Appendix B

Revision Problems

1. Find the solution of the following uncontrolled linear system

$$
\dot{x}=\left[\begin{array}{cc}
0 & 1 \\
-2 & -3
\end{array}\right] x, \quad x(0)=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

2. Given the linear system described by

$$
\dot{x}=\left[\begin{array}{cc}
2 & \alpha-1 \\
0 & 2
\end{array}\right] x+\left[\begin{array}{l}
1 \\
\alpha
\end{array}\right] u
$$

determine for what values of the real parameter α the system is not completely controllable.

Class test, August 1998

3. Show that the linear system described by

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-2 x_{1}-3 x_{2}+u, \quad y=x_{1}+x_{2}
$$

is not completely observable. Determine initial states $x(0)$ such that if $u(t)=0$ for $t \geq 0$, then the output $y(t)$ is identically zero for $t \geq 0$.
4. Consider a time invariant linear system of the form

$$
\dot{x}=\left[\begin{array}{ll}
a_{1} & a_{2} \\
a_{3} & a_{4}
\end{array}\right] x+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u
$$

and let $\theta_{1}, \theta_{2} \in \mathbb{R}$. Prove that if the system is completely controllable, then there exists a matrix K such that the eigenvalues of the matrix $A+K b$ are θ_{1} and θ_{2}.

Application :

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
2 & -4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
3
\end{array}\right], \quad \text { and } \quad \theta_{1}=-4, \quad \theta_{2}=-5
$$

Class test, October 1998

5. A linear system is known to be described by

$$
\dot{x}=A x .
$$

It is possible to measure the state vector, but because of difficulties in setting up the equipment, this measurement can be started only after an unknown amount $T(T>2)$ of time has elapsed. It is then found that

$$
x(T)=\left[\begin{array}{l}
1.0 \\
1.0
\end{array}\right], \quad x(T+1)=\left[\begin{array}{l}
1.5 \\
1.6
\end{array}\right], \quad x(T+2)=\left[\begin{array}{l}
1.8 \\
2.1
\end{array}\right] .
$$

Compute $x(T-2)$.
6. Write the equation of motion

$$
\ddot{z}=u(t)
$$

in state space form, and then solve it.
7. Given the liner control system described by

$$
\begin{aligned}
\dot{x}_{1} & =\alpha x_{1}+2 x_{2}+u \\
\dot{x}_{2} & =x_{1}-x_{2} \\
y & =x_{1}+\alpha x_{2}
\end{aligned}
$$

determine for what values of the real parameter α the system is (a) completely controllable and completely observable; (b) completely controllable but not completely observable; (c) completely observable but not completely controllable.

Exam, November 1998

8. Given the system described by

$$
\dot{x}=\left[\begin{array}{ccc}
-1 & 0 & 3 \\
0 & -3 & 0 \\
1 & 0 & -3
\end{array}\right] x+\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] u
$$

show that under linear feedback of the form $u=\alpha x_{1}+\beta x_{3}$, the closed loop system has two fixed eigenvalues, one of which is equal to -3 . Determine the second fixed eigenvalue, and also values of α and β such that the third closed loop eigenvalue is equal to -4 .

Exam, November 1998

9. A control system is described by

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=u
$$

and the control $u(t)$ is to be chosen as to minimize the performance index

$$
\mathcal{J}=\int_{0}^{1} u^{2} d t .
$$

Find the optimal control which transfers the system from $x_{1}(0)=0, x_{2}(0)=$ 0 to $x_{1}(1)=1, x_{2}(1)=0$.
10. Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

Class test, March 1999

11. Let A be an $n \times n$ matrix. How are the eigenvalues of A^{3} related to those of A ? If A is invertible, can 0 be an eigenvalues for A^{3} ? Explain.

Class test, March 1999

12. Let A and S be $n \times n$ matrices, and assume that S is invertible. Show that the characteristic polynomials of A and $S^{-1} A S$ are the same.

Class test, March 1999

13. Determine the state transition matrix and write down the general solution of the linear control system described by the equations

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}+4 x_{2}+u \\
\dot{x}_{2} & =3 x_{1}+2 x_{2} .
\end{aligned}
$$

Class test, March 1999
14. Write the equation of motion

$$
\ddot{z}+\dot{z}=0
$$

in state space form, and then solve it (by computing the state transition matrix).

Exam, June 1999
15. Split up the linear control system

$$
\dot{x}=\left[\begin{array}{ccc}
4 & 3 & 5 \\
1 & -2 & -3 \\
2 & 1 & 8
\end{array}\right] x+\left[\begin{array}{c}
2 \\
1 \\
-1
\end{array}\right] u(t)
$$

into its controllable and uncontrollable parts, as displayed below :

$$
\left[\begin{array}{l}
\dot{x}^{(1)} \\
\dot{x}^{(2)}
\end{array}\right]=\left[\begin{array}{cc}
A_{1} & A_{2} \\
0 & A_{3}
\end{array}\right]\left[\begin{array}{l}
x^{(1)} \\
x^{(2)}
\end{array}\right]+\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] u(t) .
$$

Exam, June 1999
16. Investigate the stability nature of the equilibrium state at the origin of the system described by the scalar equation

$$
\ddot{z}+\alpha \dot{z}+\beta z=z \cdot \dot{z} .
$$

Exam, June 1999
17. Determine whether the system described by

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ccc}
4 & 1 & 2 \\
3 & -1 & 2 \\
5 & -3 & 8
\end{array}\right] x+\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right] u(t) \\
y & =\left[\begin{array}{lll}
2 & 1 & -1
\end{array}\right] x
\end{aligned}
$$

is detectable.
Exam, June 1999
18. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] .
$$

(a) Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix A.
(b) Determine the matrix exponential $\exp (t A)$.
19. Let A, B, and S be $n \times n$ matrices, and assume that S is nonsingular.
(a) Show that the characteristic polynomials of A and $S^{-1} A S$ are the same.
(b) If $A B=B A$, show that

$$
\exp (t(A+B))=\exp (t A) \cdot \exp (t B)
$$

Class test, March 2000

20. Write down the general solution of the linear system described by the equations

$$
\begin{aligned}
& \dot{x}_{1}=x_{1}+4 x_{2} \\
& \dot{x}_{2}=3 x_{1}+2 x_{2} .
\end{aligned}
$$

Class test, March 2000

21. Consider a (time-invariant) linear control system of the form

$$
\dot{x}=A x+b u(t)
$$

where A is a 2×2 matrix and b is a non-zero 2×1 matrix. Assume that

$$
\operatorname{rank}\left[\begin{array}{cc}
b & A b
\end{array}\right]=2
$$

and prove that the given system can be transformed by a (nonsingular) transformation $w(t)=T x(t)$ into the canonical form

$$
\dot{w}=\left[\begin{array}{cc}
0 & 1 \\
-k_{2} & -k_{1}
\end{array}\right] w+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t) .
$$

Application :

$$
A=\left[\begin{array}{cc}
-1 & -1 \\
2 & -4
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
3
\end{array}\right] .
$$

22. Find the solution of

$$
\dot{x}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] x+\left[\begin{array}{l}
2 \\
1
\end{array}\right] u(t), \quad x(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

when

$$
u(t)= \begin{cases}1 & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Exam, June 2000
23. Consider the matrix differential equation

$$
\dot{X}=A(t) X, \quad X(0)=I_{n}
$$

Show that, when $n=2$,

$$
\frac{d}{d t}(\operatorname{det} X)=\operatorname{tr} A(t) \cdot \operatorname{det} X
$$

and hence deduce that $X(t)$ is nonsingular, $t \geq 0$.
Exam, June 2000
24. Write the linear system Σ described by

$$
\ddot{z}+\dot{z}+2 z=0
$$

in the state space form, and then use Lyapunov functions to investigate the stability nature of the system. Is the origin asymptotically stable? Justify your answer.

Exam, June 2000
25. Determine whether the system described by

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u(t) \\
y & =\left[\begin{array}{ll}
0 & 1
\end{array}\right] x
\end{aligned}
$$

is detectable.
26. Consider the matrix

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right]
$$

(a) Find the characteristic polynomial, the eigenvalues and the corresponding eigenvectors for the matrix A.
(b) Determine the matrix exponential $\exp (t A)$.

Class test, August 2001

27. Consider the linear control system described by the equations

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}-4 x_{2}+u(t) \\
\dot{x}_{2} & =-x_{1}-x_{2}+u(t)
\end{aligned}
$$

If $x(0)=(1,0)$ and $u(t)=1$ for $t \geq 0$, find the expressions for $x_{1}(t)$ and $x_{2}(t)$.

Class test, August 2001
28. Investigate the stability nature of the origin for the linear system

$$
\dot{x}_{1}=-2 x_{1}-3 x_{2}, \quad \dot{x}_{2}=2 x_{1}-2 x_{2}
$$

Class test, November 2001

29. Consider the linear system

$$
\dot{x}_{1}=k x_{1}-3 x_{2}, \quad \dot{x}_{2}=-k x_{1}-2 x_{2} .
$$

Use the quadratic form (Lyapunov function)

$$
V=\frac{2}{3} x_{1}^{2}+x_{2}^{2}-\frac{2}{3} x_{1} x_{2}
$$

to obtain sufficient conditions on $k \in \mathbb{R}$ for the system to be asympotically stable (at the origin).
30. Investigate the stability nature of the origin for the nonlinear system

$$
\begin{aligned}
\dot{x}_{1} & =7 x_{1}+2 \sin x_{2}-x_{2}^{4} \\
\dot{x}_{2} & =e^{x_{1}}-3 x_{2}-1+5 x_{1}^{2} .
\end{aligned}
$$

Class test, November 2001

31. Find the solution of

$$
\dot{x}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right] x+\left[\begin{array}{c}
1 \\
-1
\end{array}\right] u(t)
$$

when

$$
x(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \text { and } \quad u(t)=e^{3 t}, t \geq 0
$$

Exam, November 2001
32. Find a minimal realization of

$$
G(s)=\frac{s+4}{s^{2}+5 s+6}
$$

Is $\mathcal{R}=\left(\left[\begin{array}{cc}0 & 1 \\ -6 & -5\end{array}\right],\left[\begin{array}{ll}0 & 1\end{array}\right],\left[\begin{array}{ll}4 & 1\end{array}\right]\right)$ a minimal realization of $G(\cdot)$? Justify your answer.

Exam, November 2001
33. For the control system described by

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}-x_{2}+u(t) \\
& \dot{x}_{2}=2 x_{1}-4 x_{2}+3 u(t)
\end{aligned}
$$

find a suitable feedback matrix K such that the closed loop system has eigenvalues -4 and -5 .
34. Use the Lyapunov function

$$
V=5 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}
$$

to show that the nonlinear system

$$
\dot{x}_{1}=x_{2}, \quad \dot{x}_{2}=-x_{1}-x_{2}+\left(x_{1}+x_{2}\right)\left(x_{2}^{2}-1\right)
$$

is asymptotically stable at the origin (by considering the region $\left|x_{2}\right|<1$). Determine a region of asymptotic stability (about the origin).

Exam, November 2001
35. Determine the matrix exponential

$$
\exp \left(t\left[\begin{array}{lll}
\alpha & 1 & 0 \\
0 & \alpha & 1 \\
0 & 0 & \alpha
\end{array}\right]\right)
$$

Class test, August 2002
36. A linear time-invariant control system is described by the equation

$$
\ddot{z}+z=u(t) .
$$

(a) Write the system in state space form.
(b) Compute the state transition matrix $\Phi(t, 0)$ in TWO DIFFERENT ways.
(c) If $z(0)=0, \dot{z}=1$, and $u(t)=1$ for $t \geq 0$, determine $z(t)$ (for $t \geq 0)$.

Class test, August 2002
37. Investigate the stability nature of the linear system

$$
\dot{x}_{1}=\alpha x_{1}-x_{2}, \quad \dot{x}_{2}=x_{1}+\alpha x_{2}
$$

where $\alpha<0$. What happens when $\alpha=0$?
38. Consider the linear system

$$
\dot{x}_{1}=\beta x_{1}-3 x_{2}, \quad \dot{x}_{2}=-\beta x_{1}-2 x_{2} .
$$

Use the quadratic form (Lyapunov function)

$$
V=\frac{2}{3} x_{1}^{2}-\frac{2}{3} x_{1} x_{2}+x_{2}^{2}
$$

to obtain sufficient conditions (on $\beta \in \mathbb{R}$) for the given system to be asymptotically stable.

Class test, October 2002

39. Given the control system (described by the state equations)

$$
\begin{aligned}
& \dot{x}_{1}=-2 x_{1}+2 x_{2}+u(t) \\
& \dot{x}_{2}=x_{1}-x_{2}
\end{aligned}
$$

compute the state transition matrix $\Phi(t, 0)$ in TWO DIFFERENT ways, and then determine $x(t)$ (for $t \geq 0$) when

$$
x_{1}(0)=0, \quad x_{2}(0)=0, \quad \text { and } \quad u(t)=2 \text { for } t \geq 0 .
$$

Exam, November 2002
40. Given the control system with outputs (described by the state and observation equations)

$$
\dot{x}_{1}=2 x_{1}+\alpha x_{2}, \quad \dot{x}_{2}=2 x_{2}+u(t), \quad y=\beta x_{1}+x_{2}
$$

determine for what values of $\alpha, \beta \in \mathbb{R}$ the system is
(a) completely controllable and completely observable.
(b) completely controllable but not completely observable.
(c) neither completely controllable nor completely observable.
(d) completely observable but not completely controllable.
41. Find a minimal realization of

$$
G(s)=\frac{s+4}{s^{2}+5 s+6} .
$$

Exam, November 2002
42. For the control system (described by the state equations)

$$
\begin{aligned}
\dot{x}_{1} & =x_{1}-x_{3}+u(t) \\
\dot{x}_{2} & =x_{1}+2 x_{2}+x_{3} \\
\dot{x}_{3} & =2 x_{1}+2 x_{2}+3 x_{3}+u(t)
\end{aligned}
$$

find a suitable feedback matrix K such that the closed loop system has eigenvalues -1 and $-1 \pm 2 i$.

Exam, November 2002
43. Write the (dynamical) system described by the (second-order) differential equation

$$
\ddot{z}+\dot{z}+z^{3}=0
$$

in state space form, and then use a quadratic Lyapunov function of the form

$$
V=a x_{1}^{4}+b x_{1}^{2}+c x_{1} x_{2}+d x_{2}^{2}
$$

in order to investigate for the stability nature of (the equilibrium state at) the origin. [Hint: Choose the coefficients $a, b, c \in \mathbb{R}$ such that $\dot{V}=-x_{1}^{4}-x_{2}^{4}$.]
44. Show that, for $t \in \mathbb{R}$,

$$
\exp \left(t\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\right)=e^{t}\left[\begin{array}{ccc}
1 & 2 t & 2 t^{2} \\
0 & 1 & 2 t \\
0 & 0 & 1
\end{array}\right]
$$

45. For $A=\left[\begin{array}{ll}1 & -2 \\ 2 & -4\end{array}\right]$, find the solution curve (in spectral form or otherwise). What happens when $x_{1}(0)=2 x_{2}(0)$?

Class test, April 2003
46. Consider the linear control system (described by the state equations)

$$
\begin{aligned}
\dot{x}_{1} & =2 x_{1}-x_{2} \\
\dot{x}_{2} & =-x_{1}+2 x_{2}+u(t) .
\end{aligned}
$$

(a) Write the system in the form $\dot{x}=A x+b u(t)$ with $A \in \mathbb{R}^{2 \times 2}$ and $b \in \mathbb{R}^{2 \times 1}$.
(b) Compute the state transition matrix $\Phi(t, 0)=\exp (t A)$ in TWO DIFFERENT ways.
(c) If $x_{1}(0)=x_{2}(0)=0$ and $u(t)=1$ for $t \geq 0$, determine $x_{2}(2)$.
47. Determine the range of values of parameter $k \in \mathbb{R}$ such that the linear dynamical system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=x_{3} \\
& \dot{x}_{3}=-5 x_{1}-k x_{2}+(k-6) x_{3}
\end{aligned}
$$

is asymptotically stable.
48. An autonomous dynamical system is described by

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}-x_{1} \\
& \dot{x}_{2}=-x_{1}-x_{2}-x_{1}^{2} .
\end{aligned}
$$

(a) Determine the equilibrium state which is not at the origin.
(b) Transform the state equations (of the system) so that this point is transfered to the origin.
(c) Hence verify that this equilibrium state is unstable

Class test, May 2003

49. Let $A \in \mathbb{R}^{n \times n}$.
(a) Define the transpose matrix A^{T} and then show that the linear mapping

$$
\mathcal{T}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}^{n \times n}, \quad A \mapsto \mathcal{T}(A):=A^{T}
$$

enjoys the property $\mathcal{T}(A B)=\mathcal{T}(B) \mathcal{T}(A)$. Hence deduce that if the matrix A is invertible, then so is its transpose A^{T}, and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

(b) Let \mathcal{Q} denote the associated quadratic form (i.e. $\quad x \in \mathbb{R}^{n} \mapsto$ $x^{T} A x \in \mathbb{R}$). Explain what is meant by saying that \mathcal{Q} is positive definite and negative semi-definite. State clearly necessary and sufficient conditions for positive definiteness and negative semidefiniteness, respectively.
(c) Assume that the matrix A is skew-symmetric (i.e. $A^{T}+A=0$) and then show that $\mathcal{Q}(x)=0$ for all $x \in \mathbb{R}^{n}$. Furthermore, show A can be written as $A_{1}+A_{2}$, where A_{1} is symmetric and A_{2} is skew-symmetric. Hence deduce that

$$
\mathcal{Q}(x)=x^{T} A_{1} x \quad \text { for all } x \in \mathbb{R}^{n} .
$$

50. Let $A \in \mathbb{R}^{n \times n}$. Determine (by direct computation) the characteristic polynomial of the matrix

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-k_{4} & -k_{3} & -k_{2} & -k_{1}
\end{array}\right] \in \mathbb{R}^{4 \times 4}
$$

Exam, June 2003
51. Find the (invertible) matrix $T \in \mathbb{R}^{n \times n}$ such that the linear transformation $x \mapsto w:=T x$ transforms the linear control system given by

$$
\dot{x}=\left[\begin{array}{cc}
-1 & -1 \\
2 & -4
\end{array}\right] x+\left[\begin{array}{l}
1 \\
3
\end{array}\right] u(t)
$$

into the canonical form. Write down the system in canonical form.
Exam, June 2003
52. Show that the control system (with outputs) described by

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-2 x_{1}-3 x_{2}+u(t) \\
y & =x_{1}+x_{2}
\end{aligned}
$$

is completely controllable but not completely observable. Determine initial states $x(0)$ such that if $u(t)=0$ for $t \geq 0$, then the output $y(\cdot)$ is identically zero for $t \geq 0$.

Exam, June 2003
53. For the control system described by

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}+u_{1}(t) \\
\dot{x}_{2} & =x_{3}+u_{2}(t) \\
\dot{x}_{3} & =6 x_{1}-11 x_{2}+6 x_{3}+u_{1}(t)+u_{2}(t)
\end{aligned}
$$

find a suitable feedback matrix K such that the closed loop system has eigenvalues 1,1 , and 3 .

Exam, June 2003
54. Investigate the stability nature of the equilibrium state at the origin for the (nonlinear) system given by

$$
\begin{aligned}
& \dot{x}_{1}=-3 x_{2} \\
& \dot{x}_{2}=x_{1}-x_{2}+2 x_{2}^{3} .
\end{aligned}
$$

Exam, June 2003
55. Consider the matrices

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right]
$$

(a) Find the eigenvalues and eigenvectors of A and B.
(b) Compute

$$
\exp (t A), \quad \exp (t B), \quad \text { and } \quad \exp (t(A+B)) .
$$

(c) Compare $\exp (t A) \cdot \exp (t B)$ and $\exp (t(A+B))$.

Class test, March 2004

56. Find the solution curve of the linear control system

$$
\dot{x}=A x+B u, \quad x(0)=x_{0}
$$

when
$A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \quad B=\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right], \quad x(0)=\left[\begin{array}{l}0 \\ 0\end{array}\right], \quad u_{1}(t)-u_{2}(t)=1$ for $t \geq 0$.
57. Consider the matrix differential equation

$$
\dot{W}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] W+W\left[\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right], \quad W \in \mathbb{R}^{2 \times 2} .
$$

(a) Verify that $W(t)=\exp \left(t\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right) \cdot \exp \left(t\left[\begin{array}{cc}0 & 0 \\ 1 & -1\end{array}\right]\right)$ is a solution curve through the identity (i.e. such that $W(0)=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$).
(b) Can you find another solution curve through the identity? Make a clear statement and then prove it.

Class test, March 2004

58. Consider the linear system

$$
\dot{x}=\left[\begin{array}{cc}
\alpha & -4 \\
3 & -\beta
\end{array}\right] x
$$

where $\alpha, \beta>0$ and $\alpha \beta=12$. Investigate the stability nature of the system at the origin. For what values (if any) of the parameters α and β is the system asymptotically stable?

Class test, May 2004
59. Consider the nonlinear system

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}^{3}-3 x_{1}+x_{2} \\
& \dot{x}_{2}=-2 x_{1} .
\end{aligned}
$$

Investigate the stability nature of (the origin of) the system
(a) by using a suitable Lyapunov function.
(Hint : Try for a Lyapunov function of the form $V=a x_{1}^{2}+b x_{2}^{2}$.)
(b) by linearizing the system.
60. Let $A \in \mathbb{R}^{n \times n}$.
(a) Define the terms eigenvalue and eigenvector (of A), and then investigate the relationship between the eigenvalues of (the power) A^{k} and those of A. Make a clear statement and then prove it.
(b) Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be $r(\leq n)$ distinct eigenvalues of A with corresponding eigenvectors $w_{1}, w_{2}, \ldots, w_{r}$. Prove that the vectors $w_{1}, w_{2}, \ldots, w_{r}$ are linearly independent.
(c) The matrix A is said to be nilpotent if some power A^{k} is the zero matrix. Show that A is nilpotent if and only if all its eigenvalues are zero.
(d) Define the exponential of A and then calculate $\exp (A)$ for

$$
A=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]
$$

Exam, June 2004
61. Find the solution of

$$
\dot{x}=\left[\begin{array}{ll}
-1 & -4 \\
-1 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u, \quad x(0)=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

when $u(t)=e^{2 t}, t \geq 0$.
Exam, June 2004
62. Consider the control system

$$
\begin{aligned}
\dot{x} & =\left[\begin{array}{ll}
1 & 2 \\
0 & 3
\end{array}\right] x+b u \\
y & =c x
\end{aligned}
$$

Find $b \in \mathbb{R}^{2 \times 1}$ and $c \in \mathbb{R}^{1 \times 2}$ such that the system is
(a) not completely controllable;
(b) completely observable.

When $c=\left[\begin{array}{ll}1 & 1\end{array}\right]$, determine (the initial state) $x(0)$ if $y(t)=e^{t}-2 e^{3 t}$.
63. For the control system

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =x_{3}+u \\
\dot{x}_{3} & =x_{1}-x_{2}-2 x_{3}
\end{aligned}
$$

find a linear feedback control which makes all the eigenvalues (of the system) equal to -1 .

Exam, June 2004
64. Define the term Lyapunov function (for a general nonlinear system) and then use a quadratic Lyapunov function $V(x)=x^{T} P x$ to investigate the stability of the system described by the equation

$$
\ddot{z}+\epsilon\left(z^{2}-1\right) \dot{z}+z=0, \quad \epsilon<0 .
$$

Exam, June 2004
65. Find the (feedback) control u^{*} which minimizes the (quadratic) cost functional

$$
\mathcal{J}=\frac{1}{2} x^{T}\left(t_{1}\right) M x\left(t_{1}\right)+\frac{1}{2} \int_{0}^{t_{1}}\left(x^{T} Q(t) x+u^{T} R(t) u\right) d t
$$

subject to

$$
\dot{x}=A(t) x+B(t) u(t) \quad \text { and } \quad x(0)=x_{0} .
$$

(It is assumed that $R(t)$ is a positive definite, and M and $Q(t)$ are positive semi-definite symmetric matrices for $t \geq 0$.)
66.
(a) Find the eigenvalues and eigenvectors of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Compute the characteristic polynomial of the matrix

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-c_{3} & -c_{2} & -c_{1}
\end{array}\right]
$$

Class test, March 2005

67. Find the solution curve of the initialized linear dynamical system described by

$$
\dot{x}=A x, \quad x(0)=x_{0}
$$

when

$$
A=\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right] \quad \text { and } \quad x(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

What happens when $x_{1}(0)=x_{2}(0)$?

Class test, March 2005

68. Consider a linear control system (with outputs) Σ given by

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

(where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times \ell}$ and $C \in \mathbb{R}^{n \times m}$). Assume that

$$
A=\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right], \quad B=\left[\begin{array}{l}
\alpha \\
1
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & \beta
\end{array}\right] .
$$

For what values of α and β is Σ completely controllable but not completely observable?
69. Consider a linear control system (with outputs) Σ given by

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x
\end{aligned}
$$

(where $A \in \mathbb{R}^{m \times m}, B \in \mathbb{R}^{m \times \ell}$ and $C \in \mathbb{R}^{n \times m}$).
(a) Derive the transfer function matrix $G(\cdot)$ associated with Σ.
(b) Assume that

$$
A=\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad C=\left[\begin{array}{ll}
1 & 0
\end{array}\right] .
$$

Compute the scalar transfer function $g(\cdot)$.
(c) Find a minimal realization of the scalar transfer function

$$
g(s)=\frac{2 s+7}{s^{2}-5 s+6}
$$

Class test, May 2005
70. Let $M \in \mathbb{R}^{n \times n}$.
(a) Define the trace $\operatorname{tr}(M)$ of M, and then show that the function

$$
\operatorname{tr}: \mathbb{R}^{n \times n} \rightarrow \mathbb{R}, \quad A \mapsto \operatorname{tr}(A)
$$

is linear.
(b) Prove that (for any $A, B \in \mathbb{R}^{n \times n}$)

$$
\operatorname{tr}(A B)=\operatorname{tr}(B A)
$$

(c) Hence deduce that (for any invertible $n \times n$ matrix S)

$$
\operatorname{tr}\left(S M S^{-1}\right)=\operatorname{tr}(M) .
$$

(d) Define the terms eigenvalue and eigenvector (of M), and then prove that if $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the (complex) eigenvalues of M (listed with their algebraic multiplicities), then

$$
\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}=\operatorname{tr}(M)
$$

Exam, June 2005
71. Find the solution of

$$
\dot{x}=\left[\begin{array}{cc}
-2 & 2 \\
1 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u, \quad x(0)=\left[\begin{array}{l}
x_{1}(0) \\
x_{2}(0)
\end{array}\right]
$$

when $u(t)=e^{t}, \quad t \geq 0$.
Exam, June 2005
72. Consider a single-input linear control system Σ given by

$$
\dot{x}=A x+b u
$$

(where $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$).
(a) Explain what is meant by the canonical form of Σ.
(b) Prove that if

$$
\operatorname{rank}\left[\begin{array}{ccccc}
b & A b & A^{2} b & \cdots & A^{m-1} b
\end{array}\right]=m
$$

then Σ can be transformed by a linear transformation $w=T x$ into the canonical form.
(c) Reduce the single-input linear control system

$$
\dot{x}=\left[\begin{array}{cc}
1 & -3 \\
4 & 2
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u
$$

to the canonical form and determine the linear mapping $x=T^{-1} w$.
73. Let $d, k>0$. Consider the control system (with outputs) Σ described by

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-k x_{1}-d x_{2}+u \\
y & =x_{1}-x_{2} .
\end{aligned}
$$

Write down the equations describing the dual control system Σ°, and then investigate for (complete) controllability and (complete) observability both control systems.

Exam, June 2005
74. Let $A \in \mathbb{R}^{m \times m}$ and $b \in \mathbb{R}^{m \times 1}$. Consider a single-input linear control system Σ given by

$$
\dot{x}=A x+b u
$$

(a) Given an arbitrary set $\Lambda=\left\{\theta_{1}, \ldots, \theta_{m}\right\}$ of complex numbers (appearing in conjugate pairs), prove that if Σ is completely controllable, then there exists a feedback matrix K such that the eigenvalues of $A+b K$ are the set Λ.
(b) Application : Find a linear feedback control $u=K x$ when

$$
A=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right], \quad b=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \text { and } \Lambda=\{-1,-1-2 i,-1+2 i\}
$$

Exam, June 2005
75. Consider the dynamical system

$$
\begin{aligned}
& \dot{x}_{1}=-k x_{1}-3 x_{2} \\
& \dot{x}_{2}=k x_{1}-2 x_{2}, \quad k \in \mathbb{R} .
\end{aligned}
$$

(a) When $k=1$, use a quadratic Lyapunov function

$$
\begin{aligned}
V(x) & =x^{T} P x \\
& =a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}
\end{aligned}
$$

with derivative $\dot{V}=-2\left(x_{1}^{2}+x_{2}^{2}\right)$ to determine the stability of the system (at the origin).
(b) Using the same Lyapunov function, find sufficient conditions on k for the system to be asymptotically stable (at the origin).

Exam, June 2005
76. Find u^{*} so as to minimize

$$
\mathcal{J}=\int_{0}^{T} d t
$$

subject to

$$
\begin{aligned}
\dot{x} & =A x+B u, \quad\left|u_{i}\right| \leq K_{i}, \quad i=1, \ldots, \ell \\
x(0) & =x_{0} \\
x(T) & =0
\end{aligned}
$$

Bibliography

[BC85] S. Barnett and R.G. Cameron - Introduction to Mathematical Control Theory (Second Edition), Clarendon Press, 1985.
[Bel97] R. Bellman - Introduction to Matrix Analysis (Second Edition), SIAM, 1997.
[BC98] R.L. Borrelli and C.S. Coleman - Differential Equations. A Modeling Perspective, Wiley, 1998.
[Bro70] R.W. Brockett - Finite Dimensional Linear Systems, Wiley, 1970.
[GF63] I.M. Gelfand and S.V. Fomin - Calculus of Variations, PrenticeHall, 1963.
[Hir84] M.W. Hirsch - The dynamical systems approach to differential equations, Bull. Amer. Math. Soc. (New Series) 11(1)(1984), 1-64.
[HSD04] M.W. Hirsch, S. Smale and R.L. Devaney - Differential Equations, Dynamical Systems, and an Introduction to Chaos, Elsevier/Academic Press, 2004.
[Hoc91] L.M. Hocking - Optimal Control. An Introduction to the Theory with Applications, Oxford University Press, 1991.
[KFA69] R.E. Kalman, P.L. Falb, and M.A. Arbib - Topics in Mathematical System Theory, McGraw-Hill, 1969.
[Kha96] H.K. Khalll - Nonlinear Systems (Second Edition), Prentice-Hall, 1996.
[Lei80] J.R. Leigh - Functional Analysis and Linear Control Theory, Academic Press, 1980.
[MS92] J. Macki and A. Strauss - Introduction to Optimal Control Theory, Springer-Verlag, 1982.
[Mey00] C.D. Meyer - Matrix Analysis and Applied Linear Algebra, SIAM, 2000.
[Mor01] K. Morris - Introduction to Feedback Control, Harcourt/Academic Press, 2001.
[Nis00] N.S. Nise - Control Systems Engineering (Third Edition), Wiley, 2000.
[Osi00] H. Osinga - Linear Systems, Lecture Notes, University of Exeter, 2000.
[Pin93] E. Pinch - Optimal Control and the Calculus of Variations, Oxford University Press, 1993.
[Rox97] E.O. Roxin - Control Theory and its Applications, Gordon and Breach, 1997.
[Say94] A.H. SAYED - Linear Dynamical Systems, Lecture Notes, University of California at Santa Barbara, 1994.
[Son98] E.D. Sontag - Mathematical Control Theory (Second Edition), Springer-Verlag, 1998.
[Str88] G. Strang - Linear Algebra and Its Applications (Third Edition), Brooks/Cole, 1988.
[Ter99] W.J. Terrell - Some fundamental control theory I: controllability, observability, and duality, Amer. Math. Monthly 106(1999), 705719.
[Vid02] M. Vidyasagar - Nonlinear Systems Analysis (Second Edition), SIAM, 2002.
[Zab95] J. ZabcZyk - Mathematical Control Theory : An Introduction, Birkhäuser, 1995.
[Zab01] J. ZabcZyk - Classical Control Theory, Lecture Notes, The Summer School on Mathematical Control Theory, Trieste, 3-28 September, 2001.

