Appendix B

Revision Problems

1. Find the solution of the following uncontrolled linear system

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x, \quad x(0) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$$

Class test, August 1998

2. Given the linear system described by

$$\dot{x} = \begin{bmatrix} 2 & \alpha - 1 \\ 0 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ \alpha \end{bmatrix} u$$

determine for what values of the real parameter α the system is *not* completely controllable.

Class test, August 1998

3. Show that the linear system described by

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -2x_1 - 3x_2 + u, \quad y = x_1 + x_2$$

is not completely observable. Determine initial states x(0) such that if u(t) = 0 for $t \ge 0$, then the output y(t) is identically zero for $t \ge 0$.

Class test, October 1998

4. Consider a time invariant linear system of the form

$$\dot{x} = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix} x + \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} u$$

and let $\theta_1, \theta_2 \in \mathbb{R}$. Prove that if the system is completely controllable, then there exists a matrix K such that the eigenvalues of the matrix A + Kb are θ_1 and θ_2 .

Application :

$$A = \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad \text{and} \quad \theta_1 = -4, \ \theta_2 = -5.$$

Class test, October 1998

5. A linear system is known to be described by

$$\dot{x} = Ax.$$

It is possible to measure the state vector, but because of difficulties in setting up the equipment, this measurement can be started only after an unknown amount T(T > 2) of time has elapsed. It is then found that

$$x(T) = \begin{bmatrix} 1.0\\ 1.0 \end{bmatrix}, \quad x(T+1) = \begin{bmatrix} 1.5\\ 1.6 \end{bmatrix}, \quad x(T+2) = \begin{bmatrix} 1.8\\ 2.1 \end{bmatrix}.$$

Compute x(T-2).

Exam, November 1998

6. Write the equation of motion

$$\ddot{z} = u(t)$$

in state space form, and then solve it.

Exam, November 1998

7. Given the liner control system described by

$$\dot{x}_1 = \alpha x_1 + 2x_2 + u$$
$$\dot{x}_2 = x_1 - x_2$$
$$y = x_1 + \alpha x_2$$

determine for what values of the real parameter α the system is (a) completely controllable and completely observable; (b) completely controllable but not completely observable; (c) completely observable but not completely controllable.

Exam, November 1998

8. Given the system described by

$$\dot{x} = \begin{bmatrix} -1 & 0 & 3 \\ 0 & -3 & 0 \\ 1 & 0 & -3 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} u$$

show that under linear feedback of the form $u = \alpha x_1 + \beta x_3$, the closed loop system has two fixed eigenvalues, one of which is equal to -3. Determine the second fixed eigenvalue, and also values of α and β such that the third closed loop eigenvalue is equal to -4.

Exam, November 1998

9. A control system is described by

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = u$$

and the control u(t) is to be chosen as to minimize the performance index

$$\mathcal{J} = \int_0^1 u^2 \, dt.$$

Find the optimal control which transfers the system from $x_1(0) = 0$, $x_2(0) = 0$ to $x_1(1) = 1$, $x_2(1) = 0$.

Exam, November 1998

10. Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

Class test, March 1999

11. Let A be an $n \times n$ matrix. How are the eigenvalues of A^3 related to those of A? If A is invertible, can 0 be an eigenvalues for A^3 ? Explain.

Class test, March 1999

12. Let A and S be $n \times n$ matrices, and assume that S is invertible. Show that the characteristic polynomials of A and $S^{-1}AS$ are the same.

Class test, March 1999

13. Determine the state transition matrix and write down the general solution of the linear control system described by the equations

$$\dot{x}_1 = x_1 + 4x_2 + u$$

 $\dot{x}_2 = 3x_1 + 2x_2.$

Class test, March 1999

14. Write the equation of motion

$$\ddot{z} + \dot{z} = 0$$

in state space form, and then solve it (by computing the state transition matrix).

Exam, June 1999

15. Split up the linear control system

$$\dot{x} = \begin{bmatrix} 4 & 3 & 5 \\ 1 & -2 & -3 \\ 2 & 1 & 8 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix} u(t)$$

into its controllable and uncontrollable parts, as displayed below :

$$\begin{bmatrix} \dot{x}^{(1)} \\ \dot{x}^{(2)} \end{bmatrix} = \begin{bmatrix} A_1 & A_2 \\ 0 & A_3 \end{bmatrix} \begin{bmatrix} x^{(1)} \\ x^{(2)} \end{bmatrix} + \begin{bmatrix} B_1 \\ 0 \end{bmatrix} u(t).$$

Exam, June 1999

16. Investigate the stability nature of the equilibrium state at the origin of the system described by the scalar equation

$$\ddot{z} + \alpha \, \dot{z} + \beta \, z = z \cdot \dot{z}.$$

Exam, June 1999

17. Determine whether the system described by

$$\dot{x} = \begin{bmatrix} 4 & 1 & 2 \\ 3 & -1 & 2 \\ 5 & -3 & 8 \end{bmatrix} x + \begin{bmatrix} \alpha \\ \beta \\ \gamma \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 2 & 1 & -1 \end{bmatrix} x$$

is detectable.

Exam, June 1999

18. Consider the matrix

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

- (a) Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix A.
- (b) Determine the matrix exponential $\exp(tA)$.

Class test, March 2000

19. Let A, B, and S be $n \times n$ matrices, and assume that S is nonsingular.

- (a) Show that the characteristic polynomials of A and $S^{-1}AS$ are the same.
- (b) If AB = BA, show that

$$\exp(t(A+B)) = \exp(tA) \cdot \exp(tB).$$

Class test, March 2000

20. Write down the general solution of the linear system described by the equations

$$\dot{x}_1 = x_1 + 4x_2$$

 $\dot{x}_2 = 3x_1 + 2x_2.$

Class test, March 2000

21. Consider a (time-invariant) linear control system of the form

$$\dot{x} = Ax + bu(t)$$

where A is a 2×2 matrix and b is a non-zero 2×1 matrix. Assume that

$$\operatorname{rank} \begin{bmatrix} b & Ab \end{bmatrix} = 2$$

and prove that the given system can be transformed by a (nonsingular) transformation w(t) = Tx(t) into the canonical form

$$\dot{w} = \begin{bmatrix} 0 & 1 \\ -k_2 & -k_1 \end{bmatrix} w + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t).$$

Application :

$$A = \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 3 \end{bmatrix}.$$

Class test, May 2000

22. Find the solution of

$$\dot{x} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} x + \begin{bmatrix} 2 \\ 1 \end{bmatrix} u(t), \quad x(0) = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

when

$$u(t) = \begin{cases} 1 & \text{if } t \ge 0\\ 0 & \text{if } t < 0. \end{cases}$$

Exam, June 2000

23. Consider the matrix differential equation

$$\dot{X} = A(t)X, \qquad X(0) = I_n.$$

Show that, when n = 2,

$$\frac{d}{dt}(\det X) = \operatorname{tr} A(t) \cdot \det X$$

and hence deduce that X(t) is nonsingular, $t \ge 0$.

Exam, June 2000

24. Write the linear system Σ described by

 $\ddot{z} + \dot{z} + 2z = 0$

in the state space form, and then use Lyapunov functions to investigate the stability nature of the system. Is the origin asymptotically stable ? Justify your answer.

Exam, June 2000

25. Determine whether the system described by

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y = \begin{bmatrix} 0 & 1 \end{bmatrix} x$$

is detectable.

26. Consider the matrix

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix}.$$

- (a) Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix A.
- (b) Determine the matrix exponential $\exp(tA)$.

Class test, August 2001

27. Consider the linear control system described by the equations

$$\dot{x}_1 = x_1 - 4x_2 + u(t)$$

 $\dot{x}_2 = -x_1 - x_2 + u(t).$

If x(0) = (1,0) and u(t) = 1 for $t \ge 0$, find the expressions for $x_1(t)$ and $x_2(t)$.

Class test, August 2001

28. Investigate the stability nature of the origin for the linear system

$$\dot{x}_1 = -2x_1 - 3x_2, \quad \dot{x}_2 = 2x_1 - 2x_2$$

Class test, November 2001

29. Consider the linear system

$$\dot{x}_1 = k x_1 - 3x_2, \quad \dot{x}_2 = -k x_1 - 2x_2.$$

Use the quadratic form (Lyapunov function)

$$V = \frac{2}{3}x_1^2 + x_2^2 - \frac{2}{3}x_1x_2$$

to obtain *sufficient* conditions on $k \in \mathbb{R}$ for the system to be asymptoically stable (at the origin).

Class test, November 2001

30. Investigate the stability nature of the origin for the nonlinear system

$$\dot{x}_1 = 7x_1 + 2\sin x_2 - x_2^4$$
$$\dot{x}_2 = e^{x_1} - 3x_2 - 1 + 5x_1^2$$

Class test, November 2001

31. Find the solution of

$$\dot{x} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(t)$$

when

$$x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 and $u(t) = e^{3t}, t \ge 0$.

Exam, November 2001

32. Find a minimal realization of

$$G(s) = \frac{s+4}{s^2 + 5s + 6}.$$

Is
$$\mathcal{R} = \left(\begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix}, \begin{bmatrix} 0 & 1 \end{bmatrix}, \begin{bmatrix} 4 & 1 \end{bmatrix} \right)$$
 a minimal realization of $G(\cdot)$?
Justify your answer.

Exam, November 2001

33. For the control system described by

$$\dot{x}_1 = -x_1 - x_2 + u(t)$$

 $\dot{x}_2 = 2x_1 - 4x_2 + 3u(t)$

find a suitable feedback matrix K such that the closed loop system has eigenvalues -4 and -5.

Exam, November 2001

34. Use the Lyapunov function

$$V = 5x_1^2 + 2x_1x_2 + 2x_2^2$$

to show that the nonlinear system

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = -x_1 - x_2 + (x_1 + x_2)(x_2^2 - 1)$$

is asymptotically stable at the origin (by considering the region $|x_2| < 1$). Determine a region of asymptotic stability (about the origin).

Exam, November 2001

35. Determine the matrix exponential

$$\exp\left(t \begin{bmatrix} \alpha & 1 & 0 \\ 0 & \alpha & 1 \\ 0 & 0 & \alpha \end{bmatrix}\right)$$

Class test, August 2002

36. A linear time-invariant control system is described by the equation

$$\ddot{z} + z = u(t).$$

- (a) Write the system in state space form.
- (b) Compute the state transition matrix $\Phi(t, 0)$ in TWO DIFFERENT ways.
- (c) If $z(0) = 0, \dot{z} = 1$, and u(t) = 1 for $t \ge 0$, determine z(t) (for $t \ge 0$).

Class test, August 2002

37. Investigate the stability nature of the linear system

$$\dot{x}_1 = \alpha x_1 - x_2, \quad \dot{x}_2 = x_1 + \alpha x_2$$

where $\alpha < 0$. What happens when $\alpha = 0$?

Class test, October 2002

38. Consider the linear system

 $\dot{x}_1 = \beta x_1 - 3x_2, \quad \dot{x}_2 = -\beta x_1 - 2x_2.$

Use the quadratic form (Lyapunov function)

$$V = \frac{2}{3}x_1^2 - \frac{2}{3}x_1x_2 + x_2^2$$

to obtain *sufficient* conditions (on $\beta \in \mathbb{R}$) for the given system to be asymptotically stable.

Class test, October 2002

39. Given the control system (described by the state equations)

$$\dot{x}_1 = -2x_1 + 2x_2 + u(t)$$

 $\dot{x}_2 = x_1 - x_2$

compute the state transition matrix $\Phi(t, 0)$ in TWO DIFFERENT ways, and then determine x(t) (for $t \ge 0$) when

$$x_1(0) = 0$$
, $x_2(0) = 0$, and $u(t) = 2$ for $t \ge 0$.

Exam, November 2002

40. Given the control system with outputs (described by the state and observation equations)

$$\dot{x}_1 = 2x_1 + \alpha x_2, \quad \dot{x}_2 = 2x_2 + u(t), \quad y = \beta x_1 + x_2$$

determine for what values of $\alpha, \beta \in \mathbb{R}$ the system is

- (a) completely controllable and completely observable.
- (b) completely controllable but *not* completely observable.
- (c) neither completely controllable nor completely observable.
- (d) completely observable but *not* completely controllable.

Exam, November 2002

41. Find a minimal realization of

$$G(s) = \frac{s+4}{s^2 + 5s + 6}$$

Exam, November 2002

42. For the control system (described by the state equations)

$$\dot{x}_1 = x_1 - x_3 + u(t)$$

$$\dot{x}_2 = x_1 + 2x_2 + x_3$$

$$\dot{x}_3 = 2x_1 + 2x_2 + 3x_3 + u(t)$$

find a suitable feedback matrix K such that the closed loop system has eigenvalues -1 and $-1 \pm 2i$.

Exam, November 2002

43. Write the (dynamical) system described by the (second-order) differential equation

$$\ddot{z} + \dot{z} + z^3 = 0$$

in state space form, and then use a quadratic Lyapunov function of the form

$$V = a x_1^4 + b x_1^2 + c x_1 x_2 + d x_2^2$$

in order to investigate for the stability nature of (the equilibrium state at) the origin. [Hint : Choose the coefficients $a, b, c \in \mathbb{R}$ such that $\dot{V} = -x_1^4 - x_2^4$.]

Exam, November 2002

44. Show that, for $t \in \mathbb{R}$,

$$\exp\left(t \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}\right) = e^t \begin{bmatrix} 1 & 2t & 2t^2 \\ 0 & 1 & 2t \\ 0 & 0 & 1 \end{bmatrix}.$$

45. For $A = \begin{bmatrix} 1 & -2 \\ 2 & -4 \end{bmatrix}$, find the solution curve (in spectral form or otherwise). What happens when $x_1(0) = 2x_2(0)$?

Class test, April 2003

46. Consider the linear control system (described by the state equations)

$$\dot{x}_1 = 2x_1 - x_2$$

 $\dot{x}_2 = -x_1 + 2x_2 + u(t)$

- (a) Write the system in the form $\dot{x} = Ax + bu(t)$ with $A \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^{2 \times 1}$.
- (b) Compute the state transition matrix $\Phi(t,0) = \exp(tA)$ in TWO DIFFERENT ways.
- (c) If $x_1(0) = x_2(0) = 0$ and u(t) = 1 for $t \ge 0$, determine $x_2(2)$.

Class test, April 2003

47. Determine the range of values of parameter $k \in \mathbb{R}$ such that the linear dynamical system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = x_3$
 $\dot{x}_3 = -5x_1 - kx_2 + (k-6)x_3$

is asymptotically stable.

Class test, May 2003

48. An autonomous dynamical system is described by

$$\dot{x}_1 = x_2 - x_1$$

 $\dot{x}_2 = -x_1 - x_2 - x_1^2$

- (a) Determine the equilibrium state which is *not* at the origin.
- (b) Transform the state equations (of the system) so that this point is transferred to the origin.
- (c) Hence verify that this equilibrium state is unstable

Class test, May 2003

- 49. Let $A \in \mathbb{R}^{n \times n}$.
 - (a) Define the *transpose* matrix A^T and then show that the linear mapping

$$\mathcal{T}: \mathbb{R}^{n \times n} \to \mathbb{R}^{n \times n}, \quad A \mapsto \mathcal{T}(A) := A^T$$

enjoys the property $\mathcal{T}(AB) = \mathcal{T}(B)\mathcal{T}(A)$. Hence deduce that if the matrix A is invertible, then so is its transpose A^T , and

$$\left(A^{T}\right)^{-1} = \left(A^{-1}\right)^{T}.$$

- (b) Let \mathcal{Q} denote the associated quadratic form (i.e. $x \in \mathbb{R}^n \mapsto x^T A x \in \mathbb{R}$). Explain what is meant by saying that \mathcal{Q} is positive definite and negative semi-definite. State clearly necessary and sufficient conditions for positive definiteness and negative semi-definiteness, respectively.
- (c) Assume that the matrix A is skew-symmetric (i.e. $A^T + A = 0$) and then show that Q(x) = 0 for all $x \in \mathbb{R}^n$. Furthermore, show A can be written as $A_1 + A_2$, where A_1 is symmetric and A_2 is skew-symmetric. Hence deduce that

$$\mathcal{Q}(x) = x^T A_1 x$$
 for all $x \in \mathbb{R}^n$.

50. Let $A \in \mathbb{R}^{n \times n}$. Determine (by direct computation) the characteristic polynomial of the matrix

$$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -k_4 & -k_3 & -k_2 & -k_1 \end{bmatrix} \in \mathbb{R}^{4 \times 4}$$

Exam, June 2003

51. Find the (invertible) matrix $T \in \mathbb{R}^{n \times n}$ such that the linear transformation $x \mapsto w := Tx$ transforms the linear control system given by

$$\dot{x} = \begin{bmatrix} -1 & -1 \\ 2 & -4 \end{bmatrix} x + \begin{bmatrix} 1 \\ 3 \end{bmatrix} u(t)$$

into the canonical form. Write down the system in canonical form.

Exam, June 2003

52. Show that the control system (with outputs) described by

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = -2x_1 - 3x_2 + u(t)$
 $y = x_1 + x_2$

is completely controllable but *not* completely observable. Determine initial states x(0) such that if u(t) = 0 for $t \ge 0$, then the output $y(\cdot)$ is identically zero for $t \ge 0$.

Exam, June 2003

53. For the control system described by

$$\begin{aligned} \dot{x}_1 &= x_2 + u_1(t) \\ \dot{x}_2 &= x_3 + u_2(t) \\ \dot{x}_3 &= 6x_1 - 11x_2 + 6x_3 + u_1(t) + u_2(t) \end{aligned}$$

find a suitable feedback matrix K such that the closed loop system has eigenvalues 1, 1, and 3.

Exam, June 2003

54. Investigate the stability nature of the equilibrium state at the origin for the (nonlinear) system given by

$$\dot{x}_1 = -3x_2$$

 $\dot{x}_2 = x_1 - x_2 + 2x_2^3$

Exam, June 2003

55. Consider the matrices

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}.$$

- (a) Find the eigenvalues and eigenvectors of A and B.
- (b) Compute

$$\exp(tA)$$
, $\exp(tB)$, and $\exp(t(A+B))$.

(c) Compare $\exp(tA) \cdot \exp(tB)$ and $\exp(t(A+B))$.

Class test, March 2004

56. Find the solution curve of the linear control system

$$\dot{x} = Ax + Bu, \quad x(0) = x_0$$

when

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \quad x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \quad u_1(t) - u_2(t) = 1 \text{ for } t \ge 0.$$

Class test, March 2004

57. Consider the matrix differential equation

$$\dot{W} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} W + W \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \quad W \in \mathbb{R}^{2 \times 2}.$$
(a) Verify that $W(t) = \exp\left(t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}\right) \cdot \exp\left(t \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}\right)$ is a solution curve through the identity (i.e. such that $W(0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$).

(b) Can you find another solution curve through the identity ? Make a clear statement and then prove it.

Class test, March 2004

58. Consider the linear system

$$\dot{x} = \begin{bmatrix} \alpha & -4 \\ 3 & -\beta \end{bmatrix} x$$

where $\alpha, \beta > 0$ and $\alpha\beta = 12$. Investigate the stability nature of the system at the origin. For what values (if any) of the parameters α and β is the system asymptotically stable ?

Class test, May 2004

59. Consider the nonlinear system

$$\dot{x}_1 = -x_1^3 - 3x_1 + x_2$$

 $\dot{x}_2 = -2x_1.$

Investigate the stability nature of (the origin of) the system

(a) by using a suitable Lyapunov function.

(HINT : Try for a Lyapunov function of the form $V = ax_1^2 + bx_2^2$.) (b) by linearizing the system.

Class test, May 2004

60. Let $A \in \mathbb{R}^{n \times n}$.

- (a) Define the terms *eigenvalue* and *eigenvector* (of A), and then investigate the relationship between the eigenvalues of (the power) A^k and those of A. Make a clear statement and then prove it.
- (b) Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be $r (\leq n)$ distinct eigenvalues of A with corresponding eigenvectors w_1, w_2, \ldots, w_r . Prove that the vectors w_1, w_2, \ldots, w_r are linearly independent.
- (c) The matrix A is said to be *nilpotent* if some power A^k is the zero matrix. Show that A is nilpotent if and only if all its eigenvalues are zero.
- (d) Define the *exponential* of A and then calculate $\exp(A)$ for

$$A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

Exam, June 2004

61. Find the solution of

$$\dot{x} = \begin{bmatrix} -1 & -4 \\ -1 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u, \quad x(0) = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

when $u(t) = e^{2t}, t \ge 0.$

Exam, June 2004

62. Consider the control system

$$\dot{x} = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix} x + bu$$

$$y = cx.$$

Find $b \in \mathbb{R}^{2 \times 1}$ and $c \in \mathbb{R}^{1 \times 2}$ such that the system is

(a) not completely controllable;

(b) completely observable.

When $c = \begin{bmatrix} 1 & 1 \end{bmatrix}$, determine (the initial state) x(0) if $y(t) = e^t - 2e^{3t}$. Exam, June 2004

63. For the control system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = x_3 + u$
 $\dot{x}_3 = x_1 - x_2 - 2x_3$

find a linear *feedback control* which makes all the eigenvalues (of the system) equal to -1.

Exam, June 2004

64. Define the term Lyapunov function (for a general nonlinear system) and then use a quadratic Lyapunov function $V(x) = x^T P x$ to investigate the stability of the system described by the equation

$$\ddot{z} + \epsilon \ (z^2 - 1)\dot{z} + z = 0, \quad \epsilon < 0.$$

Exam, June 2004

65. Find the (feedback) control u^* which minimizes the (quadratic) cost functional

$$\mathcal{J} = \frac{1}{2}x^{T}(t_{1})Mx(t_{1}) + \frac{1}{2}\int_{0}^{t_{1}} \left(x^{T}Q(t)x + u^{T}R(t)u\right) dt$$

subject to

$$\dot{x} = A(t)x + B(t)u(t) \quad \text{and} \quad x(0) = x_0.$$

(It is assumed that R(t) is a positive definite, and M and Q(t) are positive semi-definite symmetric matrices for $t \ge 0$.)

66.

(a) Find the *eigenvalues* and *eigenvectors* of the matrix

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) Compute the characteristic polynomial of the matrix

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -c_3 & -c_2 & -c_1 \end{bmatrix}.$$

Class test, March 2005

67. Find *the* solution curve of the initialized linear dynamical system described by

$$\dot{x} = Ax, \quad x(0) = x_0$$

when

$$A = \begin{bmatrix} -2 & 2\\ 1 & -1 \end{bmatrix} \text{ and } x(0) = \begin{bmatrix} 2\\ 1 \end{bmatrix}$$

What happens when $x_1(0) = x_2(0)$?

Class test, March 2005

68. Consider a *linear* control system (with outputs) Σ given by

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

(where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times \ell}$ and $C \in \mathbb{R}^{n \times m}$). Assume that

$$A = \begin{bmatrix} -2 & 2\\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} \alpha\\ 1 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & \beta \end{bmatrix}.$$

For what values of α and β is Σ completely controllable but *not* completely observable ?

Class test, May 2005

69. Consider a *linear* control system (with outputs) Σ given by

$$\begin{array}{rcl} \dot{x} & = & Ax + Bu \\ y & = & Cx \end{array}$$

(where $A \in \mathbb{R}^{m \times m}$, $B \in \mathbb{R}^{m \times \ell}$ and $C \in \mathbb{R}^{n \times m}$).

- (a) Derive the transfer function matrix $G(\cdot)$ associated with Σ .
- (b) Assume that

$$A = \begin{bmatrix} -2 & 2\\ 1 & -1 \end{bmatrix}, \quad B = \begin{bmatrix} 1\\ 0 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix}.$$

Compute the scalar transfer function $g(\cdot)$.

(c) Find a minimal realization of the scalar transfer function

$$g(s)=\frac{2s+7}{s^2-5s+6}\cdot$$

Class test, May 2005

70. Let $M \in \mathbb{R}^{n \times n}$.

(a) Define the *trace* tr(M) of M, and then show that the function

$$\operatorname{tr}: \mathbb{R}^{n \times n} \to \mathbb{R}, \quad A \mapsto \operatorname{tr}(A)$$

is *linear*.

(b) Prove that (for any $A, B \in \mathbb{R}^{n \times n}$)

$$\operatorname{tr}(AB) = \operatorname{tr}(BA).$$

(c) Hence deduce that (for any invertible $n \times n$ matrix S)

$$\operatorname{tr}\left(SMS^{-1}\right) = \operatorname{tr}\left(M\right).$$

(d) Define the terms *eigenvalue* and *eigenvector* (of M), and then prove that if $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the (complex) eigenvalues of M (listed with their algebraic multiplicities), then

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = \operatorname{tr}(M).$$

Exam, June 2005

71. Find the solution of

$$\dot{x} = \begin{bmatrix} -2 & 2\\ 1 & -1 \end{bmatrix} x + \begin{bmatrix} 1\\ 1 \end{bmatrix} u, \quad x(0) = \begin{bmatrix} x_1(0)\\ x_2(0) \end{bmatrix}$$

when $u(t) = e^t$, $t \ge 0$.

Exam, June 2005

72. Consider a single-input linear control system Σ given by

$$\dot{x} = Ax + bu$$

(where $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$).

- (a) Explain what is meant by the *canonical form* of Σ .
- (b) Prove that if

$$\operatorname{rank} \begin{bmatrix} b & Ab & A^2b & \cdots & A^{m-1}b \end{bmatrix} = m$$

then Σ can be transformed by a linear transformation w = Txinto the canonical form.

(c) Reduce the single-input linear control system

$$\dot{x} = \begin{bmatrix} 1 & -3 \\ 4 & 2 \end{bmatrix} x + \begin{bmatrix} 1 \\ 1 \end{bmatrix} u$$

to the canonical form and determine the linear mapping $x = T^{-1}w$.

73. Let d, k > 0. Consider the control system (with outputs) Σ described by

$$\begin{aligned} \dot{x}_1 &= x_2 \\ \dot{x}_2 &= -kx_1 - dx_2 + u \\ y &= x_1 - x_2. \end{aligned}$$

Write down the equations describing the dual control system Σ° , and then investigate for (complete) controllability and (complete) observability both control systems.

Exam, June 2005

74. Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$. Consider a single-input linear control system Σ given by

$$\dot{x} = Ax + bu.$$

- (a) Given an arbitrary set $\Lambda = \{\theta_1, \dots, \theta_m\}$ of complex numbers (appearing in conjugate pairs), prove that if Σ is completely controllable, then there exists a *feedback matrix* K such that the eigenvalues of A + bK are the set Λ .
- (b) Application : Find a linear feedback control u = Kx when

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \{-1, -1 - 2i, -1 + 2i\}.$$

Exam, June 2005

75. Consider the dynamical system

$$\dot{x}_1 = -kx_1 - 3x_2$$

 $\dot{x}_2 = kx_1 - 2x_2, \quad k \in \mathbb{R}$

(a) When k = 1, use a quadratic Lyapunov function

$$V(x) = x^T P x$$
$$= ax_1^2 + 2bx_1x_2 + cx_2^2$$

with derivative $\dot{V} = -2(x_1^2 + x_2^2)$ to determine the stability of the system (at the origin).

(b) Using the same Lyapunov function, find sufficient conditions on k for the system to be asymptotically stable (at the origin).

Exam, June 2005

76. Find u^* so as to minimize

$$\mathcal{J} = \int_0^T dt$$

subject to

$$\dot{x} = Ax + Bu, \qquad |u_i| \le K_i, \quad i = 1, \dots, \ell$$

 $x(0) = x_0$
 $x(T) = 0.$

Bibliography

- [BC85] S. BARNETT AND R.G. CAMERON Introduction to Mathematical Control Theory (Second Edition), Clarendon Press, 1985.
- [Bel97] R. BELLMAN Introduction to Matrix Analysis (Second Edition), SIAM, 1997.
- [BC98] R.L. BORRELLI AND C.S. COLEMAN Differential Equations. A Modeling Perspective, Wiley, 1998.
- [Bro70] R.W. BROCKETT Finite Dimensional Linear Systems, Wiley, 1970.
- [GF63] I.M. GELFAND AND S.V. FOMIN *Calculus of Variations*, Prentice-Hall, 1963.
- [Hir84] M.W. HIRSCH The dynamical systems approach to differential equations, Bull. Amer. Math. Soc. (New Series) 11(1)(1984), 1-64.
- [HSD04] M.W. HIRSCH, S. SMALE AND R.L. DEVANEY Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, 2004.
- [Hoc91] L.M. HOCKING Optimal Control. An Introduction to the Theory with Applications, Oxford University Press, 1991.
- [KFA69] R.E. KALMAN, P.L. FALB, AND M.A. ARBIB Topics in Mathematical System Theory, McGraw-Hill, 1969.

- [Kha96] H.K. KHALIL *Nonlinear Systems* (Second Edition), Prentice-Hall, 1996.
- [Lei80] J.R. LEIGH Functional Analysis and Linear Control Theory, Academic Press, 1980.
- [MS92] J. MACKI AND A. STRAUSS Introduction to Optimal Control Theory, Springer-Verlag, 1982.
- [Mey00] C.D. MEYER Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
- [Mor01] K. MORRIS Introduction to Feedback Control, Harcourt/Academic Press, 2001.
- [Nis00] N.S. NISE Control Systems Engineering (Third Edition), Wiley, 2000.
- [Osi00] H. OSINGA Linear Systems, *Lecture Notes*, University of Exeter, 2000.
- [Pin93] E. PINCH Optimal Control and the Calculus of Variations, Oxford University Press, 1993.
- [Rox97] E.O. ROXIN Control Theory and its Applications, Gordon and Breach, 1997.
- [Say94] A.H. SAYED Linear Dynamical Systems, *Lecture Notes*, University of California at Santa Barbara, 1994.
- [Son98] E.D. SONTAG Mathematical Control Theory (Second Edition), Springer-Verlag, 1998.
- [Str88] G. STRANG Linear Algebra and Its Applications (Third Edition), Brooks/Cole, 1988.

- [Ter99] W.J. TERRELL Some fundamental control theory I: controllability, observability, and duality, Amer. Math. Monthly 106(1999), 705-719.
- [Vid02] M. VIDYASAGAR Nonlinear Systems Analysis (Second Edition), SIAM, 2002.
- [Zab95] J. ZABCZYK Mathematical Control Theory : An Introduction, Birkhäuser, 1995.
- [Zab01] J. ZABCZYK Classical Control Theory, Lecture Notes, The Summer School on Mathematical Control Theory, Trieste, 3-28 September, 2001.