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The most practical solution is a good theory.

Albert Einstein

Once upon a time, it is said, in the Good Old Days (read nineteenth century),

there was only Mathematics, a subject intimately bound up with the ways of

Mother Nature. Today this subject has fragmented into two ideological blocs,

labelled Pure and Applied. Each views the other with an element of distrust

[. . . ] Each side has the conviction of the True Believer in its own moral supe-

riority. The Applied Mathematicians accuse the Pure of a lack of contact with

reality; the Pure Mathematicians feel that Applied are altogether too slapdash

and have never quite grasped the rules of the game [. . . ] There is without

doubt a great difference in attitudes between those who called themselves pure

and those who called themselves applied. Halmos reckons that the main differ-

ence is that the applied mathematicians are convinced there is no difference,

whereas the pure mathematicians know perfectly well there is. A more salient

difference is one of intention. The applied mathematician wants an an-

swer; the pure mathematician wants to understand the problem. The

pure mathematician observes that sometimes the applied one is so keen to an-

swer that he doesn’t worry much whether it’s the right answer. The applied

mathematician observes that when the pure one can’t understand a problem

he moves on to another one and tries again. Perhaps the true difference is

that applied mathematicians devote a lot of thought to the modelling process –

devising an effective mathematical model of a natural phenomenon – whereas

this step is largely absent from pure mathematicians.

Ian Stewart
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Scientists use mathematics to build mental universes.

They write down mathematical descriptions – mod-

els – that capture essential fragments of how they

think this world behaves. Then they analyse their

consequences. This is called “theory”. They test

their theories against observations : this is called

“experiment”. Depending on the result, they may

modify the mathematical model and repeat the cy-

cle until theory and experiment agree. Not that it’s

really that simple; but that’s the general gist of it,

the essence of the scientific method.

I. Stewart and M. Golubitsky

Differential equations are the particular dialect of

the language of mathematics that most effectively

describes how nature works.

J.D. Barrow

What is Mathematical Control Theory ?

Mathematical control theory is the area of application-oriented mathemat-

ics that deals with the basic principles underlying the analysis and design of

control systems. To control an object means to influence its behaviour so as to

achieve a desired goal. In order to implement this influence, control engineers

build devices that incorporate various mathematical techniques. These de-

vices range from Watt’s steam engine governor, designed during the English

Industrial Revolution, to the sophisticated microprocessor controllers found

in items – such as CD players and automobiles – or in industrial robots and

airplane autopilots.

Control theory was originally developed to satisfy the design needs of ser-
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vomechanisms, under the name of “automatic control theory”. The clas-

sical theory of automatic control mostly deals with linear feedback control

systems with single input and single output. Mathematical structures of such

systems must be, in principle, described in terms of linear ordinary differen-

tial equations (ODEs) with constant coefficients. Hence control engineers use

block diagrams to describe systems, and operational calculus based on Laplace

transforms to obtain response characteristics. Thus the input/output relation

of a system is described in terms of transfer functions. One of the remarkable

contributions to classical control theory is Nyquist’s criterion (after its origi-

nator, Harry Nyquist (1889-1976)) for stability testing of linear feedback

systems. The test consists of plotting the Nyquist diagram of a transfer func-

tion in the frecquency domain (complex plane), and differs essentially from

the Routh-Hurwitz stability test for linear ODEs with constant coefficients.

Control theory became recognized as a mathematical subject in the 1960’s.

Around 1960 three remarkable contributions were made concurently; they are

• dynamic programming – Richard E. Bellman (1920-1984)

• Pontryagin’s principle – Lev S. Pontryagin (1908-1988)

• linear system theory – Rudolf E. Kalman (1930).

The first two give rise to mathematical tools to solve optimal control prob-

lems and to design optimal controllers and regulators. In contrast to the

classical theory of control, optimal control problems are formulated in terms

of systems of linear or nonlinear multivariable ODEs with multiinput (control)

variables. Linear system theory derives from the concepts of controllability and

observability. These two concepts are concerned with the interaction between

(internal) states of a system and its inputs and outputs.

R.E. Kalman challenged the accepted approach to control theory of that

period (limited to the use of Laplace transforms and the frecquency domain)

by showing that the basic control problems could be studied effectively through

the notion of a state of the system that evolves in time according to ODEs
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in which controls appear as parameters. Aside from drawing attention to

the mathematical content of control problems, Kalman’s work served as a

catalyst for further growth of the subject. Liberated from the confines of

the frecquency domain and further inspired by the development of computers,

automatic control theory became the subject matter of a new science called

systems theory.

Systems theory grew out of a desire to merge automata theory, and ar-

tificial intelligence, and discrete and continuous control into a single subject

concerned with input/output relations parametrized by the states of the sys-

tem. The level of generality required to keep these subjects together was well

beyond the realm of differential equations, and control theory quickly evolved

into topological dynamical systems. Systems theory, itself a hybrid of control

and automata theory, in its formative period looked to abstract dynamical

systems and mathematical logic for its further growth.

Around 1970 the significance of the Lie bracket for problems of control be-

came clear thanks to efforts made by R.M. Hermann, R.W. Brockett, C.

Lobry, H.J. Sussmann, V. Jurdjevic, and others. As a result, differential

geometry entered into an exciting partnership with control theory, marking

the birth of geometric control theory.

Present day theoretical research in control theory involves a variety of areas

of pure mathematics (e.g. linear and multilinear algebra, Lie semigroups and

Lie groups, algebraic geometry, dynamical systems, complex analysis, func-

tional analysis, calculus of variations, topology, differential geometry, proba-

bility theory, etc.). Concepts and results from these areas find applications in

control theory; conversely, questions about control systems give rise to new

open problems in mathematics.
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