at time T where

cT +
1

2
T 2 = a+ bT 2.

This equation may not have any real positive solution; in other words, this

minimum-time problem may have no solution for certain initial conditions.

(2) Terminal control.

In this case the final state xf = x(t1) is to be brought as near as possible to

some desired state x(t1). A suitable performance measure to be minimized is

J : = eT (t1)Me(t1) (5.3)

where e(t) : = x(t) − x(t) and M is a positive definite symmetric matrix

(MT = M > 0).

A special case is when M is the unit matrix and then

J = ‖xf − x(t1)‖2 .

Note : More generally, if M = diag (λ1, λ2, . . . , λm), then the entries λi are

chosen so as to weight the relative importance of the deviations (xi(t1)− xi(t1)). If

some of the xi(t1) are not specified, then the corresponding elements of M will be

zero and M will be only positive semi-definite (MT = M ≥ 0).

(3) Minimum effort.
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The desired final state is now to be attained with minimum total expenditure

of control effort. Suitable performance indices to be minimized are

J : =

∫ t1

t0

∑̀
i=1

βi|ui| dt (5.4)

or

J : =

∫ t1

t0

uTRudt (5.5)

where R =
[
rij

]
is a positive definite symmetric matrix (RT = R > 0) and

the βi and rij are weighting factors.

(4) Tracking problems.

The aim here is to follow or “track” as closely as possible some desired state

x(·) throughout the interval [t0, t1]. A suitable performance index is

J : =

∫ t1

t0

eTQedt (5.6)

where Q is a positive semi-definite symmetric matrix (QT = Q ≥ 0).

Note : Such systems are called servomechanisms; the special case when x(·)

is constant or zero is called a regulator. If the ui(·) are unbounded, then the

minimization problem can lead to a control vector having infinite components. This is

unacceptable for real-life problems, so to restrict the total control effort, the following

index can be used

J : =

∫ t1

t0

(
eTQe+ uTRu

)
dt. (5.7)

Expressions (costs) of the form (5.5), (5.6) and (5.7) are termed quadratic

performance indices (or quadratic costs).

5.1.2 Example. A landing vehicle separates from a spacecraft at time t0 =

0 at an altitude h from the surface of a planet, with initial (downward)

velocity ~v. For simplicity, assume that gravitational forces are neglected and

that the mass of the vehicle is constant. Consider vertical motion only, with
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upwards regarded as the positive direction. Let x1 denote altitude, x2 velocity

and u(·) the thrust exerted by the rocket motor, subject to |u(t)| ≤ 1 with

suitable scaling. The equations of motion are

ẋ1 = x2, ẋ2 = u

and the initial conditions are

x1(0) = h, x2(0) = −v.

For a “soft landing” at some time T we require

x1(T ) = 0, x2(T ) = 0.

A suitable performance index might be

J : =

∫ T

0
(|u|+ k) dt.

This expression represents a sum of the total fuel consumption and time to

landing, k being a factor which weights the relative importance of these two

quantities.

Simple application

Before dealing with problems of determining optimal controls, we return

to the linear time-invariant system

ẋ = Ax , x(0) = x0 (5.8)

and show how to evaluate associated quadratic indices (costs)

Jr : =

∫ ∞
0

trxTQxdt , r = 0, 1, 2, . . . (5.9)

where Q is a positive definite symmetric matrix (QT = Q > 0).

Note : If (5.8) represents a regulator, with x(·) being the deviation from some

desired constant state, then minimizing Jr with respect to system parameters is
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equivalent to making the system approach its desired state in an “optimal” way.

Increasing the value of r in (5.9) corresponds to penalizing large values of t in this

process.

To evaluate J0 we use the techniques of Lyapunov theory (cf. section

4.3). It was shown that

d

dt

(
xTPx

)
= −xTQx (5.10)

where P and Q satisfy the Lyapunov matrix equation

ATP + PA = −Q. (5.11)

Integrating both sides of (5.10) with respect to t gives

J0 =

∫ ∞
0

xTQxdt = −
(
xT (t)Px(t)

) ∣∣∣∞
0

= xT0 Px0

provided A is a stability matrix, since in this case x(t)→ 0 as t→∞
(cf. Theorem 4.2.1).

Note : The matrix P is positive definite and so J0 > 0 for all x0 6= 0.

A repetition of the argument leads to a similar expression for Jr, r ≥ 1.

For example,
d

dt

(
txTPx

)
= xTPx− txTQx

and integrating we have

J1 =

∫ ∞
0

txTQxdt = xT0 P1x0

where

ATP1 + P1A = −P.

Exercise 91 Show that

Jr : =

∫ ∞
0

trxTQxdt = r!xT0 Prx0 (5.12)

where

ATPr+1 + Pr+1A = −Pr , r = 0, 1, 2, . . . ; P0 = P. (5.13)
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Thus evaluation of (5.9) involves merely successive solution of the linear

matrix equations (5.13); there is no need to calculate the solution x(·) of (5.8).

5.1.3 Example. A general second-order linear system (the harmonic os-

cillator in one dimension) can be written as

z̈ + 2ωkż + ω2z = 0

where ω is the natural frecquency of the undamped system and k is a damping

coefficient. With the usual choice of state variables x1 : = z, x2 : = ż, and

taking Q = diag (1, q) in (5.11), it is easy to obtain the corresponding solution

P =
[
pij

]
with elements

p11 =
k

ω
+

1 + qω2

4kω
, p12 = p21 =

1

2ω2
, p22 =

1 + qω2

4kω3
·

Exercise 92 Work out the preceding computation.

In particular, if x0 =

[
1

0

]
, then J0 = p11. Regarding k as a parameter,

optimal damping could be defined as that which minimizes J0. By setting
d
dkJ0 = 0, this gives

k2 =
1 + qω2

4
·

For example, if q = 1
ω2 then the “optimal” value of k is 1√

2
.

Note : In fact by determining x(t) it can be deduced that this value does indeed

give the desirable system transient behaviour. However, there is no a priori way of

deciding on a suitable value for the factor q, which weights the relative importance

of reducing z(·) and ż(·) to zero. This illustrates a disadvantage of the performance

index approach, although in some applications it is possible to use physical arguments

to choose values for weighting factors.
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5.2 Elements of Calculus of Variations

The calculus of variations is the name given to the theory of the optimization of

integrals. The name itself dates from the mid-eighteenth century and describes the

method used to derive the theory. We have room for only a very brief treatment (in

particular, we shall not mention the well-known Euler-Lagrange equation approach).

We consider the problem of minimizing the functional

J [u] : = ϕ(x(t1), t1) +

∫ t1

t0

L(t, x, u) dt (5.14)

subject to

ẋ = F (t, x, u), x(t0) = x0 ∈ Rm.

We assume that

• there are no constraints on the control functions ui(·), i = 1, 2, . . . , `

(that is, the control set U is R`);

• J = J [u] is differentiable (that is, if u and u+δu are two controls

for which J is defined, then

∆J : = J [u+ δu]− J [u] = δJ [u, δu] + j(u, δu) · ‖δu‖

where δJ is linear in δu and j(u, δu)→ 0 as ‖δu‖ → 0 ).

Note : (1) The cost functional J is in fact a function on the function space U
(of all admissible controls) :

J : u ∈ U 7→ J [u] ∈ R.

(2) δJ is called the (first) variation of J corresponding to the variation δu in u.

The control u∗ is an extremal, and J has a (relative) minimum, provided

there exists an ε > 0 such that for all functions u satisfying ‖u− u∗‖ < ε,

J [u]− J [u∗] ≥ 0.

A fundamental result (given without proof) is the following :
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5.2.1 Proposition. A necessary condition for u∗ to be an extremal is that

δJ [u∗, δu] = 0 for all δu.

We now apply Proposition 5.2.1. Introduce a covector function of La-

grange multipliers p(t) =
[
p1(t) p2(t) . . . pm(t)

]
∈ R 1×m so as to form an

augmented functional incorporating the constraints :

Ja : = ϕ(x(t1), t1) +

∫ t1

t0

(L(t, x, u) + p(F (t, x, u)− ẋ)) dt.

Integrating the last term on the rhs by parts gives

Ja = ϕ(x(t1), t1) +

∫ t1

t0

(L+ pF + ṗx) dt− px
∣∣∣∣t1
t0

= ϕ(x(t1), t1)− px
∣∣∣∣t1
t0

+

∫ t1

t0

(H + ṗx) dt

where the (control) Hamiltonian function is defined by

H(t, p, x, u) : = L(t, x, u) + pF (t, x, u). (5.15)

Assume that u is differentiable on [t0, t1] and that t0 and t1 are fixed. The

variation in Ja corresponding to a variation δu in u is

δJa =

[(
∂ϕ

∂x
− p
)
δx

]
t=t1

+

∫ t1

t0

(
∂H

∂x
δx+

∂H

∂u
δu+ ṗ δx

)
dt

where δx is the variation in x in the differential equation

ẋ = F (t, x, u)

due to δu. (We have used the notation

∂H

∂x
: =

[
∂H

∂x1

∂H

∂x2
· · · ∂H

∂xm

]

and similarly for
∂ϕ

∂x
and

∂H

∂u
·)
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Note : Since x(t0) is specified, δx|t=t0 = 0.

It is convenient to remove the term (in the expression δJa ) involving δx

by suitably choosing p, i.e. by taking

ṗ = −∂H
∂x

and p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

. (5.16)

It follows that

δJa =

∫ t1

t0

(
∂H

∂u
δu

)
dt .

Thus a necessary condition for u∗ to be an extremal is that

∂H

∂u

∣∣∣∣
u=u∗

= 0 , t0 ≤ t ≤ t1. (5.17)

We have therefore “established”

5.2.2 Theorem. Necessary conditions for u∗ to be an extremal for

J [u] = ϕ(x(t1), t1) +

∫ t1

t0

L(t, x, u) dt

subject to

ẋ = F (t, x, u), x(t0) = x0

are the following :

ṗ = −∂H
∂x

p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

∂H

∂u

∣∣∣∣
u=u∗

= 0 , t0 ≤ t ≤ t1.

Note : The (vector) state equation

ẋ = F (t, x, u)

and the (vector) co-state equation (or adjoint equation)

ṗ = −∂H
∂x
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give a total of 2m linear or nonlinear ODEs with (mixed) boundary conditions x(t0)

and p(t1). In general, analytical solution is not possible and numerical techniques

have to be used.

5.2.3 Example. Choose u(·) so as to minimize

J =

∫ T

0

(
x2 + u2

)
dt

subject to

ẋ = −ax+ u, x(0) = x0 ∈ R

where a, T > 0. We have

H = L+ pF = x2 + u2 + p(−ax+ u).

Also,

ṗ∗ = −∂H
∂x

= −2x∗ + ap∗

and
∂H

∂u

∣∣∣∣
u=u∗

: = 2u∗ + p∗ = 0

where x∗ and p∗ denote the state and adjoint variables for an optimal solu-

tion.

Substitution produces

ẋ∗ = −ax∗ − 1

2
p∗

and since ϕ ≡ 0, the boundary condition is just

p(T ) = 0.

The linear system [
ẋ∗

ṗ∗

]
=

[
−a −1

2

−2 a

][
x∗

p∗

]
can be solved using the methods of Chapter 2. (It is easy to verify that x∗

and p∗ take the form c1 e
λt + c2 e

−λt, where λ =
√

1 + a2 and the constants

c1 and c2 are found using the conditions at t = 0 and t = T .)
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It follows that the optimal control is

u∗(t) = −1

2
p∗(t).

Note : We have only found necessary conditions for optimality; further discussion

of this point goes far beyond the scope of this course.

If the functions L and F do not explicitly depend upon t, then from

H(p, x, u) = L(x, u) + pF (x, u)

we get

Ḣ =
dH

dt
=

∂L

∂u
u̇+

∂L

∂x
ẋ+ p

(
∂F

∂u
u̇+

∂F

∂x
ẋ

)
+ ṗF

=

(
∂L

∂u
+ p

∂F

∂u

)
u̇+

(
∂L

∂x
+ p

∂F

∂x

)
ẋ+ ṗF

=
∂H

∂u
u̇+

∂H

∂x
ẋ+ ṗF

=
∂H

∂u
u̇+

(
∂H

∂x
+ ṗ

)
F.

Since on an optimal trajectory

ṗ = −∂H
∂x

and
∂H

∂u

∣∣∣∣
u=u∗

= 0

it follows that Ḣ = 0 when u = u∗, so that

Hu=u∗ = constant, t0 ≤ t ≤ t1.

Discussion

We have so far assumed that t1 is fixed and x(t1) is free. If this is not

necessary the case, then we obtain

δJa =

[(
∂ϕ

∂x
− p
)
δx+

(
H +

∂ϕ

∂t

)
δt

]
u=u∗
t=t1

+

∫ t1

t0

(
∂H

∂x
δx+

∂H

∂u
δu+ ṗ δx

)
dt.



C.C. Remsing 165

The expression outside the integral must be zero (by virtue of Proposition

5.2.1), making the integral zero. The implications of this for some important

special cases are now listed. The initial condition x(t0) = x0 holds through-

out.

A Final time t1 specified.

(i) x(t1) free

We have δt|t=t1 = 0 but δx|t=t1 is arbitrary, so the condition

p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

must hold (with Hu=u∗ = constant, t0 ≤ t ≤ t1 when appropriate), as

before.

(ii) x(t1) specified

In this case δt|t=t1 = 0 and δx|t=t1 = 0 so[(
∂ϕ

∂x
− p
)
δx+

(
H +

∂ϕ

∂t

)
δt

]
u=u∗
t=t1

is automatically zero. The condition is thus

x∗(t1) = xf

(and this replaces p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

).

B Final time t1 free.

(iii) x(t1) free

Both δt|t=t1 and δx|t=t1 are now arbitrary so for the expression[(
∂ϕ

∂x
− p
)
δx+

(
H +

∂ϕ

∂t

)
δt

]
u=u∗
t=t1
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to vanish, the conditions

p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

and

(
H +

∂ϕ

∂t

)∣∣∣∣
u=u∗
t=t1

= 0

must hold.

Note : In particular, if ϕ,L, and F do not explicitly depend upon t, then

Hu=u∗ = 0, t0 ≤ t ≤ t1.

(iv) x(t1) specified

Only δt|t=t1 is now arbitrary, so the conditions are

x∗(t1) = xf and

(
H +

∂ϕ

∂t

)∣∣∣∣
u=u∗
t=t1

= 0.

5.2.4 Example. A particle of unit mass moves along the x-axis subject

to a force u(·). It is required to determine the control which transfers the

particle from rest at the origin to rest at x = 1 in unit time, so as to minimize

the effort involved, measured by

J : =

∫ 1

0
u2 dt.

Solution : The equation of motion is

ẍ = u

and taking x1 : = x and x2 : = ẋ we obtain the state equations

ẋ1 = x2, ẋ2 = u.

We have

H = L+ pF = p1x2 + p2u+ u2.

From
∂H

∂u

∣∣∣∣
u=u∗

= 0
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the optimal control is given by

2u∗ + p∗2 = 0

and the adjoint equations are

ṗ∗1 = 0, ṗ∗2 = −p∗1.

Integration gives

p∗2 = C1t+ C2

and thus

ẋ∗2 = −1

2
(C1t+ C2)

which on integrating, and using the given conditions x2(0) = 0 = x2(1),

produces

x∗2(t) =
1

2
C2

(
t2 − t

)
, C1 = −2C2.

Finally, integrating the equation ẋ1 = x2 and using x1(0) = 0, x1(1) = 1

gives

x∗1(t) =
1

2
t2(3− 2t), C2 = −12.

Hence the optimal control is

u∗(t) = 6(1− 2t).

An interesting case

If the state at final time t1 (assumed fixed) is to lie on a “surface” S

(more precisely, an (m− k)-submanifold of Rm ) defined by

g1(x1, x2 . . . , xm) = 0

g2(x1, x2, . . . , xm) = 0

...

gk(x1, x2, . . . , xm) = 0
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(i.e. S = g−1(0) ⊂ Rm, where g = (g1, . . . , gk) : Rm → Rk, m ≥ k is such

that rank ∂g
∂x = k), then (it can be shown that) in addition to the k conditions

g1 (x∗(t1)) = 0, . . . , gk(x
∗(t1)) = 0 (5.18)

there are a further m conditions which can be written as

∂ϕ

∂x
− p = d1

∂g1

∂x
+ d2

∂g2

∂x
+ · · ·+ dk

∂gk
∂x

(5.19)

both sides being evaluated at t = t1, u = u∗, x = x∗, p = p∗. The di are

constants to be determined. Together with the 2m constants of integration

there are thus 2m + k unknowns and 2m + k conditions (5.18), (5.19), and

x(t0) = x0. If t1 is free, then in addition(
H +

∂ϕ

∂t

)∣∣∣∣
u=u∗
t=t1

= 0

holds.

5.2.5 Example. A system is described by

ẋ1 = x2, ẋ2 = −x2 + u

is to be transformed (steered) from x(0) = 0 to the line L with equation

ax1 + bx2 = c

at time T so as to minimize ∫ T

0
u2 dt.

The values of a, b, c, and T are given.

From

H = u2 + p1x2 − p2x2 + p2u

we get

u∗ = −1

2
p∗2 . (5.20)
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The adjoint equations are

ṗ∗1 = 0, ṗ∗2 = −p∗1 + p∗2

so that

p∗1 = c1 , p∗2 = c2e
t + c1 (5.21)

where c1 and c2 are constants. We obtain

x∗1 = c3e
−t − 1

4
c2e

t − 1

2
c1t+ c4, x∗2 = −c3e

−t − 1

4
c2e

t − 1

2
c1

and the conditions

x∗1(0) = 0, x∗2(0) = 0, ax∗1(T ) + bx∗2(T ) = c (5.22)

must hold.

It is easy to verify that (5.19) produces

p∗1(T )

p∗2(T )
=
a

b
(5.23)

and (5.22) and (5.23) give four equations for the four unknown constants ci.

The optimal control u∗(·) is then obtained from (5.20) and (5.21).

Note : In some problems the restriction on the total amount of control effort which

can be expended to carry out a required task may be expressed in the form∫ t1

t0

L0(t, x, u) dt = c (5.24)

where c is a given constant, such a constraint being termed isoperimetric. A

convenient way of dealing with (5.24) is to define a new variable

xm+1(t) : =

∫ t

t0

L0(t, x, u) dτ

so that

ẋm+1 = L0(t, x, u).

This ODE is simply added to the original one (5.1) together with the conditions

xm+1(t0) = 0, xm+1(t1) = c

and the previous procedure continues as before, ignoring (5.24).
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5.3 Pontryagin’s Principle

In real-life problems the control variables are usually subject to constraints on

their magnitudes, typically of the form

|ui(t)| ≤ Ki, i = 1, 2, . . . , `.

This implies that the set of final states which can be achieved is restricted.

Our aim here is to derive the necessary conditions for optimality corre-

sponding to Theorem 5.2.2 for the unbounded case.

An admissible control is one which satisfies the constraints, and we

consider variations such that

• u∗ + δu is admissible

• ‖δu‖ is sufficiently small so that the sign of

∆J = J [u∗ + δu]− J [u∗]

where

J [u] = ϕ(x(t1), t1) +

∫ t1

t0

L(t, x, u) dt

is determined by δJ in

J [u+ δu]− J [u] = δJ [u, δu] + j(u, δu) · ‖δu‖.

Because of the restriction on δu, Proposition 5.2.1 no longer applies,

and instead a necessary condition for u∗ to minimize J is

δJ [u∗, δu] ≥ 0.

The development then proceeds as in the previous section; Lagrange multipli-

ers p =
[
p1 p2 . . . pm

]
are introduced to define Ja and are chosen so as

to satisfy

ṗ = −∂H
∂x

and p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

.
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The only difference is that the expression for δJa becomes

δJa [u, δu] =

∫ t1

t0

(H(t, p, x, u+ δu)−H(t, p, x, u)) dt.

It therefore follows that a necessary condition for u = u∗ to be a minimizing

control is that

δJa [u∗, δu] ≥ 0

for all admissible δu. This in turn implies that

H(t, p∗, x∗, u∗ + δu) ≥ H(t, p∗, x∗, u∗) (5.25)

for all admissible δu and all t in [t0, t1]. This states that u∗ minimizes H,

so we have “established”

5.3.1 Theorem. (Pontryagin’s Minimum Principle) Necessary condi-

tions for u∗ to minimize

J [u] = ϕ(x(t1), t1) +

∫ t1

t0

L(t, x, u) dt

are the following :

ṗ = −∂H
∂x

p(t1) =
∂ϕ

∂x

∣∣∣∣
t=t1

H(t, p∗, x∗, u∗ + δu) ≥ H(t, p∗, x∗, u∗) for all admissible δu, t0 ≤ t ≤ t1.

Note : (1) With a slighty different definition of H, the principle becomes one of

maximizing J , and is then referred to as the Pontryagin’s Maximum Principle.

(2) u∗(·) is now allowed to be piecewise continuous. (A rigorous proof is beyond the

scope of this course.)

(3) Our derivation assumed that t1 was fixed and x(t1) free; the boundary con-

ditions for other situations are precisely the same as those given in the preceding

section.
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5.3.2 Example. Consider again the “soft landing” problem (cf. Example

5.1.2), where the performance index

J =

∫ T

0
(|u|+ k) dt

is to be minimized subject to

ẋ1 = x2, ẋ2 = u.

The Hamiltonian is

H = |u|+ k + p1x2 + p2u.

Since the admissible range of control is −1 ≤ u(t) ≤ 1, it follows that H will

be minimized by the following :

u∗(t) =



−1 if 1 < p∗2(t)

0 if −1 < p∗2(t) < 1

+1 if p∗2 < −1.

(5.26)

Note : (1) Such a control is referred to by the graphic term bang-zero-bang,

since only maximum thrust is applied in a forward or reverse direction; no interme-

diate nonzero values are used. If there is no period in which u∗ is zero, the control

is called bang-bang. For example, a racing-car driver approximates to bang-bang

operation, since he tends to use either full throttle or maximum braking when at-

tempting to circuit a track as quickly as possible.

(2) In (5.26) u∗(·) switches in value according to the value of p∗2(·), which is there-

fore termed (in this example) the switching function.

The adjoint equations are

ṗ∗1 = 0, ṗ∗2 = −p∗1

and integrating these gives

p∗1(t) = c1 , p∗2(t) = −c1t+ c2
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where c1 and c2 are constants. Since p∗2 is linear in t, it follows that it can

take each of the values +1 and −1 at most once in [0, T ], so u∗(·) can switch

at most twice. We must however use physical considerations to determine an

actual optimal control.

Since the landing vehicle begins with a downwards velocity at altitude h,

logical sequences of control would seem to either

u∗ = 0 , followed by u∗ = +1

(upwards is regarded as positive), or

u∗ = −1 , then u∗ = 0 , then u∗ = +1.

Consider the first possibility and suppose that u∗ switches from 0 to +1 in

time t1. By virtue of (5.26) this sequence of control is possible if p∗2 decreases

with time. It is easy to verify (exercise !) that the solution of

ẋ1 = x2, ẋ2 = u

subject to the initial conditions

x1(0) = h , x2(0) = −v

is

x∗1 =


h− vt if 0 ≤ t ≤ t1

h− vt+ 1
2(t− t1)2 if t1 ≤ t ≤ T

(5.27)

x∗2 =


−v if 0 ≤ t ≤ t1

−v + (t− t1) if t1 ≤ t ≤ T.

(5.28)

Substituting the soft landing requirements

x1(T ) = 0, x2(T ) = 0
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into (27) and (28) gives

T =
h

v
+

1

2
v, t1 =

h

v
− 1

2
v ·

Because the final time is not specified and because of the form of H equation

Hu=u∗ = 0 holds, so in particular Hu=u∗ = 0 at t = 0; that is,

k + p∗1(0)x∗2(0) = 0

or

p∗1(0) =
k

v
·

Hence we have

p∗1(t) =
k

v
, t ≥ 0

and

p∗2(t) = −kt
v
− 1 +

kt1
v

using the assumption that p∗2(t1) = −1. Thus the assumed optimal control

will be valid if t1 > 0 and p∗2(0) < 1 (the latter conditions being necessary

since u∗ = 0 ), and these conditions imply that

h >
1

2
v2 , k <

2v2

h− 1
2v

2
· (5.29)

Note : If these inequalities do not hold, then some different control strategy (such

as u∗ = −1, then u∗ = 0, then u∗ = +1 ), becomes optimal. For example, if k is

increased so that the second inequality in (5.29) is violated, then this means that more

emphasis is placed on the time to landing in the performance index. It is therefore

reasonable to expect this time would be reduced by first accelerating downwards with

u∗ = −1 before coasting with u∗ = 0.

A general regulator problem

We can now discuss a general linear regulator problem in the usual form

ẋ = Ax+Bu (5.30)



C.C. Remsing 175

where x(·) is the deviation from the desired constant state. The aim is to

transfer the system from some initial state to the origin in minimum time,

subject to

|ui(t)| ≤ Ki, i = 1, 2, . . . , `.

The Hamiltonian is

H = 1 + p (Ax+Bu)

= 1 + pAx+
[
pb1 pb2 . . . pb`

]
u

= 1 + pAx+
∑̀
i=1

(p bi)ui

where the bi are the columns of B. Application of (PMP) (cf. Theorem

5.3.1) gives the necessary conditions for optimality that

u∗i (t) = −Ki sgn (si(t)), i = 1, 2, . . . , `

where

si(t) : = p∗(t)bi (5.31)

is the switching function for the ith variable. The adjoint equation is

ṗ∗ = − ∂

∂x
(p∗Ax)

or

ṗ∗ = −p∗A.

The solution of this ODE can be written in the form

p∗(t) = p(0) exp(−tA)

so the switching function becomes

si(t) = p(0) exp(−tA)bi.

If si(t) ≡ 0 in some time interval, then u∗i (t) is indeterminate in this interval.

We now therefore investigate whether the expression in (5.31) can vanish.
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Firstly, we can assume that bi 6= 0. Next, since the final time is free, the

condition Hu=u∗ = 0 holds, which gives (for all t )

1 + p∗ (Ax∗ +Bu∗) = 0

so clearly p∗(t) cannot be zero for any value of t. Finally, if the product p∗bi

is zero, then si = 0 implies that

ṡi(t) = −p∗(t)Abi = 0

and similarly for higher derivatives of si. This leads to

p∗(t)
[
bi Abi A2bi . . . Am−1bi

]
= 0. (5.32)

If the system (5.30) is c.c. by the ith input acting alone (i.e. uj ≡ 0, j 6=
i ), then by Theorem 3.1.3 the matrix in (5.32) is nonsingular, and equation

(5.32) then has only the trivial solution p∗ = 0. However, we have already

ruled out this possibility, so si cannot be zero. Thus provided the controlla-

bility condition holds, there is no time interval in which u∗i is indeterminate.

The optimal control for the ith variable then has the bang-bang form

u∗i = ±Ki.

5.4 Linear Regulators with Quadratic Costs

A general closed form solution of the optimal control problem is possible for

a linear regulator with quadratic performance index. Specifically, consider the

time-varying system

ẋ = A(t)x+B(t)u (5.33)

with a criterion (obtained by combining together (5.3) and (5.7)) :

J : =
1

2
xT (t1)Mx(t1) +

1

2

∫ t1

0

(
xTQ(t)x+ uTR(t)u

)
dt (5.34)

with R(t) positive definite and M and Q(t) positive semi-definite symmetric

matrices for t ≥ 0 (the factors 1
2 enter only for convenience).
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Note : The quadratic term in u in (5.34) ensures that the total amount of control

effort is restricted, so that the control variables can be assumed unbounded.

The Hamiltonian is

H =
1

2
xTQx+

1

2
uTRu+ p(Ax+Bu)

and the necessary condition (5.17) for optimality gives

∂

∂u

(
1

2
(u∗)TRu∗ + p∗Bu∗

)
= (Ru∗)T + p∗B = 0

so that

u∗ = −R−1BT (p∗)T (5.35)

R(t) being nonsingular (since it is positive definite). The adjoint equation is

(ṗ∗)T = −Qx∗ −AT (p∗)T . (5.36)

Substituting (5.35) into (5.33) gives

ẋ∗ = Ax∗ −BR−1BT (p∗)T

and combining this equation with (5.36) produces the system of 2m linear

ODEs

d

dt

[
x∗

(p∗)T

]
=

[
A(t) −B(t)R−1(t)BT (t)

−Q(t) −AT (t)

][
x∗

(p∗)T

]
. (5.37)

Since x(t1) is not specified, the boundary condition is

(p∗)T (t1) = Mx∗(t1) . (5.38)

It is convenient to express the solution of (5.37) as follows :[
x∗

(p∗)T

]
= Φ(t, t1)

[
x∗(t1)

(p∗)T (t1)

]

=

[
φ1 φ2

φ3 φ4

][
x∗(t1)

(p∗)T (t1)

]
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where Φ is the transition matrix for (5.37). Hence

x∗ = φ1x
∗(t1) + φ2(p∗)T (t1)

= (φ1 + φ2M)x∗(t1) .

Also we get

(p∗)T = (φ3 + φ4M)x∗(t1)

= (φ3 + φ4M)(φ1 + φ2M)−1x∗(t)

= P (t)x∗(t).

(It can be shown that φ1 + φ2M is nonsingular for all t ≥ 0 ). It now follows

that the optimal control is of linear feedback form

u∗(t) = −R−1(t)BT (t)P (t)x∗(t). (5.39)

To determine the matrix P (t), differentiating (p∗)T = Px∗ gives

Ṗ x∗ + Pẋ∗ − (ṗ∗)T = 0

and substituting for ẋ∗, (ṗ∗)T (from (5.37)) and (p∗)T , produces(
Ṗ + PA− PBR−1BTP +Q+ATP

)
x∗(t) = 0.

Since this must hold throughout 0 ≤ t ≤ t1 it follows that P (t) satisfies

Ṗ = PBR−1BTP −ATP − PA−Q (5.40)

with boundary condition

P (t1) = M.

Equation (5.40) is often referred to as a matrix Riccati differential equa-

tion.

Note : (1) Since the matrix M is symmetric, it follows that P (t) is symetric

for all t, so the (vector) ODE (5.40) represents m(m+1)
2 scalar first order (quadratic)

ODEs, which can be integrated numerically.
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(2) Even when the matrices A,B,Q, and R are all time-invariant the solution P (t)

of (5.40), and hence the feedback matrix in (5.39), will in general still be time-varying.

However, of particular interest is the case when in addition the final time

t1 tends to infinity. Then there is no need to include the terminal expression

in the performance index since the aim is to make x(t1) → 0 as t1 → ∞, so

we set M = 0. Let Q1 be a matrix having the same rank as Q and such that

Q = QT1 Q1. It can be shown that the solution P (t) of (5.40) does become a

constant matrix P , and we have :

5.4.1 Proposition. If the linear time-invariant control system

ẋ = Ax+Bu(t)

is c.c. and the pair (A,Q1) is c.o., then the control which minimizes∫ ∞
0

(
xTQx+ uTRu

)
dt (5.41)

is given by

u∗(t) = −R−1BTPx(t) (5.42)

where P is the unique positive definite symmetric matrix which satisfies the

so-called algebraic Riccati equation

PBR−1BTP −ATP − PA−Q = 0. (5.43)

Note : Equation (5.43) represents m(m+1)
2 quadratic algebraic equations for the

unknown elements (entries) of P , so the solution will not in general be unique. How-

ever, it can be shown that if a positive definite solution of (5.43) exists, then there is

only one such solution.

Interpretation

The matrix Q1 can be interpreted by defining an output vector y = Q1x

and replacing the quadratic term involving the state in (5.41) by

yT y
(

= xTQT1 Q1x
)
.
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The closed loop system obtained by substituting (5.42) into (5.33) is

ẋ = Ax (5.44)

where A : = A−BR−1BTP . It is easy to verify that

ATP + PA = ATP + PA− 2PBR−1BTP = −PBR−1BTP −Q (5.45)

using the fact that it is a solution of (5.43). Since R−1 is positive definite

and Q is positive semi-definite, the matrix on the RHS in (5.45) is negative

semi-definite, so Proposition 4.3.10 is not directly applicable, unless Q is

actually positive definite.

It can be shown that if the triplet (A,B,Q1) is neither c.c. nor c.o. but

is stabilizable and detectable, then the algebraic Riccati equation (5.43) has a

unique solution, and the closed loop system (5.44) is asymptotically stable.

Note : Thus a solution of the algebraic Riccati equation leads to a stabilizing linear

feedback control (5.42) irrespective of whether or not the open loop system is stable.

(This provides an alternative to the methods of section 3.3.)

If x∗(·) is the solution of the closed loop system (5.44), then (as in (5.10))

equation (5.45) implies

d

dt

(
(x∗)TPx∗

)
= −(x∗)T

(
PBR−1BTP +Q

)
x∗

= −(u∗)TRu∗ − (x∗)TQx∗.

Since A is a stability matrix, we can integrate both sides of this equality with

respect to t (from 0 to ∞ ) to obtain the minimum value of (5.41) :∫ ∞
0

(
(x∗)TQx∗ + (u∗)TRu∗

)
dt = xT0 Px0. (5.46)

Note : When B ≡ 0, (5.43) and (5.46) reduce simply to

ATP + PA = −Q

and

J0 =

∫ ∞
0

xTQxdt = xT0 Px0

respectively.
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5.5 Exercises

Exercise 93 A system is described by

ẋ = −2x+ u

and the control u(·) is to be chosen so as to minimize the performance index

J =

∫ 1

0

u2 dt.

Show that the optimal control which transfers the system from x(0) = 1 to x(1) = 0

is

u∗(t) = − 4e2t

e4 − 1
·

Exercise 94 A system is described by

...
z = u(t)

where z(·) denotes displacement. Starting from some given initial position with

given velocity and acceleration it is required to choose u(·) which is constrained by

|u(t)| ≤ k, so as to make displacement, velocity, and acceleration equal to zero in the

least possible time. Show using (PMP) that the optimal control consists of

u∗ = ± k

with zero, one, or two switchings.

Exercise 95 A linear system is described by

z̈ + aż + bz = u

where a > 0 and a2 < 4b. The control variable is subject to |u(t)| ≤ k and is to be

chosen so that the system reaches the state z(T ) = 0, ż(T ) = 0 in minimum possible

time. Show that the optimal control is

u∗(t) = k sgn p(t)

where p(·) is a periodic function.
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Exercise 96 A system is described by

ẋ = −2x+ 2u, x ∈ R.

The unconstrained control variable u(·) is to be chosen so as to minimize the perfor-

mance index

J =

∫ 1

0

(
3x2 + u2

)
dt

whilst transferring the system from x(0) = 0 to x(1) = 1. Show that the optimal

control is

u∗(t) =
3e4t + e−4t

e4 − e−4
·

Exercise 97 A system is described by the equations

ẋ1 = x2, ẋ2 = x1 − 2x2 + u

and is to be transferred to the origin from some given initial state.

(a) If the control u(·) is unbounded, and is to be chosen so that

J =

∫ T

0

u2 dt

is minimized, where T is fixed, show that the optimal control has the

form

u∗(t) = c1e
t sinh(t

√
2 + c2)

where c1 and c2 are certain constants. (DO NOT try to determine their

values.)

(b) If u(·) is such that |u(t)| ≤ k, where k is a constant, and the system is

to be brought to the origin in the shortest possible time, show that the

optimal control is bang-bang, with at most one switch.

Exercise 98 For the system described by

ẋ1 = x2, ẋ2 = −x2 + u

determine the control which transfers it from x(0) = 0 to the line L with equation

x1 + 5x2 = 15

and minimizes the performance index

J =
1

2
(x1(2)− 5)

2
+

1

2
(x2(2)− 2)

2
+

1

2

∫ 2

0

u2 dt.
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Exercise 99 Use Proposition 5.4.1 to find the feedback control which minimizes∫ ∞
0

(
x22 +

1

10
u2
)
dt

subject to

ẋ1 = −x1 + u, ẋ2 = x1.

Exercise 100

(a) Use the Riccati equation formulation to determine the feedback control

for the system

ẋ = −x+ u, x ∈ R

which minimizes

J =
1

2

∫ 1

0

(
3x2 + u2

)
dt.

[Hint : In the Riccati equation for the problem put P (t) = − ẇ(t)

w(t)
·]

(b) If the system is to be transferred to the origin from an arbitrary initial

state with the same performance index, use the calculus of variations to

determine the optimal control.



Appendix A

Answers and Hints to
Selected Exercises

Introduction

1. Prove first that (for A,B ∈ Rn) tr (AB) = tr (BA).

2. Use the (fundamental) property : det (AB) = det (A) · det (B).

3. The following facts are needed :

(1) rank (A) = rank (AT ).

(2) rank (A) + dim ker(A) = n.

(3) rank (AB) = rank (B)− dim ker(A) ∩ im (B).

(4) U ⊆ V ⇒ dim(U) ≤ dim(V ) (as vector spaces).

We have (3) ⇒ rank (AB) ≤ rank (B); (1), (3) ⇒ rank (AB) ≤ rank (A);
(4), (2) ⇒ dim ker(A) ∩ im (B) ≤ n− rank (A).

4. Apply the matrix (linear transformation) (A− λ2In)(A− λ3In) · · · (A− λrIn)
to the equation (trivial linear combination) α1w1 +α2w2 + · · ·+αrwr = 0 and
hence obtain α1 = 0, etc.

5. Express the characteristic polynomial of A in two different ways : charA(λ) =
(λ−λ1)(λ−λ2) · · · (λ−λn) = λn−(λ1+λ2+· · ·+λn)λn−1+· · ·+(−1)nλ1λ2 · · ·λn
but also charA(λ) = det(λIn −A) = λn − tr (A)λn−1 + · · ·+ (−1)n det(A).

6. Observe that ∑
k≥0

∥∥∥∥ tkk!
Ak
∥∥∥∥ ≤∑

k≥0

1

k!
‖tA‖k

and then use the comparison test (for numerical series).

7. Induction :
(
S−1AS

)n
= S−1AnS.

184
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8. uuT = u1u2 · · ·un

u1 . . . un
...

...
u1 . . . un

.

9. Apply the matrix (linear transformation) Ar to the equation c0b+c1Ab+ · · ·+
crA

rb = 0 and deduce that c0 = 0, etc.

10. Straightforward computation : rank (ATA) = rank (A) = rank (AAT ) = 2.

11. (a) λ2 − 4λ− 5; λ1 = −1; λ2 = 5.

E1 = Eλ1
= span

{[
2
−1

]}
and E2 = Eλ2

= span

{[
1
1

]}
.

(b) (λ+ 1)(λ− 2); λ1 = −1; λ2 = 2.

E1 = span

{[
0
1

]}
and E2 = span

{[
1
0

]}
.

(c) λ2 − λ; λ1 = 0; λ2 = 1.

E1 = span

{[
1
−1

]}
and E2 = span

{[
2
−1

]}
.

(d) λ2 − 4λ+ 8; λ1,2 = 2± 2i.

E1 = span

{[
1
i

]
=

[
1
0

]
+ i

[
0
1

]}
and E2 = span

{[
1
−i

]
=

[
1
0

]
− i
[
0
1

]}
.

(e) λ2 − (a+ b)λ+ ab; λ1 = a; λ2 = b.

E1 = span

{[
1
−a

]}
and E2 = span

{[
1
−b

]}
.

(f) λ(λ2 − 5λ+ 4); λ1 = 0; λ2 = 1; λ3 = 4.

E1 = span


 1
−1
1

 , E2 = span


 2
−1
−1

 and E3 = span


1

1
1

 .

(g) (λ− 1)3; λ1 = λ2 = λ3 = 1.

E = Eλ = span


1

0
0

 ,
0

0
1

 .

(h) λ2(λ− 3); λ1 = λ2 = 0; λ3 = 3.

E1,2 = span


−1

1
0

 ,
−1

0
1

 and E3 = span


1

1
1

 .
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(i) (λ− 6)(λ2 − 6λ− 16); λ1 = −2; λ2 = 6; λ3 = 8.

E1 = span


 3
−1
0

 , E2 = span


0

0
1

 and E3 = span


1

3
0

 .

(j) λ2 − (2 cos θ)λ+ 1; λ1,2 = cos θ ± i sin θ.

E1 = span

{[
1
−i

]
=

[
1
0

]
− i
[
0
1

]}
and E2 = span

{[
1
i

]
=

[
1
0

]
+ i

[
0
1

]}
.

12. λ is an eigenvalue of A if and only if λ− µ is an eigenvalue of A− µIn, etc.

13. (a) Observe that (λIn − A)T = λIn − AT . (b) From λIn − S−1AS =
S−1(λIn −A)S derive that det (λIn − S−1AS) = det (λIn −A).

14. (b) Yes. (b) Yes. (c) Yes. (d) Yes.

15. (a) Show that q(x) = −q(x) for all x ∈ Rn×1. (b) A1 = 1
2

(
A+AT

)
, etc.

17. (a) exp (tA) =

[
1 t
0 1

]
; exp (tB) =

[
et 0
0 1

]
; exp (t(A+B)) =

[
et et − 1
0 1

]
.

18. (a) exp (tA) =

[
eat 0
0 ebt

]
. (b) exp (tA) =

[
eat bteat

0 eat

]
. (c)

1 t t2

2
0 1 t
0 0 1


and

 1 0 0
2t 1 0

3t+ 4t2 4t 1

.

19. (a)

[
et 0
0 e2t

]
. (b)

[
1 t
0 1

]
. (c)

[
cos t sin t
− sin t cos t

]
. (d)

[
e−t te−t

0 e−t

]
.

(e)

[
1
2 (1 + e2t) 1

2 (e2t − 1)
1
2 (e2t − 1) 1

2 (1 + e2t)

]
. (f)

1 t t+ t2

2
0 1 t
0 0 1

. (g)

e2t 0 0
0 e−3t 0
0 0 e7t

.

20. FFTTTTFT.

Linear Dynamical Systems

22. Let ak : = αk

(k+1)! · Show that 0 < ak ≤ ak+1 (for k ≥ α− 2) and then use the

fact that every bounded non-increasing sequence of numbers is convergent.

23. Let Y (·) be the unique solution of the Cauchy problem (in matrices) :

Ẏ = −Y A(t), Y (0) = In.

Then Y (t) ·X(t) = In (for all t), etc.

24. Straightforward computation.
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25. There is no (linear) transformation w = Tx such that TAT−1 = C and

Tb =

[
0
1

]
.

26.

(a) x1(t) = (−x1(0) + x2(0))e−3t + (2x1(0)− x2(0))e−2t

x2(t) = 2(−x1(0) + x2(0))e−3t + (2x1(0)− x2(0))e−2t.

(b) x1(t) =
1

2
(x1(0) + x2(0))et +

1

2
(x1(0)− x2(0))e3t

x2(t) =
1

2
(x1(0) + x2(0))et − 1

2
(x1(0)− x2(0))e−3t.

(c) x1(t) =
1

2
(x1(0)− x2(0))e−t +

1

2
(x1(0) + x2(0))et

x2(t) = −1

2
(x1(0)− x2(0))e−t +

1

2
(x1(0) + x2(0))e3t.

(d) x1(t) = (−x2(0) +
1

2
x3(0))et + 2(x1(0) + x2(0))e2t − (x1(0) + x2(0) +

1

2
x3(0))e3t

x2(t) = −(x2(0) +
1

2
x3(0))et − (x1(0) + x2(0))e2t + (x1(0) + x2(0) +

1

2
x3(0))e3t

x3(t) = −2(x1(0) + x2(0))e2t + 2(x1(0) + x2(0) +
1

2
x3(0))e3t.

(e) x1(t) = −(x2(0) + x3(0))et + (x1(0) + x2(0) + x3(0))e2t

x2(t) =
1

2
(x2(0)− x3(0))e−t +

1

2
(x2(0) + x3(0))et

x3(t) = −1

2
(x2(0)− x3(0))e−t +

1

2
(x2(0) + x3(0))et.

27. (a) Z1 =

[
−1 1
−2 2

]
, Z2 =

[
2 −1
2 −1

]
, etc. (b) Z1 =

[
1
2

1
2

1
2

1
2

]
, Z2 =[

1
2 − 1

2
− 1

2
1
2

]
, etc. (c) Z1 =

[
1
2 − 1

2
− 1

2
1
2

]
, Z2 =

[
1
2

1
2

1
2

1
2

]
, etc. (d) ... (e)

...

28. A =

[
0 1
−ω 0

]
; Φ(t, 0) = exp (tA) =

[
cos(
√
ω t)

√
ω sin(

√
ω t)

−
√
ω sin(

√
ω t) cos(

√
ω t)

]
.
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29. char(λ) = λ(λ − a1 + a4) ⇒ λ1 = 0 and λ2 = a1 − a4. We assume that
a1 6= a4.

x(t) =
(
Z1 + e(a1−a4)tZ2

)[x1(0)
x2(0)

]
=

[
1

a1−a4

(
−a4x1(0) + a2x2(0) + (a1x1(0)− a2x2(0))e(a1−a4)t

)
1

a1−a4

(
−a3x1(0) + a1x2(0) + (a3x1(0)− a4x2(0))e(a1−a4)t

)] .
30.

Φ(t, 0) = e−2tZ1 + e5tZ2

=

[
1
7 (4e−2t + 3e5t) 1

7 (−4e−2t + 4e5t)
1
7 (−3e−2t + 3e5t) 1

7 (3e−2t + 4e5t)

]
.

x(t) = Φ(t, 0)

[
x0 +

∫ t

0

Φ(0, τ)

[
1
0

]
u(τ) dτ

]
.

31.

Φ(t, 0) = e−2tZ1 + e−tZ2

=

[
−4e−2t + 2e−t −e−2t + e−t)
2e−2t − 2e−t 2e−2t − e−t)

]
.

z(2) =
1− e2

4e4
+
e− 1

e2
·

32. Existence : simple verification. Uniqueness : let W be a solution; consider the
product exp (−tA)W exp (−tB) and differentiate, etc.

33. exp (tA) =

[
et 2tet

0 et

]
.

34. Take A =

[
a b
c d

]
and X =

[
x1 x2
x3 x4

]
. Then consider det (X(t)) = x1x4 −

x2x3 and differentiate, etc.

36. d
dt exp (B(t)) = d

dt

(
In +B(t) + B2(t)

2! + · · ·
)

. The solution is unique.

38.

Φ(t, 0) =

[
1
2 (3−3t + et) e−3t − et
1
4 (e−3t − et) 1

2 (e−3t + et)

]
x(t) = Φ(t, 0)

[
e5t

10 −
et

2 + 7
5

e5t

20 + et

4 + 7
10

]
, etc.
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39. (a) T = 1
2

[
−3 1
5 −1

]
; TAT−1 =

[
0 1
−6 −5

]
. (b) T =

 2
3 − 5

3
2
3

−1 −2 1
−1 −2 2

;

TAT−1 =

0 1 0
0 0 1
6 −11 6

.

40. P =

 1
12

1
12

7
12

0 1
4 0

0 0 1
2

; E = P−1AP =

0 0 −2
1 0 9
0 1 0

.

Linear Control Systems

41. ∫ ∞
0

e−st · eat dt = lim
R→∞

1− e−(s−a)R

s− a
=

1

s− a
(for s > a).

The matrix(-valued mapping) Φ(t, 0) = exp (tA) is completely determined by
the conditions : (1) Φ̇(t, 0) = AΦ(t, 0) and (2) Φ(0, 0) = In.

42. Show first that C (Ã, B̃) = P C (A,B) and O (Ã, C̃) = O (A,C)P−1.

43. C̃
(
sIn − Ã

)−1
B̃ = C (sIn −A)

−1
B.

44. rank (AB) ≤ n and rank (A) + rank (B)− n ≤ rank (AB).

45. rank
[
B AB

]
= 2.

46. b ∈ span

{[
1
1

]}⋃
span

{[
1
2

]}
.

47.

exp (tA) =

[
1
3 (e−8t + 2e−2t) 1

3 (−e−8t + e−2t)
2
3 (−e−8t + e−2t) 1

3 (2e−8t + e2t)

]
;

(1) − 2 =
1

3

∫ 1

0

(−e8τ + 4e2τ )(C1 + C2e
−2τ ) dτ

(2) − 3 =
1

3

∫ 1

0

(2e8τ + 4e2τ )(C1 + C2e
−2τ ) dτ.

48. (1) α = 10 or α = 12. (2) α = 0 or α = 1. For u1 ≡ 0 : ẋ =[
2 α− 3
0 2

]
x+

[
1

α2 − α

]
u2. α = 0 or α = 1.

49. u∗(t) = −
[
et 3e2t

]
U−1(0, 1)

[
10
10

]
, where U(0, 1) =

[
e2−1
2 e3 − 1

e3 − 1 9
4 (e4 − 1)

]
,

etc.

50. Verification.
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51. W (t) = exp ((t− t1)A) · C · exp ((t− t1)AT ), etc.

52. The system is completely observable.

53. x(0) =

[
3
−1

]
.

54. rankO = 1 < 2.

x(t) = exp (tA)x(0)

=

[
−e−2t + 2e−t e−t

2(e−2t − e−t) 2e−2t − e−t
] [
x1(0)
x(0)

]
.

x1(0) + 2x2(0) = 0.

55. Use the fact that

Φ̇(τ, t) =
d

dt
Φ(τ, t) = −Φ(τ, t)A(t).

56.

K = k T =
1

2

[
−14 −4

] [−3 1
5 −1

]
=

[
11 −5

]
.

57.

K = k T =
[
−11 4 −9

]
T

= −1

3

[
−61 129 88

]
.

58. λ1 = 2, λ2 = 1, λ3 = 3. W =

1 1 1
2 1 3
4 1 9

. µ1 = 1, λ2 = 1, λ3 = 3 (p = 1).

K = fg W̃

=

[
−1
−1

]
1
[
−3 4 −1

]
=

[
3 −4 1
3 −4 1

]
.

59. A+ bK =

−1 + α 0 3 + β
α −3 β

1− α 0 −(β + 3)

. α = β.

60. Take X−1 =

[
A−1 X1

X2 C−1

]
, etc.



C.C. Remsing 191

61. A =

−2 0 0
0 −1 0
0 0 1

. B =

 10
3 2
− 7

2 −2
7
6 1

. C =

[
1 1 1
2 1 −1

]
.

62. rank (K1) = 1 and rank (K2) = 2. The order of the minimal realization is
1 + 2 = 3.

63.
C (sIn −A)

−1
B = C1 (sIn1

−A1)
−1
B1C2 (sIn2

−A2)
−1
B2.

65. b1 = 2, b2 = −1; c1 = 4, c2 = 1. P = 1
2

[
1 2
−2 −6

]
.

Stability

66. Sketch the graph of f .

67.

‖exp (tA)‖ ≤
∥∥eλ1tZ1 + · · ·+ eλntZn

∥∥ ≤ · · · ≤ e−at (‖Z1‖+ · · ·+ ‖Zn‖)

where a = min{−Re(λ1), . . . ,−Re(λn)}.

68. The new state equations are :

ẋ1 = −2x1x2 − 4x2

ẋ2 =
1

2
x1 + x1x2.

69. (a) Yes. (b) No. (c) No.

70. k < 2.

71. 0 < k < 2. u = − 2
3x1 − x2 −

2
3x3

72. ẋ = A(t)x ⇒ ẍ2−4ẋ2+3x2 = 0. The linear system ẏ =

[
0 1
−3 4

]
has solution

y(t) = (etZ1 + e3tZ2)y(0)

=

[
1
2 (3et − e3t) 1

2 (et + e3t)
3
2 (et +−e3t) 1

2 (−et + 3e3t)

] [
y1(0)
y2(0)

]
.

x2(t) = y1(t) = aet + be3t and |x2(t)| → ∞ (as t→∞).

73. q = 1
2 , b = 1

2 , c = 1 and d = 1. The origon is asymptotically stable.

74. V̇ = −2(x1−x2)2−2(x1+2x2)2(1−x22) < 0 for |x2| < 1. 5x21+2x1x2+2x22 ≤ 9
5 ·

75. The origin is unstable.

76. P = 1
30

[
13 −1
−1 4

]
. The origin is asymptotically stable.
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77. −C + limt→∞W (t) = A
∫∞
0
W (τ) dτ +

(∫∞
0
W (τ) dτ

)
B, etc.

78. The state equations are ẋ1 = x2 and ẋ2 = −a2x1 − a1x2.

V = xTPx = ax21 + 2bx1x2 + cx22 ⇒
V̇ = −2ba2x

2
1 + 2bx22 − 2a1cx

2
2 + 2(a− ba1 − ca2)x1x2, etc.

79. The origin is asymptotically stable. k ∈
(
1
4 , 4

)
.

80. The linearized system is ẋ =

[
7 2
1 −3

]
x. The origin is unstable.

81. (a) The linearized system is ẋ =

[
−1 1
0 −3

]
x. The origin is asymptotically

stable. (b) The origin is asympttotically stable.

83. For u(t) ≡ 0, t > 0, the solution is

x(t) = Φ(t, 0)x0

=
3x0
t+ 3

→ 0 (as t→∞).

When u(·) is the unit step function, we have (for t ≥ 1)

x(t) = Φ(t, 0)

[
x0 +

∫ t

0

Φ(0, τ) dτ

]
=

1

t+ 3

(
t2 + 6t+ 3x0

)
→∞ (as t→∞).

84. (−2,−2). The transformed state equations are

ẋ1 = −x1 + x2

ẋ2 = 3x1 − x2 − x21.

The linearized system has roots λ1, λ2 such that λ1 < 0 < λ2.

85. 1 < k < 5.

86. (a) Neutrally stable. (b) Unstable.

87. 2x21 + x22 < 6.

88. x21 + 3x22 <
3
2 ·

89. (b) The origin is asymptotically stable.

90. (a) The system is stabilizable but not detectable. (b) The system is de-
tectable but not stabilizable.
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Optimal Control

91. Induction.

93. u∗ = − 1
2p
∗ and p∗ = C1e

2t, etc.

94. p∗3 = −C1
t2

2 + C2t+ C3 (a parabola), etc.

97. u∗ = − 1
2p
∗
2. p∗2(t) = c1e

t sinh(
√

2 t+ c2). (Observe that sinh(α+ β) = sinhα ·
coshβ + sinhβ · coshα; hence a sinhα+ b coshα = A sinh(α+ C)).

98. u∗ = 13
5 + et

25 ·

99. u∗(t) = −R−1BTPx(t) = −10(ax1 + bx2), where a ≈ 0.171 and b ≈ 0.316.

100. (a) u∗ =
3(e4t − e4)

e4t + 3e4
x1. (b) u∗ =

3e4t + e4

e4t − e4
x1.



Appendix B

Revision Problems

1. Find the solution of the following uncontrolled linear system

ẋ =

[
0 1

−2 −3

]
x, x(0) =

[
1

−1

]
.

Class test, August 1998

2. Given the linear system described by

ẋ =

[
2 α− 1

0 2

]
x+

[
1

α

]
u

determine for what values of the real parameter α the system is not

completely controllable.

Class test, August 1998

3. Show that the linear system described by

ẋ1 = x2, ẋ2 = −2x1 − 3x2 + u, y = x1 + x2

is not completely observable. Determine initial states x(0) such that if

u(t) = 0 for t ≥ 0, then the output y(t) is identically zero for t ≥ 0.

Class test, October 1998

194
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4. Consider a time invariant linear system of the form

ẋ =

[
a1 a2

a3 a4

]
x+

[
b1

b2

]
u

and let θ1, θ2 ∈ R. Prove that if the system is completely controllable,

then there exists a matrix K such that the eigenvalues of the matrix

A+Kb are θ1 and θ2.

Application :

A =

[
−1 −1

2 −4

]
, b =

[
1

3

]
, and θ1 = −4, θ2 = −5.

Class test, October 1998

5. A linear system is known to be described by

ẋ = Ax.

It is possible to measure the state vector, but because of difficulties in

setting up the equipment, this measurement can be started only after an

unknown amount T (T > 2) of time has elapsed. It is then found that

x(T ) =

[
1.0

1.0

]
, x(T + 1) =

[
1.5

1.6

]
, x(T + 2) =

[
1.8

2.1

]
.

Compute x(T − 2).

Exam, November 1998

6. Write the equation of motion

z̈ = u(t)

in state space form, and then solve it.

Exam, November 1998
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7. Given the liner control system described by

ẋ1 = αx1 + 2x2 + u

ẋ2 = x1 − x2

y = x1 + αx2

determine for what values of the real parameter α the system is (a)

completely controllable and completely observable; (b) completely con-

trollable but not completely observable; (c) completely observable but

not completely controllable.

Exam, November 1998

8. Given the system described by

ẋ =


−1 0 3

0 −3 0

1 0 −3

x+


1

1

−1

u
show that under linear feedback of the form u = αx1 + β x3, the closed

loop system has two fixed eigenvalues, one of which is equal to −3.

Determine the second fixed eigenvalue, and also values of α and β such

that the third closed loop eigenvalue is equal to −4.

Exam, November 1998

9. A control system is described by

ẋ1 = x2, ẋ2 = u

and the control u(t) is to be chosen as to minimize the performance

index

J =

∫ 1

0
u2 dt.

Find the optimal control which transfers the system from x1(0) = 0, x2(0) =

0 to x1(1) = 1, x2(1) = 0.

Exam, November 1998
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10. Find the characteristic polynomial, the eigenvalues and the correspond-

ing eigenvectors for the matrix

[
1 1

1 1

]
.

Class test, March 1999

11. Let A be an n × n matrix. How are the eigenvalues of A3 related

to those of A ? If A is invertible, can 0 be an eigenvalues for A3 ?

Explain.

Class test, March 1999

12. Let A and S be n×n matrices, and assume that S is invertible. Show

that the characteristic polynomials of A and S−1AS are the same.

Class test, March 1999

13. Determine the state transition matrix and write down the general solu-

tion of the linear control system described by the equations

ẋ1 = x1 + 4x2 + u

ẋ2 = 3x1 + 2x2.

Class test, March 1999

14. Write the equation of motion

z̈ + ż = 0

in state space form, and then solve it (by computing the state transition

matrix).

Exam, June 1999

15. Split up the linear control system

ẋ =


4 3 5

1 −2 −3

2 1 8

x+


2

1

−1

u(t)
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into its controllable and uncontrollable parts, as displayed below :[
ẋ(1)

ẋ(2)

]
=

[
A1 A2

0 A3

][
x(1)

x(2)

]
+

[
B1

0

]
u(t).

Exam, June 1999

16. Investigate the stability nature of the equilibrium state at the origin of

the system described by the scalar equation

z̈ + α ż + β z = z · ż.

Exam, June 1999

17. Determine whether the system described by

ẋ =


4 1 2

3 −1 2

5 −3 8

x+


α

β

γ

u(t)

y =
[
2 1 −1

]
x

is detectable.

Exam, June 1999

18. Consider the matrix

A =

[
1 2

0 1

]
.

(a) Find the characteristic polynomial, the eigenvalues and the corre-

sponding eigenvectors for the matrix A.

(b) Determine the matrix exponential exp(tA).

Class test, March 2000

19. Let A,B, and S be n×n matrices, and assume that S is nonsingular.
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(a) Show that the characteristic polynomials of A and S−1AS are the

same.

(b) If AB = BA, show that

exp(t(A+B)) = exp(tA) · exp(tB).

Class test, March 2000

20. Write down the general solution of the linear system described by the

equations

ẋ1 = x1 + 4x2

ẋ2 = 3x1 + 2x2.

Class test, March 2000

21. Consider a (time-invariant) linear control system of the form

ẋ = Ax+ bu(t)

where A is a 2× 2 matrix and b is a non-zero 2× 1 matrix. Assume

that

rank
[
b Ab

]
= 2

and prove that the given system can be transformed by a (nonsingular)

transformation w(t) = Tx(t) into the canonical form

ẇ =

[
0 1

−k2 −k1

]
w +

[
0

1

]
u(t).

Application :

A =

[
−1 −1

2 −4

]
, b =

[
1

3

]
.

Class test, May 2000
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22. Find the solution of

ẋ =

[
1 2

0 1

]
x+

[
2

1

]
u(t), x(0) =

[
1

0

]
when

u(t) =

1 if t ≥ 0

0 if t < 0.

Exam, June 2000

23. Consider the matrix differential equation

Ẋ = A(t)X, X(0) = In.

Show that, when n = 2,

d

dt
(detX) = trA(t) · detX

and hence deduce that X(t) is nonsingular, t ≥ 0.

Exam, June 2000

24. Write the linear system Σ described by

z̈ + ż + 2z = 0

in the state space form, and then use Lyapunov functions to investigate

the stability nature of the system. Is the origin asymptotically stable ?

Justify your answer.

Exam, June 2000

25. Determine whether the system described by

ẋ =

[
0 1

0 0

]
x+

[
1

0

]
u(t)

y =
[
0 1

]
x

is detectable.

Exam, June 2000
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26. Consider the matrix

A =

[
−1 1

0 −1

]
.

(a) Find the characteristic polynomial, the eigenvalues and the corre-

sponding eigenvectors for the matrix A.

(b) Determine the matrix exponential exp(tA).

Class test, August 2001

27. Consider the linear control system described by the equations

ẋ1 = x1 − 4x2 + u(t)

ẋ2 = −x1 − x2 + u(t).

If x(0) = (1, 0) and u(t) = 1 for t ≥ 0, find the expressions for x1(t)

and x2(t).

Class test, August 2001

28. Investigate the stability nature of the origin for the linear system

ẋ1 = −2x1 − 3x2, ẋ2 = 2x1 − 2x2.

Class test, November 2001

29. Consider the linear system

ẋ1 = k x1 − 3x2, ẋ2 = −k x1 − 2x2.

Use the quadratic form (Lyapunov function)

V =
2

3
x2

1 + x2
2 −

2

3
x1x2

to obtain sufficient conditions on k ∈ R for the system to be asympot-

ically stable (at the origin).

Class test, November 2001
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30. Investigate the stability nature of the origin for the nonlinear system

ẋ1 = 7x1 + 2 sinx2 − x4
2

ẋ2 = ex1 − 3x2 − 1 + 5x2
1.

Class test, November 2001

31. Find the solution of

ẋ =

[
2 −1

−1 2

]
x+

[
1

−1

]
u(t)

when

x(0) =

[
1

1

]
and u(t) = e3t, t ≥ 0.

Exam, November 2001

32. Find a minimal realization of

G(s) =
s+ 4

s2 + 5s+ 6
·

Is R =

([
0 1

−6 −5

]
,
[
0 1

]
,
[
4 1

])
a minimal realization of G(·) ?

Justify your answer.

Exam, November 2001

33. For the control system described by

ẋ1 = −x1 − x2 + u(t)

ẋ2 = 2x1 − 4x2 + 3u(t)

find a suitable feedback matrix K such that the closed loop system has

eigenvalues −4 and −5.

Exam, November 2001
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34. Use the Lyapunov function

V = 5x2
1 + 2x1x2 + 2x2

2

to show that the nonlinear system

ẋ1 = x2, ẋ2 = −x1 − x2 + (x1 + x2)(x2
2 − 1)

is asymptotically stable at the origin (by considering the region |x2| < 1).

Determine a region of asymptotic stability (about the origin).

Exam, November 2001

35. Determine the matrix exponential

exp

t

α 1 0

0 α 1

0 0 α


 .

Class test, August 2002

36. A linear time-invariant control system is described by the equation

z̈ + z = u(t).

(a) Write the system in state space form.

(b) Compute the state transition matrix Φ(t, 0) in TWO DIFFERENT

ways.

(c) If z(0) = 0, ż = 1, and u(t) = 1 for t ≥ 0, determine z(t) (for

t ≥ 0).

Class test, August 2002

37. Investigate the stability nature of the linear system

ẋ1 = αx1 − x2, ẋ2 = x1 + αx2

where α < 0. What happens when α = 0 ?

Class test, October 2002
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38. Consider the linear system

ẋ1 = β x1 − 3x2, ẋ2 = −β x1 − 2x2.

Use the quadratic form (Lyapunov function)

V =
2

3
x2

1 −
2

3
x1x2 + x2

2

to obtain sufficient conditions (on β ∈ R ) for the given system to be

asymptotically stable.

Class test, October 2002

39. Given the control system (described by the state equations)

ẋ1 = −2x1 + 2x2 + u(t)

ẋ2 = x1 − x2

compute the state transition matrix Φ(t, 0) in TWO DIFFERENT ways,

and then determine x(t) (for t ≥ 0 ) when

x1(0) = 0, x2(0) = 0, and u(t) = 2 for t ≥ 0.

Exam, November 2002

40. Given the control system with outputs (described by the state and ob-

servation equations)

ẋ1 = 2x1 + αx2, ẋ2 = 2x2 + u(t), y = β x1 + x2

determine for what values of α, β ∈ R the system is

(a) completely controllable and completely observable.

(b) completely controllable but not completely observable.

(c) neither completely controllable nor completely observable.

(d) completely observable but not completely controllable.
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Exam, November 2002

41. Find a minimal realization of

G(s) =
s+ 4

s2 + 5s+ 6
·

Exam, November 2002

42. For the control system (described by the state equations)

ẋ1 = x1 − x3 + u(t)

ẋ2 = x1 + 2x2 + x3

ẋ3 = 2x1 + 2x2 + 3x3 + u(t)

find a suitable feedback matrix K such that the closed loop system has

eigenvalues −1 and −1± 2i.

Exam, November 2002

43. Write the (dynamical) system described by the (second-order) differen-

tial equation

z̈ + ż + z3 = 0

in state space form, and then use a quadratic Lyapunov function of the

form

V = a x4
1 + b x2

1 + c x1x2 + d x2
2

in order to investigate for the stability nature of (the equilibrium state

at) the origin. [Hint : Choose the coefficients a, b, c ∈ R such that

V̇ = −x4
1 − x4

2.]

Exam, November 2002

44. Show that, for t ∈ R,

exp

t


1 2 0

0 1 2

0 0 1


 = et


1 2t 2t2

0 1 2t

0 0 1

 .



206 AM3.2 - Linear Control

Class test, April 2003

45. For A =

[
1 −2

2 −4

]
, find the solution curve (in spectral form or other-

wise). What happens when x1(0) = 2x2(0) ?

Class test, April 2003

46. Consider the linear control system (described by the state equations)

ẋ1 = 2x1 − x2

ẋ2 = −x1 + 2x2 + u(t).

(a) Write the system in the form ẋ = Ax+ bu(t) with A ∈ R2×2 and

b ∈ R2×1.

(b) Compute the state transition matrix Φ(t, 0) = exp(tA) in TWO

DIFFERENT ways.

(c) If x1(0) = x2(0) = 0 and u(t) = 1 for t ≥ 0, determine x2(2).

Class test, April 2003

47. Determine the range of values of parameter k ∈ R such that the linear

dynamical system

ẋ1 = x2

ẋ2 = x3

ẋ3 = −5x1 − k x2 + (k − 6)x3

is asymptotically stable.

Class test, May 2003

48. An autonomous dynamical system is described by

ẋ1 = x2 − x1

ẋ2 = −x1 − x2 − x2
1.
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(a) Determine the equilibrium state which is not at the origin.

(b) Transform the state equations (of the system) so that this point is

transfered to the origin.

(c) Hence verify that this equilibrium state is unstable

Class test, May 2003

49. Let A ∈ Rn×n.

(a) Define the transpose matrix AT and then show that the linear

mapping

T : Rn×n → Rn×n, A 7→ T (A) : = AT

enjoys the property T (AB) = T (B)T (A). Hence deduce that if

the matrix A is invertible, then so is its transpose AT , and

(
AT
)−1

=
(
A−1

)T
.

(b) Let Q denote the associated quadratic form (i.e. x ∈ Rn 7→
xTAx ∈ R ). Explain what is meant by saying that Q is pos-

itive definite and negative semi-definite. State clearly necessary

and sufficient conditions for positive definiteness and negative semi-

definiteness, respectively.

(c) Assume that the matrix A is skew-symmetric (i.e. AT + A = 0 )

and then show that Q(x) = 0 for all x ∈ Rn. Furthermore, show

A can be written as A1 + A2, where A1 is symmetric and A2 is

skew-symmetric. Hence deduce that

Q(x) = xTA1x for all x ∈ Rn.

Exam, June 2003
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50. Let A ∈ Rn×n. Determine (by direct computation) the characteristic

polynomial of the matrix
0 1 0 0

0 0 1 0

0 0 0 1

−k4 −k3 −k2 −k1

 ∈ R4×4.

Exam, June 2003

51. Find the (invertible) matrix T ∈ Rn×n such that the linear transforma-

tion x 7→ w : = Tx transforms the linear control system given by

ẋ =

[
−1 −1

2 −4

]
x+

[
1

3

]
u(t)

into the canonical form. Write down the system in canonical form.

Exam, June 2003

52. Show that the control system (with outputs) described by

ẋ1 = x2

ẋ2 = −2x1 − 3x2 + u(t)

y = x1 + x2

is completely controllable but not completely observable. Determine

initial states x(0) such that if u(t) = 0 for t ≥ 0, then the output y(·)
is identically zero for t ≥ 0.

Exam, June 2003

53. For the control system described by

ẋ1 = x2 + u1(t)

ẋ2 = x3 + u2(t)

ẋ3 = 6x1 − 11x2 + 6x3 + u1(t) + u2(t)
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find a suitable feedback matrix K such that the closed loop system has

eigenvalues 1, 1, and 3.

Exam, June 2003

54. Investigate the stability nature of the equilibrium state at the origin for

the (nonlinear) system given by

ẋ1 = −3x2

ẋ2 = x1 − x2 + 2x3
2.

Exam, June 2003

55. Consider the matrices

A =

[
0 1

0 0

]
and B =

[
0 0

1 −1

]
.

(a) Find the eigenvalues and eigenvectors of A and B.

(b) Compute

exp (tA), exp (tB), and exp (t(A+B)).

(c) Compare exp (tA) · exp (tB) and exp (t(A+B)).

Class test, March 2004

56. Find the solution curve of the linear control system

ẋ = Ax+Bu, x(0) = x0

when

A =

[
0 1

0 0

]
, B =

[
0 0

1 −1

]
, x(0) =

[
0

0

]
, u1(t)−u2(t) = 1 for t ≥ 0.

Class test, March 2004
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57. Consider the matrix differential equation

Ẇ =

[
0 1

0 0

]
W +W

[
0 0

1 −1

]
, W ∈ R2×2.

(a) Verify that W (t) = exp

(
t

[
0 1

0 0

])
· exp

(
t

[
0 0

1 −1

])
is a solu-

tion curve through the identity (i.e. such that W (0) =

[
1 0

0 1

]
).

(b) Can you find another solution curve through the identity ? Make

a clear statement and then prove it.

Class test, March 2004

58. Consider the linear system

ẋ =

[
α −4

3 −β

]
x

where α, β > 0 and αβ = 12. Investigate the stability nature of the

system at the origin. For what values (if any) of the parameters α and

β is the system asymptotically stable ?

Class test, May 2004

59. Consider the nonlinear system

ẋ1 = −x3
1 − 3x1 + x2

ẋ2 = −2x1.

Investigate the stability nature of (the origin of) the system

(a) by using a suitable Lyapunov function.

(Hint : Try for a Lyapunov function of the form V = ax2
1 + bx2

2.)

(b) by linearizing the system.

Class test, May 2004
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60. Let A ∈ Rn×n.

(a) Define the terms eigenvalue and eigenvector (of A), and then in-

vestigate the relationship between the eigenvalues of (the power)

Ak and those of A. Make a clear statement and then prove it.

(b) Let λ1, λ2, . . . , λr be r (≤ n) distinct eigenvalues of A with cor-

responding eigenvectors w1, w2, . . . , wr. Prove that the vectors

w1, w2, . . . , wr are linearly independent.

(c) The matrix A is said to be nilpotent if some power Ak is the zero

matrix. Show that A is nilpotent if and only if all its eigenvalues

are zero.

(d) Define the exponential of A and then calculate exp (A) for

A =


0 1 2

0 0 3

0 0 0

 .
Exam, June 2004

61. Find the solution of

ẋ =

[
−1 −4

−1 −1

]
x+

[
1

1

]
u, x(0) =

[
1

2

]

when u(t) = e2t, t ≥ 0.

Exam, June 2004

62. Consider the control system

ẋ =

[
1 2

0 3

]
x+ bu

y = cx.

Find b ∈ R2×1 and c ∈ R1×2 such that the system is

(a) not completely controllable;
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(b) completely observable.

When c =
[
1 1

]
, determine (the initial state) x(0) if y(t) = et − 2e3t.

Exam, June 2004

63. For the control system

ẋ1 = x2

ẋ2 = x3 + u

ẋ3 = x1 − x2 − 2x3

find a linear feedback control which makes all the eigenvalues (of the

system) equal to −1.

Exam, June 2004

64. Define the term Lyapunov function (for a general nonlinear system) and

then use a quadratic Lyapunov function V (x) = xTPx to investigate

the stability of the system described by the equation

z̈ + ε (z2 − 1)ż + z = 0, ε < 0.

Exam, June 2004

65. Find the (feedback) control u∗ which minimizes the (quadratic) cost

functional

J =
1

2
xT (t1)Mx(t1) +

1

2

∫ t1

0

(
xTQ(t)x+ uTR(t)u

)
dt

subject to

ẋ = A(t)x+B(t)u(t) and x(0) = x0.

(It is assumed that R(t) is a positive definite, and M and Q(t) are

positive semi-definite symmetric matrices for t ≥ 0.)

Exam, June 2004
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66.

(a) Find the eigenvalues and eigenvectors of the matrix
1 1 0

0 1 0

0 0 1

 .
(b) Compute the characteristic polynomial of the matrix

0 1 0

0 0 1

−c3 −c2 −c1

 .
Class test, March 2005

67. Find the solution curve of the initialized linear dynamical system de-

scribed by

ẋ = Ax, x(0) = x0

when

A =

[
−2 2

1 −1

]
and x(0) =

[
2

1

]
.

What happens when x1(0) = x2(0) ?

Class test, March 2005

68. Consider a linear control system (with outputs) Σ given by

ẋ = Ax+Bu

y = Cx

(where A ∈ Rm×m, B ∈ Rm×` and C ∈ Rn×m). Assume that

A =

[
−2 2

1 −1

]
, B =

[
α

1

]
, C =

[
1 β

]
.

For what values of α and β is Σ completely controllable but not com-

pletely observable ?

Class test, May 2005
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69. Consider a linear control system (with outputs) Σ given by

ẋ = Ax+Bu

y = Cx

(where A ∈ Rm×m, B ∈ Rm×` and C ∈ Rn×m).

(a) Derive the transfer function matrix G(·) associated with Σ.

(b) Assume that

A =

[
−2 2

1 −1

]
, B =

[
1

0

]
, C =

[
1 0

]
.

Compute the scalar transfer function g(·).

(c) Find a minimal realization of the scalar transfer function

g(s) =
2s+ 7

s2 − 5s+ 6
·

Class test, May 2005

70. Let M ∈ Rn×n.

(a) Define the trace tr (M) of M , and then show that the function

tr : Rn×n → R, A 7→ tr (A)

is linear.

(b) Prove that (for any A,B ∈ Rn×n)

tr (AB) = tr (BA).

(c) Hence deduce that (for any invertible n× n matrix S)

tr (SMS−1) = tr (M).
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(d) Define the terms eigenvalue and eigenvector (of M), and then prove

that if λ1, λ2, . . . , λn are the (complex) eigenvalues of M (listed

with their algebraic multiplicities), then

λ1 + λ2 + · · ·+ λn = tr (M).

Exam, June 2005

71. Find the solution of

ẋ =

[
−2 2

1 −1

]
x+

[
1

1

]
u, x(0) =

[
x1(0)

x2(0)

]

when u(t) = et, t ≥ 0.

Exam, June 2005

72. Consider a single-input linear control system Σ given by

ẋ = Ax+ bu

(where A ∈ Rm×m and b ∈ Rm×1).

(a) Explain what is meant by the canonical form of Σ.

(b) Prove that if

rank
[
b Ab A2b · · · Am−1b

]
= m

then Σ can be transformed by a linear transformation w = Tx

into the canonical form.

(c) Reduce the single-input linear control system

ẋ =

[
1 −3

4 2

]
x+

[
1

1

]
u

to the canonical form and determine the linear mapping x = T−1w.

Exam, June 2005
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73. Let d, k > 0. Consider the control system (with outputs) Σ described

by

ẋ1 = x2

ẋ2 = −kx1 − dx2 + u

y = x1 − x2.

Write down the equations describing the dual control system Σ ◦, and

then investigate for (complete) controllability and (complete) observabil-

ity both control systems.

Exam, June 2005

74. Let A ∈ Rm×m and b ∈ Rm×1. Consider a single-input linear control

system Σ given by

ẋ = Ax+ bu.

(a) Given an arbitrary set Λ = {θ1, . . . , θm} of complex numbers (ap-

pearing in conjugate pairs), prove that if Σ is completely control-

lable, then there exists a feedback matrix K such that the eigen-

values of A+ bK are the set Λ.

(b) Application : Find a linear feedback control u = Kx when

A =


1 0 −1

1 2 1

2 2 3

 , b =


1

0

1

 and Λ = {−1,−1− 2i,−1 + 2i}.

Exam, June 2005

75. Consider the dynamical system

ẋ1 = −kx1 − 3x2

ẋ2 = kx1 − 2x2, k ∈ R.
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(a) When k = 1, use a quadratic Lyapunov function

V (x) = xTPx

= ax2
1 + 2bx1x2 + cx2

2

with derivative V̇ = −2
(
x2

1 + x2
2

)
to determine the stability of the

system (at the origin).

(b) Using the same Lyapunov function, find sufficient conditions on k

for the system to be asymptotically stable (at the origin).

Exam, June 2005

76. Find u∗ so as to minimize

J =

∫ T

0
dt

subject to

ẋ = Ax+Bu, |ui| ≤ Ki, i = 1, . . . , `

x(0) = x0

x(T ) = 0.

Exam, June 2005
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