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A control system (with outputs) Σ = (Rm, R`, U , F, Rn, h) is linear if the dynamics

F is linear in (x, u) , and the measurement function h is linear, for each fixed t ∈ R.

Such a control system is described by (state equation and observation equation)

ẋ = A(t)x+B(t)u(t) and y = C(t)x

where A(t) ∈ Rm×m, B(t) ∈ Rm×`, and C(t) ∈ Rn×m, each of whose entries is a

(continuous) function of time. The system is called time-invariant if the structure

is independent of time. A system that is not necessarily time-invariant is sometimes

called, to emphasize the fact, a time-varying system. Sets of (scalar) state equations

describing a linear (time-invariant) control system are the easiest to manage analyt-

ically and numerically, and the first model of a situation is often constructed to be

linear for this reason.

◦ © ◦
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2.1 Solution of Uncontrolled System

To begin with we shall consider dynamical systems (i.e. systems without

the presence of control variables). We may also refer to such systems as

uncontrolled (or unforced) systems.

We discuss methods of finding the solution (state vector) x(t) =


x1(t)

...

xm(t)

 ∈
Rm×1 of the (initialized) linear dynamical system described by

ẋ = Ax, x(0) = x0. (2.1)

Here A =
[
aij

]
∈ Rm×m (x 7→ Ax represents the linear dynamics F ) and

x0 ∈ Rm is the initial state.

Note : We identify the column matrix (or vector)


a1
...

am

 ∈ Rm×1 with the m-tuple

(or point) (a1, a2, . . . , am) ∈ Rm, whenever appropriate. However, we do not identify

the row matrix (or covector)
[
a1 a2 · · · an

]
∈ R 1×n with (a1, a2, . . . , an) (but

rather with the linear functional (x1, x2, · · · , xn) 7→ a1x1 + a2x2 + · · ·+ anxn ).

We shall assume that all the eigenvalues λ1, λ2, . . . , λm of A are distinct.

Note : In fact, in real-life situations, this is not too severe a restriction, since if

A does have repeated eigenvalues, very small perturbations in a few of its elements

(which will only be known to a certain degree of accuracy) will suffice to separate

these equal eigenvalues.

Spectral form

If wi is an eigenvector corresponding to λi, then w1, w2, . . . , wm are lin-

early independent (see Exercise 4), so we can express the solution of (2.1)
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as

x(t) = c1(t)w1 + c2(t)w2 + · · ·+ cm(t)wm (2.2)

where ci = ci(t) , i = 1, 2, . . . ,m are scalar functions of time.

Differentiation of (2.2) and substitution into (2.1) gives :

m∑
i=1

ċi(t)wi = A

m∑
i=1

ci(t)wi =

m∑
i=1

ci(t)λiwi.

Hence, by the independence of the wi (i = 1, 2, . . . ,m)

ċi = λi ci , i = 1, 2, . . . ,m

and these equations have the solution

ci(t) = ci(0) eλit , i = 1, 2, . . . ,m

giving

x(t) =
m∑
i=1

ci(0) eλitwi. (2.3)

Let W denote the matrix whose columns are w1, w2, . . . , wm; that is,

W =
[
w1 w2 . . . wm

]
.

We shall denote by v1, v2, . . . , vm the rows of the matrix W−1; that is,

[
w1 w2 . . . wm

]−1
=


v1

v2

...

vm

 .

Since we have

viwj = δij =

{
1 if i = j

0 if i 6= j

multiplying (2.3) on the left by vi and setting t = 0 in the resulting expression

gives

vix(0) = ci(0) , i = 1, 2, . . . ,m.
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Thus the solution of (2.1) is

x(t) =

m∑
i=1

(vix(0)) eλitwi. (2.4)

Expression (2.4) depends only upon the initial condition and the eigenvalues

and eigenvectors of A, and for this reason is referred to as the spectral form

solution.

2.1.1 Example. Find the general solution of the uncontrolled system :[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

Solution : The characteristic equation of A is

| λI2 −A |=

∣∣∣∣∣ λ −1

2 λ+ 3

∣∣∣∣∣ = 0 ⇐⇒ λ2 + 3λ+ 2 = 0

which gives

λ1 = −2 and λ2 = −1 .

(i) λ = −2.[
2 1

−2 −1

] w11

w21

 =

[
0

0

]
⇐⇒

 2w11 + w21 = 0

−2w11 − w21 = 0

which implies

w21 = −2w11

and thus (we can choose)

w1 =

[
1

−2

]
.

(ii) λ = −1.[
1 1

−2 −2

] w12

w22

 =

[
0

0

]
⇐⇒

 w12 + w22 = 0

−2w12 − 2w22 = 0
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which implies

w22 = −w12

and thus (we can choose)

w2 =

[
1

−1

]
.

We have

W =
[
w1 w2

]
=

[
1 1

−2 −1

]
⇒W−1 =

[
−1 −1

2 1

]
;

so

v1 =
[
−1 −1

]
and v2 =

[
2 1

]
.

Finally, we get

x(t) = (v1x(0)) e−2tw1 + (v2x(0)) e−tw2

= (−x1(0)− x2(0)) e−2t

[
1

−2

]
+ (2x1(0) + x2(0)) e−t

[
1

−1

]

or 
x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

Exponential form

We now present a different approach to solving equation (2.1) which avoids

the need to calculate the eigenvectors of A.

Recall the definition of the matrix exponential

exp(tA) : = Im + tA+
t2

2!
A2 +

t3

3!
A3 + · · · (2.5)
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2.1.2 Lemma. Let A ∈ Rm×m. Then

d

dt
(exp(tA)) = A exp(tA) = exp(tA)A.

Proof : We have

d

dt
exp(tA) = lim

h→0

1

h
(exp((t+ h)A)− exp(tA))

= lim
h→0

1

h
(exp(tA) · exp(hA)− exp(tA))

= exp(tA) lim
h→0

1

h
(exp(hA)− Im)

= exp(tA) lim
h→0

lim
k→∞

(
A+

h

2!
A+ · · ·+ hk−1

k!
Ak
)

= exp(tA)A.

(Two convergent limit processes can be interchanged if one of them converges

uniformly.) Observe that A commutes with each term of the (absolutely

convergent) series for exp(tA), hence with exp(tA). This proves the lemma.2

By the preceding lemma, if x(t) = exp(tA)x0, then

ẋ(t) =
d

dt
exp(tA)x0 = A exp(tA)x0 = Ax(t)

for all t ∈ R. Also,

x(0) = Imx0 = x0.

Thus x(t) = exp(tA)x0 is a solution of (2.1).

To see that this is the only solution, let x(·) be any solution of (2.1) and

set

y(t) = exp(−tA)x(t).

Then (from the above lemma and the fact that x(·) is a solution of (2.1))

ẏ(t) = −A exp(−tA)x(t) + exp(−tA)ẋ(t)

= −A exp(−tA)x(t) + exp(−tA)Ax(t)

= 0
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for all t ∈ R since exp(−tA) and A commute. Thus, y(t) is a constant.

Setting t = 0 shows that y(t) = x0 and therefore any solution of (2.1) is

given by

x(t) = exp(tA)y(t) = exp(tA)x0.

Hence

x(t) = exp (tA)x0 (2.6)

does represent the solution of (2.1).

Note : In case the initial condition x(0) = x0 is replaced by the slighty more

general one x(t0) = x0, the solution is often written as

x(t) = Φ(t, t0)x0. (2.7)

One refers to (the matrix)

Φ(t, t0) : = exp ((t− t0)A) (2.8)

as the state transition matrix (since it relates the state at any time t to the state

at any other time t0).

2.1.3 Proposition. The state transition matrix Φ(t, t0) has the following

properties :

(a)
d

dt
Φ(t, t0) = AΦ(t, t0).

(b) Φ(t0, t0) = Im.

(c) Φ(t0, t) = Φ−1(t, t0).

(d) Φ(t, t0) = Φ(t, t1)Φ(t1, t0).

Proof : We have

(a)
d

dt
Φ(t, t0) =

d

dt
exp ((t− t0)A) = A exp ((t− t0)A) = AΦ(t, t0).

(b) Φ(t, t) = exp ((t− t)A) = exp(0) = Im.

(c) Φ−1(t, t0) = (exp((t− t0)A))−1 = exp (−(t− t0)A) = exp ((t0 − t)A) =

Φ(t0, t).
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(d) Φ(t, t1)Φ(t1, t0) = exp((t−t1)A)·exp((t1−t0)A) = exp ((t− t1 + t1 − t0)A) =

exp((t− t0)A) = Φ(t, t0).

2

Note : The matrix-valued mapping X(t) = Φ(t, t0) (or curve in Rm×m ) is the

unique solution of the matrix differential equation

Ẋ = AX, X ∈ Rm×m

subject to the initial condition X(t0) = Im.

2.1.4 Example. (Simple harmonic motion) Consider a unit mass con-

nected to a support through a spring whose spring constant is unity. If z

measures the displacement of the mass from equilibrium, then

z̈ + z = 0.

Letting x1 = z and x2 = ż gives[
ẋ1(t)

ẋ2(t)

]
=

[
0 1

−1 0

][
x1(t)

x2(t)

]
.

Note : The associated transition matrix Φ(t, t0) has the form

Φ(t, t0) =


φ11(t, t0) φ12(t, t0)

φ21(t, t0) φ22(t, t0)


and therefore satisfies

φ̇11(t, t0) φ̇12(t, t0)

φ̇21(t, t0) φ̇22(t, t0)

 =


0 1

−1 0



φ11(t, t0) φ12(t, t0)

φ21(t, t0) φ22(t, t0)


with the initial condition

Φ(t0, t0) = Im.

What is the physical interpretation of Φ(t, t0) in this case ? The first column of

Φ(t, t0) has as its first entry the position as a function of time which results when
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the mass is displaced by one unit and released at t0 with zero velocity. The second

entry in the first column is the corresponding velocity. The second column of Φ(t, t0)

has as its first entry the position as a function of time which results when the mass

is started from zero displacement but with unit velocity at t = t0. The second entry

in the second column is the corresponding velocity.

The series for computing Φ(t, t0) in this case is easily summed because

Ak =


A if k = 4p+ 1

−I2 if k = 4p+ 2

−A if k = 4p+ 3

I2 if k = 4p.

A short calculation gives

Φ(t, t0) =

[
cos(t− t0) sin(t− t0)

− sin(t− t0) cos(t− t0)

]
.

Exercise 21 Work out the preceding computation.

2.1.5 Example. (Satellite problem) In section 1.3 we introduced the equa-

tions of a unit mass in an inverse square law force field. These were then

linearized about a circular orbit to get


ẋ1(t)

ẋ2(t)

ẋ3(t)

ẋ4(t)

 =


0 1 0 0

3ω2 0 0 2ω

0 0 0 1

0 −2ω 0 0




x1(t)

x2(t)

x3(t)

x4(t)

+


0

u1(t)

0

u2(t)

 .
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The series for computing Φ(t, 0) can be summed to get

Φ(t, 0) =



4− 3 cosωt
sinωt

ω
0

2(1− cosωt)

ω

3ω sinωt cosωt 0 2 sinωt

6(−ωt+ sinωt) −2(1− cosωt)

ω
1
−3ωt+ 4 sinωt

ω

6ω(−1 + cosωt) −2 sinωt 0 −3 + 4 cosωt


.

Evaluation of the matrix exponential

Evaluation of exp(tA), when all the eigenvalues λ1, λ2, . . . , λm are dis-

tinct, can be achieved by Sylvester’s formula which gives

exp(tA) =

m∑
k=1

eλkt Zk (2.9)

where

Zk =

m∏
i=1
i6=k

A− λiIm
λk − λi

, k = 1, 2, . . . ,m.

Note : Since the Zk (k = 1, 2, . . . ,m) in (2.9) are constant matrices depend-

ing only on A and its eigenvalues, the solution in the form given in (2.9) requires

calculation of only the eigenvalues of A.

2.1.6 Example. Consider again the uncontrolled system[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

The solution is

x(t) = exp (tA)x0 =

(
2∑

k=1

eλktZk

)
x0
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where

Zk =

2∏
i=1
i 6=k

A− λiI2

λk − λi
, k = 1, 2.

We have

Z1 =
A− (−1)I2

−2− (−1)
=

[
−1 −1

2 2

]
; Z2 =

A− (−2)I2

−1− (−2)
=

[
2 1

−2 −1

]
.

Hence,

x(t) =
(
e−2tZ1 + e−tZ2

)
x0

=

(
e−2t

[
−1 −1

2 2

]
+ e−t

[
2 1

−2 −1

])[
x1(0)

x2(0)

]
or 

x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

An alternative way of evaluating exp(tA) (again, when all the eigenvalues

λ1, λ2, . . . , λm are distinct), is as follows.

We can write

etλ = q(λ) · charA(λ) + r(λ) (2.10)

where deg (r) < m. Since (2.10) is an identity, we have

exp(tA) ≡ q(A) · charA(A) + r(A)

which by the Cayley-Hamilton Theorem reduces to

exp(tA) ≡ r(A)

showing that exp(tA) can be represented by a finite sum of powers of A of

degree not exceeding m − 1. Then m coefficients of r(λ) are functions of t

obtained from the solution of the system of m linear equations

eλit = r(λi) , i = 1, 2, . . . ,m.
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2.1.7 Example. Consider once again the uncontrolled system[
ẋ1

ẋ2

]
=

[
0 1

−2 −3

][
x1

x2

]
.

Since m = 2, the polynomial r(λ) can be written

r(λ) = r0λ+ r1

and so we have 
e−t = r1 − r0

e−2t = r1 − 2r0

which gives r0 = e−t − e−2t and r1 = 2e−t − e−2t. Hence, the solution is

x(t) = exp (tA)x0 = (r0A+ r1I2)x0

=

(
(e−t − e−2t)

[
0 1

−2 −3

]
+ (2e−t − e−2t)

[
1 0

0 1

])[
x1(0)

x2(0)

]
or 

x1(t) = − (x1(0) + x2(0)) e−2t + (2x1(0) + x2(0)) e−t

x2(t) = 2 (x1(0) + x2(0)) e−2t − (2x1(0) + x2(0)) e−t.

2.2 Solution of Controlled System

Consider the (initialized) linear control system, written in state space form,

ẋ = Ax+Bu(t) , x(0) = x0 (2.11)

where A ∈ Rm×m, B ∈ Rm×`, and ` ≤ m.

After multiplication of both sides of (2.11), on the left, by exp(−tA), the

equation can be written

d

dt
(exp(−tA)x) = exp(−tA)Bu (2.12)
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which produces

x(t) = exp(tA)

[
x0 +

∫ t

0
exp(−τA)Bu(τ) dτ

]
. (2.13)

If the initial condition is x(t0) = x0, then integration of (2.12) from t0 to t

and use of the definition of Φ gives

x(t) = Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)Bu(τ) dτ

]
. (2.14)

Note : If u(t) is known for t ≥ t0, then x(t) can be determined by finding the

state transition matrix and carrying out the integration in (2.14).

2.2.1 Example. Consider the equation of motion

z̈ = u(t)

of a unit mass moving in a straight line, subject to an external force u(t), z(t)

being the displacement from some fixed point. In state space form, taking

x1 = z and x2 = ż

as state variables, this becomes

ẋ =

[
ẋ1

ẋ2

]
=

[
0 1

0 0

][
x1

x2

]
+

[
0

1

]
u(t) = Ax+Bu(t).

Since here we have A2 = 0, exp(tA) = I2 + tA, and so[
x1(t)

x2(t)

]
=

[
1 t

0 1

][
x1(0)

x2(0)

]
+

[
1 t

0 1

]∫ t

0

[
1 −τ
0 1

][
0

1

]
u(τ) dτ.

Solving for x1(t) leads to

z(t) = z(0) + tż(0) +

∫ t

o
(t− τ)u(τ) dτ

where ż(0) denotes the initial velocity of the mass.
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2.2.2 Example. We are now in a position to express the solution of the

linearized equations describing the motion of a satellite in a near circular orbit.

We have

x1(t)

x2(t)

x3(t)

x4(t)


=



4− 3 cosωt sinωt
ω 0 2(1−cosωt)

ω

3ω sinωt cosωt 0 2 sinωt

6(−ωt+ sinωt) −2(1−cosωt)
ω 1 −3ωt+4 sinωt

ω

6ω(−1 + cosωt) −2 sinωt 0 −3 + 4 cosωt





x1(0)

x2(0)

x3(0)

x4(0)


+

+

∫ t

0





sinω(t−τ)
ω

cosω(t− τ)

−2(1−cosω(t−τ))
ω

−2 sinω(t− τ)


u1(τ) +



2(1−cosω(t−τ))
ω

2 sinω(t− τ)

−3ω(t−τ)+4 sinω(t−τ)
ω

−3 + 4 cosω(t− τ)


u2(τ)


dτ.

2.3 Time-varying Systems

Of considerable importance in many applications are linear systems in which

the elements of A and B are (continuous) functions of time for t ≥ 0.

Note : In general, it will not be possible to give explicit expressions for solutions

and we shall content ourselves with obtaining some general properties.

We first consider the uncontrolled case

ẋ = A(t)x , x(0) = x0. (2.15)

2.3.1 Theorem. (Existence and Uniqueness Theorem) If the matrix-

valued mapping

A : [0,∞)→ Rm×m, t 7→ A(t)
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is continuous, then (2.15) has a unique solution

x(t) = X(t)x0, t ≥ 0

where X(·) is the unique matrix-valued mapping (or curve in Rm×m) satis-

fying

Ẋ = A(t)X, X(0) = Im. (2.16)

Proof : We shall use the method of successive approximations to establish

the existence of a solution of (2.16). In place of (2.16), we consider the integral

equation

X = Im +

∫ t

0
A(τ)X dτ. (2.17)

Define the sequence (Xk)k≥0 of matrices (in fact, of matrix-valued mappings)

as follows :

X0 = Im

Xk+1 = Im +

∫ t

0
A(τ)Xk dτ , k = 0, 1, 2, . . .

Then we have

Xk+1 −Xk =

∫ t

0
A(τ)(Xk −Xk−1) dτ , k = 1, 2, . . .

Let

ν = max
0≤t≤t1

‖A(t)‖

where

‖A(t)‖ : =
m∑

i,j=1

|aij(t)|.

Note : Any matrix norm (on Rm×m) will do.

We have

‖Xk+1 −Xk‖ = ‖
∫ t

0
A(τ)(Xk −Xk−1) dτ‖

≤
∫ t

0
‖A(τ)‖‖Xk −Xk−1‖ dτ

≤ ν

∫ t

0
‖Xk −Xk−1‖ dτ
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for 0 ≤ t ≤ t1. Since, in this same interval,

‖X1 −X0‖ ≤
∫ t

0
‖A(τ)‖ dτ ≤ νt

we have inductively

‖Xk+1 −Xk‖ ≤Mk+1 : =
νk+1tk+1

1

(k + 1)!
for 0 ≤ t ≤ t1.

Note : The Weierstrass M-test states that if ξk : [t0, t1] → Rm×m are con-

tinuous and

• ‖ξk(t)‖ ≤Mk for every k

•
∞∑
k=0

Mk <∞

then the series
∑
k≥0

ξk(t) converges uniformly and absolutely on the interval [t0, t1].

Hence, the (matrix-valued mapping) series

X0 +
∑
k≥0

(Xk+1 −Xk)

converges uniformly for 0 ≤ t ≤ t1. Consequently, (Xk) converges uniformly

and absolutely to a matrix-valued mapping X(·), which satisfies (2.17), and

thus (2.16).

Since, by assumption, A(·) is continuous for t ≥ 0, we must take t1

arbitrarily large. We thus obtain a solution valid for t ≥ 0.

It is easy to verify that x(t) = X(t)x0 is a solution of (2.15), satisfying

the required initial condition.

Let us now establish uniqueness of this solution. Let Y be another solution

of (2.16). Then Y satisfies (2.17), and thus we have the relation

X − Y =

∫ t

0
A(τ)(X(τ)− Y (τ)) dτ.

Hence

‖X − Y ‖ ≤
∫ t

0
‖A(τ)‖‖X(τ)− Y (τ)‖ dτ.
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Since Y is differentiable, hence continuous, define

ν1 : = max
0≤t≤t1

‖X(t)− Y (t)‖.

We obtain

‖X − Y ‖ ≤ ν1

∫ t

0
‖A(τ)‖ dτ, 0 ≤ t ≤ t1.

Using this bound, we obtain

‖X − Y ‖ ≤ ν1

∫ t

0
‖A(τ)‖

(∫ τ

0
‖A(σ)‖ dσ

)
dτ

≤
ν1

(∫ t
0 ‖A(τ)‖ dτ

)2

2
·

Iterating, we get

‖X − Y ‖ ≤
νk1

(∫ t
0 ‖A(τ)‖ dτ

)k+1

(k + 1)!
·

Letting k →∞, we see that ‖X − Y ‖ ≤ 0. Hence X ≡ Y .

Exercise 22 Show that

lim
k→∞

αk

(k + 1)!
= 0 (α > 0).

Having obtained the matrix X, it is easy to see that x(t) = X(t)x0 is

a solution of (2.15). Since the uniqueness of solutions of (2.15) is readily

established by means of the same argument as above, it is easy to see that

x(t) = X(t)x0 is the solution.

2

Note : We can no longer define a matrix exponential, but there is a result corre-

sponding to the fact that exp(tA) is nonsingular when A is constant. We can write

x(t) = Φ(t, 0)x0, where Φ(t, 0) has the form

Im+

∫ t

0

A(τ) dτ+

∫ t

0

A(τ1)

∫ τ1

0

A(τ2) dτ2 dτ1+

∫ t

0

A(τ1)

∫ τ1

0

A(τ2)

∫ τ2

0

A(τ3) dτ3 dτ2 dτ1 · · ·

(the Peano-Baker series).

Some remarks and corollaries
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2.3.2 Proposition. In the Existence and Uniqueness Theorem the

matrix X(t) is nonsingular (for every t ≥ 0).

Proof : Define a matrix-valued mapping Y (·) as the solution of

Ẏ = −Y A(t), Y (0) = Im. (2.18)

(Such a mapping exists and is unique by an argument virtually identical to that

which is used in the proof of the Existence and Uniqueness Theorem.)

Now
d

dt
(Y X) = Ẏ X + Y Ẋ = −Y AX + Y AX = 0

so Y (t)X(t) is equal to a constant matrix, which must be the unit matrix

because of condition at t = 0.

Exercise 23 Show that (for every t ≥ 0)

det (X(t)) 6= 0.

Hence X(t) is nonsingular (and its inverse is in fact Y (t)). 2

We can also generalize the idea of state transition matrix by writing

Φ(t, t0) : = X(t)X−1(t0) (2.19)

which exists for all t, t0 ≥ 0. It is easy to verify that

x(t) = Φ(t, t0)x0 (2.20)

is the solution of (2.15). Also, Φ(t, t0)−1 = Φ(t0, t).

Note : The expression (2.20) has the same form as that for the time invariant case.

However, it is most interesting that although, in general, it is not possible to obtain

an analytic expression for the solution of (2.16), and therefore for Φ(t, t0) in (2.20),

this latter matrix possesses precisely the same properties as those for the constant

case.
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When m = 1, we can see that

Φ(t, t0) = exp

(∫ t

t0

A(τ) dτ

)
.

Note that the formula above is generally not true. However, one can show that

it does hold if

A(t)

∫ t

t0

A(τ) dτ =

(∫ t

t0

A(τ) dτ

)
A(t) for all t.

Otherwise this is not necessarily true and the state transition matrix is not

necessarily the exponential of the integral of A.

The following result is interesting. We shall omit the proof.

2.3.3 Proposition. If Φ(t, t0) is the state transition matrix for

ẋ = A(t)x , x(t0) = x0

then

det (Φ(t, t0)) = e
∫ t
t0

tr (A(τ)) dτ
.

A further correspondence with the time-invariant case is the following re-

sult.

2.3.4 Proposition. The solution of

ẋ = A(t)x+B(t)u(t) , x(t0) = x0 (2.21)

is given by

x(t) = Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
(2.22)

where Φ(t, t0) is defined in (2.19).

Proof : Put

x = X(t)w ⇐⇒ X−1(t)x = w
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where X(t) is defined in (2.16). Substitution into (2.21) produces

ẋ = AXw +Xẇ = AXw +Bu(t).

Hence X(t)ẇ = Bu(t) and so ẇ = X−1(t)Bu(t), which gives

w(t) = w(t0) +

∫ t

t0

X−1(τ)B(τ)u(τ) dτ.

The desired expression then follows using x0 = X(t0)w(t0) and (2.19). Indeed,

x0 = x(t0) = X(t0)w(t0) ⇒ w(t0) = X−1(t0)x0

and we have

x(t) = X(t)w = X(t)

[
X−1(t0)x0 +

∫ t

t0

X−1(τ)B(τ)u(τ) dτ

]
= X(t)X−1(t0)

[
x0 +

∫ t

t0

X(t0)X−1(τ)B(τ)u(τ) dτ

]
= Φ(t, t0)

[
x0 +

∫ t

t0

Φ(t0, τ)B(τ)u(τ) dτ

]
.

2

2.4 Relationship between State Space and Classical

Forms

Classical linear control theory deals with scalar ODEs of the form

z(m) + k1z
(m−1) + · · ·+ km−1z

(1) + kmz = β0u
(`) + β1u

(`−1) + · · ·+ β`u

where k1, k2, . . . , km and β0, β1, . . . , β` are constants; it is assumed that ` <

m.

We shall consider a simplified form

z(m) + k1z
(m−1) + · · ·+ kmz = u(t) (2.23)

where u(·) is the single control variable.
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It is easy to write (2.23) in matrix form by taking as state variables

w1 = z, w2 = z(1), . . . , wm = z(m−1). (2.24)

Since

ẇi = wi+1 , i = 1, 2, . . . ,m− 1

(2.23) and (2.24) lead to the state space form

ẇ = Cw + du(t) (2.25)

where

C =



0 1 0 . . . 0

0 0 1 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 1

−km −km−1 −km−2 . . . −k1


, w =


w1

w2

...

wm

 , d =


0

0
...

1

 .

(2.26)

The matrix C is called the companion form matrix.

Exercise 24 Show that the characteristic polynomial of C is

charC(λ) = λm + k1λ
m−1 + k2λ

m−2 + · · ·+ km (2.27)

which has the same coefficients as those in (2.23).

The state space form (2.25) is very special; we call it the canonical form.

Note : The classical form (2.23) and the canonical form are equivalent.

Having seen that (2.23) can be put into matrix form, a natural question is

to ask whether the converse hold : can any linear system in state space form

with a single control variable

ẋ = Ax+ bu(t)

be put into the classical form (2.23) ?
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2.4.1 Example. Consider the linear system in state space form with a

single control variable[
ẋ1

ẋ2

]
=

[
−2 2

1 −1

][
x1

x2

]
+

[
1

0

]
u(t). (2.28)

The (state) equations describing the system are
ẋ1 = −2x1 + 2x2 + u(t)

ẋ2 = x1 − x2.

Differentiating the second equation we get

ẍ2 = ẋ1 − ẋ2 = (−2x1 + 2x2 + u(t))− (x1 − x2) = −3x1 + 3x2 + u(t).

Hence

ẍ2 + 3ẋ2 = u(t).

This second-order ODE for x2 has the form (2.23) for m = 2. Its associated

canonical form is

ẇ =

[
0 1

0 −3

]
w +

[
0

1

]
u(t) . (2.29)

We expect that there is a transformation on R2 that transforms our origi-

nal control system (2.28) to the canonical form (2.29). Since the differential

equations are linear, we expect that the transformation is linear, say w = Tx.

Differentiation than gives

ẇ = TAT−1w + Tbu(t).

If we set

w1 = x2 and w2 = ẋ2

then 
w1 = x2

w2 = x1 − x2
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so a transformation transforming (2.28) into (2.29) is given by the matrix

T =

[
0 1

1 −1

]
.

2.4.2 Example. The control system in state space form

ẋ =

[
1 0

0 1

]
x+ bu(t)

(where b ∈ R2×1) cannot be transformed to the canonical form (or, equiva-

lently, to the classical form).

Exercise 25 Prove the preceding statement.

We would like to determine when and how such a procedure can be carried

out in general. Thus the natural questions concerning existence, uniqueness,

and computation of T arise. The answer to these questions is provided by

the following result.

2.4.3 Theorem. A linear control system in state space form

ẋ = Ax+ bu(t)

(where A ∈ Rm×m and 0 6= b ∈ Rm×1 ) can be transformed by a linear

transformation (i.e. invertible linear mapping)

w = Tx

into the canonical form

ẇ = Cw + du(t)

where C and d are given by (2.26), provided

rank
[
b Ab A2b . . . Am−1b

]
= m. (2.30)

Conversely, if such a transformation T exists, then (2.30) holds.
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Proof : (⇐) Sufficiency. Substitution of w = Tx into

ẋ = Ax+ bu

produces

ẇ = TAT−1w + Tbu.

We take

T =



τ

τA

τA2

...

τAm−1


where τ is any row m-vector such that T is nonsingular, assuming for the

present that at least one suitable τ exists.

Denote the columns of T−1 by s1, s2, . . . , sm and consider

TAT−1 =


τAs1 τAs2 . . . τAsm

τA2s1 τA2s2 . . . τA2sm
...

...
...

τAms1 τAms2 . . . τAmsm

 .

Comparison with the identity TT−1 = Im (that is,
τs1 τs2 . . . τsm

τAs1 τAs2 . . . τAsm
...

...
...

τAm−1s1 τAm−1s2 . . . τAm−1sm

 =


1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

)

establishes that the ith row of TAT−1 is the (i + 1)th row of Im (1 =

1, 2, . . . ,m− 1), so TAT−1 has the same form as C in (2.26), with last row

given by

ki = −τAmsm−i+1 , i = 1, 2, . . . ,m.
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For

ẇ = TAT−1w + Tbu

to be identical to

ẇ = Cw + du

we must also have

Tb = d

and substitution of T into this relation gives

τb = 0, τAb = 0, . . . , τAm−2b = 0, τAm−1b = 1

or

τ
[
b Ab A2b . . . Am−1b

]
= dT

which has a unique solution for τ (in view of condition (2.30)).

It remains to prove that (the matrix) T is nonsingular ; we shall show that

its rows are linearly independent. Suppose that

α1τ + α2τA+ · · ·+ αmτA
m−1 = 0

for some scalars αi , i = 1, 2, . . . ,m. Multiplying this relation on the right

by b gives αm = 0. Similarly, multiplying on the right successively by

Ab, A2b, . . . , Am−1b gives αm−1 = 0, . . . , α1 = 0. Thus, the rows of T are

linearly independent.

(⇒) Necessity. Conversely, if such a transformation T exists, then

rank
[
b Ab . . . Am−1b

]
= rank

[
Tb TAb TA2b . . . TAm−1b

]
= rank

[
Tb (TAT−1)Tb . . . (TAT−1)m−1Tb

]
= rank

[
d Cd C2d . . . Cm−1d

]
.
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It is easy to verify that this last matrix has the triangular form



0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1


and therefore has full rank. This completes the proof. 2

Note : T can be constructed using

T =


τ

τA
...

τAm−1

 and τ
[
b Ab A2b . . . Am−1b

]
= dT .

However, we can also give an explicit expression for the matrix in the

transformation x = T−1w. We have seen that

T
[
b Ab A2b . . . Am−1b

]
=



0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1


.

This latter matrix has elements given by

θi = −k1θi−1 − k2θi−2 − · · · − ki , i = 1, 2, . . . ,m− 1.
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It is straightforward to verify that

0 0 0 . . . 0 1

0 0 0 . . . 1 θ1

...
...

...
...

...

0 0 1 . . . θm−4 θm−3

0 1 θ1 . . . θm−3 θm−2

1 θ1 θ2 . . . θm−2 θm−1



−1

=



km−1 km−2 . . . k1 1

km−2 km−3 . . . 1 0
...

...
...

...

k1 1 . . . 0 0

1 0 . . . 0 0


.

Finally,

T−1 =
[
b Ab A2b . . . Am−1b

]


km−1 km−2 . . . k1 1

km−2 km−3 . . . 1 0
...

...
...

...

k1 1 . . . 0 0

1 0 . . . 0 0


.

(2.31)

(k1, k2, . . . , km−1 are the coefficients in the characteristic equation of C.)

2.4.4 Example. Consider a system in the form

ẋ = Ax+ bu(t)

where

A =

[
1 −3

4 2

]
and b =

[
1

1

]
.

Find the matrix T and the transformed system.

Solution : From

τb = 0 , τAb = 1

with τ =
[
τ1 τ2

]
we have{

τ1 + τ2 = 0

−2τ1 + 6τ2 = 1
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whence

τ1 = −1

8
and τ2 =

1

8
·

Now

T =

[
τ

τA

]
=

1

8

[
−1 1

3 5

]

and

T−1 =

[
−5 1

3 1

]
.

Then

TAT−1 =
1

8

[
−1 1

3 5

][
1 −3

4 2

][
−5 1

3 1

]
=

[
0 1

−14 3

]
.

Thus the transformed system is

ẇ = TAT−1w + Tbu =

[
0 1

−14 3

][
w1

w2

]
+

1

8

[
−1 1

3 5

][
1

1

]
u;

that is,  ẇ1 = w2

ẇ2 = −14w1 + 3w2 + u

or (for w1 = z, w2 = ż )

z̈ − 3ż + 14z = u .

A result similar to Theorem 2.4.3 can be obtained for systems having

zero input and scalar output, so that the system equations are
ẋ = Ax

y = cx

(2.32)

where A ∈ Rm×m, c ∈ R1×m, and y(·) is the output variable.
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2.4.5 Theorem. Any system described by (2.32) can be transformed by

x = Sv, with S nonsingular, into the canonical form

v̇ = Ev, y = fv (2.33)

where

E =



0 0 0 . . . 0 −em
1 0 0 . . . 0 −em−1

0 1 0 . . . 0 −em−2

...
...

...
...

...

0 0 0 . . . 1 −e1


and f =

[
0 0 . . . 1

]
(2.34)

provided that

rank



c

cA

cA2

...

cAm−1


= m. (2.35)

Conversely, if such a transformation S exists, then condition (2.35) holds.

The proof is very similar to that of Theorem 2.4.3 and will be omitted.

Note : E is also a companion matrix because its characteristic polynomial is

charE(λ) = det (λIm − E) = λm + e1λ
m−1 + · · ·+ em

which again is identical to the characteristic polynomial of A.

2.5 Exercises

Exercise 26 Find the general solution, in spectral form, of the (initialized) uncon-

trolled system

ẋ = Ax , x(0) = x0

in each of the following cases :



C.C. Remsing 65

(a) A =

[
−1 −1

2 −4

]
.

(b) A =

[
2 −1

−1 2

]
.

(c) A =

[
0 1

1 0

]
.

(d) A =


1 0 −1

1 2 1

2 2 3

.

(e) A =


2 1 1

0 0 1

0 1 0

.

Exercise 27 Find the general solution, in exponential form, of the (initialized) un-

controlled system

ẋ = Ax , x(0) = x0

in each of the cases given in Exercise 26.

Exercise 28 Consider the equation of simple harmonic motion

z̈ + ω2z = 0.

Take as state variables x1 = z and x2 =
1

ω
ż, and find the state transition matrix

Φ(t, 0).

Exercise 29 Use the exponential matrix to solve the rabbit-fox environment prob-

lem [
ẋ1

ẋ2

]
=

[
a1 −a2
a3 −a4

][
x1

x2

]
(a1, a2, a3, a4 > 0)

subject to the condition
a1
a3

=
a2
a4
·

Show that for arbitrary initial conditions, the populations will attain a steady state

as t → ∞ only if a1 − a4 < 0, and give an expression for the ultimate size of the

rabbit population in this case. Finally, deduce that if the environment is to reach a

steady state in which both rabbits and foxes are present, then x1(0) >
a1
a3
x2(0).
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Exercise 30 A linear control system is described by the equations
ẋ1 = x1 + 4x2 + u(t)

ẋ2 = 3x1 + 2x2.

Determine the state transition matrix and write down the general solution.

Exercise 31 A linear control system is described by

z̈ + 3ż + 2z = u , z(0) = ż(0) = 0

where

u(t) =


1 if 0 ≤ t < 1

0 if t ≥ 1.

Calculate the state transition matrix and determine z(2).

Exercise 32 Verify that the solution of the matrix differential equation

Ẇ = AW +WB, W (0) = C

(where A,B ∈ Rm×m) is

W (t) = exp(tA)C exp(tB).

Exercise 33 Consider the linear control system

ẋ = Ax+ bu(t)

where

A =

[
1 2

0 1

]
, b =

[
2

1

]
and take

u(t) =


1 if t ≥ 0

0 if t < 0.

Evaluate exp(tA) and show that the solution of this problem, subject to

x(0) =

[
1

0

]
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is

x(t) =


1 + 3t+ 5

2 t
2 + 7

6 t
3 + · · ·

t+ 1
2 t

2 + 1
6 t

3 + · · ·

 .
Exercise 34 Consider the matrix differential equation

Ẋ = A(t)X, X(0) = Im.

Show that, when m = 2,

d

dt
det (X(t)) = tr (A(t)) · det (X(t))

and hence deduce that X(t) is nonsingular, t ≥ 0.

Exercise 35 Verify that the properties of the state transition matrix

(a) d
dtΦ(t, t0) = AΦ(t, t0).

(b) Φ(t0, t0) = Im.

(c) Φ(t0, t) = Φ−1(t, t0).

(d) Φ(t, t0) = Φ(t, t1)Φ(t1, t0)

do carry over to the time varying case.

Exercise 36 Consider the (initialized) uncontrolled system

ẋ = A(t)x, x(0) = x0.

If B(t) =
∫ t
0
A(τ) dτ , show that the solution in this case is

x(t) = exp(B(t))x0

provided B(t) and A(t) commute with each other (for all t ≥ 0).

Exercise 37 Verify that the solution of the matrix differential equation

Ẇ = A(t)W +WAT (t), W (t0) = C

is

W (t) = Φ(t, t0)CΦT (t, t0).
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Exercise 38 For the linear control system

ẋ =

[
−1 −4

−1 −1

]
x+

[
1

1

]
u(t)

determine Φ(t, 0). If

x(0) =

[
1

2

]
and u(t) = e2t, t ≥ 0

use formula

x(t) = Φ(t, 0)

[
x0 +

∫ t

0

Φ(0, τ)Bu(τ) dτ

]
to obtain the expression for x(t).

Exercise 39 Consider a single-input control system, written in state space form,

ẋ = Ax+ bu(t).

Find the matrix T of the linear tansformation w = Tx and the transformed system

(the system put into canonical form)

ẇ = Cw + du(t)

for each of the following cases :

(a) A =

[
−1 −1

2 −4

]
, b =

[
1

3

]
.

(b) A =


1 0 −1

1 2 1

2 2 3

 , b =


1

0

1

.

Exercise 40 Consider a single-output (uncontrolled) system, written in state space

form,

ẋ = Ax, y = cx.

Find the matrix P of the linear transformation x = Pv and the transformed system

(the system put into the canonical form)

v̇ = Ev, y = fv
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when

A =


1 2 0

3 −1 1

0 2 0

 , c =
[

0 0 2
]
.


