
LECTURE NOTES ON MATRIX GROUPS

C.C. REMSING

Contents

1. Groups of Transformations 3

1.1. Maps and groups 3

1.2. Permutations of a finite set 8

1.3. Morphisms of groups 10

1.4. Cosets and quotient groups 15

Problems (1–5) 18

2. Actions of Groups on Sets 21

2.1. Group actions 21

2.2. Orbits and stabilizers 27

2.3. Particular G-sets 28

2.4. Examples of group actions 31

Problems (6–10) 34

3. Euclidean Spaces 37

3.1. Inner product and norm 37

3.2. Open and closed sets 40

3.3. Continuity 42

3.4. Differentiation 45

Problems (11–15) 50

4. Matrix Groups 53

4.1. Matrix algebra 53

4.2. Matrix groups 56

4.3. Linear Lie groups: examples 58

4.4. Complex matrix groups as real matrix groups 71

Problems (16–25) 72

5. The Matrix Exponential 77

5.1. Definition and basic properties 77

5.2. Some useful formulas 82

5.3. The product and commutator formulas (optional) 87

Date: February 2018.
Key words and phrases. Group of transformations, symmetric group, group action, permutation rep-

resentation, Euclidean space, linear Lie group, matrix exponential, Lie algebra.
1



2 C.C. REMSING

5.4. The adjoint action 91

Problems (26–32) 93

6. Lie Algebras 95

6.1. Tangent space to a linear Lie group 95

6.2. Lie algebras 99

6.3. Homomorphisms of Lie algebras 102

6.4. Lie algebras of linear Lie groups: examples 104

Problems (33–44) 111

7. Groups and Geometry (Optional) 115

7.1. Geometries 115

7.2. The “Erlanger Programm” 115

7.3. Classical geometries 115

7.4. Other geometries (in the sense of Klein) 115

References 115



LECTURE NOTES ON MATRIX GROUPS 3

1. Groups of Transformations

Maps and groups • Permutations of a finite set • Morphisms of groups •
Cosets and quotient groups.

1.1. Maps and groups. Let M be a non-empty set. A transformation of M is a

function (map or mapping) from M to M. The identity mapping on M is denoted by

idM. Let MM denote the set of all transformations of M. (An element α ∈ MM is

written symbolically as α : M→ M or M
α−→ M.) MM is a monoid with identity element

1M = idM.

Note: A semigroup (M, ∗) consists of a (non-empty) set M on which an associative binary

operation ∗ is defined; that is, (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all elements α, β, γ ∈ M. If there

exists an element ε satisfying α ∗ ε = α = ε ∗ α for all α ∈ M, then the semigroup is called a

monoid having identity element ε. This element can easily be seen to be unique, and is usually

denoted by 1M. An element α in a monoid (M, ∗) is called invertible if there exists an element

β ∈ M such that α ∗ β = 1M = β ∗ α. (Clearly, in that case β is also invertible.)

The natural operation on MM is the usual composition of mappings; the composite

mapping α ◦β is called the product of α and β (in this order) and is denoted simply by

αβ. (In general, the product of mappings is not commutative.)

A map (transformation) α : M→ M is said to be injective (or one-to-one) if x1 6= x2

implies α(x1) 6= α(x2) (x1, x2 ∈ M); it is said to be surjective (or onto) if for every

y ∈ M there exists (at least one) x ∈ M such that α(x) = y.

� Exercise 1. Let α ∈ MM. Show that the following statements are logically equivalent.

(a) α is injective.

(b) α(x1) = α(x2) implies x1 = x2 (x1, x2 ∈ M).

(c) For every y ∈ M there exists at most one x ∈ M such that α(x) = y.

� Exercise 2. Let α, β ∈ MM. Show that

(a) if α and β are injective, then so is the product αβ;

(b) if α and β are surjective, then so is the product αβ.

� Exercise 3. Let α, β ∈ MM such that βα = 1M. Show that α is injective and β is

surjective.

As in any monoid, an element α ∈ MM is said to be invertible if there exists an

element β ∈ MM such that αβ = 1M = βα. If that is the case, β is called an inverse
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of α. If a mapping is invertible, then its inverse is unique (this is Problem 2), and is

denoted by α−1.

Proposition 1. A transformation of M is invertible if and only if it is both injective

and surjective (i.e., bijective).

Proof. (⇒ ) Suppose that α ∈ M has an inverse β = α−1. Then

βα = 1M and αβ = 1M.

These two conditions and Exercise 2 give both injectivity and surjectivity of α.

(⇐ ) Conversely, if we suppose that α is bijective, for any y ∈ M we can find a unique

element x ∈ M such that α(x) = y. Setting β(y) := x, we define a map β : M → M

such that αβ = 1M = βα. Thus α−1 = β. �

Corollary 2. If α ∈ MM is invertible, then α−1 is also invertible and (α−1)
−1

= α.

Proof. The equations

α−1α = 1M and αα−1 = 1M

show that α is the inverse of α−1. �

Corollary 3. If α, β ∈ MM are invertible, then the product (composition) αβ is

also invertible, and (αβ)−1 = β−1α−1.

Proof. The equations

(αβ)(β−1α−1) = α(ββ−1)α−1 = αα−1 = 1M

(β−1α−1)(αβ) = β−1(α−1α)β = β−1β = 1M

imply that β−1α−1 is the inverse of αβ. �

Let M be a non-empty set. An invertible transformation of M is called a permutation

(or symmetry) of M. The collection of all permutations of M form a group, denoted by

SM and called the symmetric group on M. So

(1) SM :=
{
α ∈ MM : α invertible

}
.

Note: A monoid G all of whose elements are invertible is called a group. In other words,

the following axioms must hold:

(G1) a binary operation (g1, g2) 7→ g1g2 is defined on the set G;

(G2) this operation is associative: (g1g2)g3 = g1(g2g3) for all g1, g2, g3 ∈ G;

(G3) G has a neutral (identity) element 1G = 1: g1 = 1g = g for all g ∈ G;

(G4) every element g ∈ G has an inverse g−1: gg−1 = g−1g = 1.
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A group G is said to be Abelian if the group operation is commutative (g1g2 = g2g1 for

all g1, g2 ∈ G); the name “Abelian” is in honour of the Norwegian mathematician N.H. Abel

(1802–1829). The term “group” itself was introduced by the French mathematician E. Galois

(1811–1832) who considered finite groups of permutations.

A subgroup of a group G is a subset of G which itself forms a group under the group

operation (multiplication). A non-empty subset H of a group G is a subgroup if and only if

g−1
1 g2 ∈ H whenever g1, g2 ∈ H. If H is a subgroup of G we write H ≤ G; H is said to be a

proper subgroup if H 6= G. Any intersection of subgroups is a subgroup of G.

Here are some examples of groups.

(1) Groups of numbers. Let Z, Q, R, and C denote respectively the set of all integers,

rational numbers, real numbers, and complex numbers. Each set becomes a group if we

specify ordinary addition as the group operation. The sets Q\{0},R\{0}, and C\{0}
are groups with respect to ordinary multiplication. All these groups are Abelian.

(2) Groups of matrices. Let k be a field (think of R or C) and let GL (n,k) denote the

set of all nonsingular n×n matrices over k. Taking matrix multiplication as the group

operation we see that GL (n, k) is a group. This group is called the general linear

group (of degree n over k).

(3) Groups of linear transformations. If V is an n-dimensional vector space over the field

k, let GL (V) denote the set of all bijective linear transformations of V. Then GL (V) is

a group if the usual functional composition is specified as the group operation: αβ(v) :=

α(β(v)) for v ∈ V and α, β ∈ GL (V).

There is a close connection between the groups GL (V) and GL (n,k). For, if a fixed

ordered basis for V is chosen, each bijective linear transformation of V is associated with

a nonsingular n×n matrix over k. This correspondence is an isomorphism from GL (V)

to GL (n, k) (the reason being that when two linear transformations are composed, the

product of the corresponding matrices represents the composite).

(4) Groups of isometries. Let M be a metric space (with a distance function d : M×M→ R).

An isometry of M is a bijective mapping α : M→ M (i.e., a permutation of M) which

preserves distances: d (α(x), α(y)) = d(x, y) for all x, y ∈ M. It is easy to verify that

the set of all isometries of M is a group (with respect to the operation of functional

composition). We shall write this group Isom (M).

Suppose that S is a non-empty subset of (the metric space) M. If α is an isometry,

define α · S to be the set {α(x) : x ∈ S}. The symmetry group of S (with respect

to M) is the set

Sym (S) := {α ∈ Isom (M) : α · S = S}

of all isometries that leave S fixed as a set (together with functional composition).

Again, it is clear that this is a group. The more “symmetrical” the set S is, the larger

is its symmetry group. Thus we arrive at the fundamental idea of a group as a measure

of the symmetry of a structure.

(5) Group-valued functions. Let M be a non-empty set and let G be a group. The set

GM of all functions α : M → G is a group with the group operation defined pointwise:
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αβ(x) := α(x)β(x) for x ∈ M and α, β ∈ GM. In particular, the set RM of all real-

valued functions defined on M is a group; clearly, this group is Abelian.

Notice that the set k[n]×[n] of all k-valued functions defined on the set M = [n]× [n]

(where [n] := {1, 2, . . . , n}) is precisely the set of n× n matrices over (the ring) k. We

shall write this (Abelian) group kn×n.

Definition 1. Any subgroup of the symmetric group SM is called a transformation

group (or permutation group).

The trivial group {1M} and the symmetric group SM itself are, of course, transforma-

tion groups. A collection G ⊆ SM of invertible transformations (permutations) of M is

a transformation group if and only if α−1β ∈ G for all α, β ∈ G.

� Exercise 4.

(a) Let G be a group and g ∈ G is such that {g, g2, g3, . . . } is finite. Show that there

exists a positive integer k such that gk = 1.

(b) Let G be a group and let S be a (non-empty) finite subset of G. Prove that S is

a subgroup of G if and only if g1g2 ∈ S for all g1, g2 ∈ S.

Example 2. Let k = R or C. In the general linear group GL (n,k), consider the

subset SL (n,k) of matrices with determinant 1:

SL (n,k) := {a ∈ GL (n,k) : det a = 1} .

Clearly, the identity matrix 1 = Idn ∈ SL (n,k). (The n × n matrix Idn = [δij] ∈
SL (n,k) corresponds to the identity map id kn : kn → kn.) The expression for the

determinant of a product (i.e., det(ab) = det a ·det b ) implies that SL (n,k) is a subgroup

of GL (n,k); it is called the special linear group (of degree n over k).

The group GL (n,k), which contains many other interesting groups (called matrix

groups), has been for mathematicians of several generations a seemingly inexhaustible

source of new ideas and unsolved problems.

Example 3. Transformations of the real line R of the form

τa,b : x 7→ ax+ b (a, b ∈ R, a 6= 0)

are called affine transformations. Clearly, the inverse of any such transformation is

another of the same form: τ−1
a,b : x 7→ 1

a
x− b

a
. The set Aff (1,R) of all these transformations

is a group, called the affine group (of the real line).

� Exercise 5. Show that the product of two affine transformations τa,b and τc,d is also

an affine transformation.
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The group Aff (1,R) can be viewed as a group of 2× 2 matrices over R: the transfor-

mation τa,b corresponds to the matrix

[
1 0

b a

]
∈ GL (2,R) because

[
1 0

b a

][
1

x

]
=

[
1

ax+ b

]
.

� Exercise 6. Use the fact that[
1 0

b a

]−1

=

[
1 0

− b
a

1
a

]

to work out the inverse of (the affine transformation) τa,b.

The group Aff (1,R) contains the subgroup GL (1,R) of linear transformations (affine

transformations which leave the point x = 0 fixed), and the subgroup of “translations”

x 7→ x+ b.

Example 4. A Möbius transformation (or a fractional linear transformation) is a

function µ of a complex variable z that can be written in the form

(2) µ(z) =
az + b

cz + d

for some complex numbers a, b, c, d with ad− bc 6= 0.

The deceptively simple form of (2) conceals two problems. First, a Möbius transfor-

mation can be written in the form (2) in many ways (just as a rational number can be

written as r
s

in many ways). The second problem stems from the fact that, for example,

z 7→ 1
z−z0 is not defined at the point z0; this means that there is no subset of C on which

all Möbius maps are defined. Informally, the first difficulty is resolved by saying that the

4-tuple (a, b, c, d) is determined within a (complex) scalar multiple. The second difficulty

is resolved by joining an extra point (which is called the point at infinity) to C; this new

point is denoted by ∞.

We make the following (standard) conventions: if c 6= 0, we define µ(∞) := a
c

and

µ(−d
c
) :=∞; if c = 0, we define µ(∞) :=∞. The set C ∪ {∞} is called the extended

complex plane (sometimes called the complex projective line) and is denoted by C∞.

It turns out that each Möbius transformation is a bijection of C∞ onto itself (i.e., a

permutation of the set C∞). The set Möb of all Möbius transformations (on C∞) is a

group, called the Möbius group.

� Exercise 7. Show that

(a) the product of two Möbius transformations is another Möbius transformation;

(b) each Möbius transformation has an inverse which is also a Möbius transformation.



8 C.C. REMSING

1.2. Permutations of a finite set. Let M be a finite set with m elements. We may

assume that M = {1, 2, . . . ,m} =: [m]. The group SM is called the symmetric group

on m elements and is denoted by Sm. The elements of Sm are called permutations

(of degree m).

� Exercise 8. Let M be a finite set with m elements. Show that∣∣∣MM
∣∣∣ = mm and |Sm| = m!.

(The symbol |S| denotes the number of elements of the finite set S.)

It is customary, and convenient, to write a permutation π ∈ Sm in the form

π =

[
1 2 . . . m

π(1) π(2) . . . π(m)

]
where the image π(i) of i is placed in the second row underneath i in the first row; for

example, the permutation (of degree four) such that 1 7→ 4, 2 7→ 2, 3 7→ 1 and 4 7→ 3 is

denoted by [
1 2 3 4

4 2 1 3

]
.

Two permutations π, σ ∈ Sm are multiplied by the usual rule for composing maps:

(πσ)(i) = π(σ(i)).

Example 5. The elements of S3 are

1 =

[
1 2 3

1 2 3

]
,

[
1 2 3

2 3 1

]
,

[
1 2 3

3 1 2

]
,

[
1 2 3

2 1 3

]
,

[
1 2 3

3 2 1

]
,

[
1 2 3

1 3 2

]
.

Here are two representative computations:[
1 2 3

3 1 2

][
1 2 3

3 2 1

]
=

[
1 2 3

2 1 3

]
[

1 2 3

2 3 1

]−1

=

[
1 2 3

3 1 2

]
.

Notice that[
1 2 3

3 1 2

][
1 2 3

3 2 1

]
=

[
1 2 3

2 1 3

]
6=

[
1 2 3

1 3 2

]
=

[
1 2 3

3 2 1

][
1 2 3

3 1 2

]
.

Therefore the symmetric group S3 is not Abelian. We can immediately say that Sm is

not Abelian when m ≥ 3. Why ? (In 1770, J.L. Lagrange (1736–1813) studied the

groups S2,S3 and S4 in relation to the solutions of equations of degree 2, 3 and 4.)
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Permutations in Sm can be decomposed into products of simpler permutations. Let

a1, a2, . . . , ak ∈ [m]. A permutation π ∈ Sm such that

a1 7→ a2 7→ a3 7→ · · · 7→ ak 7→ a1

and leaving all other integers in [m] fixed, is called a cyclic permutation and is denoted

by (a1 a2 . . . ak). The number k is its length and a cyclic permutation of length k is

called a k-cycle. If a ∈ [m], then the 1-cycle (a) is the identity permutation 1 ∈ Sm.

Example 6. The elements of S3 are (in cycle notation)

1 = (1) = (2) = (3), (1 2), (1 3), (2 3), (1 2 3), (1 3 2).

Notice that the calculation in Example 5 becomes

(1 3 2)(1 3) = (1 2) 6= (2 3) = (1 3)(1 3 2).

Two cyclic permutations α = (a1 a2 . . . ar) and β = (b1 b2 . . . bs) in Sm are said to

be disjoint if ai 6= bj for all i, j ∈ [m]. For example, (1 2 4) and (3 5 6) are disjoint,

but (1 2 4) and (3 4 6) are not. Disjoint cycles commute; that is, if α and β represent

disjoint cycles, then αβ = βα (this is Problem 3).

Theorem 4. Any permutation of a finite set is either a cycle or can be written as

a product of pairwise disjoint cycles; and, except for the order in which the cycles are

written, and the inclusion or omission of 1-cycles, this can be done in only one way.

We shall omit the proof of this theorem, but it is illustrated in the following example.

Example 7. In each of the following equations the cycles on the right are pairwise

disjoint. [
1 2 3 4 5

3 4 1 5 2

]
= (1 3)(2 4 5) = (2 4 5)(1 3)

(1 4 5)(2 3 5) = (1 4 5 2 3)

(1 6)(1 5)(1 4)(1 3)(1 2) = (1 2 3 4 5 6)

(1 2 3 4)−1 = (4 3 2 1) = (1 4 3 2)

(1 5 4 6 3)(4 3 6)(2 5) = (1 5)(2 4).

Note: A 2-cycle is called a transposition. For example, the transpositions in S3 are

(1, 2), (1, 3) and (2, 3). It can be verified that every permutation in Sm is a transposition or a

product of transpositions. The decomposition of permutations into transpositions is not unique.
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For example, we can write

(1 2 3 4) = (1 4)(1 3)(1 2)

= (1 2)(2 3)(3 4)

= (1 2)(1 4)(2 3)(1 4)(3 4).

In general, it can be proved that the number of transpositions needed is necessarily either even

or odd, depending only on the given permutation. So, a permutation (in Sm ) which can be

expressed as the product of an even number of transpositions is called an even permutation;

the others are odd permutations. Since

(a1 a2 . . . ak) = (a1 ak)(a1 ak−1) · · · (a1 a3)(a1 a2)

a cyclic permutation is even precisely when its length is odd.

� Exercise 9. Show that the set of all even permutations in Sm forms a subgroup of

Sm for each m ≥ 2. (This subgroup is called the alternating group on m elements and is

denoted by Am.)

� Exercise 10. If α, β are elements of Sm, check that αβα−1β−1 always lies in Am,

and that αβα−1 belongs to Am whenever β is an even permutation. Work out these elements

when m = 4, α = (2 1 4 3) and β = (4 2 3).

� Exercise 11. Show that the symmetry group of a rectangle which is not a square has

four elements. By labeling the vertices 1, 2, 3, 4, represent the symmetry group as a group of

permutations on four elements. (This is the so-called Klein four-group V4.)

1.3. Morphisms of groups. The question of deciding when we should regard two groups

as being “the same” group is an important one. What we need is a formal way of

identifying groups that have identical structures; the identification of two groups is given

by a special mapping called an isomorphism.

Definition 8. Let G,G be groups. A mapping Φ : G→ G is an isomorphism if

(I1) Φ is a bijection;

(I2) Φ(gh) = Φ(g)Φ(h) for all g, h ∈ G.

If such a Φ exists, we say that G and G are isomorphic groups and we write G ∼= G.

Example 9. Consider the exponential function exp : R → R+, x 7→ ex (here

R+ := {x ∈ R : x > 0}). It is known that this function is a bijection (from R onto R+).

The crucial property ex+y = exey of exp is exactly the condition (I2) that is needed to

show that exp is an isomorphism; thus the (additive) group (R,+) is isomorphic to the

(multiplicative) group (R+, ·).
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� Exercise 12. Show that the (additive) group R is not isomorphic to the (multiplica-

tive) group R \ {0}.

� Exercise 13. Let Φ : G→ G be an isomorphism. Show that

(a) if G is Abelian, then so is G;

(b) Φ(1G) = 1G;

(c) Φ(g−1) = Φ(g)−1 for all g ∈ G.

� Exercise 14. Show that if Φ1 : G1 → G2 is an isomorphism, then so is Φ−1
1 : G2 → G1.

If, in addition, Φ2 : G2 → G3 is an isomorphism, then so is Φ2 ◦ Φ1 : G1 → G3.

The first representation theorem (for groups) was proved by A. Cayley (1821–1895)

in 1878; it tells us that any group can be represented as (isomorphic to) something rea-

sonably concrete: a group of permutations. In other words, the study of subgroups of

symmetric groups is no less general than the study of all groups.

Theorem 5. (Cayley’s Theorem) Every group G is isomorphic to a permutation

group on G (i.e., a subgroup of SG).

Proof. Each element a ∈ G gives a permutation La : G→ G defined by La(g) := ag. (La
is injective because if La(g1) = La(g2), then ag1 = ag2 giving g1 = a−1ag1 = a−1ag2 = g2.

It is also surjective since if h ∈ G, then La(a
−1h) = aa−1h = h.) We call La the left

translation by a. Let

G := {La : a ∈ G} ⊆ SG.

We have

La(Lb(g)) = La(bg) = a(bg) = (ab)g = Lab(g)

for all g ∈ G. Therefore the product of two elements of G lies in G. The identity element

1G of SG belongs to G, and the inverse of La in SG is La−1 , which is also in G. This

shows that G is a subgroup of SG.

The correspondence

Φ : G→ G, a 7→ La

is certainly surjective, and it sends the multiplication of G to that of G because ab 7→
Lab = LaLb. It is injective since if La = Lb, then a = La(1) = Lb(1) = b. Therefore, we

have constructed an isomorphism between G and the subgroup G of SG. �

Corollary 6. Every finite group of order m is isomorphic to a subgroup of Sm.

Proof. If the elements of G are labeled 1, 2, . . . ,m in some way, then each permutation

of G induces a permutation of [m] = {1, 2, . . . ,m}. This gives an isomorphism from SG

to Sm, and the subgroup G ≤ SG is therefore isomorphic to a subgroup G′ of Sm. As

G is isomorphic to G, and the composition of two isomorphisms is an isomorphism (this

is Exercise 14), G is isomorphic to G′. �
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Note: Despite its simplicity, Cayley’s Theorem has an important meaning for group

theory. It shows the existence of a sort of “universal object” – the family (Sn)n∈N of symmetric

groups – in which all finite groups (considered up to isomorphism) live. The phrase “up to

isomorphism” is typical, not only of group theory, but of all mathematics, which tends to

consider at once all objects having common properties.

If G = G in the definition of an isomorphism, we have the concept of an isomorphism

Φ : G → G of a group G to itself. Such an isomorphism is called an automorphism

of G. For example, the identity mapping id G = 1G : G → G (not to be confused with

the identity element 1G = 1 of G) is an automorphism. In general, a group G also has

non-trivial automorphisms. It is easy to see that the set Aut (G) of all automorphisms of

a group G forms a group, in fact, a subgroup of the symmetric group SG.

The group of automorphisms Aut (G) of a group G contains a very special subgroup,

which is denoted by Inn (G) and is called the group of inner automorphisms. Its

elements are the mappings

Ia : G→ G, g 7→ aga−1.

(The inner automorphism Ia is also referred to as the conjugation map; note that Ia =

La ◦Ra−1 , where Ra−1 : g 7→ ga−1 is the right translation by a−1.)

� Exercise 15. Verify that the set Inn (G) := {Ia : a ∈ G} is a subgroup of Aut (G).

The mapping

I : G→ Inn (G), a 7→ Ia

satisfies property (I2) in the definition of an isomorphism: I(ab) = I(a) ◦ I(b). However,

property (I1) is not necessarily satisfied. For example, if G is an Abelian group, then

aga−1 = g for all a, g ∈ G; that is, Ia = 1G for all a ∈ G and so Inn (G) only consists of

the identity element 1G.

Note: One way to study a relatively large and complicated group is to study its smaller

and less complicated subgroups. But it would also be useful to be able to study the group as a

whole. Homomorphisms, which are more general than isomorphisms, can help to do just that.

A homomorphism is a mapping from one group to another that preserves the group operation

but is not necessarily one-to-one. Thus the image of a homomorphism can be smaller than

the domain, but it will generally reflect some essential features of the domain. Even more

importantly, subgroups and images of homomorphisms can be used together to show that most

groups are built up from smaller component groups. The concept of “homomorphism” also

extends to other algebraic structures (for instance, to rings, fields, modules and algebras); it is

unquestionably one of the most important concepts in algebra.
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Definition 10. A mapping Φ : G → G from the group G to the group G is called

a homomorphism if

Φ(gh) = Φ(g)Φ(h) for all g, h ∈ G.

Various properties of isomorphisms were checked (Exercise 13). Those arguments

which do not use the fact that an isomorphism is a bijection are equally valid here.

Therefore if Φ : G→ G is a homomorphism, then

(H1) Φ(1G) = 1G.

(H2) Φ(g−1) = Φ(g)−1 for all g ∈ G.

(H3) The image Im Φ := {Φ(g) : g ∈ G} of G is a subgroup of G.

Definition 11. The kernel of the homomorphism Φ : G→ G is the set

Ker Φ := {g ∈ G : Φ(g) = 1G}.

Theorem 7. If Φ : G→ G is a homomorphism, then its kernel Ker Φ is a subgroup

of G. Moreover, Φ is one-to-one if and only if Ker Φ = {1G}.

Proof. Let a, b ∈ Ker Φ. Then we have

Φ(a−1b) = Φ(a−1)Φ(b) = Φ(a)−1Φ(b) = 1G 1G = 1G

hence a−1b ∈ Ker Φ. This shows that Ker Φ is a subgroup of G.

Since 1G ∈ Ker Φ, it is clear that if Φ is one-to-one, then Ker Φ = {1G}. Why ?

Assume, on the other hand, that Ker Φ = {1G}. If a, b ∈ G and Φ(a) = Φ(b), then we

have

1G = Φ(b)−1Φ(b) = Φ(a)−1Φ(b) = Φ(a−1b)

hence a−1b ∈ Ker Φ and so a = b. This proves that Φ is one-to-one. �

Let Φ : G→ G be a homomorphism. In general, Φ is neither injective nor surjective.

We can make Φ into a surjective mapping by replacing G by Im G (which is a subgroup of

G). So the “main” difference between a homomorphism and a isomorphism is the presence

of a non-trivial kernel Ker Φ (which is, one might say, a measure of non-injectivity of Φ).

If Ker Φ = {1G} , then Φ : G→ Im Φ is an isomorphism.

Let H = Ker Φ ≤ G. We have (for h ∈ H, g ∈ G)

Φ(ghg−1) = Φ(g) Φ(h) Φ(g)−1 = Φ(g) 1G Φ(g)−1 = 1G

i.e., ghg−1 ∈ H; hence, gH g−1 ⊆ H. If we replace g by g−1 here, we obtain g−1 H g ⊆ H

so that H ⊆ gH g−1. Thus

(3) gH g−1 = H for all g ∈ G.

A subgroup which has this property is called a normal subgroup (or invariant subgroup);

if H is a normal subgroup of G, we write H P G. We have thereby proved
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Theorem 8. The kernel of a homomorphism is always a normal subgroup.

It is a remarkable fact that the converse of this theorem holds; that is, not only is the

kernel of a homomorphism a normal subgroup, but every normal subgroup is the kernel

of a homomorphism (this is Exercise 18).

� Exercise 16. Let H be a subgroup of G. Show that the following statements are

logically equivalent.

(a) gH g−1 = H for all g ∈ G.

(b) gH = H g for all g ∈ G.

(c) gH g−1 ⊆ H for all g ∈ G.

Note: The terms “surjective map” (map onto), “injective map” (one-to-one map or imbed-

ding) and “bijective map” (one-to-one correspondence) which can be used for maps between any

sets (with or without any structure) are often replaced by other terms when used for groups

(the same happens for other mathematical structures). We use the terms epimorphism (ho-

momorphism onto), monomorphism (homomorphism whose kernel is the identity element) and

isomorphism (homomorphism which is both an epimorphism and a monomorphism). There is

a tendency to replace the term homomorphism with the word morphism.

We now give some further examples of group homomorphisms.

Example 12. The function

Φ : x 7→ e2πix

is a homomorphism from the (additive) group R to the (additive) group C. This homo-

morphism is neither injective nor surjective. It is very easy to see that the kernel is Z
(the group of integers) and the image group is the circle S1 := {z ∈ C : |z| = 1} ≤ C.

Example 13. The determinant function

Φ : GL (n,k)→ k \ {0}, a 7→ Φ(a) := det a

is a homomorphism from the general linear group GL (n,k) to the (multiplicative) group

R \ {0}. By definition, we have that SL (n,k) = Ker Φ.

Example 14. Let π be a permutation in Sn, and let π = τ1τ2 · · · τk be any de-

composition of π into a product of transpositions. Then the number ε(π) := (−1)k is

completely determined by π and does not depend on which decomposition is used. ε(π)

is called the signature of π.

The function

sgn : Sn → {−1, 1}, π 7→ ε(π)
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is a (surjective) homomorphism from the symmetric group Sn to the (multiplicative)

group {−1, 1} ≤ R \ {0}. Clearly, the kernel of (the signature epimorphism) sgn is the

alternating group An.

Example 15. Consider the function Φ : S3 → GL (3,R) defined as follows:

1 7→

1 0 0

0 1 0

0 0 1

 , (1 2) 7→

0 1 0

1 0 0

0 0 1

 , (1 3) 7→

0 0 1

0 1 0

1 0 0


(2 3) 7→

1 0 0

0 0 1

0 1 0

 , (1 2 3) 7→

0 0 1

1 0 0

0 1 0

 , (1 3 2) 7→

0 1 0

0 0 1

1 0 0

 .
It is easy to check that Φ is a monomorphism, and that for each π ∈ S3 the determinant

of Φ(π) is ±1, depending on the signature of the permutation π.

In general, there exists a monomorphism Φ : Sn → GL (n,R) such that the matrix

Φ(π), π ∈ Sn has determinant ε(π). (Matrices of the form Φ(π), π ∈ Sn are called

permutation matrices.) The restriction of the monomorphism Φ to the (alternating)

group An is a monomorphism into SL (n,R). Given any finite group G, the composition

Φ ◦L of the map L : G→ Sn (see Cayley’s Theorem) and Φ : Sn → GL (n,R) gives

a monomorphism G→ GL (n,R).

Example 16. Let denote by µabcd the Möbius transformation z 7→ az+b
cz+d

. The function[
a b

c d

]
7→ µabcd

is a (surjective) homomorphism from the general linear group GL (2,C) to the Möbius

group Möb. It is not hard to compute the kernel, which turns out to be the set (subgroup)

of scalar matrices : {λ1 : λ ∈ C \ {0}} ≤ GL (2,C) (this group is isomorphic to C\{0}).

1.4. Cosets and quotient groups. Let H be a subgroup of G.

Definition 17. A left coset of H in G is a set of the form gH := {gh : h ∈ H}.
(The element g is called a coset representative for gH.)

Similarly, we define a right coset H g.

� Exercise 17. Let H be a subgroup of G and let g ∈ G. Show that the following

statements are logically equivalent.

(a) g ∈ H.

(b) gH = H.

(c) H g = H.
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If H = Ker Φ is the kernel of a homomorphism, then gH = H g because H is normal

in G (see Theorem 7 and Exercise 16). Note that the subgroup H itself is a coset :

H = 1G H = H 1G. However, none of the other cosets can be a (proper) subgroup because,

if gH were a subgroup, then we would have 1G ∈ gH, so that 1G = gh, g = h−1 and

hence gH = h−1 H = H.

Theorem 9. Let H be a subgroup of G. Then G is the union of its left cosets, and

any two left cosets are either equal or disjoint. Further, the left cosets aH and bH are

equal if and only if a−1b ∈ H. (Similar statements are true for right cosets.)

Proof. Since each element g ∈ G is contained in the coset gH, the set G is a union of

left cosets of H: G =
⋃
gi H. Suppose that two left cosets aH and bH have an element

in common: g = ah = bh′. Then b = ahh′−1, and any element bh′′ of the coset bH has

the form a(hh′−1h′′). Thus bH ⊆ aH. We similarly prove that every element of aH is

contained in bH. Hence aH = bH.

Let a, b ∈ G such that a−1b ∈ H. Then b ∈ aH and thus bH ⊆ aH. We similarly show

that aH ⊆ bH. Hence aH = bH. Conversely, assume that aH = bH. Then ah = bh′

implies a−1b = hh′−1 ∈ H. This concludes the argument. �

Corollary 10. The partition of G into left cosets of H gives an equivalence relation

on G.

Note: Given a set M, a (binary) relation ∼ on M is called an equivalence relation if

the following conditions hold for all a, b, c ∈ M:

(ER1) a ∼ a (reflexivity);

(ER2) if a ∼ b, then b ∼ a (symmetry);

(ER3) if a ∼ b and b ∼ c, then a ∼ c (transitivity).

The subset [a] := {x ∈ M : a ∼ x} ⊆ M (of all elements equivalent to a given element a) is

called the equivalence class containing a. Clearly, a ∈ [a]. The set of equivalence classes of ∼
form a partition of M. (A partition of a given set is a collection of non-empty, mutually disjoint

subsets such that their union is the whole set.) Conversely, any partition (Ci)i∈I of M defines

an equivalence relation ∼ on M by a ∼ b if and only if a, b ∈ Ci (for some i ∈ I). If a ∈ Ci,
then [a] = Ci and so the sets Ci are precisely the equivalence classes for ∼. In particular, the

partition of the group G into left cosets of its subgroup H induces an equivalence relation ∼
on G, defined by

a ∼ b ⇐⇒ a−1b ∈ H.

(Condition a−1b ∈ H is logically equivalent to condition aH = bH.)

Normal subgroups are important because their (left) cosets form a group in a natural

way.
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Theorem 11. If H is a normal subgroup of G, then the set of all left cosets of H in

G forms a group.

Proof. The product of two left cosets is again a left coset because

(4) (aH)(bH) = (ab) H

for any two elements a, b ∈ G. Accepting this for a moment, the coset 1G H = H acts as

an identity, and (a−1) H is the inverse of aH for each a ∈ G. So we do indeed have a

group.

Just why does (4) hold and what does it have to do with the hypothesis that H be

a normal subgroup of G ? Each element of (aH)(bH) has the form ahbh′ for some

h, h′ ∈ H. Rewrite this as

ab
(
b−1hb

)
h′

and notice that b−1hb ∈ H precisely because H is a normal subgroup of G. Why ? Hence

b−1hb = h′′ for some h′′ ∈ H, giving

ahbh′ = ab
(
b−1hb

)
h′ = ab(h′′h′) ∈ (ab) H.

Thus we have (aH)(bH) ⊆ (ab) H. The reverse inclusion is easier to check (and works for

any subgroup H). Each element of (ab) H has the form abh for some h ∈ H. Rewriting

this as (a1G)(bh) shows that it belongs to (aH)(bH), and we deduce (ab) H ⊆ (aH)(bH).

This completes the argument. �

The group of left cosets of H in G introduced above is called the quotient group (or

factor group) of G by H and denoted by G/H. (Recall that the left cosets of H in G

form a partition of G. Each of these cosets represents a single element in G/H and it is,

in this sense, that we have “divided G by H”.)

� Exercise 18. Show that if H P G, then the mapping

G→ G/H, g 7→ gH

is a surjective homomorphism, and its kernel is H. (This homomorphism is called the natural

homomorphism of G onto G/H.)

The natural homomorphism G → G/H shows that each quotient group of a group G

is a homomorphic image of G. The next theorem shows that the converse is also true:

each homomorphic image of G is (isomorphic to) a quotient group of G.

Theorem 12. (First Isomorphism Theorem) Let Φ : G→ G be a homomorphism

with Ker Φ = H. Then the mapping

Φ̂ : G/H→ Im Φ, gH 7→ Φ(g)

is an isomorphism. (Therefore G/H ∼= Im Φ.)
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Proof. If two cosets aH, bH ∈ G/H are equal, then a−1b ∈ H. Applying Φ gives

Φ(a−1b) = Φ(a)−1Φ(b) = 1G

and therefore Φ(a) = Φ(b). This means that the function Φ̂ : gH 7→ Φ(g) is well defined.

Reversing the above computation shows that if Φ(a) = Φ(b), then aH = bH. So Φ̂ is

injective. The function Φ̂ is a homomorphism because

Φ̂ ((aH)(bH)) = Φ̂ ((ab) H) = Φ(ab) = Φ(a)Φ(b) = Φ̂(aH)Φ̂(bH)

for any cosets aH, bH ∈ G/H. Finally, the image of Φ̂ is the same as the image of Φ.

We have proved that Φ̂ is an isomorphism from G/H to the image of Φ. �

Note: Let π denote the natural projection/homomorphism of G onto G/Ker Φ, and ι

denote the natural inclusion of Im Φ into G. Schematically, the two ways ( Φ and ι ◦ Φ̂ ◦ π ) of

getting from G to G give the same result for every element of G. This is described by saying

that the following diagram commutes:

G
Φ−−−−→ G

π

y xι
G/Ker Φ

Φ̂−−−−→ Im Φ

Two special cases are particularly useful.

Corollary 13. If Φ : G→ G is an epimorphism, then G/Ker Φ is isomorphic to G.

Corollary 14. Suppose Φ : G→ G is an epimorphism. Then Φ is an isomorphism

if and only if its kernel Ker Φ consists just of the identity element of G.

Problems (1–5)

(1) Let M be a finite set and let α : M → M. Prove that the following statements

are logically equivalent.

(a) α is injective.

(b) α is surjective.

(c) α is bijective (i.e., a permutation).

(2) Let α, β, γ ∈ MM such that

βα = γα = 1M and αβ = αγ = 1M.

Deduce that β = γ. (This proves that each invertible mapping has a unique

inverse.)

(3) Assume that α and β are disjoint cycles representing elements of Sm, say α =

(a1 . . . ar) and β = (b1 . . . bs) with ai 6= bj for all i, j ∈ [m].
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(a) Compute (αβ)(ai) and (βα)(ai) for i ∈ [r].

(b) Compute (αβ)(bj) and (βα)(bj) for j ∈ [s].

(c) Compute (αβ)(k) and (βα)(k) for k ∈ [m] with k 6= ai and k 6= bj for all

i, j ∈ [m].

(d) What do parts (a),(b) and (c), taken together, prove about the relationship

between αβ and βα ?

(4) (Second Isomorphism Theorem) Let H, K be subgroups of G with K normal

in G. Then HK is a subgroup of G, H ∩ K is a normal subgroup of H, and the

quotient groups HK/K and H/H ∩ K are isomorphic.

(5) Let G be a group.

(a) Given x ∈ G, the element gxg−1 (= Ig(x)) is known as the conjugate of x

by g. The set of all conjugates of x, that is C(x) := {gxg−1 : g ∈ G} is

known as the conjugacy class of x (in G). Show that the collection of all

conjugacy classes in G constitutes a partition of G.

(b) Given x ∈ G, define the centralizer of x (in G) by

Z (x) :=
{
g ∈ G : gxg−1 = x

}
.

(Thus the centralizer of x consists of all elements that commute with x.)

(i) Show that, for each x ∈ G, the centralizer Z (x) is a subgroup of G.

(ii) Show that conjugates gxg−1 and hxh−1 of x are equal if and only if

g Z (x) = hZ (x). (This means that there is a a one-to-one correspon-

dence between the conjugacy classes of x in G and the set of left cosets

of the centralizer of x.)

(c) The center of G consists of all those elements which commute with every

element of G. It is usually denoted by Z (G) so that

Z (G) := {g ∈ G : gx = xg for all x ∈ G}.

(i) Show that Z(G) is an Abelian subgroup of G, and is made up of the

conjugacy classes which contain just one element.

(ii) Show that the group Inn (G) of inner automorphisms of G is isomorphic

to the quotient group G/Z(G).
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2. Actions of Groups on Sets

Group actions • Orbits and stabilizers • Particular G-sets • Examples of

group actions.

2.1. Group actions. A valuable technique in studying a group is to represent it in terms

of something familiar and concrete: if the elements happen to be permutations or matrices,

however, we may be able to obtain results by using this extra information.

Note: We began with (examples of) transformation groups, i.e., subgroups of the symmetric

group SM on a set M. This approach is consistent both with the historical path along which

group theory developed and with the importance of transformation groups in other areas of

mathematics. The so-called abstract theory of groups, which arose in a later era – the first half

of the 20th century – has gone far beyond transformation groups, but many of the concepts of

this theory bear the imprint of earlier times. In fact, the most common source of these concepts

is the idea of a realization (or representation) of a given group G in SM , where M is some

suitably chosen set.

Let G be a group and M a (non-empty) set.

Definition 18. A (left) action of G on M is a function θ : G×M→ M such that

(LA1)′ θ(g2, θ(g1, x)) = θ(g2g1, x) for all g1, g2 ∈ G and x ∈ M;

(LA2)′ θ(1, x) = x for all x ∈ M.

We write g · x in place of the pedantic notation θ(g, x). We can now write the above

conditions (axioms) as follows:

(LA1) g2 · (g1 · x) = (g2g1) · x for all g1, g2 ∈ G and x ∈ M;

(LA2) 1 · x = x for all x ∈ M.

The set M is called a (left) G-set. One also says that the group G acts on the set M.

Note: In this definition, the elements of G act from the left. There is a “right” version

of G-sets that is sometimes convenient. Define a right action of G on M to be a function

τ : M× G→ M, (x, g) 7→ x · g such that

(RA1) (x · g1) · g2 = x · (g1g2) for all g1, g2 ∈ G and x ∈ M;

(RA2) x · 1 = x for all x ∈ M.

It is easy to see that every right action τ : M×G→ M gives rise to a left action θ : G×M→ M

if one defines θ(g, x) := x · g−1.
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Any action of G on M induces an action of G on (the Cartesian product) Mk =

M× · · · ×M (k factors) by the obvious rule:

g · (x1, . . . , xk) := (g · x1, . . . , g · xk) .

� Exercise 19. Let G be a group and let θ1 : G×M1 → M1 and θ2 : G×M2 → M2 be

actions of G on the sets M1 and M2, respectively. Define

M1 + M2 := (M1 × {1}) ∪ (M2 × {2})

and θ∨ : G× (M1 + M2)→ M1 + M2 by

(g, (x, i)) 7→ (g · x, i)

for i = 1, 2, x ∈ Mi and g ∈ G. Show that θ∨ is an action (of G on the sum M1 + M2).

� Exercise 20. Let G be a group and let θ1 : G×M1 → M1 and θ2 : G×M2 → M2 be

actions of G on the sets M1 and M2, respectively. Define θ∧ : G× (M1 ×M2)→ M1 ×M2 by

(g, (x1, x2)) 7→ (g · x1, g · x2)

for x1 ∈ M1, x2 ∈ M2 and g ∈ G. Show that θ∧ is an action (of G on the product M1 ×M2).

There is also an induced action of G on the set of all subsets P(M) of M. We set

g · ∅ := ∅ and, if S is a non-empty subset of M, then we set g · S := {g · x : x ∈ S}.

� Exercise 21. Let M and N be sets, and let θ be an action of the group G on the set

M. Consider the set NM of all N-valued functions defined on M. Show that the correspondence

(g, F ) 7→ g · F := F ◦ θg−1

for g ∈ G and F : M→ N, defines an action (of G on the function set NM). (For M = R this

gives the induced action on the function set FM = RM; for N = {0, 1} this gives the induced

action on the the power set P(M) = {0, 1}M.)

� Exercise 22. Let L and M be sets, and let τ be an action of the group G on the set

M. Consider the set ML of all M-valued functions defined on L. Show that the correspondence

(g, C) 7→ g · C := τg ◦ C

for g ∈ G and C : L → M, defines an action (of G on the function set ML). (For L = R this

gives the induced action on the set CM = MR of M-valued parametrised curves.)

Example 19. Let G be a subgroup of the symmetric group SM on M: G ≤ SM (G

is a transformation group). Then the function

G×M 3 (α, x) 7→ α(x) ∈ M

is an action of G on M; this is the most frequent case. For example, G can be defined

as a subgroup of SM satisfying certain conditions.
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Example 20. (The regular representation) Given a group G, we can make G into

a G-set (i.e., take M to be G) by defining g · x to be the group product : the function

G× G 3 (g, x) 7→ gx ∈ G

is an action of G on itself. The map La : G→ G, g 7→ ag is the left translation by a.

Our action (by left translations) induces an action of G on the set of subsets of G. In

particular, let H ≤ G. It is clear that the function (denoted λH )

G× G/H 3 (g, aH) 7→ g(aH) := (ga) H

is an action of G on the orbit set G/H. The corresponding homomorphism

ΦH : G→ SG/H, g 7→ λHg ( : G/H→ G/H)

is the so-called (left) regular representation of G. (Here λHg takes the left coset aH

to (ga) H.)

� Exercise 23. Show that the map ΦH : G→ SG/H, g 7→ λHg is a homomorphism.

The regular representation of the group G by permutations of cosets of the subgroup

H in G is much more efficient than the one obtained using Cayley’s Theorem.

Example 21. (The conjugation action) Another way to make G into a G-set is to

use conjugation: the function

G× G 3 (g, x) 7→ gxg−1 ∈ G

is also an action of G on itself. Clearly, 1x = x and

g2(g1x) = g2

(
g1xg

−1
1

)
g−1

2 = (g2g1)x(g2g1)−1 = (g2g1)x

for all x ∈ G. The conjugation action carries over to subsets and subgroups of G. Two

subsets S,T ⊆ G are conjugate if T = g S g−1 for some g ∈ G. Let H ≤ G. It is

customary to call (the group) N (H) := {g ∈ G : gH g−1 = H} the normalizer of H in

G. (The subgroup H is normal in G precisely when N (H) = H.)

Note: The first mathematicians who studied group-theoretic problems (e.g., J.L. La-

grange) were concerned with the question: What happens to the polynomial f(X1, . . . , Xm)

if one permutes the variables ? More precisely, if π ∈ Sm, define

π · f(X1, . . . , Xm) := f(Xπ(1), . . . , Xπ(m));

given f ∈ R[X1, . . . , Xm], how many distinct polynomials π ·f are there ? (Here R[X1, . . . , Xm]

denotes the set – in fact, ring – of polynomials in m variables X1, . . . , Xm with real coefficients.)

If π · f = f for all π ∈ Sm, then (the polynomial) f is called a symmetric function. If

a polynomial f(X) =
∑m

i=0 aiX
i ∈ R[X] has roots r1, . . . , rm, then each of the coefficients ai

of f(X) = amΠm
i=0(X − ri) is a symmetric function of r1, . . . , rm. Other interesting functions

of the roots may not be symmetric. For example, the discriminant of f(X) is defined to be
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the number d2, where d := Πi<j(ri − rj). If D(X1, . . . , Xm) = Πi<j(Xi −Xj), then it is easy

to see that π · D = ±D for every π ∈ Sm. Indeed, D is an alternating function of the

roots: π · D = D if and only if π ∈ Am. This suggests a slight change in viewpoint. Given

f(X1, . . . , Xm), find S(f) := {π ∈ Sm : π · f = f}; this is precisely what Lagrange did. It

is easy to see that S(f) ≤ Sm; moreover, f is symmetric if and only if S(f) = Sm, while

S(D) = Am.

Modern mathematicians are concerned with the same type of problem. If M is a G-set, then

the set of all α : M → M such that α(g · x) = α(x) for all x ∈ M and all g ∈ G is usually

valuable in analyzing M.

Example 22. Let k be a field (think of either R or C). The symmetric group Sm

acts on the set M = k[X1, . . . , Xm] by

Sm ×M 3 (π, f) 7→ π · f

where π · f(X1, . . . , Xm) = f(Xπ(1), . . . , Xπ(m)).

� Exercise 24. For any permutation π ∈ Sm and x = (x1, . . . , xm) ∈ Rm, define

π · x :=
(
xπ−1(1), . . . , xπ−1(m)

)
.

Show that α · (β · x) = (αβ) · x for α, β ∈ Sm and x ∈ Rm. (This means that the map

(π, x) 7→ π · x is an action of the symmetric group Sm on the set Rm. What is the induced

action on the function set FRm ? But on the ring of polynomial functions R[X1, . . . , Xm] ?)

Any homomorphism Φ : G→ SM gives rise to an action θ of G on M defined by

θ(g, x) = g · x := Φ(g)(x)

for all g ∈ G and all x ∈ M. This really is an action because

g2 · (g1 · x) = Φ(g2) (Φ(g1)(x)) = (Φ(g2)Φ(g1)) (x) = Φ(g2g1)(x) = (g2g1) · x

for all g1, g2 ∈ G and all x ∈ M, and

1 · x = Φ(1)(x) = 1M(x) = x

for all x ∈ M.

Conversely, suppose that θ is an action of G on M. For a fixed element g ∈ G consider

the mapping

θ(g, ·) := θg : M→ M, x 7→ g · x.

This is invertible: it has an inverse, namely θg−1 because (for all x ∈ M)

θgθg−1(x) = θg (θg−1(x)) = g · (g−1 · x) = (gg−1) · x = 1 · x = x

and similarly θg−1θg(x) = x, which shows that

θgθg−1 = θg−1θg = 1M.
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In this way each element of G acts as a permutation of M. Furthermore, the map

Φ : G→ SM, g 7→ θg

is a homomorphism. Indeed, for all x ∈ M, we have

Φ(g2g1)(x) = (g2g1) · x = g2 · (g1 · x) = Φ(g2) (Φ(g1)(x)) = (Φ(g2)Φ(g1)) (x)

and so

Φ(g2g1) = Φ(g2)Φ(g1).

We call a homomorphism Φ : G→ SM a permutation representation of G on M or

a representation of G as a group of transformations (permutations) of M. What we have

just shown is that every such representation gives rise to an action of G on M and that,

conversely, every action gives rise to a permutation representation.

To summarize, we have

Proposition 15. There is a one-to-one correspondence between actions of the group

G on the set M and the representations of G by permutations of M.

In view of this result we shall use the language of group actions and of permutation

representations interchangeably.

Note: All this can be done with right actions, but a little care must be exercised. If

(x, g) 7→ x · g is the right action of G on M, the corresponding permutation representation of

G on M is given by g 7→ τ(·, g−1). (Without this inverse we would not obtain a homomorphism

from G to SM but an “anti-homomorphism” or, if one prefers, a homomorphism from the

opposite group Gop to SM.)

One can use right translations Ra : G→ G, g 7→ ga to define natural actions of G on itself

and on the set of right cosets (denoted by G\H). The action ρH of G on the set G\H has a

corresponding right regular representation

G→ SG\H, g 7→ ρHg−1 .

A major theme of mathematical endeavour is to understand groups in terms of their

actions. An interesting (and important) case is when the set M on which the group acts

carries some extra structure—which will generally have a “geometric” flavour—and we

will require the group action to respect this structure.

Consider the case when M = Rm, which is a vector space, and require G to act on

Rm by linear transformations. That is, we replace the symmetric group SRm with

GL (Rm), the group of invertible linear maps Rm → Rm; this group is (isomorphic to) the

general linear group GL (m,R). A homomorphism ρ : G → GL (m,R) is called a linear

representation of G. To put it another way, a linear representation of G is a concrete

realization of the group G as a collection of invertible matrices.
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A faithful linear representation of a group G is an embedding of G into a matrix

group; that is, the homomorphism ρ : G → GL (m,R) is injective: distinct elements of

the group correspond to distinct matrices. In this case we refer to G as a linear group.

Example 23. For every m ∈ N, the symmetric group Sm can be embedded into

GL (m,R). In order to embed Sm into (the general linear group) GL (m,R), we must

find an injective homomorphism ρ : Sm → GL (m,R); this involves assigning to each

permutation π ∈ Sm an invertible linear map ρπ : Rm → Rm.

Given an ordered basis (ei)1≤i≤m of Rm, let ρπ : Rm → Rm be the unique linear map

that permutes these elements according to the permutation π ∈ Sm. That is, each π

corresponds to a bijection π : [m] → [m]; define now the action of ρπ on the vectors ei

by

ρπ(ei) := eπ(i), i = 1, . . . ,m.

Since the vectors ei are linearly independent, ρπ extends uniquely to a linear map on

their span, which is Rm: it sends the vector x = x1e1 + · · ·+ xmem ∈ Rm to the vector

ρπ(x) = x1ρπ(e1) + · · ·+ xmρπ(em)

= x1eπ(1) + · · ·+ xmeπ(m)

= xπ−1(1)e1 + · · ·+ xπ−1(m)em ∈ Rm.

(The action (π, x) 7→ π · x := ρπ(x) of Sm on Rm is given by π · (x1, . . . , xm) =

(xπ−1(1), . . . , xπ−1(m)).) The map ρ : π 7→ ρπ is a homomorphism since

ρπρσ(ei) = ρπ
(
eσ(i)

)
= eπ(σ(i)) = ρπσ(ei).

(It is easy to see that this homomorphism is injective.)

Choosing the standard basis for the vector space Rm, the linear transformations ρπ
are represented by permutation matrices P = Φ(π) ∈ GL (m,R) (see Example 15).

� Exercise 25. Verify that the natural homomorphism ρ : Sm → GL (m,R) is injective.

One wants to think of two G-sets M and M as being “essentially the same” if M can

be identified with M in such a way that the actions θ and θ become the same. Formally,

we say that M and M are equivalent if there exist an automorphism φ ∈ Aut (G) and

a bijection β : M→ M such that for all g ∈ G the following diagram commutes:

M
β−−−→ M

θg

y yθφ(g)
M

β−−−→ M

In other words, β(g · x) = φ(g) · β(x) for all x ∈ M and all g ∈ G. (We say that β is

φ-equivariant.)
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� Exercise 26. Show that two G-sets M and M are equivalent if and only if there exist

an automorphism φ ∈ Aut (G) and a bijection β : M → M such that the following diagram

commutes:

G×M
φ×β−−−−→ G×M

θ

y yθ
M

β−−−−→ M

2.2. Orbits and stabilizers. There are two fundamental aspects of G-sets: orbits and

stabilizers. Let M be a G-set (with respect to Φ : G → SM). Two points x, y ∈ M are

said to be G-equivalent if y = g · x for some g ∈ G.

� Exercise 27. Verify that the G-equivalence relation is a genuine equivalence relation

on M (which divides M into disjoint equivalence classes).

Each equivalence class is called a G-orbit. (Usually, we will say simply orbit instead

of G-orbit.) The orbit containing x ∈ M is denoted Orb (x) or Gx; thus

Orb (x) = Gx := {g · x : g ∈ G}.

Note: The notion of an orbit arose from geometry. For example, if G = SO (2) is the group

of rotations of the (Euclidean) plane about the origin, then the orbit of a point P is the circle

centered at the origin passing through P , and the set M = R2 is the union of all the concentric

circles, including the one with zero radius (consisting of a single point, the origin).

Let x ∈ M. Consider the set

St (x) = Gx := {g ∈ G : g · x = x}.

It is called the stabilizer (or the isotropy group) of x.

� Exercise 28. Show that for any G-set M and any element x ∈ M, the stabilizer St (x)

is a subgroup of G.

Example 24. If G acts on itself by left translations and x ∈ G, then Orb (x) = G

(there is only one orbit) and St (x) is the trivial group {1}.

Example 25. If G acts on itself by conjugation and x ∈ G, then Orb (x) is the

conjugacy class C(x) of x (i.e., the set of all group elements of the form gxg−1 as g

varies over G), and

St (x) =
{
g ∈ G : gxg−1 = x

}
= {g ∈ G : gx = xg}

(the centralizer Z (x) of x).
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Example 26. If G acts by conjugation on the set of all its subgroups and H ≤ G,

then Orb (H) = {gH g−1 : g ∈ G} (all the conjugates of H) and St (H) is the normalizer

N (H) of H.

Example 27. Let M = k[X1, . . . , Xm] and G = Sm. If f ∈ M, then Orb (f) is the

set of distinct polynomials of the form π · f, π ∈ Sm, and

St (f) = S (f) = {π ∈ Sm : π · f = f} .

� Exercise 29. Show that St (g · x) = g St (x) g−1 for all x ∈ M and all g ∈ G. (This

means that points in the same orbit have conjugate stabilizers.)

Theorem 16. (Orbit-Stabilizer Theorem) For each x ∈ M, the correspondence

g ·x 7→ g St (x) is a bijection between the orbit Orb (x) and the set G/St (x) of left cosets

of the stabilizer St (x) in G.

Proof. The correspondence is clearly surjective. It is injective because if g St (x) =

g′ St (x), then g = g′h for some element h ∈ St (x), and therefore

g · x = (g′h) · x = g′ · (h · x) = g′ · x.

�

Corollary 17. If G is finite, the size of each orbit is a divisor of the order of G.

Proof. By the Orbit-Stabilizer Theorem, the size of the orbit Orb (x) is |G/St (x)| =
|G|/|St (x)|, therefore

|Orb (x)| · |St (x)| = |G|.

�

� Exercise 30. Let M and M be two G-sets such that there exists a bijection β : M→ M

such that β(g · x) = g · β(x) for all g ∈ G and all x ∈ M. (This means that M and M are

equivalent.) Let x ∈ M and x ∈ M such that x = β(x). Show that St (x) = St (x).

2.3. Particular G-sets. Let M be a G-set (with respect to the homomorphism Φ : G→
SM ). We define some particular properties the action θ : G×M→ M can have.

Definition 28. θ is an effective action if Φ is injective (i.e., Ker Φ = {1}).

This always happens when G ≤ SM. We observe that Ker Φ =
⋂
x∈M St (x), an element

of Ker Φ being exactly an element of G contained in every isotropy group. If θ is not

effective, then there exists a factorization Φ̂ through G/Ker Φ
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G −−−→ G/Ker Φ

Φ

y yΦ̂

SM SM

and G/Ker Φ acts effectively on M.

Example 29. The action of G on itself by conjugation (inner automorphisms) has

the center Z (G) as kernel.

In case of an effective action, we think of the group G as being identified with its image

under (the associated homomorphism) Φ, a subgroup of the symmetric group SM and

we are essentially back with the important special case of permutation (transformation)

groups.

Definition 30. θ is a free action if g · x = x for some x ∈ M implies g = 1.

This means that the transformation θg : x 7→ g · x for g 6= 1 has no fix points

(free means “free of fix points”). The isotropy group is reduced to trivial subgroup:

St (x) = {1} for every x ∈ M. Clearly, every free action is effective. A G-set with a free

action is also called a principal G-set.

Example 31. The action of G on itself by left translations is free.

Definition 32. θ is a transitive action if for x1, x2 ∈ M there exists a g ∈ G such

that g · x1 = x2, and simply transitive if, moreover, the element g is unique.

A simply transitive action is free. Conversely, a free action is simply transitive on each

orbit. Indeed, let x = g1 · x0 = g2 · x0 ∈ Orb (x0). Then

x0 = g−1
2 · x = g−1

2 · (g1 · x0) =
(
g−1

2 g1

)
· x0

and therefore g−1
2 g1 ∈ St (x0) = {1}, hence g1 = g2.

Note: Stabilizers, in some sense, tell us how far a group is from acting simply transitively:

just notice that g · x = h · x ⇐⇒ h−1g ∈ St (x).

Proposition 18. If G is an Abelian group, any effective and transitive action is

simply transitive.

Proof. Let M be a G-set and let x, y ∈ M. Since our action is transitive, there is at

least some element g ∈ G such that g · x = y. Assume that we have g1, g2 ∈ G with

g1 · x = g2 · x = y. We shall prove that, actually, g1 · z = g2 · z for all z ∈ M. As our

action is effective, we must have g1 = g2, and this proves our statement.
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Let z ∈ M. There is some g′ ∈ G such that z = g′ · x. Then we have

g1 · z = g1 · (g′ · x)

= (g1g
′) · x

= (g′g1) · x (since G is Abelian)

= g′ · (g1 · x)

= g′ · (g2 · x)

= (g′g2) · x

= (g2g
′) · x (since G is Abelian)

= g2 · (g′ · x)

= g2 · z.

Therefore, g1 · z = g2 · z for all z ∈ M, as claimed. �

Definition 33. A G-set M is called homogeneous if G acts transitively on M.

Example 34. The action of G on itself by left translations is transitive. For, if

x, y ∈ M = G, and if we take g := yx−1, then gx = y.

Example 35. The action of the general linear group GL (n,k) on kn\{0} is transitive.

For, given any non-zero vector x in kn, there certainly exists an invertible n× n matrix

A over k, whose first column is x and then

A

1
...

0

 = x.

The transitivity of the action follows. Why ?

Example 36. The orthogonal group O (n) acts transitively on the unit sphere Sn−1 ⊂
Rn. More generally, an action of G on M induces a transitive action on each orbit.

It is not difficult to see that every G-set is expressible in a unique way as a disjoint

union of orbits (this is Problem 7). So many questions about actions of groups (on sets)

can be reduced to the study of homogeneous G-sets.

There is a simple method for constructing a homogeneous set (this is Example 20).

Let G be a group and consider a subgroup H ≤ G. Then we can define an action of G

on the orbit set G/H. The left translation Lg : G → G satisfies Lg (aH) = (ga) H and

therefore defines a transformation (of G/H)

λHg : G/H→ G/H, aH 7→ (ga) H.

This makes G/H a G-set, which is homogeneous.
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� Exercise 31. Show that the action (of G on G/H)

G× G/H 3 (g, aH) 7→ (ga) H ∈ G/H

is transitive.

The method of constructing a homogeneous set (as described above) is, in a certain

sense, universal: every homogeneous G-set is equivalent to a (homogeneous) G-set of the

form G/H for a suitable H ≤ G. (This orbit set provides a sort of “canonical form” for

homogeneous G-sets, under equivalence). Indeed, let M be an arbitrary homogeneous

G-set and let x0 ∈ M. Put H = St (x0) ≤ G. Then the map

β : M 3 x = g · x0 7→ gH ∈ G/H

is an equivalence of G. ( β is well defined, bijective and equivariant.)

Note: If M is a homogeneous G-set, then we have (for each x ∈ M)

M = Orb (x) ≈ G/St (x) (one-to-one correspondence).

This equation is invaluable, for it reduces the study of a set M (usually endowed with some

“structure”) to an algebraic problem, namely the study of the pair (G,St (x)).

In the context of group actions (on sets), the homogeneous G-sets play a role somewhat

similar to that played by the vector spaces kn in the context of linear algebra. The result,

stated above, regarding the homogeneous G-sets corresponds to the classical result which states

that every finite-dimensional vector space V over k is isomorphic to some (vector space) kn.

In the same way an isomorphism between V and kn assumes the choice of a basis for V, an

equivalence (G-isomorphism) between a homogeneous G-set M and G/H assumes the choice of

a point in G. Also, in the same way a vector space kn admits a preferred basis, a homogeneous

set admits a preferred point. Finally, the statement that two vector spaces km and kn are

isomorphic if and only if m = n, corresponds to the statement that two homogeneous G-sets

G/H1 and G/H2 are equivalent if and only if H1 and H2 are conjugate in G (this is Problem

10).

2.4. Examples of group actions. We now give some further examples of group actions

on sets.

Example 37. Let M = G be a group. Then G acts on itself in several important

ways:

(a) θg(x) = gx (left translation);

(b) θg(x) = xg−1 (right translation);

(c) θg(x) = gxg−1 (inner automorphism).

Example 38. If M = V is a vector space (over the field k), its linear group

G = GL (V) :=
{
α ∈ VV : α is linear and bijective

}
≤ SV
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acts on M. When V = kn, the group GL (kn) is (isomorphic to) the general linear group

GL (n,k). So the group GL (n,k) acts on kn by left multiplication:

GL (n,k)× kn 3 (A, x) 7→ Ax ∈ kn

(here the elements of kn are viewed as n× 1 matrices over k).

Example 39. Let M = E be an Euclidean vector space, and put

G = O (E) := {α ∈ GL (E) : α is an isometry} .

Then there is a natural action of G on M. When E = Rn, the group O (Rn) is the orthog-

onal group O (n) ≤ GL (n,R). In particular, the rotation group SO (n) acts naturally on

Rn. For n ≥ 1, let

Sn−1 :=
{

(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n = 1
}
⊂ Rn

be the unit sphere. In particular, S2 is the usual sphere in R3. Thus, we have an action

SO (3)× S2 → S2, (R, x) 7→ Rx.

This action is transitive. This is so because, for any two points x, y ∈ S2, there is

a rotation whose axis is perpendicular to the plane containing x, y, and the center of

the sphere (this plane is not unique when x and y are antipodal, i.e., on a diameter).

Similarly, for n ≥ 1, we get an action of SO (n) on Sn−1.

Note: An Euclidean vector space E is a finite-dimensional vector space over R, together

with a positive definite symmetric bilinear form φ (i.e., φ : E × E → R is symmetric and

bilinear, and φ(x, x) > 0 for all x 6= 0). We write φ(x, y) = (x | y) and call this number the

scalar product of x and y. The norm of x is ‖x‖ :=
√
φ(x, x) =

√
(x |x). If (x | y) = 0, we

say that x and y are orthogonal.

The standard example of an Euclidean vector space is E = Rn, with

φ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + · · ·+ xnyn.

An orthogonal set of non-zero vectors is linearly independent. If (ei)1≤i≤n is an orthonormal

basis for E, the coefficients of the decomposition x = x1e1 + · · ·+xnen are given by xi = (x | ei).
Moreover,

(x1e1 + · · ·+ xnen | y1e1 + · · ·+ ynen) = x1y1 + · · ·+ xnyn.

Let E,E be two Euclidean vector spaces of the same dimension, and let α : E→ E be a map.

The following conditions are logically equivalent:

(a) α is linear, and ‖α(x)‖ = ‖x‖ for all x ∈ E;

(b) (α(x) |α(y)) = (x | y) for all x, y ∈ E.

Such a map is necessarily bijective and is called an isometry. The set of all such isometries is

denoted by O (E; E). Every n-dimensional Euclidean vector space is isometric to Rn.

The group O (E) := O (E; E) is called the orthogonal group of E; we write O (n) = O (Rn).

The condition α ∈ O (E) is equivalent to A>A = 1, where A is the matrix of α in some
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(or any) orthonormal basis and 1 is the identity matrix. In particular, detα = ±1. We set

SO (E) := {α ∈ O (E) : detα = 1}. The elements of (the group) SO (E) are called rotations.

Example 40. Let k be a field (think of R or C). Given A ∈ GL (n,k) and b ∈ kn,

we define a map

τA,b : kn → kn, x 7→ Ax+ b.

These maps are known as affine transformations of kn; they constitute the affine

group

Aff (n,k) := {τA,b : A ∈ GL (n,k), b ∈ kn} ≤ Skn .

The group Aff (n,k) acts naturally on kn: this makes kn an Aff (n,k)-set (known as the

n-dimensional affine space over k). Notice that GL (n,k) is a subgroup of Aff (n,k); that

is, invertible linear transformations are some of the affine transformations of kn. Notice

also that the group of translations x 7→ x+ b (which is a normal subgroup of Aff (n,k))

acts on the affine space kn regularly (in the sense of Example 20).

Note: Let M be a (non-empty) set and let V be vector space over the field k (think again

of R or C) considered with its additive group structure. An affine space over k is a structure

(M,V, θ), where θ : V×M→ M is an effective and transitive action on M. The vector space V

is said to underlie the affine space M. We put

θ(v, x) = x+ v.

The map θv = θ(v, ·) is called the translation of M by the vector v. The action θ is simply

transitive (see Proposition 18), so there exists a function Θ : M × M → V such that y =

θ (Θ(x, y), x) for all x, y ∈ M. We set −→xy := Θ(x, y), and sometimes say that −→xy is the free

vector associated with the pair (x, y). We also write −→xy = y−x. The fact that θ is a V-action

can be translated as follows:

(x+ v) + w = x+ (v + w).

In particular, Θ satisfies the following conditions:

(AS1) Θx : M 3 y 7→ Θ(x, y) ∈ V is a bijection for all x ∈ M;

(AS2) Θ(x, y) + Θ(y, z) = Θ(x, z) for all x, y, z ∈ M

since we have Θ−1
x (v) = x+v. (The identity Θ(x, y)+Θ(y, z) = Θ(x, z) is known as Chasles’s

Relation.)

Alternative definition. Given a (non-empty) set M and a vector space V over the field k,

assume that Θ : M ×M → V is a function satisfying conditions (AS1) and (AS2). Then M is

an affine space under the action θ(v, x) = Θ−1
x (v). This indeed is an equivalent definition, for

we have Θ(x, x) = 0, Θ(y, x) = −Θ(x, y), θ(−v) ◦ θ(v) = 1M, and thus

θ(v) ◦ θ(w) = θ(v + w).

Affine maps (morphisms) can be defined between two affine spaces (over the same field k).

Heuristically, such a map consists of a translation and a linear transformation. (If M = M = R,
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we recover the well-known maps x 7→ ax+ b for a, b ∈ R, a 6= 0.) The set

AGL (M) := {α ∈ SM : α is an affine map}

is a group, called the affine group of M. It turns out that (the affine space) M is a homogeneous

AGL (M)-set. The vector space kn has a natural affine structure: when M = V = kn, the

function

kn × kn 3 (x, y) 7→ y − x ∈ kn

induces an action of kn on itself. We write AGL (kn) = Aff (n, k) ≤ Skn .

Example 41. Let G = R and M = S3 := {x ∈ R4 : ‖x‖ = 1} ⊂ R4. Identifying R4

with C2, we can define the action

R× S3 → S3, (t, z, z′) 7→
(
eitz, eitz′

)
.

This example is of great importance in geometry.

Problems (6–10)

(6) (a) The upper half-plane H2 is the (open) subset of R2 consisting of all points

(x, y) ∈ R2 with y > 0. It is convenient to identify R2 with the set of complex

numbers. So

H2 := {z = x+ iy ∈ C : y > 0} .

Define the map

θ : SL (2,R)×H2 → H2,

(
A =

[
a b

c d

]
, z

)
7→ az + b

cz + d
·

Show that θ is an action of the special linear group SL (2,R) on the upper

half-plane H2. Is this action transitive ?

(b) Consider the set of all Möbius transformations µabcd : C∞ → C∞ correspond-

ing to the case a, b, c, d ∈ R with ad− bc = 1. This set is denoted by Möb+
R .

Show that Möb+
R is a subgroup of the Möbius group Möb.

(c) Define the function

Φ : SL (2,R)→ Möb+
R , A =

[
a b

c d

]
7→ µabcd.

Show that Φ is a surjective homomorphism (epimorphism) whose kernel is

Ker (Φ) = {1,−1}. Hence deduce that the group Möb+
R is isomorphic to the

quotient group SL (2,R)/{1,−1}, denoted by PSL (2,R). (This latter group

turns out to be the group of projective transformations of the real projective

line RP1.)
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(7) Show that every G-set can be expressed in just one way as the disjoint union of a

family of orbits.

(8) For which n is the special linear group SL (n,R) acting transitively on Rn \{0} ?

(9) Show that two homogeneous G-spaces M and M are equivalent if and only if

there exist a automorphism φ ∈ Aut (G) and elements x0 ∈ M and x0 ∈ M such

that

φ (St (x0)) = St (x0).

(10) Show that two homogeneous G-sets M = G/H1 and M = G/H2 are equivalent

if and only if the subgroups H1 and H2 are conjugate in G.
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3. Euclidean Spaces

Inner product and norm • Open and closed sets • Continuity • Differen-

tiation.

3.1. Inner product and norm. Let R be the set of real numbers and let Rm (m ≥ 1)

denote the Cartesian product of m copies of R. The elements of Rm are ordered m-

tuples of real numbers. Thus

Rm := {x = (x1, . . . , xm) : xi ∈ R} .

An element of Rm is often called a point. Under the usual operations

x+ y := (x1 + y1, . . . , xm + ym) and λx := (λx1, . . . , λxm) (x, y ∈ Rm, λ ∈ R)

Rm is a vector space over R. Hence the elements of Rm can also be referred to as vectors.

Note : The set Rm may be equipped with various natural structures (e.g., group structure,

vector space structure, topological structure, etc.) thus yielding various spaces, each such space

having the same underlying set Rm. We must usually decide from the context which structure

is intended.

Many geometric concepts require an extra structure on Rm that we now define.

Definition 42. The Euclidean space Rm is the above mentioned vector space Rm

together with the standard inner product (or dot product)

x • y := x1y1 + · · ·+ xmym (x, y ∈ Rm).

We say that x, y ∈ Rm are orthogonal if x • y = 0. The most important properties

of the standard inner product are the following.

Proposition 19. If x, y, z are vectors in Rm and λ ∈ R, then

(IP1) x • y = y • x (symmetry).

(IP2) (λx+ y) • z = λx • z + y • z (linearity).

(IP3) x • x ≥ 0, and x • x = 0 if and only if x = 0 (positive definiteness).

Proof. Straightforward computation. �

Definition 43. The Euclidean norm ‖x‖ of x ∈ Rm is defined as

‖x‖ :=
√
x • x.
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If m = 1, then ‖x‖ is the usual absolute value |x| of x. The relationship between the

norm and the vector structure of Rm is very important.

� Exercise 32. Show that if x, y ∈ Rm and λ ∈ R, then

(a) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0 (positivity).

(b) ‖λx‖ = |λ| ‖x‖ (homogeneity).

(c) x • y = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
(polarization identity).

(d) ‖x± y‖2 = ‖x‖2 + ‖y‖2 if and only if x • y = 0 (Pythagorean property).

Theorem 20. (Cauchy-Schwarz Inequality) If x, y ∈ Rm, then

|x • y| ≤ ‖x‖ ‖y‖.

Equality holds if and only if x and y are linearly dependent.

Proof. If x and y are linearly dependent, equality clearly holds. Why ? If not, then

λx− y 6= 0 for all λ ∈ R, so

0 < ‖λx− y‖2 = (λx1 − y1)2 + · · ·+ (λxm − ym)2

= (x2
1 + · · ·+ x2

m)λ2 − 2(x1y1 + · · ·+ xmym)λ+ y2
1 + · · ·+ y2

m.

Therefore the right hand side is a quadratic equation in λ with no real solution, and its

discriminant must be negative. Thus

4 (x1y1 + · · ·+ xmym)2 − 4
(
x2

1 + · · ·+ x2
m

) (
y2

1 + · · ·+ y2
m

)
< 0

(x • y)2 < ‖x‖2 ‖y‖2

which implies |x • y| < ‖x‖ ‖y‖. �

The Cauchy-Schwarz Inequality serves in proving several other inequalities (this

is Problem 11).

Definition 44. The standard basis for Rm consists of the vectors

ej = (δ1j, . . . , δmj), j = 1,m

where δij equals 1 if i = j and equals 0 if i 6= j.

Thus we write

x = x1e1 + · · ·+ xmem (x ∈ Rm).

With respect to the standard inner product on Rm, the standard basis is orthonormal,

i.e., ei • ej = δij for i, j = 1,m. (Thus ‖ej‖ = 1 , while ei and ej for distinct i and j

are orthogonal vectors.)

Definition 45. For x, y ∈ Rm we define the Euclidean distance d(x, y) by

d(x, y) := ‖x− y‖.
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From Exercise 32 and Problem 11 we immediately obtain (for x, y, z ∈ Rm)

(M1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(M2) d(x, y) = d(y, x).

(M3) d(x, z) ≤ d(x, y) + d(y, z).

Note : (1) More generally, a metric space is defined as a set M equipped with a distance

between its elements satisfying the properties (M1) – (M3). So the Euclidean space Rm is a

metric space. The notation d(x, y) = ‖x − y‖ is frequently useful even when we are dealing

with the Euclidean space Rm as a metric space and not using its vector space structure. In

particular, ‖x‖ = d(x, 0).

(2) An abstract concept of Euclidean space (i.e., a space satisfying the axioms of Euclidean

geometry) can be introduced. It is defined as a structure (M,E,Φ), consisting of a (non-empty)

set M, an associated standard vector space E (which is a real Euclidean vector space, i.e., a real

vector space equipped with a scalar product (·|·) : E× E→ R), and a structure map

Φ : M×M→ E, (x, y) 7→ −→xy

such that

(ES1) −→xy +−→yz = −→xz for every x, y, z ∈ M;

(ES2) for every o ∈ M and every v ∈ E, there is a unique x ∈ M such that −→ox = v.

Elements of M are called points, whereas elements of E are called vectors. (−→ox is the position

vector of x with the initial point o.) The dimension of the space M is the dimension of the

vector space E. It turns out that

(i) if we fix an arbitrary point o ∈ M, there is a one-to-one correspondence between (the

space) M and (the associated vector space) E (the mapping x 7→ −→ox is a bijection);

(ii) in addition, if we fix an arbitrary (ordered) orthonormal basis (e1, e2, . . . , em) of E, the

(inner product) spaces E and Rm are isomorphic. In other words, the scalar product on E “is”

the dot product: for v, w ∈ E,

(v |w) = ( v1e1 + · · ·+ vmem |w1e1 + · · ·+ wmem )

= v1w1 + · · ·+ vmwm.

In this sense, we identify the abstract m-dimensional Euclidean space M with the (concrete)

Euclidean space Rm.

We conclude this section with some important remarks (about notation). The element

(vector) (0, . . . , 0) ∈ Rm will usually be denoted simply 0.

If τ : Rm → Rm is a linear transformation, the matrix of τ with respect to the standard

basis of Rm is the m×m matrix T = [tij], where T (ej) =
∑m

i=1 tijei (the coefficients of

T (ej) appear in the jth column of the matrix). If the linear transformation σ : Rm → Rm

has the matrix S, then (the composite) transformation στ has the matrix ST (matrix

multiplication).
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3.2. Open and closed sets. The analog in Rm of an open interval in R is introduced

in the following

Definition 46. For p ∈ Rm and δ > 0, we denote the open ball of center p and

radius δ by

B (p, δ) := {x ∈ Rm : ‖x− p‖ < δ} .

A point p in a set A ⊆ Rm is said to be an interior point of A if there exists δ > 0

such that B (p, δ) ⊆ A. The set of interior points of A is called the interior of A and is

denoted by int (A). Note that int (A) ⊆ A.

Definition 47. A set A ⊆ Rm is said to be open (in Rm) if A = int (A) (i.e., if

every point of A is an interior point of A).

Note that the empty set ∅ satisfies every definition involving conditions on its elements,

therefore ∅ is open. Furthermore, the whole space Rm is open.

Proposition 21. The set B (p, δ) is open in Rm, for every p ∈ Rm and δ > 0.

Proof. For arbitrary q ∈ B (p, δ) set β = ‖q − p‖ , then δ − β > 0. Hence B (q, δ − β) ⊆
B (p, δ), because for every x ∈ B (q, δ − β)

‖x− p‖ ≤ ‖x− q‖+ ‖q − p‖ < (δ − β) + β = δ.

�

Proposition 22. For any A ⊆ Rm, the interior int (A) is the largest open set con-

tained in A.

Proof. First, we show that int (A) is open. If p ∈ int (A), there is δ > 0 such that

B (p, δ) ⊆ A. As in the proof of Proposition 21, we find for any q ∈ B (p, δ) a β > 0

such that B (q, β) ⊆ A. But this implies B (p, δ) ⊆ int (A), and hence int (A) is an open

set.

Furthermore, if U ⊆ A is open, it is clear by definition that U ⊆ int (A), thus int (A)

is the largest open set contained in A. �

� Exercise 33. Show that

(a) the union of any collection of open subsets of Rm is again open in Rm;

(b) the intersection of finitely many open subsets of Rm is open in Rm.

Let ∅ 6= A ⊆ Rm. An open neighborhood of A is an open set containing A, and a

neighborhood of A is any set containing an open neighborhood of A. A neighborhood

of a set {p} is also called a neighborhood of the point p ∈ Rm. (Note that p ∈ A ⊆ Rm

is an interior point of A if and only if A is a neighborhood of p.)
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Definition 48. A set F is said to be closed if its complement Fc := Rm \F is open.

The empty set is closed, and so is the entire space Rm.

Proposition 23. For every p ∈ Rm and δ > 0, the set B (p, δ) := {x ∈ Rm :

‖x− p‖ ≤ δ} is closed. (B (p, δ) is the closed ball of center p and radius δ.)

Proof. For arbitrary q ∈ B (p, δ)c set β = ‖p − q‖, then β − δ > 0. So B (q, β − δ) ⊆
B (p, δ)c, because by the reverse triangle inequality (this is Problem 11), for every

x ∈ B (q, β − δ)

‖p− x‖ ≥ ‖p− q‖ − ‖x− q‖ > β − (β − δ) = δ.

This proves that B (p, δ)c is open. �

Definition 49. A point p ∈ Rm is said to be a cluster point of a set A ⊆ Rm if

for every δ > 0 we have B (p, δ) ∩ A 6= ∅. The set of cluster points of A is called the

closure of A and is denoted by cl (A).

Proposition 24. Let A ⊆ Rm. Then cl (A)c = int (Ac); in particular, the closure of

A is a closed set. Moreover, int (A)c = cl (Ac).

Proof. Note that A ⊆ cl (A). To say that x is not a cluster point of A means that it is

an interior point of Ac. Thus cl (A)c = int (Ac), or cl (A) = int (Ac)c, which implies that

cl (A) is closed in Rm.

Furthermore, by applying this identity to Ac we obtain that int (A)c = cl (Ac). �

By taking complements of sets we immediately obtain the following result.

Proposition 25. For any A ⊆ Rm, the closure cl (A) is the smallest closed set

containing A.

From set theory we recall De Morgan’s Laws, which state, for arbitrary collections

(Ai)i∈I of sets Ai ⊆ Rm, that(⋃
i∈I

Ai

)c

=
⋂
i∈I

Aci and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Aci .

In view of these laws and Exercise 33 we find, by taking complements of sets,

Proposition 26.

(a) The intersection of any collection of closed subsets of Rm is again closed in

Rm.

(b) The union of finitely many closed subsets of Rm is closed in Rm.
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3.3. Continuity. Let U ⊆ Rm be an open set. A mapping F : U→ Rn is continuous

at p ∈ U if given ε > 0, there exists a δ > 0 such that

F (B(p, δ)) ⊆ B(F (p), ε).

In other words, F is continuous at p if points arbitrarily close to F (p) are images of

points sufficiently close to p. We say that F is continuous provided it is continuous at

each p ∈ U.

Note : Equivalently, F is continuous at p ∈ U if for every ε > 0 there exists δ > 0 such

that ‖F (x)− F (p)‖ < ε for ‖x− p‖ < δ. This simply means that limx→p F (x) = F (p).

A mapping F : U ⊆ Rm → Rn determines n R-valued functions (of m variables) as

follows. Let x = (x1, . . . , xm) ∈ U and F (x) = (y1, . . . , yn). Then we can write

y1 = F1(x1, . . . , xm), y2 = F2(x1, . . . , xm), . . . , yn = Fn(x1, . . . , xm).

The functions Fi : U→ R, i = 1, n are the component functions of F . The continuity

of the mapping F is equivalent to the continuity of its component functions.

� Exercise 34. Prove that a mapping F : U ⊆ Rm → Rn is continuous if and only if

each component function Fi : U ⊆ Rm → R is continuous.

The following results are standard (and easy to prove).

Proposition 27. Let F,G : U ⊆ Rm → Rn be continuous mappings and let λ ∈ R.

Then F +G, λF, and F •G are each continuous. If n = 1 and G(x) 6= 0 for all x ∈ U,

then the quotient F
G

is also continuous.

Proposition 28. Let F : U ⊆ R` → Rm and G : V ⊆ Rm → Rn be continuous

mappings, where U and V are open sets such that F (U) ⊆ V. Then G◦F is a continuous

mapping.

� Exercise 35. Show that the following mappings are continuous.

(a) The identity mapping 1Rm : Rm → Rm, x 7→ x.

(b) The norm function ν : Rm → R, x 7→ ‖x‖.
(c) The ith natural projection pri : Rm → R, x 7→ xi.

Hence derive that every polynomial function (in several variables)

pk : Rm → R, x = (x1, . . . , xm) 7→
k∑

i1,...,im=0
i1+···+im≤k

ai1...imx
i1
1 . . . x

im
m

is continuous.
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Note : More generally, every rational function (i.e., a quotient of two polynomial functions)

is continuous. It can be shown that elementary functions like exp, log, sin, and cos are also

continuous.

Linear mappings L : Rm → Rn play an important role in differentiation. Such map-

pings are continuous.

� Exercise 36. Show that every linear mapping L : Rm → Rn is continuous.

In most applications it is convenient to express continuity in terms of neighborhoods

instead of open balls.

� Exercise 37. Prove that a mapping F : U ⊆ Rm → Rn is continuous at p ∈ U if and

only if given a neighborhood N of F (p) in Rn there exists a neighborhood M of p in Rm

such that F (M) ⊆ N .

It is often necessary to deal with mappings (functions) defined on arbitrary (i.e., not

necessarily open) sets. To extend the previous ideas to this situation, we shall proceed as

follows.

Let F : A ⊆ Rm → Rn be a mapping, where A is an arbitrary set. We say that F

is continuous on A provided there exists an open set U ⊆ Rm containing A, and a

continuous mapping F : U → Rn such that (the restriction) F
∣∣
A

= F . In other words,

F is continuous on A if it is the restriction of a continuous mapping defined on an open

neighborhood of A.

Note : It is clear that if F : A ⊆ Rm → Rn is continuous and p ∈ A, then given a

neighborhood N of F (p) in Rn, there exists a neighborhood M of p in Rm such that

F (M∩ A) ⊆ N . For this reason, it is convenient to call the set M∩ A a neighborhood of p in

A.

Example 50. An important class of continuous mappings is formed by the mappings

F : A ⊆ Rm → Rn that are Lipschitz continuous, i.e., for which there exists k > 0

such that

‖F (x)− F (y)‖ ≤ k ‖x− y‖ (x, y ∈ A).

Such a number k is called a Lipschitz constant for F . For example, the norm function

ν : x 7→ ‖x‖ is a Lipschitz continuous on Rm with Lipschitz constant 1.

� Exercise 38. Consider a mapping F : A → Rn, where A ⊆ Rm is an arbitrary set.

Show that the following statements are logically equivalent.

(a) F is continuous.

(b) F−1(O) is open in A for every open set O in Rn. (In particular, if A is open in

Rm then: F−1(O) is open in Rm for every open set O in Rn.)
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(c) F−1(F) is closed in A for every closed set F in Rn. (In particular, if A is closed

in Rm then: F−1(F) is closed in Rm for every closed set F in Rn.)

(A subset U ⊆ A is said to be open in A if there is an open set W such that U = A ∩W.

Likewise, a subset V is said to be closed in A if there exists a closed set W such that V = A∩W.)

Definition 51. A set A ⊆ Rm is said to be disconnected if there exist open sets

U and V in Rm such that

A ∩ U 6= ∅, A ∩ V 6= ∅, (A ∩ U) ∩ (A ∩ V) = ∅, (A ∩ U) ∪ (A ∩ V) = A.

(In other words, A is the union of two disjoint non-empty subsets that are open in A.)

The set A is said to be connected if A is not disconnected.

It is not difficult to prove that the only connected subsets of R are the intervals: open,

closed or half-open (these include the singletons and the set R itself). The following

result then follows (this is Problem 14):

Theorem 29 (Intermediate Value Theorem). Let A ⊆ Rm be connected and

let F : A → R be a continuous function. Then F (A) is an interval in R; in particular,

F takes all values between any two that it assumes.

Definition 52. We say that a continuous mapping F : A ⊆ Rm → Rm is a home-

omorphism onto F (A) if F is one-to-one and the inverse F−1 : F (A) ⊆ Rm → Rm is

continuous. In this case A and F (A) are homeomorphic sets.

Example 53. Let F : R3 → R3 be given by

F (x1, x2, x3) = (ax1, bx2, cx3), a, b, c ∈ R \ {0}.

F is clearly continuous, and the restriction of F to the (unit) sphere

S2 =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}
is a continuous mapping F̃ : S2 → R3. Observe that F̃ (S2) = E, where E is the ellipsoid

E =

{
(x1, x2, x3) ∈ R3 :

x2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1

}
.

It is also clear that F is one-to-one and that

F−1(x1, x2, x3) =
(x1

a
,
x2

b
,
x3

c

)
·

Thus F̃−1 = F−1|E is continuous. Therefore, F̃ is a homeomorphism of the sphere S2

onto the ellipsoid E.

Note : There is a class of infinite sets, called compact sets, that in certain limited aspects

behave very much like finite sets. A set K ⊆ Rm is said to be sequentially compact if

every sequence of elements in K contains a subsequence which converges to a point in K. (A
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sequence (xk)k∈N of elements xk ∈ Rm is said to be convergent, with limit p ∈ Rm, if

limk→∞ ‖xk − p‖ = 0, which is a limit of numbers in R. Recall that this limit means: for

every ε > 0, there exists N ∈ N such that ‖xk − p‖ < ε for k ≥ N . In this case we write

limk→∞ xk = p.) It follows immediately that a subset of a sequentially compact set K ⊆ Rm is

sequentially compact if and only if it is closed in K.

Continuous mapping do not necessarily preserve closed sets; on the other hand, they do

preserve (sequentially) compact sets. (In this sense compact and finite sets behave similarly:

the image of a finite set under a mapping is a finite set too.) More precisely, if K ⊂ Rm is

a sequentially compact set and F : Rm → Rn is continuous, then F (K) ⊂ Rn is sequentially

compact. The following characterization is very useful: A set K ⊂ Rm is sequentially compact

if and only if it is bounded and closed. (A set A ⊂ Rm is bounded if there exists a number

k > 0 such that ‖x‖ ≤ k for all x ∈ A; equivalently, if there exists a number k > 0 such that

A ⊆ B (0, k).)

There is an alternative, more general, definition of compactness for sets. A subset K ⊂ Rm is

said to be compact if every open covering of K contains a finite subcovering of K. (A collection

(Oi)i∈I of open sets in Rm is said to be an open covering of a set K ⊆ Rm if K ⊆
⋃
i∈I Oi.)

In spaces like Rm , however, the two definitions of compactness coincide; this is a consequence

of the following result.

(Heine-Borel Theorem) A set K ⊂ Rm is compact if and only if it is bounded and closed.

3.4. Differentiation. Let U be an open subset of Rm and let p ∈ U. A function

F : U → R is differentiable at p if there exists a linear functional Lp : Rm → R such

that

lim
x→p

F (x)− F (p)− Lp(x− p)
‖x− p‖

= 0

or, equivalently, if there exist a linear functional Lp : Rm → R and a function R(·, p),
defined on an open neighborhood V of p, such that

F (x) = F (p) + Lp(x− p) + ‖x− p‖ ·R(x, p), x ∈ V

and

lim
x→p

R(x, p) = 0.

Then Lp is called a derivative (or differential) of F at p. We say that F is differen-

tiable provided it is differentiable at each p ∈ U.

Note : We think of a derivative Lp as a “linear” approximation of F near p. By the

definition, the error involved in replacing F (x) by F (p) + Lp(x − p) (this is an affine map)

is negligible compared to the distance from x to p, provided that this distance is sufficiently

small.

If Lp(x) = b1x1 + · · ·+ bmxm is a derivative of F at p, then

bi =
∂F

∂xi
(p) : = lim

t→0

1

t
(F (p+ tei)− F (p)) , i = 1,m.
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In particular, if F is differentiable at p, these partial derivatives exist and the derivative

Lp is unique. We denote by DF (p) (or sometimes F ′(p)) the derivative of F at p, and

write (by a slight abuse of notation)

DF (p) =
∂F

∂x1

(p)(x1 − p1) +
∂F

∂x2

(p)(x2 − p2) + · · ·+ ∂F

∂xm
(p)(xm − pm).

� Exercise 39. Show that any linear functional F : Rm → R is differentiable and

DF (p) = F for all p ∈ Rm.

� Exercise 40. Prove that any differentiable function F : U ⊆ Rm → R is continuous.

Note : Mere existence of partial derivatives is not sufficient for differentiability (of the func-

tion F ). For example, the function F : R2 → R defined by

F (x1, x2) =
x1x2

x2
1 + x2

2

and F (0, 0) = 0

is not continuous at (0, 0), yet both partial derivatives are defined there. However, if all par-

tial derivatives ∂F
∂xi
, i = 1,m are defined and continuous in a neighborhood of p, then F is

differentiable at p.

If the function F : U ⊆ Rm → R has all partial derivatives continuous (on U) we say

that F is continuously differentiable (or of class C1 ) on U. We denote this class of

functions by C1(U). (The class of continuous functions on U is denoted by C0(U).)

Note : We have seen that

F ∈ C1(U) ⇒ F is differentiable (on U) ⇒ all partial derivatives
∂F

∂xi
exist (on U)

but the converse implications may fail. Many results actually need F to be of class C1 rather

than differentiable.

If r ≥ 1, the class Cr(U) of functions F : U ⊆ Rm → R that are r-fold continu-

ously differentiable (or Cr functions) is specified inductively by requiring that the partial

derivatives of F exist and belong to Cr−1(U). If F is of class Cr for all r, then we

say that F is of class C∞ or simply smooth. The class of smooth functions on U is

denoted by C∞(U).

Note : If F ∈ Cr(U), then (at any point of U) the value of the partial derivatives of order

k, 1 < k ≤ r is independent of the order of differentiation; that is, if (j1, . . . , jk) is a permutation

of (i1, . . . , ik), then

∂kF

∂xi1 . . . ∂xik
=

∂kF

∂xj1 . . . ∂xjk
·

We are now interested in extending the notion of differentiability to mappings F : U ⊆
Rm → Rn. We say that F is differentiable at p ∈ U if its component functions are
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differentiable at p; that is, by writing

F (x1, . . . , xm) = (F1(x1, . . . , xm), . . . , Fn(x1, . . . , xm))

the functions Fi : U→ R, i = 1, n have partial derivatives at p ∈ U. F is differentiable

provided it is differentiable at each p ∈ U. (For the case m = 1, we obtain the notion of

a differentiable parametrized curve in Euclidean space Rn.)

The class Cr(U,Rn), 1 ≤ r ≤ ∞ of Cr-mappings F : U ⊆ Rm → Rn is defined

in the obvious way. We will be concerned primarily with smooth (i.e., of class C∞ )

mappings. So if F is a smooth mapping, then its component functions Fi have continuous

partial derivatives of all orders and each such derivative is independent of the order of

differentiation.

Note : Let us define a (geometric) tangent vector at p ∈ Rm as an ordered pair (p, v).

As a matter of notation, we will abbreviate (p, v) as vp. We think of vp as the vector v with

its initial point at p. (In other words, p + v is considered as the “position vector” of a point;

we shall always picture vp as the “arrow” from the point p to the point p + v.) Clearly, two

tangent vectors vp and wq are equal if v = w and p = q. (It is essential to recognize that vp

and vq are different tangent vectors if p 6= q.)

The set {p}×Rm of all tangent vectors at p is denoted by TpRm , and is called the tangent

space of Rm at p. Thus

TpRm := {vp = (p, v) : p, v ∈ Rm} .

This set is a vector space over R (obviously isomorphic to Rm itself) under the natural

operations: vp + wp := (v + w)p and λ vp := (λv)p. The tangent vectors (ei)p, i = 1,m form

a basis for TpRm. (In fact, as a vector space, TpRm is essentially the same as Rm itself; the

only reason we add Tp is so that the geometric tangent spaces TpRm and Tq Rm at distinct

points p and q be disjoint sets.)

Let vp be a tangent vector in Rm. One can associate with it the function (parametrized line)

R 3 t 7→ p+ tv ∈ Rm.

If F : Rm → R is a differentiable function, then t 7→ F (p+ tv) is an ordinary function R→ R.

(The derivative of this function at t = 0 tells the initial rate of change of F as p moves in the

v direction.) The number

vp[F ] :=
d

dt
F (p+ tv)

∣∣∣∣
t=0

is called the directional derivative of F with respect to vp. We have

vp[F ] = v1
∂F

∂x1
(p) + · · ·+ vm

∂F

∂xm
(p) (v = (v1, . . . , vm) ∈ Rm).

The map vp[·] : C∞(Rm) → R, F 7→ vp[F ] is linear and satisfies the Leibniz rule (i.e.,

vp[FG] = vp[F ]G(p) + F (p)vp[G] for F,G ∈ C∞(Rm)); such a mapping is called a derivation

at p. So any geometric tangent vector vp defines a derivation vp[·] at p. In fact, each derivation

at p is defined by a unique geometric tangent vector (at p). Moreover, for any p ∈ Rm, the
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correspondence vp 7→ vp[·] is an isomorphism from the tangent space TpRm to the vector space

of all derivations on p. It is customary (and convenient) to denote the derivation (ei)p[·] by
∂
∂xi

∣∣∣
p
; thus, ∂

∂xi

∣∣∣
p

[F ] = ∂F
∂xi

(p).

Let TpRm be the tangent space to Rm at p; this vector space can be identified with

Rm via

v1
∂

∂x1

∣∣∣∣
p

+ · · ·+ vm
∂

∂xm

∣∣∣∣
p

7→ (v1, · · · , vm).

Let α : U ⊆ R → Rm be a smooth (parametrized) curve with component functions

α1, . . . , αm. The velocity vector (or tangent vector) to α at t ∈ U is the element

α̇(t) : =

(
dα1

dt
(t), · · · , dαm

dt
(t)

)
∈ Tα(t) Rm.

Example 54. Given a point p ∈ U ⊆ Rm and a tangent vector v ∈ TpRm, we can

always find a smooth curve α : (−ε, ε) → U with α(0) = p and α̇(0) = v. Simply

define α(t) = p + tv, t ∈ (−ε, ε). By writing p = (p1, . . . , pm) and v = (v1, . . . , vm), the

component functions of α are αi(t) = pi + tvi, i = 1,m. Thus α is smooth, α(0) = p

and

α̇(0) =

(
dα1

dt
(0), · · · , dαm

dt
(0)

)
= (v1, . . . , vm) = v.

We shall now introduce the concept of derivative (or differential) of a differentiable

mapping. Let F : U ⊆ Rm → Rn be a differentiable mapping. To each p ∈ U we

associate a linear mapping

DF (p) : Rm = TpRm → Rn = TF (p) Rn

which is called the derivative (or differential) of F at p and is defined as follows. Let

v ∈ TpRm and let α : (−ε, ε) → U be a differentiable curve such that α(0) = p and

α̇(0) = v. By the chain rule (for functions), the curve β = F ◦ α : (−ε, ε) → Rn is also

differentiable. Then

DF (p) · v : = β̇(0).

Note : The above definition of DF (p) does not depend on the choice of the curve which

passes through p with tangent vector v, and DF (p) is, in fact, linear. So

DF (p) · v =
d

dt
F (α(t))

∣∣∣∣
t=0

∈ TF (p) Rn = Rn.

The derivative DF (p) is also denoted by Tp F and called the tangent mapping of F at p.
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The matrix of the linear mapping DF (p) (relative to bases

(
∂
∂x1

∣∣∣
p
, . . . , ∂

∂xm

∣∣∣
p

)
of

TpRm and

(
∂
∂y1

∣∣∣
F (p)

, . . . , ∂
∂yn

∣∣∣
F (p)

)
of TF (p) Rn ) is the Jacobian matrix

∂F

∂x
(p) =

∂(F1, . . . , Fn)

∂(x1, . . . , xm)
(p) : =


∂F1

∂x1
(p) · · · ∂F1

∂xm
(p)

...
...

∂Fn
∂x1

(p) · · · ∂Fn
∂xm

(p)

 ∈ Rn×m

of F at p. When m = n this is a square matrix and its determinant is then defined.

This determinant is called the Jacobian of F at p and is denoted by JF (p). Thus

JF (p) =

∣∣∣∣∂F∂x (p)

∣∣∣∣ : = det
∂F

∂x
(p)·

� Exercise 41. Let f : I → R and g : J → R be differentiable functions, where I and

J are open intervals such that f(I) ⊆ J. Show that the function g ◦ f is differentiable and (for

t ∈ I)

(g ◦ f)′ (t) = g′(f(t)) · f ′(t).

The standard chain rule (for scalar-valued) functions extends to (vector-valued) map-

pings.

Proposition 30 (General Chain Rule). Let F : U ⊆ R` → Rm and G : V ⊆
Rm → Rn be differentiable mappings, where U and V are open sets such that F (U) ⊆ V.

Then G ◦ F is a differentiable mapping and (for p ∈ U)

D(G ◦ F )(p) = DG(F (p)) ◦DF (p).

Proof. The fact that G◦F is differentiable is a consequence of the chain rule for functions.

Now, let v ∈ TpR` be given and let us consider a (differentiable) curve α : (−ε, ε)→ U

with α(0) = p and α̇(0) = v. Set DF (p) · v = w and observe that

DG(F (p)) · w =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

.

Then

D(G ◦ F )(p) · v =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

= DG(F (p)) · w

= DG(F (p)) ◦DF (p) · v.

�

Note : In terms of Jacobian matrices, the general chain rule can be written

∂(G ◦ F )

∂x
(p) =

∂G

∂y
(F (p)) · ∂F

∂x
(p)·
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Thus if H = G ◦ F and y = F (x), then

∂H

∂x
=


∂G1
∂y1

· · · ∂G1
∂ym

...
...

∂Gn
∂y1

· · · ∂Gn
∂ym



∂F1
∂x1

· · · ∂F1
∂x`

...
...

∂Fm
∂x1

· · · ∂Fm
∂x`


where

∂G1

∂y1
, . . . ,

∂Gn
∂ym

are evaluated at y = F (x) and
∂F1

∂x1
, · · · , ∂Fm

∂x`
at x. Writing this out,

we obtain
∂Hi

∂xj
=
∂Gi
∂y1

∂y1

∂xj
+ · · ·+ ∂Gi

∂ym

∂ym
∂xj

(i = 1, n ; j = 1, `).

� Exercise 42. Let

F (x1, x2) = (x2
1 − x2

2 + x1x2, x
2
2 − 1) and G(y1, y2) = (y1 + y2, 2y1, y

2
2).

(a) Show that F and G are differentiable, and that G ◦ F exists.

(b) Compute D(G ◦ F )(1, 1)

(i) directly

(ii) using the chain rule.

Note : The precise sense in which the derivative DF (p) of the (differentiable) mapping F

at p is an (affine) approximation of F near p is given by the following result (in which DF (p)

is interpreted as a linear mapping from Rm to Rn) : If the mapping F : U ⊆ Rm → Rn is

differentiable, then for each p ∈ U,

lim
x→p

‖F (x)− F (p)−DF (p) · (x− p)‖
‖x− p‖

= 0

or, equivalently, there exists a (local) map εp : Rm → Rn satisfying, for all h with p+ h ∈ U,

(5) F (p+ h) = F (p) +DF (p) · h+ εp(h) with lim
h→0

‖εp(h)‖
‖h‖

= 0.

The mapping Rm → Rn, x 7→ F (p) +DF (p) · (x− p) is the best affine approximation to F

at p. (It is the unique affine approximation for which the difference mapping εp satisfies the

estimate (5).)

If A ⊆ Rm is an arbitrary set, then C∞(A) denotes the set of all functions F : A→ R
such that F = F

∣∣
A
, where F : U → R is a smooth function on some open neighborhood

U of A.

Problems (11–15)

(11) Let x, y ∈ Rm. Prove the following inequalities.

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

(b) | ‖x‖ − ‖y‖ | ≤ ‖x− y‖ (reverse triangle inequality).

(c) |xi| ≤ ‖x‖ ≤ |x1|+ · · ·+ |xm| ≤
√
m ‖x‖, i = 1,m.
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(12) Let τ : Rm → Rm be a linear transformation, and let A ∈ Rm×m denote its matrix

with respect to the standard basis of Rm. Show that the following statements are

logically equivalent.

(a) ‖τ(x)‖ = ‖x‖ for all x ∈ Rm.

(b) τ(x) • τ(y) = x • y for all x, y ∈ Rm.

(c) A>A = 1 (i.e., the matrix A is orthogonal).

(Such a linear transformation is called an orthogonal transformation.) Hence

deduce that such a linear transformation τ is invertible. Is τ−1 of the same sort?

(13) Let F be a subset of Rm. Show that the following statements are logically equiv-

alent.

(a) F is closed.

(b) F = cl (F).

(c) For every sequence (xk)k∈N of points xk ∈ Rm that is convergent to a limit,

say p, we have p ∈ F.

(14) Let A ⊆ Rm be an arbitrary set.

(a) Show that the following statements are logically equivalent.

(i) A is disconnected.

(ii) There exists a surjective continuous function A→ {0, 1}.
(Recall the definition of the characteristic function χA of a set A : χA(x) =

1 if x ∈ A and χA(x) = 0 if x /∈ A.)

(b) Assume that A is connected and let F : A→ Rn be a continuous mapping.

Show that F (A) is connected in Rn.

(c) Let A be connected and let F : A→ R be a continuous function. Show that

F (A) is an interval in R; in particular, F takes all the values between any

two that it assumes.

(15) Show that

(i) if σ : R2 → R is defined by σ(x, y) = x+ y, then Dσ(a, b) = σ.

(ii) if π : R2 → R is defined by π(x, y) = x · y, then Dπ(a, b) · (x, y) =

bx+ ay.

Hence deduce that if the functions F,G : U ⊆ Rm → R are differentiable at

p ∈ U, then

D(F +G)(p) = DF (p) +DG(p)

D(F ·G)(p) = G(p)DF (p) + F (p)DG(p).

If moreover G(p) 6= 0, then

D

(
F

G

)
(p) =

G(p)DF (p)− F (p)DG(p)

(G(p))2
·
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4. Matrix Groups

Matrix algebra • Matrix groups • Linear Lie groups: examples • Complex matrix

groups as real matrix groups.

4.1. Matrix algebra. Throughout, we shall denote by k either the field R of real

numbers or the field C of complex numbers. Let km be the set of all m-tuples of

elements of k. Under the usual addition and scalar multiplication, km is a vector space

over k. The set Hom (kn,km) of all linear mappings from kn to km (i.e., mappings

L : kn → km such that L(λx + µy) = λL(x) + µL(y) for every x, y ∈ kn and λ, µ ∈ k)

is also a vector space over k.

� Exercise 43. Determine the dimension of the vector space Hom (kn,km).

Let km×n be the set of all m × n matrices with elements (entries) from k. Under

the usual matrix addition and multiplication, km×n is a vector space over k. There is

a natural one-to-one correspondence A 7→ LA (: x 7→ Ax) between the m × n matrices

with elements from k and the linear mappings from kn to km.

� Exercise 44. Show that the vector spaces km×n and Hom (kn, km) are isomorphic.

In particular, the (n-dimensional) vector spaces k1×n and Hom (kn, k) = (kn)∗ (the

dual of kn ) are isomorphic. Any matrix A ∈ km×n can be interpreted as a linear mapping

LA ∈ Hom (kn,km), whereas any linear mapping L ∈ Hom (kn,km) can be realized as a

matrix A ∈ km×n. Henceforth we shall not distinguish notationwise between a matrix A

and its corresponding linear mapping x 7→ Ax.

Note : A matrix (or linear mapping, if one prefers) A ∈ kn×n can be viewed as a vector

field (on kn) : A associates to each point p in kn the tangent vector A(p) = Ap ∈ kn. We

may think of a fluid in motion, so that the velocity of the fluid particles passing through p is

always A(p). The vector field is then the current of the flow and the paths of the fluid particles

are the trajectories. This kind of flow is, of course, very special : A(p) is independent of time,

and depends linearly on p.

The (structured) set kn×n is not just a vector space. It also has a multiplication which

is associative and distributes over addition (on either side). In other words, under the

usual addition and multiplication, kn×n is a ring (in general not commutative), with

identity 1. Moreover, for all A,B ∈ kn×n and λ ∈ k,

λ(AB) = (λA)B = A(λB).
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Such a structure is called an (associative) algebra over k.

For x ∈ kn (= kn×1), let

‖x‖2 : =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

be the 2-norm (or Euclidean norm) on kn.

Note : For r ≥ 1, the r-norm of x ∈ kn is defined as

‖x‖r : = (|x1|r + |x2|r + · · ·+ |xn|r)1/r .

The following properties hold (for x, y ∈ kn and λ ∈ k) :

‖x‖r ≥ 0, and ‖x‖r = 0 ⇐⇒ x = 0 ;

‖λx‖r = |λ| ‖x‖r ;

‖x+ y‖r ≤ ‖x‖r + ‖y‖r.
In practice, only three of the r-norms are used, and they are :

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (the grid norm);

‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2 (the Euclidean norm);

‖x‖∞ = lim
r→∞

‖x‖r = max{|x1|, |x2|, . . . , |xn|} (the max norm).

For x ∈ kn, we have

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n · ‖x‖2 ≤ n · ‖x‖∞

and so any two of these norms are equivalent (i.e., the associated metric topologies are identical).

In fact, all norms on a finite-dimensional vector space (over k ) are equivalent.

The metric topology induced by (the Euclidean distance) (x, y) 7→ ‖x − y‖2 is the

natural topology on the set (vector space) kn.

� Exercise 45. Show that, for x, y ∈ kn,

| ‖x‖2 − ‖y‖2 | ≤ ‖x− y‖2.

Hence deduce that the function ‖ · ‖2 : kn → R, x 7→ ‖x‖2 is continuous (with respect to the

natural topologies on kn and R).

� Exercise 46. Given A ∈ kn×n, show that the linear mapping (on kn) x 7→ Ax is

continuous (with respect to the natural topology on kn).

Let A ∈ kn×n. The 2-norm ‖·‖2 on kn×1 induces a (matrix) norm on kn×n by setting

‖A‖ : = max
‖x‖2=1

‖Ax‖2.

The subset K = {x ∈ kn : ‖x‖2 = 1} ⊂ kn is closed and bounded, and so is compact.

[A subset of the metric space kn is compact if and only if it is closed and bounded.] On

the other hand, the function f : K → R, x 7→ ‖Ax‖2 is continuous. [The composition

of two continuous maps is a continuous map.] Hence the maximum value maxx∈K ‖Ax‖2

must exist.
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Note : The following topological result holds : If K ⊂ kn is a (non-empty) compact set,

then any continuous function f : K → R is bounded; that is, the image set f(K) = {f(x) :

x ∈ K} ⊆ R is bounded. Moreover, f has a global maximum (and a global minimum).

� Exercise 47. Show that the induced norm ‖ ·‖ is compatible with its underlying norm

‖ · ‖2; that is (for A ∈ kn×n and x ∈ kn),

‖Ax‖2 ≤ ‖A‖ ‖x‖2.

‖ · ‖ is a matrix norm on kn×n, called the operator norm; that is, it has the following

four properties (for A,B ∈ kn×n and λ ∈ k) :

(MN1) ‖A‖ ≥ 0, and ‖A‖ = 0 ⇐⇒ A = 0 ;

(MN2) ‖λA‖ = |λ| ‖A‖ ;

(MN3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ ;

(MN4) ‖AB‖ ≤ ‖A‖ ‖B‖.

Note : There is a simple procedure (well known in numerical linear algebra) for calculating

the operator norm of an n × n matrix A . This is ‖A‖ =
√
λmax, where λmax is the largest

eigenvalue of the matrix A∗A. Here A∗ denotes the Hermitian conjugate (i.e., the conjugate

transpose) matrix of A; in the case k = R, A∗ = A>.

We define a metric ρ on (the algebra) kn×n by

ρ(A,B) : = ‖A−B‖.

Associated to this metric is a natural topology on kn×n. Hence fundamental topological

concepts, like open sets, closed sets, compactness, connectedness, as well as continuity,

can be introduced. In particular, we can speak of continuous functions kn×n → k.

� Exercise 48. For 1 ≤ i, j ≤ n, show that the coordinate function

coordij : kn×n → k, A 7→ aij

is continuous. [Hint : Show first that |aij | ≤ ‖A‖ and then verify the defining condition for

continuity.]

It follows immediately that if f : kn2 → k is continuous, then the associated function

f̃ = f ◦ (coordij) : kn×n → k, A 7→ f((aij))

is also continuous. Here (aij) = (a11, . . . , an1, . . . , a1n, . . . , ann) ∈ kn2
.

� Exercise 49. Show that the determinant function

det : kn×n → k, A 7→ detA :=
∑
σ∈Sn

(−1)|σ|a1σ(1)a2σ(2) · · · anσ(n)
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and the trace function

tr : kn×n → k, A 7→ trA : =

n∑
i=1

aii

are continuous.

The metric space (kn×n, ρ) is complete. This means that every Cauchy sequence

(Ar)r≥0 in kn×n has a unique limit lim
r→∞

Ar. Furthermore,(
lim
r→∞

Ar

)
ij

= lim
r→∞

(Ar)ij.

Indeed, the limit on the RHS exists, so it is sufficient to check that the required matrix

limit is the matrix A with aij = lim
r→∞

(Ar)ij. The sequence (Ar − A)r≥0 satisfies

‖Ar − A‖ ≤
n∑

i,j=1

|(Ar)ij − aij| → 0 as r →∞

and so Ar → A.

4.2. Matrix groups. Let GL (n,k) be the set of all invertible n × n matrices over k.

So

GL (n,k) := {A ∈ kn×n : detA 6= 0}.

� Exercise 50. Verify that the set GL (n, k) is a group under matrix multiplication.

GL (n,k) is called the general linear group over k. We will refer to GL (n,R) and

GL (n,C) as the real and complex general linear group, respectively. A 1 × 1 matrix

over k is just an element of k and matrix multiplication of two such elements is just

multiplication in k. So we see that

GL (1,k) = k× (the multiplicative group of k \ {0}) .

Any subgroup of GL (n,k) is customarily referred to as a linear group or sometimes as

a matrix group.

Proposition 31. GL (n,k) is an open subset of kn×n.

Proof. We have seen that the function det : kn×n → k is continuous (see Exercise 49).

Then observe that

GL (n,k) = kn×n \ det−1(0).

Since the set {0} is closed (in k), it follows that det−1(0) = det−1({0}) ⊂ kn×n is also

closed. [The preimage of a closed set under a continuous map is a closed set.] Hence

GL (n,k) is open. [The complement of a closed set is an open set.] �
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We observe that the general linear group GL (n,k) has more than just an algebraic

structure: it has a topological structure as well (Proposition 31). Thus we may natu-

rally consider subsets which are not only closed in the algebraic sense (that is, subgroups),

but in the topological sense as well.

Definition 55. A linear Lie group is a closed subgroup of GL (n,k).

Linear Lie groups are also known as matrix Lie groups. This terminology emphasizes

the remarkable fact that every closed linear group is a Lie group.

Note : The condition that a set (group) of matrices G ⊆ GL (n,k) is a closed subset of

(the metric space) GL (n, k) means that the following condition is satisfied : if (Ar)r≥0 is

any sequence of matrices in G and Ar → A, then either A ∈ G or A is not invertible (i.e.

A 6∈ GL (n,k)). The condition that G be a closed subgroup, as opposed to merely a subgroup,

should be regarded as a “technicality” since most of the interesting subgroups of GL (n,k) have

this property. Almost all of the matrix groups we will consider have the stronger property that

if (Ar)r≥0 is any sequence of matrices in G converging to some matrix A, then A ∈ G.

We shall use the customary notation G ≤ GL (n,k) to indicate that G is a subgroup of

GL (n,k).

Example 56. The general linear group GL (n,k) is a linear Lie group.

Example 57. An example of a group of matrices which is not a linear Lie group

is the set GL (n,Q) of all n × n invertible matrices all of whose entries are rational

numbers. This is in fact a subgroup of GL (n,C) but not a closed subgroup; that is, one

can (easily) have a sequence of invertible matrices with rational entries converging to an

invertible matrix with some irrational entries.

Note : The closure of GL (2,Q) (in GL (2,C) ) can be thought of as (the direct product)

S1 × S1 and so is a linear Lie group (see Exercise 61).

Proposition 32. Let G be a linear Lie group and H a closed subgroup of G. Then

H is a linear Lie group.

Proof. Every sequence (Ar)r≥0 in H with a limit in GL (n,k) actually has its limit in

G since each Ar ∈ H ⊆ G and G is closed in GL (n,k). Since H is closed in G, this

means that (Ar)r≥0 has a limit in H. So H is closed in GL (n,k), showing it is a linear

Lie group. �

� Exercise 51. Prove that any intersection of linear Lie groups is a linear Lie group.
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Example 58. Denote by SL (n,k) the set of all n × n matrices over k, having

determinant one. So

SL (n,k) : = {A ∈ kn×n : detA = 1} ⊂ GL (n,k).

� Exercise 52. Show that SL (n, k) is a closed subgroup of GL (n, k) and hence is a

linear Lie group.

SL (n,k) is called the special linear group over k. We will refer to SL (n,R) and

SL (n,C) as the real and complex special linear group, respectively.

Definition 59. A closed subgroup of a linear Lie group G is called a linear Lie

subgroup.

Example 60. We can consider GL (n,k) as a subgroup of GL (n+1,k) by identifying

the n× n matrix A = [ aij ] with

[
1 0

0 A

]
=


1 0 . . . 0

0 a11 . . . a1n

0 a21 . . . a2n

...
...

...

0 an1 . . . ann

 .

It is easy to verify that GL (n,k) is closed in GL (n+1,k) and hence GL (n,k) is a linear

Lie subgroup of GL (n+ 1,k).

� Exercise 53. Show that SL (n,k) is a linear Lie subgroup of SL (n+ 1, k).

4.3. Linear Lie groups: examples. The vector space kn×n over k can be considered

to be a real vector space, of dimension n2 or 2n2, respectively. Explicitly, Rn×n is

(isomorphic to) Rn2
, and Cn×n is (isomorphic to) Cn2 ∼= R2n2

. Hence we may assume,

without any loss of generality, that kn×n is some Euclidean space Rm.

4.3.1. The real general linear group GL (n,R). We have seen that GL (n,R) is a linear

Lie group and that it is an open subset of the vector space Rn×n ( = Rn2)
. Since the

set GL (n,R) is not closed, it is not compact. [Any compact set is a closed set.] The

determinant function det : GL (n,R) → R is continuous (in fact, smooth) and maps

GL (n,R) onto the two components of R×. Thus GL (n,R) is not connected. [The image

of a connected set under a continuous map is a connected set.]

Note : A linear Lie group G is said to be connected if given any two matrices A,B ∈ G,

there exists a continuous path γ : [a, b]→ G with γ(a) = A and γ(b) = B. This property is what

is called path-connectedness in topology, which is not (in general) the same as connectedness.

However, it is a fact (not particularly obvious at the moment) that a linear Lie group is connected
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if and only if it is path-connected. So in a slight abuse of terminology we shall continue to refer

to the above property as connectedness.

A linear Lie group G which is not connected can be decomposed (uniquely) as a union of

several pieces, called components, such that two elements of the same component can be joined

by a continuous path, but two elements of different components cannot. The component of G

containing the identity is a closed subgroup of G and hence a connected linear Lie group.

Consider the sets

GL+ (n,R) := {A ∈ GL (n,R) : detA > 0}

GL− (n,R) := {B ∈ GL (n,R) : detB < 0}.

These two disjoint subsets of GL (n,R) are open and satisfy

GL+ (n,R) ∪ GL− (n,R) = GL (n,R).

[The preimage of an open set under a continuous map is an open set.]

� Exercise 54. Show that GL+ (n,R) is a linear Lie subgroup of GL (n,R) but GL− (n,R)

is not.

The mapping

A ∈ GL+ (n,R) 7→ SA ∈ GL− (n,R)

where S = diag (1, . . . , 1,−1), is a bijection (in fact, a diffeomorphism). The transforma-

tion x 7→ Sx may be thought of as a reflection in the hyperplane Rn−1 = Rn−1×{0} ⊂ Rn.

Note : The group GL+ (n,R) is connected, which proves that GL+ (n,R) is the connected

component of the identity in GL (n,R) and that GL (n,R) has two (connected) components.

4.3.2. The real special linear group SL (n,R). Recall that

SL (n,R) := {A ∈ GL (n,R) : detA = 1} = det−1(1).

It follows that SL (n,R) is a closed subgroup of GL (n,R) and hence is a linear Lie group.

[The preimage of a closed set under a continuous map is a closed set.] We introduce a

new matrix norm on Rn×n, called the Frobenius norm, as follows :

‖A‖F : =
√

tr (A>A) =

√√√√ n∑
i,j=1

a2
ij.

Note : The Frobenius norm coincides with the Euclidean norm on Rn2
, and is much easier

to compute than the operator norm. However, all matrix norms on Rn×n are equivalent (i.e.,

they generate the same metric topology).
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We shall use this (matrix) norm to show that SL (n,R) is not compact. Indeed, all

matrices of the form 
1 0 . . . t

0 1 . . . 0
...

...
...

0 0 . . . 1


are elements of SL (n,R) whose norm equals

√
n+ t2 for any t ∈ R. Thus SL (n,R) is

not a bounded subset of Rn×n and hence is not compact. [In a metric space, any compact

set is bounded.]

Note : The special linear group SL (n,R) is connected.

4.3.3. The orthogonal and special orthogonal groups O (n) and SO (n). The set

O (n) := {A ∈ Rn×n : A>A = 1}

is the orthogonal group. Clearly, every orthogonal matrix A ∈ O (n) has an inverse,

namely A>. Hence O (n) ⊂ GL (n,R).

� Exercise 55. Verify that O (n) is a subgroup of the general linear group GL (n,R).

The single matrix equation A>A = 1 is equivalent to n2 equations for the n2 real

numbers aij, i, j = 1, n:
n∑
k=1

akiakj = δij.

This means that O (n) is a closed subset of Rn×n and hence of GL (n,R).

� Exercise 56. Prove that O (n) is a closed subset of Rn2
.

Thus O (n) is a linear Lie group. The group O (n) is also bounded in Rn×n. Indeed,

the (Frobenius) norm of A ∈ O (n) is

‖A‖F =
√

tr (A>A) =
√

tr 1 =
√
n.

Hence the group O (n) is compact. [A subset of Rn×n is compact if and only if it is

closed and bounded.] Let us consider the determinant function (restricted to O (n)),

det : O (n)→ R×. Then for A ∈ O (n)

det 1 = det (A>A) = detA> · detA = (detA)2.

Hence detA = ±1. So we have

O (n) = O+ (n) ∪ O− (n)

where

O+ (n) := {A ∈ O (n) : detA = 1} and O− (n) := {A ∈ O (n) : detA = −1}.
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Note : The group O+ (n) is connected, which proves that O+ (n) is the connected component

of the identity in O (n).

The special orthogonal group is defined as

SO (n) := O (n) ∩ SL (n,R).

That is,

SO (n) = {A ∈ O (n) : detA = 1} = O+ (n).

It follows that SO (n) is a closed subset of O (n) and hence is compact. [A closed subset

of a compact set is compact.]

Note : One of the main reasons for the study of these groups O (n), SO (n) is their rela-

tionship with isometries (i.e., distance-preserving transformations on the Euclidean space Rn).

If such an isometry fixes the origin, then it is actually a linear transformation and so – with

respect to the standard basis – corresponds to a matrix A. The isometry condition is equivalent

to the fact that (for all x, y ∈ Rn)

Ax •Ay = x • y

which in turn is equivalent to the condition that A>A = 1 (i.e., A is orthogonal). Elements of

SO (n) are (identified with) rotations (or direct isometries); elements of O− (n) are sometimes

referred to as indirect isometries.

4.3.4. The Lorentz group Lor (1, n). Consider the inner product (i.e., non-degenerate sym-

metric bilinear form) � on the vector space Rn+1 given by (for x, y ∈ Rn+1)

x� y := −x1y1 +
n+1∑
i=2

xiyi

(the so-called Minkowski product). It is standard to denote this inner product space

by R1,n.

� Exercise 57. Show that the group of all linear isometries (i.e., linear transformations

on R1,n that preserve the Minkowski product) is isomorphic to the matrix group

O(1, n) :=
{
A ∈ GL (n+ 1,R) : A>SA = S

}
where

S = diag (−1, 1, . . . , 1) =

[
−1 0

0 1

]
∈ GL (n+ 1,R).

In a similar fashion, one can define more general matrix groups

O (k, `) ≤ GL (k + `,R) and SO (k, `) ≤ SL (k + `,R)

usually called “pseudo-orthogonal” groups (this is Problem 21).

Note : Since O (k, `) and O (`, k) are essentially the same group, we may assume (without

any loss of generality) that 1 ≤ k ≤ `. The pseudo-orthogonal groups are neither compact nor
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connected. The groups O (k, `) have four (connected) components, whereas the groups SO (k, `)

have two components.

For each positive number ρ > 0, the hyperboloid

H1,n(ρ) :=
{
x ∈ R1,n : x� x = −ρ

}
has two (connected) components

H+
1,n(ρ) = {x ∈ H1,n(ρ) : x1 > 0} and H−1,n(ρ) = {x ∈ H1,n(ρ) : x1 < 0} .

We define the Lorentz group Lor (1, n) to be the (closed) subgroup of SO (1, n) pre-

serving each of the connected sets H±1,n(1). Thus

Lor (1, n) :=
{
A ∈ SO (1, n) : AH±1,n(1) = H±1,n(1)

}
≤ SO (1, n).

It turns out that A ∈ Lor (1, n) if and only if it preserves the hyperboloids H±1,n(ρ), ρ > 0

and the “light cones” H±1,n(0).

Note : The Lorentz group Lor (1, n) is connected .

Of particular interest in physics is the Lorentz group Lor = Lor (1, 3). That is,

Lor =
{
L ∈ SO (1, 3) : LH±1,3(ρ) = H±1,3(ρ), ρ ≥ 0

}
≤ SO (1, 3).

Note : We can write

SO (1, 1) = Lor (1, 1) ∪

[
−1 0

0 −1

]
Lor (1, 1)

O (1, 1) = SO (1, 1) ∪

[
1 0

0 −1

]
SO (1, 1).

(See also Problem 22.)

4.3.5. The real symplectic group Sp (2n,R). Let

J : =

[
0 1

−1 0

]
∈ SL (2n,R).

A matrix A ∈ R2n×2n is called symplectic if

A>JA = J.

Note : The word symplectic was invented by Hermann Weyl (1885-1955), who substituted

Greek for Latin roots in the word complex to obtain a term which would describe a group (related

to “line complexes” but which would not be confused with complex numbers).

Let Sp (2n,R) be the set of all 2n× 2n symplectic matrices. Taking determinants of

the condition A>JA = J gives

1 = det J = (detA>) · (det J) · (detA) = (detA)2.
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Hence detA = ±1, and so A ∈ GL (2n,R). Furthermore, if A,B ∈ Sp (2n,R), then

(AB)>J(AB) = B>A>JAB = J.

Hence AB ∈ Sp (2n,R). Now, if A>JA = J, then

JA = (A>)−1J = (A−1)>J

so

J = (A−1)>JA−1.

It follows that A−1 ∈ Sp (2n,R) and hence Sp (2n,R) is a group. In fact, it is a closed

subgroup of GL (2n,R), and thus a linear Lie group.

Note : The symplectic group Sp (2n,R) is connected. (It turns out that the determinant of

a symplectic matrix must be positive; this fact is by no means obvious.)

� Exercise 58. Check that Sp (2,R) = SL (2,R). (In general, it is not true that

Sp (2n,R) = SL (2n,R).)

All matrices of the form [
1 0

t1 1

]
∈ SL (2n,R)

are symplectic. However, the (Frobenius) norm of such a matrix is equal to
√

2n+ t2n,

which is unbounded if t ∈ R. Therefore, Sp (2n,R) is not a bounded subset of R2n×2n

and hence is not compact.

� Exercise 59. Consider the skew-symmetric bilinear form on (the vector space) R2n

defined by

Ω(x, y) : =
n∑
i=1

(xiyn+i − xn+iyi)

(the standard symplectic form or the “canonical” symplectic structure). Show that a linear

transformation (on R2n ) x 7→ Ax preserves the symplectic form Ω if and only if A>JA =

J (i.e., the matrix A is symplectic). Such a structure-preserving transformation is called a

symplectic transformation.

The group of all symplectic transformations on R2n (equipped with the symplectic

form Ω ) is isomorphic to the linear Lie group Sp (2n,R).

Note : The symplectic group is related to classical mechanics. Consider a particle of mass

m moving in a potential field V . Newton’s second law states that the particle moves along a

curve t 7→ x(t) in Euclidean space R3 in such a way that mẍ = −gradV (x). Introduce the

conjugate momenta pi = mẋi, i = 1, 2, 3 and the energy (Hamiltonian)

H(x, p) : =
1

2m

3∑
i=1

p2
i + V (x).
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Then
∂H

∂xi
=
∂V

∂xi
= −mẍi = −ṗi and

∂H

∂pi
=

1

m
pi = ẋi

and hence Newton’s law F = ma is equivalent to Hamilton’s equations

ẋi =
∂H

∂pi
and ṗi = −∂H

∂xi
(i = 1, 2, 3).

Writing z = (x, p),

J · gradH(z) =

[
0 I3

−I3 0

]
∂H
∂x

∂H
∂p

 = (ẋ, ṗ) = ż

so Hamilton equations read ż = J · gradH(z). Now let

F : R3 × R3 → R3 × R3

and write w(t) = F (z(t)). If z(t) satisfies Hamilton’s equations

ż = J · gradH(z)

then w(t) = F (z(t)) satisfies ẇ = A>ż, where A> = [∂wi/∂zj ] is the Jacobian matrix of F .

By the chain rule,

ẇ = A>J gradzH(z) = A>JA gradwH(z(w)).

Thus, the equations for w(t) have the form of Hamilton’s equations with energy K(w) =

H(z(w)) if and only if A>JA = J; that is, if and only if A is symplectic. A nonlinear trans-

formation F is canonical if and only if its Jacobian matrix is symplectic (or, if one prefers, its

tangent mapping is a symplectic transformation).

As a special case, consider a (linear transformation) A ∈ Sp (2n,R) and let w = Az. Suppose

H is quadratic (i.e., of the form H(z) = 1
2z
>Bz where B is a symmetric matrix). Then

gradH(z) = Bz and thus the equations of motion become the linear equations ż = JBz. Now

ẇ = Aż = AJBz = J(A>)−1Bz = J(A>)−1BA−1Az = JB′w

where B′ = (A>)−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) =
1

2
w>(A>)−1BA−1w =

1

2
(A−1w)>BA−1w

= H(A−1w) = H(z).

Thus Sp (2n,R) is the linear invariance group of classical mechanics.

4.3.6. The complex general linear group GL (n,C). Many important matrix groups involve

complex matrices. As in the real case,

GL (n,C) := {A ∈ Cn×n : detA 6= 0}

is an open subset of Cn×n, and hence is not compact. Clearly GL (n,C) is a group under

matrix multiplication.

Note : The general linear group GL (n,C) is connected. This is in contrast with the fact

that GL (n,R) has two components.
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4.3.7. The complex special linear group SL (n,C). This group is defined by

SL (n,C) := {A ∈ GL (n,C) : detA = 1}

and is treated as in the real case. The matrix group SL (n,C) is not compact but

connected.

4.3.8. The unitary and special unitary groups U (n) and SU (n). For A = [aij] ∈ Cn×n,

A∗ := Ā> = A>

is the Hermitian conjugate (i.e., the conjugate transpose) matrix of A; thus, (A∗)ij = āji.

The unitary group is defined as

U (n) := {A ∈ GL (n,C) : A∗A = 1}.

� Exercise 60. Verify that U (n) is a subgroup of the general linear group GL (n,C).

The unitary condition amounts to n2 equations for the n2 complex numbers aij, i, j =

1, n
n∑
k=1

ākiakj = δij.

By taking real and imaginary parts, these equations actually give 2n2 equations in the

2n2 real and imaginary parts of the aij (although there is some redundancy). This means

that U (n) is a closed subset of Cn×n = R2n2
and hence of GL (n,C). Thus U (n) is a

complex linear Lie group.

Note : The unitary group U (n) is compact and connected.

Let A ∈ U (n). From |detA| = 1, we see that the determinant function det :

GL (n,C)→ C maps U (n) onto the unit circle S1 = {z ∈ C : |z| = 1}.

Note : In the special case n = 1, a complex linear mapping φ : C→ C is multiplication by

some complex number z, and φ is an isometry if and only if |z| = 1. In this way, the unitary

group U (1) is identified with the unit circle S1. The group U (1) is more commonly known as

the circle group or the one-dimensional torus, and is also denoted by T1.

The dot product on Rn can be extended to Cn by setting (for x, y ∈ Cn×1 )

x • y : = x∗y = x̄1y1 + x̄2y2 + · · ·+ x̄nyn.

Note : This is not C-linear but satisfies (for x, y ∈ Cn×1 and u, v ∈ C)

(ux) • (vy) = ūv (x • y).

This dot product allows us to define the norm of a complex vector x ∈ Cn×1 by

‖x‖ : =
√
x • x.
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Then a matrix A ∈ Cn×n is unitary if and only if

Ax • Ay = x • y (x, y ∈ Cn).

� Exercise 61. If Gi ≤ GL (ni,k), i = 1, 2 are linear Lie groups, show that their (direct)

product G1 ×G2 is also a linear Lie group (in GL (n1 + n2,k)). Observe, in particular, that the

k-dimensional torus

Tk : = T1 × T1 × · · · × T1

is a linear Lie group (in GL (k,C)). These groups are compact connected Abelian linear Lie

groups. (In fact, they are the only linear Lie groups with these properties.)

The special unitary group

SU (n) := {A ∈ U (n) : detA = 1}

is a closed subgroup of U (n) and hence a complex matrix group.

Note : The matrix group SU (n) is compact and connected. In the special case n = 2,

SU (2) is diffeomorphic to the unit sphere S3 in C2 (or R4). The group SU (2) is used in

the construction of the gauge group for the Yang-Mills equations in elementary particle physics.

Also, there is a two-to-one surjection (in fact, a surjective submersion)

π : SU (2)→ SO (3)

which is of crucial importance in computational mechanics (it is related to the quaternionic

representation of rotations in Euclidean space R3).

4.3.9. The complex orthogonal groups O (n,C) and SO (n,C). Consider the bilinear form

on the vector space C defined by

(x, y) := x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Cn).

This form is not an inner product because of the lack of complex conjugation in the

definition. The set of all complex n×n matrices which preserve this form (i.e., such that

(Ax,Ay) = (x, y) for all x, y ∈ Cn) is the complex orthogonal group O (n,C). Thus

O (n,C) :=
{
A ∈ GL (n,C) : A>A = 1

}
⊂ GL (n,C).

It is easy to show that O (n,C) is a liner Lie group, and that detA = ±1 for all O (n,C).

Note : The linear Lie group O (n,C) is not the same as the unitary group U (n).

The complex special orthogonal group

SO (n,C) := {A ∈ O (n,C) : detA = 1}

is also a linear Lie group.
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4.3.10. The unipotent group UT (n,k). A matrix A = [aij] ∈ kn×n is upper triangular if

all the entries below the main diagonal are equal to 0. Let T (n,k) denote the set of all

n× n invertible upper triangular matrices (over k). Thus

T (n,k) := {A ∈ GL (n,k) : aij = 0 for i > j}.

� Exercise 62. Show that T (n,k) is a closed subgroup of the general linear group

GL (n,k) and hence a linear Lie group.

The group T (n,k) is called the (upper) triangular group. This group is not compact.

Note : Likewise, one can define the lower triangular group

T̃ (n, k) := {A ∈ GL (n, k) : aij = 0 for i < j}.

Clearly, A ∈ T̃ (n,k) if and only if A> ∈ T (n,k). The matrix groups T (n,k) and T̃ (n, k) are

isomorphic and there is no need to distinguish between them.

� Exercise 63. Show that the diagonal group

D (n, k) := {A ∈ GL (n,k) : aij = 0 for i 6= j}

is a closed subgroup of T (n, k) and hence a linear Lie group.

� Exercise 64. For k ≤ n, let P (k) denote the group of all linear transformations (i.e.,

invertible linear mappings) on Rn that preserve the subspace Rk = Rk × {0} ⊆ Rn. Show that

P (k) is (isomorphic to) the matrix group{[
A X

0 B

]
: A ∈ GL (k,R), B ∈ GL (n− k,R), X ∈ Rk×(n−k)

}
.

An upper triangular matrix A = [aij] is unipotent if it has all diagonal entries equal

to 1. The (real or complex) unipotent group is (the subgroup of GL (n,k))

UT (n,k) := {A ∈ GL (n,k) : aij = 0 for i > j and aii = 1}.

It is easy to see that the unipotent group UT (n,k) is a closed subgroup of GL (n,k) and

hence a liner Lie group.

Note : UT (n,k) is a closed subgroup of T (n,k).

For the case

UT (2,k) =

{[
1 t

0 1

]
∈ GL (n,k) : t ∈ k

}
the mapping

θ : k→ UT (2, k), t 7→

[
1 t

0 1

]
is a continuous group homomorphism which is an isomorphism with continuous inverse.

This allows us to view k as a linear Lie group.
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Note : Given two linear Lie groups G and G, a group homomorphism θ : G → G is a

continuous homomorphism if it is continuous and its image θ(G) ≤ G is a closed subset of G.

For instance,

θ : UT (2,R)→ U (1),

[
1 t

0 1

]
7→ e2πti

is a continuous homomorphism of matrix groups, but (for a ∈ R \Q)

θ′ : G =

{[
1 k

0 1

]
∈ UT (2,R) : k ∈ Z

}
→ U (1),

[
1 k

0 1

]
7→ e2πkai

is not (since its image is a dense proper subset of U (1)). Whenever we have a continuous

homomorphism of linear Lie groups θ : G → G which is a homeomorphism (i.e., a continuous

bijection with continuous inverse) we say that θ is a continuous isomorphism and regard G

and G as “identical” (as linear Lie groups).

The unipotent group UT (3,R) is the Heisenberg group

H3 :=


1 a b

0 1 c

0 0 1

 : a, b, c ∈ R


which is particularly important in quantum physics ; the Lie algebra of H3 gives a real-

ization of the Heisenberg commutation relations of quantum mechanics.

� Exercise 65. Verify that the 4× 4 unipotent matrices A of the form

A =


1 a2 a3 a4

0 1 a1
a21
2

0 0 1 a1

0 0 0 1


form a closed subgroup of UT (4,R) and hence a linear Lie group. Generalize (to n×n matrices).

Several other matrix groups are of great interest. We describe briefly some of them.

4.3.11. The general affine group AGL (n,k). The general affine group (over k) is the

group

AGL (n,k) :=

{[
1 0

c A

]
∈ GL (n+ 1,k) : c ∈ kn×1 and A ∈ GL (n,k)

}
.

This is clearly a closed subgroup of the general linear group GL (n + 1,k) and hence a

linear Lie group. The general affine group AGL (n,k) is not compact. Likewise the case

of the general linear group, the linear Lie group AGL (n,C) is connected but AGL (n,R)

is not.
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Note : If we identify the element x ∈ kn with

[
1

x

]
∈ k(n+1)×1, then since

[
1 0

c A

][
1

x

]
=

[
1

Ax+ c

]
we obtain an action of the group AGL (n, k) on the vector space kn. Transformations on kn

having the form x 7→ Ax + c (with A invertible) are called affine transformations and they

preserve lines (i.e., one-dimensional linear submanifolds of kn). The associated geometry is

affine geometry that has AGL (n,k) as its symmetry group.

The (additive group of the) vector space kn (in fact, kn×1 ) can be viewed as (and identified

with) the translation subgroup of AGL (n,k){[
1 0

c 1

]
∈ GL (n+ 1, k) : c ∈ kn×1

}
≤ AGL (n, k)

and this is a closed subgroup.

The identity component of the general affine group AGL (n,R) is (the linear Lie group)

AGL+ (n,R) =

{[
1 0

c A

]
: c ∈ Rn×1 and A ∈ GL+ (n,R)

}
.

In particular,

AGL+ (1,R) =

{[
1 0

c ea

]
: a, c ∈ R

}
is a connected linear Lie group (of “dimension” 2). Its elements are (in fact, can be

identified with) transformations of the real line R having the form x 7→ bx + c (with

b, c ∈ R and b > 0).

4.3.12. The Euclidean group E (n). This is the matrix group

E (n) :=

{[
1 0

c A

]
∈ GL (n+ 1,R) : c ∈ Rn×1 and A ∈ O (n)

}
.

The Euclidean group E (n) is a closed subgroup of the general affine group AGL (n,R)

and also is neither compact nor connected. It can be viewed as (and thus identified with)

the group of all isometries (i.e., rigid motions) of the Euclidean space Rn.

4.3.13. The special Euclidean group SE (n). The special Euclidean group SE (n) is

(the linear Lie group) defined by

SE (n) :=

{[
1 0

c R

]
∈ GL (n+ 1,R) : c ∈ Rn×1 and R ∈ SO (n)

}
.

This group is isomorphic to the group of all orientation-preserving isometries (i.e., proper

rigid motions) on the Euclidean space Rn. It is not compact but connected.
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4.3.14. Further examples. Several important groups which are not naturally groups of

matrices can be viewed as linear Lie groups. We have seen that the multiplicative groups

R× and C× (of non-zero real numbers and complex numbers, respectively) are isomorphic

to the linear Lie groups GL (1,R) and GL (1,C), respectively. Also, the circle group S1

(of complex numbers with absolute value one) is isomorphic to U (1). The n-torus (the

direct product of n copies of S1)

Tn = S1 × · · · × S1 ≤ GL (n,C)

is isomorphic to the linear Lie group of n × n diagonal matrices with complex entries

of modulus one. (Tn can also be realized as the quotient group Rn/Zn: an element

(θ1, . . . , θn) mod Zn of Rn/Zn can be identified with the diagonal matrix

diag
(
e2πiθ1 , . . . , e2πiθn

)
.)

Note : If θ : G → G is a continuous homomorphism of linear Lie groups, then its kernel

Ker θ ≤ G is a linear Lie group. Moreover, the quotient group G/Ker θ can be identified with

the linear Lie group Im θ by the usual quotient isomorphism θ̃ : G/Ker θ → Im θ. However,

it is important to realize that not every normal matrix subgroup H of the linear Lie group G

gives rise to a linear Lie group G/H; there are examples for which G/H is a Lie group but not

a linear Lie group. (It is true, but by no means obvious, that every linear Lie group is in fact a

Lie group.)

Recall that the (additive) groups R and C are isomorphic to the unipotent groups

UT (2,R) and UT (2,C), respectively.

� Exercise 66. Verify that the map

x ∈ R 7→ [ex] ∈ GL+ (1,R)

is a continuous isomorphism of linear Lie groups, and then show that the additive group Rn is

isomorphic to the linear Lie group of all n× n diagonal matrices with positive entries.

The symmetric group Sn of permutations on n elements may be considered as well

as a linear Lie group. Indeed, we can make Sn to act on kn by linear transformations :

σ ·


x1

x2

...

xn

 =


xσ−1(1)

xσ−1(2)

...

xσ−1(n)

 .
Thus (for the standard unit vectors e1, e2, . . . , en) σ · ei = eσ(i), i = 1, n.

The matrix [σ] of the linear transformation induced by σ ∈ Sn (with respect to the

standard basis) has all its entries 0 or 1, with exactly one 1 in each row and column.

Such a matrix is usually called a permutation matrix.
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� Exercise 67. Write down the permutations matrices induces by the elements (permu-

tations) of S3.

When k = R each of these permutation matrices is orthogonal, while when k = C it

is unitary. So, for a given n ≥ 1, the symmetric group Sn is (isomorphic to) a closed

subgroup of O (n) or U (n).

Note : Any finite group is (isomorphic to) a linear Lie subgroup of some orthogonal group

O (n).

4.4. Complex matrix groups as real matrix groups. Recall that the (complex)

vector space C can be viewed as a real two-dimensional vector space (with basis {1, i},
for example).

� Exercise 68. Show that the mapping

ρ : C→ R2×2, z = x+ iy 7→

[
x −y
y x

]

is an injective ring homomorphism (i.e., a one-to-one mapping such that, for z, z′ ∈ C,

ρ(z + z′) = ρ(z) + ρ(z′) and ρ(zz′) = ρ(z)ρ(z′).)

We can view C as a subring of R2×2. In other words, we can identify the complex

number z = x+ iy with the 2× 2 real matrix ρ(z).

Note : This can also be expressed as

ρ(x+ iy) = xI2 − yJ2, where J2 : =

[
0 1

−1 0

]
.

Also, for z ∈ C,

ρ(z̄) = ρ(z)>

(complex conjugation corresponds to transposition).

More generally, given Z = [zrs] ∈ Cn×n with zrs = xrs + iyrs, we can write

Z = X + iY,

where X = [xrs], Y = [yrs] ∈ Rn×n.

� Exercise 69. Show that the mapping

ρn : Cn×n → R2n×2n, Z = X + iY 7→

[
X −Y
Y X

]
is an injective ring homomorphism.
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Hence we can identify the complex matrix Z = X + iY with the 2n× 2n real matrix

ρn(Z). Let

J = J2n :=

[
0 1

−1 0

]
∈ SL (2n,R).

Then we can write

ρn(Z) = ρn(X + iY ) =

[
X 0

0 X

]
−

[
Y 0

0 Y

]
J.

� Exercise 70. First verify that

J2 = −I2n and J> = −J

and then show that, for Z ∈ Cn×n,

ρn(Z̄) = ρn(Z)> ⇐⇒ X = X> and Y = Y >.

We see that ρn(GL (n,C)) is a closed subgroup of GL (2n,R), so any linear Lie subgroup

G of GL (n,C) can be viewed as a linear Lie subgroup of GL (2n,R) (by identifying it

with its image ρn(G) under ρn). The following characterizations are sometimes useful:

ρn(Cn×n) =
{
A ∈ Rn×n : AJ = JA

}
ρn(GL (n,C)) = {A ∈ GL (2n,R) : AJ = JA} .

Note : In a slight abuse of notation, the real symplectic group Sp (2n,R) is related to the

unitary group U (n) by

Sp (2n,R) ∩ O (2n) = U (n).

Problems (16–25)

(16) Consider a matrix A ∈ kn×n.

(a) Assume that rankA = k; show that there exist matrices P,Q ∈ GL (n,k)

such that

A = P

[
Ik 0

0 0

]
Q.

(b) Verify that the sequence (Ar)r∈N in GL (n,k) with

Ar = P

[
Ik 0

0 1
r
In−k

]
Q

converges to A. Hence deduce that the set GL (n,k) is dense in kn×n. (A

set whose closure is the whole space is said to be dense in the space.)
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(17) Let A,B ∈ kn×n. By using the result of Problem 16 or otherwise, prove that

the matrices AB and BA have the same characteristic polynomial and hence

the same eigenvalues. (The characteristic polynomial of A is defined by

charA(λ) := det (λ1− A) ∈ k [λ].)

[Hint: For an alternative proof, compare the determinants of the two products

of the block matrices

[
A −λIn
In 0

]
and

[
B −λIn
−In A

]
.]

(18) (a) Determine the center Z(GL (n,k)) of the general linear group GL (n,k).

(b) Show that

(i) Z(GL (n,k)) and SL (n,k) are normal subgroups of GL (n,k).

(ii) GL+ (n,R) is a normal subgroup of GL (n,R) (see section 4.3.1).

(iii) for each subset M ⊆ kn×n, the centralizer

ZGL (n,k)(M) := {A ∈ GL (n,k) : AX = XA for all X ∈ M}

is a closed subgroup of GL (n,k).

(19) Let A ∈ GL (n,R).

(a) Show that the symmetric matrix S = A>A is positive definite (i.e., its eigen-

values are all positive real numbers). Deduce that S has a positive definite

(real) symmetric square root, i.e., there is a positive definite symmetric matrix

S1 such that S2
1 = S.

(b) Show that the matrix S−1
1 A is orthogonal.

(c) If PR = QS, where P,Q are positive definite symmetric matrices and R, S ∈
O (n), show that P 2 = Q2.

(d) Let S2 be a positive definite symmetric matrix for which S2
2 = diag (λ1, . . . , λn).

Show that S2 = diag (
√
λ1, . . . ,

√
λn).

(e) Show that A can be uniquely expressed as A = PR, where P is a positive

definite symmetric matrix and R ∈ O (n). If det A > 0, show that R ∈
SO (n). (Such factorization is called polar decomposition of A.)

(20) Let a ∈ R \Q. Show that

G =

{[
eit 0

0 eiat

]
: t ∈ R

}
is a subgroup of GL (2,C), and then find a sequence of matrices in G which

converges to −I2 6∈ G. This means that G is not a linear Lie group.

[Hint : By taking t = (2n + 1)π for a suitably chosen n ∈ Z, we can make ta

arbitrarily close to an odd integer multiple of π, (2m+ 1)π say. It is sufficient to

show that for any positive integer N , there exist n,m ∈ Z such that |(2n+ 1)a−
(2m+ 1)| < 1

N
·]
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(21) Define the inner product 〈·, ·〉k,` on Rk+` by the formula

〈x, y〉k,` : = −x1y1 − · · · − xkyk + xk+1yk+1 + · · ·+ xk+`yk+`.

The pseudo-orthogonal group O (k, `) consists of all matrices A ∈ GL (k+`,R)

which preserve this inner product (i.e., such that 〈Ax,Ay〉k,` = 〈x, y〉k,` for all

x, y ∈ Rk+`).

(a) Verify that O (k, `) is a linear Lie subgroup of GL (k + `,R).

(b) Let

Q = diag (−1, . . . ,−1, 1, . . . , 1) =

[
−Ik 0

0 I`

]
.

Prove that a matrix A ∈ GL (k+`,R) is in O (k, `) if and only if A>QA = Q.

Hence deduce that detA = ±1.

(c) Verify that SO (k, `) := O (k, `) ∩ SL (k + `,R) is a linear Lie subgroup of

SL (k + `,R).

(22) Show that

(a) The matrix A =

[
cosh t sinh t

sinh t cosh t

]
is in SO (1, 1).

(b) For every s, t ∈ R[
cosh s sinh s

sinh s cosh s

][
cosh t sinh t

sinh t cosh t

]
=

[
cosh(s+ t) sinh(s+ t)

sinh(s+ t) cosh(s+ t)

]
.

(c) Every element (matrix) of O (1, 1) can be written in one of the four forms[
cosh t sinh t

sinh t cosh t

]
,

[
− cosh t sinh t

sinh t − cosh t

]
,

[
cosh t − sinh t

sinh t − cosh t

]
,

[
− cosh t − sinh t

sinh t cosh t

]
.

(Since cosh t is always positive, there is no overlap among the four cases. Matrices

of the first two forms have determinant one; matrices of the last two forms have

determinant minus one.)

(23) Given A =

[
a b

c d

]
∈ GL (2n,R), show that A ∈ Sp (2n,R) if and only if a>c

and b>d are symmetric and a>d− c>b = 1.

(24) Let Zn ≤ Rn be the discrete subgroup of vectors with integer entries and set

GL (n,Z) := {A ∈ GL (n,R) : A (Zn) = Zn} .

Show that GL (n,Z) is a linear Lie group. (This linear group consists of n × n
matrices over (the ring) Z with determinant ± 1.)
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(25) Verify the folowing set of equalities :

ρn(U (n)) = O (n) ∩ ρn(GL (n,C))

= O (n) ∩ Sp (2n,R)

= ρn(GL (n,C)) ∩ Sp (2n,R).
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5. The Matrix Exponential

Definition and basic properties • Some useful formulas • The product and commutator

formulas (optional) • The adjoint action.

5.1. Definition and basic properties. The exponential of a matrix plays a crucial role

in the study of linear (Lie) groups. (It is the mechanism for passing information from the

Lie algebra to the Lie group.) Let A ∈ kn×n and consider the matrix series∑
k≥0

1

k!
Ak = 1 + A+

1

2!
A2 +

1

3!
A3 + · · ·

Note : This matrix series is a series in the complete normed vector space (in fact, algebra)

(kn×n, ‖ · ‖), where ‖ · ‖ is the operator norm (induced by the Euclidean norm on kn). In a

complete normed vector space, an absolutely convergent series
∑
k≥0

ak (i.e., such that the series∑
k≥0

‖ak‖ is convergent) is convergent, and

∥∥∥∥∥
∞∑
k=0

ak

∥∥∥∥∥ ≤
∞∑
k=0

‖ak‖.

(The converse is not true.) Also, every rearrangement of an absolutely convergent series is

absolutely convergent, with same sum. Given two absolutely convergent series
∑
k≥0

ak and∑
k≥0

bk (in a complete normed algebra), their Cauchy product
∑
k≥0

ck, where ck =
∑
i+j=k

aibj =

a0bk + a1bk−1 + · · ·+ akb0 is also absolutely convergent, and

∞∑
k=0

ck =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
.

� Exercise 71. Show that the matrix series
∑
k≥0

1

k!
Ak is absolutely convergent.

Let
∞∑
k=0

1

k!
Ak denote the sum of the (absolutely) convergent matrix series

∑
k≥0

1

k!
Ak. We

set

eA = exp (A) : =
∞∑
k=0

1

k!
Ak.

This matrix is called the matrix exponential of A. Clearly, exp (0) = 1. It follows that

‖ exp (A)‖ ≤ ‖1‖+ ‖A‖+
1

2!
‖A‖2 + · · · = e‖A‖.
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� Exercise 72. Given A ∈ kn×n, show that

‖ exp (A)− 1‖ ≤ e‖A‖ − 1.

� Exercise 73. Show that (for λ, µ ∈ k)

exp ((λ+ µ)A) = exp (λA) exp (µA).

[Hint : These series are absolutely convergent. Think of the Cauchy product.]

It follows that

1 = exp (0) = exp ((1 + (−1))A) = exp (A) exp (−A)

and hence exp (A) is invertible with inverse exp (−A). So exp (A) ∈ GL (n,k).

Note : The “group property” exp ((λ + µ)A) = exp (λA) exp (µA) may be rephrased by

saying that, for fixed A ∈ kn×n, the mapping λ 7→ exp (λA) is a (continuous) homomorphism

from the additive group of scalars k into the general linear group GL (n,k).

Definition 61. The mapping

exp : kn×n → GL (n,k), A 7→ exp (A)

is called the matrix exponential map.

Let A ∈ kn×n (with k either R or C). Let A† denote the transpose A> when k = R,

and the conjugate transpose A∗ when k = C.

� Exercise 74. Show that

exp (A)† = exp (A†).

It is not true in general that exp (A + B) = exp (A) exp (B), although it is true if A

and B commute. (This is a crucial point, with some significant consequences.)

Proposition 33. If A,B ∈ kn×n commute, then

exp (A+B) = exp (A) exp (B).
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Proof. We expand the series and perform a sequence of manipulations that are legitimate

since these series are absolutely convergent :

exp (A) exp (B) =

(
∞∑
r=0

1

r!
Ar

)(
∞∑
s=0

1

s!
Bs

)

=
∞∑

r,s=0

1

r!s!
ArBs

=
∞∑
k=0

(
k∑
r=0

1

r!(k − r)!
ArBk−r

)

=
∞∑
k=0

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)

=
∞∑
k=0

1

k!
(A+B)k

= exp (A+B).

�

Note : We have made crucial use of the commutativity of A and B in the identity

k∑
r=0

(
k

r

)
ArBk−r = (A+B)k.

In particular, for the (commuting) matrices λA and µA, we reobtain the property exp ((λ +

µ)A) = exp (λA) exp (µA). It is important to realize that, in fact, the following statements are

equivalent (for A,B ∈ kn×n):

(1) AB = BA.

(2) exp (λA) exp (µB) = exp (µB) exp (λA) for all λ, µ ∈ k.

(3) exp (λA+ µB) = exp (λA) exp (µB) for all λ, µ ∈ k.

� Exercise 75. Compute (for a, b ∈ R)

exp

([
a 0

0 a

])
, exp

([
a −b
b a

])
, exp

([
a b

b a

])
, exp

([
a b

0 a

])
.

Note : Every real 2 × 2 matrix is conjugate to exactly one of the following types (with

a, b ∈ R, b 6= 0 ) :

• a

[
1 0

0 1

]
(scalar).

• a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]
(elliptic).

• a

[
1 0

0 1

]
+ b

[
0 1

1 0

]
(hyperbolic).



80 C.C. REMSING

• a

[
1 0

0 1

]
+ b

[
0 1

0 0

]
(parabolic).

� Exercise 76.

(a) Show that if A ∈ Rn×n is skew-symmetric, then exp (A) is orthogonal.

(b) Show that if A ∈ Cn×n is skew-Hermitian, then exp (A) is unitary.

� Exercise 77. Let A ∈ kn×n and B ∈ GL (n,k). Show that

exp (BAB−1) = B exp (A)B−1.

Deduce that if B−1AB = diag (λ1, λ2, . . . , λn), then

exp (A) = B diag
(
eλ1 , eλ2 , . . . , eλn

)
B−1.

� Exercise 78. Show (for λ ∈ R)

exp



λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
...

...

0 0 0 . . . λ


 =


eλ eλ 1

2!e
λ . . . 1

(n−1)!e
λ

0 eλ eλ . . . 1
(n−2)!e

λ

...
...

...
...

0 0 0 . . . eλ

 .

Note : When the matrix A ∈ kn×n is diagonalizable over C (i.e., A =

C diag (λ1, . . . , λn)C−1 for some C ∈ GL (n,C)), we have

exp (A) = C diag
(
eλ1 , eλ2 , . . . , eλn

)
C−1.

This means that the problem of calculating the exponential of a diagonalizable matrix is solved

once an explicit diagonalization is found. Many important types of matrices are indeed diagonal-

izable (over C), including skew-symmetric, skew-Hermitian, orthogonal, and unitary matrices.

However, there are also many non-diagonalizable matrices. If Ak = 0 for some positive integer

k, then A` = 0 for all ` ≥ k. In this case the matrix series which defines exp (A) terminates

after the first k terms, and so can be computed explicitly. A general matrix A may be neither

nilpotent nor diagonalizable. This situation is best discussed in terms of the Jordan canonical

form.

For λ ∈ C and r ≥ 1, we have the Jordan block matrix

J(λ, r) : =


λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ

 ∈ Cr×r.

The characteristic polynomial of J(λ, r) is

charJ(λ,r)(s) := det (sIr − J(λ, r)) = (s− λ)r
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and by the Cayley-Hamilton Theorem, (J(λ, r)− λIr)r = 0, which implies that

(J(λ, r)− λIr)r−1 6= O (and hence charJ(λ,r)(s) = minJ(λ,r)(s) ∈ C [s]). The main result on

Jordan form is the following : Given A ∈ Cn×n, there exists a matrix P ∈ GL (n,C) such that

P−1AP =


J(λ1, r1) 0 . . . 0

0 J(λ2, r2) . . . 0
...

...
...

0 0 . . . J(λm, rm)

 ∈ Cn×n.

This form is unique except for the order in which the Jordan blocks J(λi, ri) ∈ Cri×ri occur.

(The elements λ1, λ2, . . . , λm are the eigenvalues of A and in fact charA(s) = (s − λ1)r1(s −
λ2)r2 · · · (s− λm)rm .)

Using the Jordan canonical form we can see that every matrix A ∈ Cn×n can be written

as A = S +N , where S is diagonalizable (over C), N is nilpotent, and SN = NS.

� Exercise 79. Compute

exp


λ a b

0 λ c

0 0 λ


 .

The exponential mapping exp : kn×n → GL (n,k) is continuous (in fact, infinitely

differentiable). Indeed, since any power Ak is a continuous mapping of A, the sequence

of partial sums
(∑r

k=0
1
k!
Ak
)
r≥0

consists of continuous mappings. But the matrix series

defining the exponential matrix converges uniformly on each set of the form {A : ‖A‖ ≤
ρ}, and so the sum (i.e., the limit of its sequence of partial sums) is again continuous. By

continuity (of the exponential mapping at the origin 0), there is a number δ > 0 such

that

B kn×n(0, δ) ⊆ exp−1
(
BGL (n,k)(1, 1)

)
.

In fact we can actually take δ = ln 2 since

exp (B kn×n(0, δ)) ⊆ B kn×n
(
1, eδ − 1

)
.

Hence we have the following result

Proposition 34. The exponential mapping exp : kn×n → GL (n,k) is injective when

restricted to the open subset B kn×n(0, ln 2). (Hence it is locally a diffeomorphism at the

origin 0.)

Let A ∈ kn×n. For every t ∈ R, the matrix series
∑
k≥0

tk

k!
Ak is (absolutely) convergent

and we have
∞∑
k=0

tk

k!
Ak =

∞∑
k=0

1

k!
(tA)k = exp(tA).
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So the mapping

α : R→ kn×n, t 7→ exp(tA)

is defined and differentiable with

α̇(t) =
∞∑
k=1

tk−1

(k − 1)!
Ak = exp (tA)A = A exp (tA).

Note : This mapping can be viewed as a curve in kn×n. The curve is in fact smooth (i.e.,

infinitely differentiable) and satisfies the differential equation (in matrices) α̇(t) = α(t)A with

initial condition α(0) = 1. Also (for t, s ∈ R),

α(t+ s) = α(t)α(s).

In particular, this shows that α(t) is always invertible with α(t)−1 = α(−t).

� Exercise 80. Let A,C ∈ kn×n. Show that the differential equation (in matrices)

α̇ = αA has a unique differentiable solution α : R→ kn×n for which α(0) = C. (This solution

is α(t) = C exp (tA).) Furthermore, if C is invertible, then so is α(t) for t ∈ R, hence α is in

fact a curve in GL (n, k).

5.2. Some useful formulas.

5.2.1. First formula. The following formula can be considered as another definition of the

matrix exponential.

Proposition 35. Let A ∈ kn×n. Then

exp (A) = lim
r→∞

(
1 +

1

r
A

)r
.

Proof. Consider the difference

exp (A)−
(

1 +
1

r
A

)r
=
∞∑
k=0

(
1

k!
− 1

rk

(
r

k

))
Ak.

This matrix series converges since the series for the matrix exponential exp(A) converges

and
(
1 + 1

r
A
)r

is a polynomial. The coefficients in the rhs are nonnegative since

1

k!
≥ r(r − 1) · · · (r − k + 1)

r · r · · · r
1

k!
·

Therefore, setting ‖A‖ = a, we get∥∥∥∥exp (A)−
(

1 +
1

r
Ar
)r∥∥∥∥ ≤ ∞∑

k=0

(
1

k!
− 1

rk

(
r

k

))
ak = ea −

(
1 +

a

r

)r
where the expression on the right approaches zero (as r → ∞). The result now follows.

�
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5.2.2. Second formula.

Proposition 36. Let A ∈ kn×n and ε ∈ R. Then

det (1 + εA) = 1 + ε trA+O(ε2) (as ε→ 0).

Proof. The determinant of 1 + εA equals the product of the eigenvalues of the matrix.

But the eigenvalues of 1 + εA (with due regard for multiplicity) equal 1 + ε λi, where

the λi are the eigenvalues of A. It follows that

det (1 + εA) = (1 + ε λ1)(1 + ε λ2) · · · (1 + ε λn)

= 1 + ε (λ1 + λ2 + · · ·+ λn) +O(ε2)

= 1 + ε trA+O(ε2).

�

Note : Whenever we have a mapping Z from some (open) interval (a, b), a < 0 < b into a

finite-dimensional normed vector space (e.g. kn×n ), then Z will often be denoted by O(tk) if

t 7→ 1
tk
Z(t) is bounded in an (open) neighborhood of the origin 0 (i.e. there are constants C1

and C2 such that

‖Z(t)‖ ≤ C1|tk| for |t| < C2.)

Thus O(tk) may denote different mappings at different times. The big-O notation was first

introduced in 1892 by Paul G.H. Bachmann (1837-1920) in a book on number theory, and

is currently used in several areas of mathematics and computer science (including mathematical

analysis and the theory of algorithms).

5.2.3. Third formula.

Proposition 37. Let α : (a, b)→ kn×n be a curve. Then

d

dt
det α(t)

∣∣∣∣
t=0

= tr α̇(0).

Proof. The operation ∂ := d
dt

∣∣
t=0

has the derivation property

∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)∂γ2.

Put α(t) = [aij(t)] and notice that (when t = 0) aij = δij. Write Cij for the cofactor

matrix obtained from α(t) by deleting the ith row and the jth column. By expanding

along the nth row we get

det α(t) =
n∑
j=1

(−1)n+janj det Cnj.

For t = 0 (since α(0) = 1) we have

det Cnj = δnj.
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Then

∂ det α(t) =
n∑
j=1

(−1)n+j((∂anj) det Cnj + anj(∂ det Cnj))

=
n∑
j=1

(−1)n+j((∂anj) det Cnj) + (∂ det Cnn)

= ∂ann + ∂ det Cnn.

We can repeat this calculation with the (n − 1) × (n − 1) matrix Cnn and so on. This

gives

∂ det α(t) = ∂ann + ∂an−1,n−1 + ∂ det Cn−1,n−1

...

= ∂ann + ∂an−1,n−1 + · · ·+ ∂a11

= tr α̇(0).

�

5.2.4. Liouville’s formula. We can now prove a remarkable (and very useful) result, known

as Liouville’s Formula. Three different proofs will be given.

Theorem 38 (Liouville’s Formula). For A ∈ kn×n we have

det exp (A) = etrA.

First Proof (using the second definition of the exponential) : We have

det exp (A) = det lim
r→∞

(
1 +

1

r
A

)r
= lim

r→∞
det

(
1 +

1

r
A

)r
since the determinant function det : kn×n → k is continuous. Moreover, by Proposition

36,

det

(
1 +

1

r
A

)r
=

[
det

(
1 +

1

r
A

)]r
=

[
1 +

1

r
trA+O

(
1

r2

)]r
(as r →∞).

It only remains to note that (for any a ∈ k)

lim
r→∞

[
1 +

a

r
+O

(
1

r2

)]r
= ea.

In particular, for a = trA, we get the desired result. �

Second Proof (using differential equations) : Consider the curve

γ : R→ GL (1,k) = k×, t 7→ det exp (tA).
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Then (by Proposition 37 applied to the curve γ)

γ̇(t) = lim
h→0

1

h
[det exp ((t+ h)A)− det exp (tA)]

= det exp (tA) lim
h→0

1

h
[det exp (hA)− 1]

= det exp (tA) trA

= γ(t) trA.

So γ satisfies the same differential equation and initial condition as the curve t 7→ et trA.

By the uniqueness of the solution (see Exercise 80), it follows that

γ(t) = det exp (tA) = et trA.

In particular, for t = 1, we get the desired result. �

Third Proof (using Jordan canonical form) : If B ∈ GL (n,k), then (see Exercise

77)

det exp (BAB−1) = det (B exp (A)B−1)

= det B · det exp(A) · det B−1

= det exp (A)

and

etr (BAB−1) = etrA.

So it suffices to prove the identity for BAB−1 for a suitably chosen invertible matrix B.

Using for example the theory of Jordan canonical forms, there is a suitable choice of such

a B for which

BAB−1 = D +N

with D diagonal and N strictly upper triangular (i.e., Nij = 0 for i ≥ j). Then N is

nilpotent (i.e., Nk = O for some k ≥ 1). We have

exp (BAB−1) =
∞∑
k=0

1

k!
(D +N)k

=
∞∑
k=0

1

k!
Dk +

∞∑
k=0

1

(k + 1)!

(
(D +N)k+1 −Dk+1

)
= exp (D) +

∞∑
k=0

1

(k + 1)!
N(Dk +Dk−1N + · · ·+Nk).

The matrix

N(Dk +Dk−1N + · · ·+Nk)

is strictly upper triangular, and so

exp (BAB−1) = exp (D) +N ′
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where N ′ is strictly upper triangular. Now, if D = diag (λ1, λ2, . . . , λn), we have

det exp (A) = det exp (BAB−1)

= det exp (D)

= det diag (eλ1 , eλ2 , . . . , eλn)

= eλ1eλ2 · · · eλn

= eλ1+λ2+···+λn

= etrD

= etr (BAB−1)

= etrA.

�

The exponential mapping

exp : kn×n → GL (n,k)

is a basic link between the linear structure on kn×n and the multiplicative structure on

GL (n,k). Let G be a linear Lie subgroup of GL (n,k). Applying Proposition 34, we

may choose ρ ∈ R so that 0 < ρ ≤ 1
2

and if A,B ∈ B kn×n(O, ρ), then exp (A) exp (B) ∈
exp

(
B kn×n(O, 1

2
)
)
. Since exp is one-to-one on B kn×n(O, ρ), there is a unique matrix

C ∈ kn×n for which

exp (A) exp (B) = exp (C).

Note : There is a beautiful formula, the Baker-Campbell-Hausdorff formula which

expresses C as a power series in A and B. To develop this completely would take too long.

Specifically, (one form of) the B-C-H formula says that if X and Y are sufficiently small, then

exp(X) exp(Y ) = exp(Z) with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

It is not supposed to be evident at the moment what “. . . ” refers to. The only important point

is that all the terms (in the expansion of Z) are given in terms of X and Y , Lie brackets of X

and Y , Lie brackets of Lie brackets involving X and Y , etc. Then it follows that the mapping

φ : G→ GL (n,R) “defined” by the relation

φ (exp(X)) = exp (φ(X))

is such that on elements of the form exp(X), with X sufficiently small, is a group homomor-

phism. Hence the B-C-H formula shows that all the information about the group product, a least

near the identity, is “encoded” in the Lie algebra.
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An interesting special case is the following : If X,Y ∈ Cn×n and X,Y commute with their

commutator (i.e., [X, [X,Y ]] = [Y, [X,Y ] ), then

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X, Y ]

)
·

� Exercise 81. Show by direct computation that for

X,Y ∈ h3 =


0 a b

0 0 c

0 0 0

 : a, b, c ∈ R


(the Lie algebra of the Heisenberg group H3)

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

5.3. The product and commutator formulas (optional). We set

R = C − A−B ∈ kn×n.

For X ∈ kn×n, we have

exp (X) = 1 +X +R1(X),

where the remainder term R1(X) is given by

R1(X) =
∞∑
k=2

1

k!
Xk.

Hence

‖R1(X)‖ ≤ ‖X‖2

∞∑
k=2

1

k!
‖X‖k−2

and therefore if ‖X‖ < 1, then

‖R1(X)‖ ≤ ‖X‖2

∞∑
k=2

1

k!
= ‖X‖2 (e− 2) < ‖X‖2.

Now for X = C ∈ B kn×n(O, 1
2
), we have

exp (C) = 1 + C +R1(C)

with

‖R1(C)‖ < ‖C‖2.

Similar considerations lead to

exp (C) = exp (A) exp (B) = 1 + A+B +R1(A,B),

where

R1(A,B) =
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
.
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This gives

‖R1(A,B)‖ ≤
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
‖A‖r‖B‖k−r

)

=
∞∑
k=0

1

k!
(‖A‖+ ‖B‖)k

= (‖A‖+ ‖B‖)2
∞∑
k=2

1

k!
(‖A‖+ ‖B‖)k−2

≤ (‖A‖+ ‖B‖)2

since ‖A‖+ ‖B‖ < 1.

Combining the two ways of writing exp (C) from above, we have

C = A+B +R1(C)−R1(A,B)

and so

‖C‖ ≤ ‖A‖+ ‖B‖+ ‖R1(A,B)‖+ ‖R1(C)‖

< ‖A‖+ ‖B‖+ (‖A‖+ ‖B‖)2 + ‖C‖2

≤ 2 (‖A‖+ ‖B‖) +
1

2
‖C‖

since ‖A‖, ‖B‖, ‖C‖ ≤ 1
2
. Finally this gives

‖C‖ ≤ 4 (‖A‖+ ‖B‖) .

We also have

‖R‖ = ‖C − A−B‖ ≤ ‖R1(A,B)‖+ ‖R1(C)‖

≤ (‖A‖+ ‖B‖)2 + (4(‖A‖+ ‖B‖))2

= 17 (‖A‖+ ‖B‖)2 .

We have proved the following result.

Proposition 39. Let A,B,C ∈ B kn×n(O, 1
2
) such that exp (A) exp (B) = exp (C).

Then C = A+B +R, where the remainder term R satisfies

‖R‖ ≤ 17 (‖A‖+ ‖B‖)2 .

We can refine this estimate (to second order). We only point out the essential steps

(details will be omitted). Set

S = C − A−B − 1

2
[A,B] ∈ kn×n

and write

exp (C) = 1 + C +
1

2
C2 +R2(C)
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with

‖R2(C)‖ ≤ 1

3
‖C‖3.

Then

exp(C) = 1 + A+B +
1

2
[A,B] + S +

1

2
C2 +R2(C)

= 1 + A+B +
1

2
(A2 + 2AB +B2) + T,

where

T = S +
1

2
(C2 − (A+B)2) +R2(C).

Also

exp (A) exp (B) = 1 + A+B +
1

2
(A2 + 2AB +B2) +R2(A,B)

with

‖R2(A,B)‖ ≤ 1

3
(‖A‖+ ‖B‖)3 .

We see that

S = R2(A,B) +
1

2
((A+B)2 − C2)−R2(C)

and by taking norms we get

‖S‖ ≤ ‖R2(A,B)‖+
1

2
‖(A+B)(A+B − C) + (A+B − C)C‖+ ‖R2(C)‖

≤ 1

3
(‖A‖+ ‖B‖)3 +

1

2
(‖A‖+ ‖B‖+ ‖C‖)‖A+B − C‖+

1

3
‖C‖3

≤ 65 (‖A‖+ ‖B‖)3 .

The following estimation holds.

Proposition 40. Let A,B,C ∈ B kn×n(O, 1
2
) such that exp (A) exp (B) = exp (C).

Then C = A+B + 1
2
[A,B] + S, where the remainder term S satisfies

‖S‖ ≤ 65 (‖A‖+ ‖B‖)3 .

We will derive two main consequences of Proposition 39 and Proposition 40.

(These relate group operations in GL (n,k) to the linear operations in kn×n and are

crucial ingredients in the proof that every linear Lie group is a Lie group.)

Theorem 41 (Lie-Trotter Product Formula). For U, V ∈ kn×n we have

exp (U + V ) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
.

(This formula relates addition in kn×n to multiplication in GL (n,k).)
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Proof. For large r we may take A = 1
r
U and B = 1

r
V and apply Proposition 39 to

give

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp (Cr)

with ∥∥∥∥Cr − 1

r
(U + V )

∥∥∥∥ ≤ 17 (‖U‖+ ‖V ‖)2

r2
·

As r →∞,

‖rCr − (U + V )‖ ≤ 17 (‖U‖+ ‖V ‖)2

r
→ 0

and hence

rCr → U + V.

Since exp (rCr) = exp (Cr)
r, the Lie-Trotter Product Formula follows by conti-

nuity of the exponential mapping. �

Theorem 42 (Commutator Formula). For U, V ∈ kn×n we have

exp([U, V ]) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

(This formula relates the Lie bracket - or commutator - in kn×n to the group commutator

in GL (n,k).)

Proof. For large r (as in the proof of Theorem 41) we have

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp(Cr)

with (as r →∞)

rCr → U + V.

We also have

Cr =
1

r
(U + V ) +

1

2r2
[U, V ] + Sr,

where

‖Sr‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Similarly (replacing U, V with −U,−V ) we obtain :

exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(C ′r),

where

C ′r = −1

r
(U + V ) +

1

2r2
[U, V ] + S ′r

and

‖S ′r‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·
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Combining these we get

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(Cr) exp(C ′r)

= exp(Er),

where

Er = Cr + C ′r +
1

2
[Cr, C

′
r] + Tr

=
1

r2
[U, V ] +

1

2
[Cr, C

′
r] + Sr + S ′r + Tr.

One can verify that

[Cr, C
′
r] =

1

r3
[U + V, [U, V ]] +

1

r
[U + V, Sr + S ′r]

+
1

2r2
[[U, V ], S ′r − Sr] + [Sr, S

′
r].

All four of these terms have norm bounded by an expression of the form constant
r3

so the

same is true of [Cr, C
′
r]. Also Sr, S

′
r, Tr have similarly bounded norms. Setting

Qr : = r2Er − [U, V ]

we obtain (as r →∞)

‖Qr‖ = r2‖Er −
1

r2
[U, V ]‖ ≤ constant

r
→ 0

and hence

exp(Er)
r2 = exp ([U, V ] +Qr)→ exp([U, V ]).

The Commutator Formula now follows using continuity of the exponential mapping.

�

Note : If g, h are elements of a group, then the expression ghg−1h−1 is called the group

commutator of g and h.

5.4. The adjoint action. There is one further concept involving the exponential map-

ping that is basic in Lie theory. It involves conjugation, which is generally referred to as

the adjoint action. For g ∈ GL (n,k) and A ∈ kn×n, we can form the conjugate

Adg(A) := g A g−1.

� Exercise 82. Let A,B ∈ kn×n and g, h ∈ GL (n,k). Show that (for λ, µ ∈ k)

(a) Adg(λA+ µB) = λAdg(A) + µAdg(B).

(b) Adg([A,B]) = [Adg(A),Adg(B)].

(c) Adgh(A) = Adg(Adh(A)).

In particular, Ad−1
g = Adg−1 .
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Formulas (a) an (b) say that Adg is an automorphism of the Lie algebra kn×n, and

formula (c) says the mapping

Ad : GL (n,k)→ Aut (kn×n), g 7→ Adg

is a group homomorphism. The mapping Ad is called the adjoint representation of

GL (n,k).

Formula (c) implies in particular that if t 7→ exp (tA) is a one-parameter subgroup of

GL (n,k), then Ad exp (tA) is a one-parameter group (of linear transformations) in kn×n.

Observe that we can identify Aut (kn×n) with GL (n2,k) (and thus view Aut (kn×n) as a

linear Lie group). Then (see Theorem 44)

Ad exp (tA) = exp (tA)

for some A ∈ kn2×n2
= End (kn×n). Since

A(B) =
d

dt
Ad exp(tA)(B)

∣∣∣∣
t=0

=
d

dt
exp (tA)B exp (−tA)

∣∣∣∣
t=0

= [A,B]

by setting (for A,B ∈ kn×n)

adA(B) : = [A,B]

we have the following formula

Ad exp (tA) = exp (t adA).

Explicitly, the formula says that

exp (tA)B exp (−tA) =
∞∑
k=0

tk

k!
(adA)k B.

(Here (adA)0 = A and (adA)k = ad(adA)k−1 for k ≥ 1.)

Note : The mapping

ad : kn×n → End (kn×n), X 7→ adX

is called the adjoint representation of (the Lie algebra) kn×n. From the Jacobi identity for

Lie algebras, we have

adX([Y, Z]) = [adX(Y ), Z] + [Y, adX(Z)].

That is, adX is a derivation of the Lie algebra kn×n. The formula above gives the relation

between the automorphism Ad exp (tX) of the Lie algebra kn×n and the derivation adX of

kn×n. One also has

exp (tAdg(X)) = g exp (tX)g−1.

Using this formula, we can see that [X,Y ] = 0 if and only if exp (tX) and exp (sY ) commute

for arbitrary s, t ∈ R.
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Problems (26–32)

(26) A matrix A ∈ kn×n is nilpotent if Ak = 0 for some k ≥ 1.

(a) Prove that a nilpotent matrix is singular.

(b) Prove that a strictly upper triangular matrix A = [aij] (i.e. with aij = 0

whenever i ≥ j ) is nilpotent.

(c) Find two nilpotent matrices whose product is not nilpotent.

(27) Suppose that A ∈ kn×n and ‖A‖ < 1.

(a) Show that the matrix series∑
k≥0

Ak = 1 + A+ A2 + A3 + · · ·

converges (in kn×n).

(b) Show that the matrix 1− A is invertible and find a formula for (1− A)−1.

(c) If A is nilpotent, determine (1− A)−1 and exp (A).

(28) Let A ∈ kn×n.

(a) Prove that A is nilpotent if and only if all its eigenvalues are equal to zero.

(b) The matrix A is called unipotent if 1− A is nilpotent (i.e., (1− A)k = 0

for some k ≥ 1). Prove that A is unipotent if and only if all its eigenvalues

are equal to 1.

(c) If A is a strictly upper triangular matrix, show that exp (A) is unipotent.

(29) Let A ∈ kn×n. Show that the functional equation (in matrices) α(t+s) = α(t)α(s)

has a unique differentiable solution α : R → kn×n for which α(0) = 1 and

α̇(0) = A. (This solution is α(t) = exp (tA).)

(30) If A,B ∈ kn×n commute, show that

d

dt
exp (A+ tB)

∣∣∣∣
t=0

= exp (A)B = B exp (A).

(This is a formula for the derivative of the exponential mapping exp at an arbi-

trary A, evaluated only at those B such that AB = BA. The general situation

is more complicated.)

(31) Let A,B ∈ kn×n.

(a) Verify that

ad [A,B] = adA adB − adB adA = [adA, adB] .

(This means that ad : kn×n → End (kn×n) is a Lie algebra homomorphism.)

(b) Show by induction that

(adA)n (B) =
n∑
k=0

(
n

k

)
AkB(−A)n−k.
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(c) Show by direct computation that

exp (adA)(B) = Adexp (A)(B) = exp (A)B exp (−A).

(32) Let α : R→ kn×n be a differentiable curve in kn×n. Prove the formula

d

dt
exp (α(t)) = exp (α(t))

1− exp (−adα(t))

adα(t)

dα

dt
·

(The fraction of linear transformations of kn×n is defined by its – everywhere

convergent – power series

1− exp (−adX)

adX
:=

∞∑
k=0

(−1)k

(k + 1)!
(adX)k .)

This exercise (statement) may also be read as saying that the differential of

the matrix exponential map exp : kn×n → kn×n at any X ∈ kn×n is the linear

transformation d expX = D exp(X) : kn×n → kn×n given by

d expX Y = exp (X)
1− exp (−adX)

adX
Y.

(The statement, together with the Inverse Function Theorem, gives informa-

tion on the local behaviour of the matrix exponential map: the Inverse Func-

tion Theorem says that exp has a local inverse around a point X ∈ kn×n at

which its differential d expX is invertible, and the statement says that this is the

case precisely when (1 − exp (−adX))/adX is invertible, i.e., when zero is not

an eigenvalue of this linear transformation of kn×n.)
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6. Lie Algebras

Tangent space to a linear Lie group • Lie algebras • Homomorhisms of Lie algebras

• Lie algebras of linear Lie groups: examples.

6.1. Tangent space to a linear Lie group. Let G ≤ GL (n,k) be a linear Lie group.

Definition 62. A one-parameter subgroup of G is a continuous mapping γ :

R→ G which satisfies (the homomorphism property)

γ(s+ t) = γ(s)γ(t) (t, s ∈ R).

Note : Recall that R can be viewed as a linear Lie group. Hence (the one-parameter sub-

group) γ is a continuous homomorphism of linear Lie groups. It can be shown that every

one-parameter subgroup of G is differentiable at 0 (in fact, differentiable at every t ∈ R).

A one-parameter subgroup γ : R → G can be viewed as a collection (γ(t))t∈R of linear

transformations on kn such that (for t, s ∈ R)

• γ(0) = id kn .

• γ(s+ t) = γ(s)γ(t).

• γ(t) ∈ G depends continuously on t.

In other words, γ is a linear representation of the (Abelian) group R on (the vector space) kn.

(So γ defines a continuous action of R on kn.) On the other hand, the (parametrized) curve

γ : R→ G has a tangent vector γ̇(0) ∈ kn×n at γ(0) = 1.

Proposition 43. Let γ : R → G be a one-parameter subgroup of G. Then γ is

differentiable at every t ∈ R and

γ̇(t) = γ̇(0) γ(t) = γ(t) γ̇(0).

Proof. We have (for t, h ∈ R)

γ̇(t) = lim
h→0

1

h
(γ(t+ h)− γ(t))

= lim
h→0

1

h
(γ(h)γ(t)− γ(t))

=

(
lim
h→0

1

h
(γ(h)− 1)

)
γ(t)

= γ̇(0) γ(t)

and similarly

γ̇(t) = γ(t) γ̇(0).

�
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We can now determine the form of all one-parameter subgroups of G.

Theorem 44. Let γ : R → G be a one-parameter subgroup of G. Then it has the

form

γ(t) = exp (tA)

for some A ∈ kn×n.

Proof. Let A = γ̇(0). This means that γ satisfies (the differential equation)

γ̇(t) = Aγ(t)

and is subject to (the initial condition)

γ(0) = 1.

This initial value problem (IVP) has the unique solution γ(t) = exp (tA). �

We cannot yet reverse this process and decide for which A ∈ kn×n the one-parameter

subgroup

γ : R→ GL (n,k), t 7→ exp (tA)

actually takes values in G. (The answer involves the Lie algebra of G.)

Note : We have a curious phenomenon in the fact that although the definition of a one-

parameter group only involves first order differentiability, the general form exp (tA) is always

infinitely differentiable (and indeed analytic) as a function of t. This is an important character-

istic of much of the Lie theory, namely that conditions of first order differentiability (and even

continuity) often lead to much stronger conditions.

Let G ≤ GL (n,k) be a linear Lie group. Recall that kn×n may be considered to be

some Euclidean space Rm.

Definition 63. A (parametrized) curve in G is a differentiable mapping γ : (a, b) ⊆
R→ kn×n such that

γ(t) ∈ G for all t ∈ (a, b).

The derivative

γ̇(t) := lim
h→0

1

h
(γ(t+ h)− γ(t)) ∈ kn×n

is called the tangent vector to γ at γ(t). We will usually assume that a < 0 < b.

� Exercise 83. Given two curves γ, σ : (a, b)→ G, we define a new curve, the product

curve, by

(γ σ)(t) := γ(t)σ(t).

Show that (for t ∈ (a, b))

(γ σ)·(t) = γ(t) σ̇(t) + γ̇(t)σ(t).
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� Exercise 84.

(a) Let γ : (−1, 1)→ R3×3 be given by

γ(t) :=

1 0 0

0 cos t sin t

0 − sin t cos t

 .
Show that γ is a curve in SO (3) and find γ̇(0). Show that

(γ2)·(0) = 2γ̇(0).

(b) Let σ : (−1, 1)→ R3×3 be given by

σ(t) :=

0 0 0

0 cos t sin t

0 − sin t cos t

 .
Calculate σ̇(0). Write the matrix γ(t)σ(t) and verify that

(γ σ)·(0) = γ̇(0) + σ̇(0).

� Exercise 85. Let α : (−1, 1)→ Cn×n be given by

α(t) :=

e
iπt 0 0

0 ei
πt
2 0

0 0 ei
πt
2

 .
Show that α is a curve in U (3). Calculate α̇(0).

Definition 64. The tangent space to G at A ∈ G is the set

TA G := {γ̇(0) ∈ kn×n : γ is a curve in G with γ(0) = A}.

Proposition 45. The set TA G is a real vector subspace of kn×n.

Proof. Let α, β : (a, b) → kn×n be two curves in G through A (i.e., α(0) = β(0) = A).

Then

γ : (a, b)→ kn×n, t 7→ α(t)A−1 β(t)

is also a curve in G with γ(0) = A. We have

γ̇(t) = α̇(t)A−1 β(t) + α(t)A−1 β̇(t)

and hence

γ̇(0) = α̇(0)A−1 β(0) + α(0)A−1 β̇(0) = α̇(0) + β̇(0)

which shows that TA G is closed under (vector) addition.

Similarly, if λ ∈ R and α : (a, b)→ kn×n is a curve in G with α(0) = A, then

η : (a, b)→ kn×n, t 7→ α(λt)

is another such curve. Since η̇(0) = λ α̇(0), we see that TA G is closed under (real) scalar

multiplication. So TA G is a (real) vector subspace of kn×n. �
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Note : Since the vector space kn×n is finite dimensional, so is (the tangent space) TA G.

Definition 65. If G ≤ GL (n,k) is a linear Lie group, its dimension is the dimension

of the (real) vector space T1 G (1 is the identity matrix). So

dim G := dimR T1 G.

Note : If the linear Lie group G is complex, then its complex dimension is

dimC G := dimC T1 G.

� Exercise 86. Show that the matrix group U (1) has dimension 1.

Note : The only connected linear Lie groups (up to isomorphism) of dimension 1 are T1 =

U (1) and R, and of dimension 2 are R2,T1 × R,T2, and AGL+ (1,R).

Example 66. The real general linear group GL (n,R) has dimension n2. The deter-

minant function det : Rn×n → R is continuous and det (1) = 1. So there is some ε-ball

about 1 in Rn×n such that, for each A in this ball, det A 6= 0 (i.e., A ∈ GL (n,R)). If

B ∈ Rn×n, then define a curve σ in Rn×n by

σ(t) := 1 + tB.

Then σ(0) = 1 and σ̇(0) = B, and (for small t) σ(t) ∈ GL (n,R). Hence the tangent

space T1 GL (n,R) is all of Rn×n which has dimension n2. So dim GL (n,R) = n2.

� Exercise 87. Show that the dimension of the complex general linear group GL (n,C)

is 2n2.

Proposition 46. Let Sk-sym (n) denote the set of all skew-symmetric matrices in

Rn×n. Then Sk-sym (n) is a linear subspace of Rn×n and its dimension is n(n−1)
2
·

Proof. If A,B ∈ Sk-sym (n), then

(A+B)> + (A+B) = A> + A+B> +B = 0

so that Sk-sym (n) is closed under (vector) addition.

It is also closed under scalar multiplication, for if A ∈ Sk-sym (n) and λ ∈ R, then

(λA)> = λA> so that

(λA)> + λA = λ (A> + A) = 0.

To check the dimension of Sk-sym (n) we construct a basis. Let Eij denote the matrix

whose entries are all zero except the ij-entry, which is 1, and the ji-entry, which is −1.

If we define these Eij only for i < j, we can see that they form a basis for Sk-sym (n).

It is easy to compute that there are

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
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of them. �

� Exercise 88. Show that if σ is a curve through the identity (i.e., σ(0) = 1) in the

orthogonal group O (n), then σ̇(0) is skew-symmetric.

Note : It follows that dim O (n) ≤ n(n−1)
2 · (Later we will show that this estimation is an

equality.)

6.2. Lie algebras. We will adopt the notation g := T1 G for this real vector subspace of

kn×n. In fact, g has a more interesting algebraic structure, namely that of a Lie algebra.

Note : It is customary to use lower case Gothic (Fraktur) characters (such as a, g and h)

to refer to Lie algebras.

Definition 67. A (real) Lie algebra a is a real vector space equipped with a product

[·, ·] : a× a→ a, (x, y) 7→ [x, y]

such that (for λ, µ ∈ R and x, y, z ∈ a)

(LA1) [x, y] = −[y, x].

(LA2) [λx+ µy, z] = λ [x, z] + µ [y, z].

(LA3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The product [·, ·] is called the Lie bracket of the Lie algebra a.

Note : (1) Condition (LA3) is called the Jacobi identity. So the Lie bracket [·, ·] of (the

Lie algebra) a is a skew-symmetric bilinear mapping (on a ) which satisfies the Jacobi identity.

Hence Lie algebras are non-associative algebras. The Lie bracket plays for Lie algebras the same

role that the associative law plays for associative algebras.

(2) While we can define complex Lie algebras (or, more generally, Lie algebras over any field),

we shall only consider Lie algebras over R.

Example 68. Let a = Rn and set (for all x, y ∈ Rn)

[x, y] := 0.

The trivial product is a skew-symmetric bilinear multiplication (on Rn) which satisfies the

Jacobi identity and hence is a Lie bracket. Rn equipped with this product (Lie bracket)

is a Lie algebra. Such a Lie algebra is called an Abelian Lie algebra.

� Exercise 89. Show that the only Lie algebra structure on (the vector space) R is the

trivial one.

Example 69. Let a = R3 and set (for x, y ∈ R3)

[x, y] := x× y (the cross product).
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For the standard unit vectors e1, e2, e3 we have

[e1, e2] = −[e2, e1] = e3, [e2, e3] = −[e3, e2] = e1, [e3, e1] = −[e1, e3] = e2.

Then R3 equipped with this bracket operation is a Lie algebra. In fact, as we will see

later, this is the Lie algebra of (the matrix group) SO (3) and also of SU (2) in disguise.

Given two matrices A,B ∈ kn×n, their commutator is

[A,B] := AB −BA.

A and B commute (i.e., AB = BA ) if and only if [A,B] = 0. The commutator [·, ·] is

a product on kn×n satisfying conditions (LA1) – (LA3).

� Exercise 90. Verify the Jacobi identity for the commutator [·, ·].

The real vector space kn×n equipped with the commutator [·, ·] is a Lie algebra.

Note : The procedure to give kn×n a Lie algebra structure can be extended to any associative

algebra. A Lie bracket can be defined in any associative algebra by the commutator [x, y] =

xy−yx, making it a Lie algebra. Here the skew-symmetry condition (axiom) is clearly satisfied,

and one can check easily that in this case the Jacobi identity for the commutator follows from

the associativity law for the ordinary product.

There is another way in which Lie algebras arise in the study of algebras. A derivation d of

a non-associative algebra A (i.e., a vector space endowed with a bilinear mapping A×A → A)

is a linear mapping A → A satisfying the formal analogue of the Leibniz rule for differentiating

a product (for all x, y ∈ A )

d(xy) = (dx)y + x(dy).

(The concept of a derivation is an abstraction of the idea of a first-order differential operator.)

The set of all derivations on A is clearly a vector subspace of the algebra End (A) of all linear

mappings A → A. Although the product of derivations is in general not a derivation, the

commutator d1 ◦ d2 − d2 ◦ d1 of two derivations is again a derivation. Thus the set of all

derivations of a non-associative algebra is a Lie algebra, called the derivation algebra of the

given non-associative algebra.

Suppose that a is a vector subspace of the Lie algebra kn×n. Then a is a Lie sub-

algebra of kn×n if it is closed under taking commutators of pairs of alements in a; that

is,

A,B ∈ a ⇒ [A,B] ∈ a.

Of course, kn×n is a Lie subalgebra of itself.

Theorem 47. If G ≤ GL (n,k) is a linear Lie group, then the tangent space g = T1 G

is a Lie subalgebra of kn×n.
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Proof. We will show that two curves α, β in G with α(0) = β(0) = 1, there is such a

curve γ with γ̇(0) = [α̇(0), β̇(0)], where [·, ·] is the matrix commutator.

Consider the mapping

F : (s, t) 7→ F (s, t) := α(s) β(t)α(s)−1.

This is clearly differentiable with respect to each of the variables s, t. For each s (in the

domain of α), F (s, ·) is a curve in G with F (s, 0) = 1. Differentiating gives

d

dt
F (s, t)

∣∣∣∣
t=0

= α(s) β̇(0)α(s)−1

and so

α(s) β̇(0)α(s)−1 ∈ g.

Since g is a closed subspace of kn×n (any vector subspace is an intersection of hyper-

planes), whenever this limit exists we also have

lim
s→0

1

s

(
α(s) β̇(0)α(s)−1 − β̇(0)

)
∈ g.

� Exercise 91. Verify the following matrix version of the usual rule for differentiating

an inverse :
d

dt

(
α(t)−1

)
= −α(t)−1 α̇(t)α(t)−1.

We have

lim
s→0

1

s

(
α(s) β̇(0)α(s)−1 − β̇(0)

)
=

d

ds
α(s) β̇(0)α(s)−1

∣∣∣∣
s=0

= α̇(0) β̇(0)α(0)− α(0) β̇(0)α(0)−1α̇(0)α(0)−1

= α̇(0) β̇(0)α(0)− α(0) β̇(0) α̇(0)

= α̇(0) β̇(0)− β̇(0) α̇(0)

= [α̇(0), β̇(0)].

This shows that [α̇(0), β̇(0)] ∈ g, hence it must be of the form γ̇(0) for some curve γ. �

So, for each linear Lie group G, there is a Lie algebra g = T1 G. We call g the Lie

algebra of G.

Note : The essential phenomenon behind Lie theory is that one may associate, in a natural

way, to a linear Lie group G its Lie algebra g. The Lie algebra is first of all a (real) vector space

and secondly is endowed with a skew-symmetric bilinear product (the Lie bracket). Amazingly,

the group G is almost completely determined by g and its Lie bracket. Thus, for many purposes,

one can replace G with g. Since G is a complicated nonlinear object and g is just a vector

space, it is usually vastly simpler to work with g. Otherwise intractable computations may

become straightforward linear algebra; this is one source of the power of Lie theory.
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6.3. Homomorphisms of Lie algebras. A suitable type of homomorphism G → H

between linear Lie groups gives rise to a linear mapping g→ h respecting the Lie algebra

structures.

Definition 70. Let G ≤ GL (n,k), H ≤ GL (m,k) be linear Lie groups and let Φ :

G → H be a continuous mapping. Then Φ is said to be differentiable if for every

(differentiable) curve γ : (a, b) → G, the composite mapping Φ ◦ γ : (a, b) → H is a

(differentiable) curve with derivative

(Φ ◦ γ)·(t) =
d

dt
Φ(γ(t))

and, if two (differentiable) curves α, β : (a, b)→ G both satisfy the conditions

α(0) = β(0) and α̇(0) = β̇(0),

then (Φ ◦ α)·(0) = (Φ ◦ β)·(0).

Such a mapping Φ is a differentiable homomorphism if it is also a group homomorphism.

A continuous homomorphism of matrix groups that is also differentiable is called a Lie

homomorphism.

Note : The “technical restriction” in the definition of a Lie homomorphism is, in fact, un-

necessary. (It turns out, but by no means easy to prove, that every continuous homomorphism

between Lie groups is differentiable – in fact, analytic.)

If Φ : G→ H is the restriction of a differentiable mapping GL (n,k)→ GL (m,k), then

Φ is also a differentiable mapping.

Proposition 48. Let G, H, K be linear Lie groups and let Φ : G → H,Ψ : H → K

be differentiable homomorphisms.

(a) For each A ∈ G there is a linear mapping dΦA : TA G→ TΦ(A) H given by

dΦA(γ̇(0)) = (Φ ◦ γ)·(0).

(b) We have

dΨΦ(A) ◦ dΦA = d(Ψ ◦ Φ)A.

(c) For the identity mapping 1G : G→ G and A ∈ G,

d (1G)A = 1TA G.

Proof. (a) The definition of dΦA makes sense since (by the definition of differentiability),

given X ∈ TA G, for any curve γ with γ(0) = A and γ̇(0) = X, (Φ ◦ γ)·(0) depends

only on X and not on γ. The identities (b) and (c) are straightforward to verify. �

� Exercise 92. Verify that the map dΦA : TA G→ TΦ(A) H is linear.
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If Φ : G → H is a differentiable homomorphism, then (since Φ(1) = 1) dΦ1 : T1 G →
T1 H is a linear mapping, called the derivative of Φ and usually denoted by

dΦ : g→ h.

Definition 71. Let g, h be Lie algebras. A linear mapping φ : g → h is a homo-

morphism of Lie algebras if (for x, y ∈ g )

φ ([x, y]) = [φ (x), φ (y)].

Theorem 49. Let G, H be linear Lie groups and Φ : G→ H be a Lie homomorphism.

Then the derivative dΦ : g→ h is a homomorphism of Lie algebras.

Following ideas and notation in the proof of Theorem 47, for curves α, β in G with

α(0) = β(0) = 1, we can use the composite mapping

Φ ◦ F : (s, t) 7→ Φ(F (s, t)) = Φ(α(s))Φ(β(t))Φ(α(s))−1

to deduce dΦ([α̇(0), β̇(0)]) = [dΦ(α̇(0)), dΦ(β̇(0))].

� Exercise 93. Write down a full proof of Theorem 49.

Corollary 50. Let G, H be linear Lie groups and Φ : G→ H be a Lie isomorphism

of linear Lie groups. Then the derivative dΦ : g→ h is an isomorphism of Lie algebras.

Proof. Φ−1 ◦ Φ is the identity, so

dΦ−1 ◦ dΦ : T1 G→ T1 G

is the identity. Thus dΦ−1 is surjective and dΦ is injective.

Likewise, Φ ◦Φ−1 is the identity, so dΦ ◦ dΦ−1 is the identity. Thus dΦ−1 is injective,

and dΦ is surjective. The result now follows. �

Note : Isomorphic linear Lie groups have isomorphic Lie algebras. The converse (i.e., linear

Lie groups with isomorphic Lie algebras are isomorphic) is false. For example, the rotation

group SO (2) and the diagonal group

D1 =

{[
1 0

0 ea

]
: a ∈ R

}
≤ AGL+ (1,R)

both have Lie algebras isomorphic to R (the only Lie algebra structure on R), but SO (2) is

homeomorphic to a circle, while D1 is homeomorphic to R, so they are certainly not isomorphic.

However, the converse is – in a sense – almost true, so that the bracket operation on g almost

determines G as a group. After the existence of the Lie algebra, this fact is the most remarkable

in Lie theory. Its precise formulation is known as Lie’s Third Theorem.
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6.4. Lie algebras of linear Lie groups: examples.

6.4.1. The Lie algebras of GL (n,R) and GL (n,C). Let us start with the real general

linear group GL (n,R) ⊂ Rn×n. We have shown (see Example 90) that T1 GL (n,R) =

Rn×n. Hence the Lie algebra gl(n,R) of GL (n,R) consists of all n × n matrices (with

real entries), with the commutator as the Lie bracket. Thus gl (n,R) = Rn×n. It follows

that

dim GL (n,R) = dim gl (n,R) = n2.

Similarly, the Lie algebra of the complex general linear group GL (n,C) is gl (n,C) =

Cn×n and

dim GL (n,C) = dimR gl (n,C) = 2n2.

6.4.2. The Lie algebras of SL (n,R) and SL (n,C). For SL (n,R) ≤ GL (n,R), suppose

that α : (a, b)→ SL (n,R) is a curve in SL (n,R) with α(0) = 1. For t ∈ (a, b) we have

det α(t) = 1 and so

d

dt
det α(t) = 0.

Using Proposition 37, it follows that tr α̇(0) = 0 and thus

T1 SL (n,R) ⊆ Ker tr :=
{
A ∈ Rn×n : trA = 0

}
.

If A ∈ Ker tr ⊆ Rn×n, the curve α : (a, b)→ Rn×n, t 7→ exp (tA) satisfies (the boundary

conditions)

α(0) = 1 and α̇(0) = A.

Moreover, using Liouville’s Formula, we get

det α(t) = det exp (tA) = et trA = 1.

Hence the Lie algebra sl (n,R) of SL (n,R) consists of all n × n matrices (with real

entries) having trace zero, with the commutator as the Lie bracket. Thus

sl (n,R) = T1 SL (n,R) = {A ∈ gl (n,R) : trA = 0} .

Since trA = 0 imposes one condition on A, it follows that

dim SL (n,R) = dimR sl (n,R) = n2 − 1.

Similarly, the Lie algebra of the complex special linear group SL (n,C) is

sl (n,C) = T1 SL (n,C) = {A ∈ gl (n,C) : trA = 0}

and

dim SL (n,C) = dimR sl (n,C) = 2(n2 − 1).
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6.4.3. The Lie algebras of O (n) and SO (n). First, consider the orthogonal group O (n);

that is,

O (n) =
{
A ∈ GL (n,R) : A>A = 1

}
≤ GL (n,R).

Given a curve α : (a, b)→ O (n) with α(0) = 1, we have

d

dt
α(t)Tα(t) = 0

and so

α̇(t)>α(t) + α(t)>α̇(t) = 0

which implies

α̇(0)> + α̇(0) = 0.

Thus we must have α̇(0) ∈ Rn×n is skew-symmetric. So

T1 O (n) ⊆ Sk-sym (n) =
{
A ∈ Rn×n : A> + A = 0

}
(the set of all n× n skew-symmetric matrices in Rn×n).

On the other hand, if A ∈ Sk-sym (n) ⊆ Rn×n, we consider the curve

α : (a, b)→ GL (n,R), t 7→ exp (tA).

Then

α(t)>α(t) = exp (tA)> exp (tA)

= exp (tA>) exp (tA)

= exp (−tA) exp (tA)

= 1.

Hence we can view α as a curve in O (n). Since α̇(0) = A, this shows that

Sk-sym (n) ⊆ T1 O (n)

and hence the Lie algebra o(n) of the orthogonal group O (n) consists of all n × n

skew-symmetric matrices, with the usual commutator as the Lie bracket. Thus

o(n) = T1 O (n) = Sk-sym (n) =
{
A ∈ Rn×n : A> + A = 0

}
.

It follows that (see Proposition 46)

dim O (n) = dim o(n) =
n(n− 1)

2
·

� Exercise 94. Show that if A ∈ Sk-sym (n), then trA = 0.
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By Liouville’s Formula, we have

det α(t) = det exp (tA) = 1

and hence α : (a, b) → SO (n), where SO (n) is the special orthogonal group. We have

actually shown that the Lie algebra of the special orthogonal group SO (n) is

so (n) = o (n) =
{
A ∈ Rn×n : A> + A = 0

}
.

6.4.4. The Lie algebra of SO (3). We will discuss the Lie algebra so(3) of the rotation

group SO (3) in some detail.

� Exercise 95. Show that

so (3) =


 0 −c b

c 0 −a
−b a 0

 ∈ R3×3 : a, b, c ∈ R

 .

The Lie algebra so(3) is a three-dimensional real vector space. Consider the rotations

R1(t) =

1 0 0

0 cos t − sin t

0 sin t cos t

 , R2(t) =

 cos t 0 sin t

0 1 0

− sin t 0 cos t

 , R3 =

cos t − sin t 0

sin t cos t 0

0 0 1

 .
Then the mappings

ρi : t 7→ Ri(t), i = 1, 2, 3

are curves in SO (3) and clearly ρi(0) = 1. It follows that

ρ̇i(0) := Ai ∈ so(3), i = 1, 2, 3.

These elements (matrices) are

A1 =

0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

0 −1 0

1 0 0

0 0 0

 .
� Exercise 96. Verify that the matrices A1, A2, A3 form a basis for so(3). (We shall

refer to this basis as the standard basis.)

� Exercise 97. Compute all the Lie brackets (commutators) [Ai, Aj ], i, j = 1, 2, 3 and

then determine the coefficients ckij defined by

[Ai, Aj ] = c1
ijA1 + c2

ijA2 + c3
ijA3, i, j = 1, 2, 3.

(These coefficients are called the structure constants of the Lie algebra. They completely

determine the Lie bracket [·, ·].)
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The Lie algebra so(3) may be identified with (the Lie algebra) R3 as follows. We

define the mapping

̂ : R3 → so (3), x = (x1, x2, x3) 7→ x̂ :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
This mapping is called the hat map.

� Exercise 98. Show that the hat map ̂ : R3 → so (3) is an isomorphism of vector

spaces.

� Exercise 99. Show that (for x, y ∈ R3)

(a) x× y = x̂ y.

(b) x̂× y = [x̂, ŷ].

(c) x • y = −1
2tr (x̂ ŷ).

Formula (b) says that the hat map is in fact an isomorphism of Lie algebras and so we

can identify the Lie algebra so(3) with (the Lie algebra) R3.

Note : For x ∈ R3 and t ∈ R, the matrix exponential exp (t x̂) is a rotation about (the axis)

x through the angle t‖x‖. The following explicit formula for exp (x̂) is known as Rodrigues’

Formula:

exp (x̂) = 1 +
sin ‖x‖
‖x‖

x̂+
1

2

sin
(
‖x‖
2

)
‖x‖
2

2

x̂2.

This result says that the exponential map

exp : so (3)→ SO (3)

is onto. Rodrigues’ Formula is useful in computational solid mechanics, along with its

quaternionic counterpart.

6.4.5. The Lie algebras of U (n) and SU (n). Consider the unitary group U (n); that is,

U (n) = {A ∈ GL (n,C) : A∗A = 1} .

For a curve α in U (n) with α(0) = 1, we obtain

α̇(0)∗ + α̇(0) = 0

and so α̇(0) ∈ Cn×n is skew-Hermitian. So

T1 U (n) ⊆ Sk-Herm (n) =
{
A ∈ Cn×n : A∗ + A = 0

}
(the set of all n× n skew-Hermitian matrices in Cn×n ).

If H ∈ Sk-Herm (n), then the curve

α : (a, b)→ GL (n,C), t 7→ exp (tH)
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satisfies

α(t)∗α(t) = exp (tH)∗ exp (tH)

= exp (tH∗) exp (tH)

= exp (−tH) exp (tH)

= 1.

Hence we can view α as a curve in U (n). Since α̇(0) = H, this shows that

Sk-Herm (n) ⊆ T1 U (n)

and hence the Lie algebra u (n) of the unitary group U (n) consists of all n × n skew-

Hermitian matrices, with the usual commutator as the Lie bracket. Thus

u(n) = T1 U (n) = Sk-Herm (n) =
{
H ∈ Cn×n : H∗ +H = 0

}
.

It follows that (see Problem 39)

dim U (n) = dimR u (n) = n2.

The special unitary group SU (n) can be handled in a similar way. Again we have

su (n) = T1 SU (n) ⊆ Sk-Herm (n).

If α : (a, b)→ SU (n) is a curve with α(0) = 1 then, as in the analysis for SL (n,R), we

have tr α̇(0) = 0. Writing

Sk-Herm0 (n) := {H ∈ Sk-Herm (n) : trH = 0}

this gives su (n) ⊆ Sk-Herm0 (n). On the other hand, if H ∈ Sk-Herm0 (n) then the curve

α : (a, b)→ U (n), t 7→ exp (tH)

takes values in SU (n) and α̇(0) = H. Hence

su (n) = T1 SU (n) = Sk-Herm0 (n) =
{
H ∈ Cn×n : H∗ +H = 0 and trH = 0

}
.

Note : For a linear Lie group G ≤ GL (n,R) (with Lie algebra g), the following are true

(and can be used in determining Lie algebras of linear Lie groups).

• The mapping

expG : g→ GL (n,R), X 7→ exp (X)

has image contained in G, expG (g) ⊆ G. We will normally write expG : g→ G for the

exponential mapping on G (and sometimes even just exp). In general, the exponential

mapping expG is neither one-to-one nor onto.

• If G is compact and connected, then expG is onto.

• The mapping expG maps a neighborhood of 0 in g bijectively onto a neighborhood of

1 in G.
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� Exercise 100. Verify that the exponential map

expU (1) : R→ U (1) = S1, t 7→ eit

is onto but not one-to-one.

Example 72. The exponential map

expSL (2,R) : sl (2,R)→ SL (2,R)

is not onto. Let

A =

[
λ 0

0 1
λ

]
with λ < −1.

We see that A ∈ SL (2,R) and we shall show that A is not of the form exp (X) with

X ∈ sl (2,R). If A = exp (X), then the eigenvalues of A are of the form ea and eb,

where a and b are the eigenvalues of X. Suppose λ = ea and 1
λ

= eb. Then

a = −b+ 2kπ i, k ∈ Z.

However, since λ is negative, a is actually complex and therefore its conjugate is also an

eigenvalue; that is, b = ā. This gives a as pure imaginary. Then

1 = |ea| = |λ| = −λ

which contradicts the assumption that λ < −1.

6.4.6. The Lie algebra of SU (2). We will discuss the Lie algebra su (2) in some detail.

� Exercise 101. Show that

su (2) =

{[
ci −b+ ai

b+ ai −ci

]
∈ C2×2 : a, b, c ∈ R

}
.

The Lie algebra su (2) is a three-dimensional real vector space. Consider the matrices

H1 =
1

2

[
0 i

i 0

]
, H2 =

1

2

[
0 −1

1 0

]
, H3 =

1

2

[
i 0

0 −i

]
.

Clearly,

Hi ∈ su (2), i = 1, 2, 3.

� Exercise 102. Verify that the matrices H1, H2, H3 form a basis for su (2).

� Exercise 103. Compute all the Lie brackets (commutators) [Hi, Hj ], i, j = 1, 2, 3 and

then determine the structure constants of the Lie algebra su (2).

Consider the mapping

φ : R3 → su (2), x = (x1, x2, x3) 7→ x1H1 + x2H2 + x3H3.
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� Exercise 104. Show that the mapping φ : R3 → su (2) is an isomorphism of Lie

algebras (R3 with the cross product).

Thus we can identify the Lie algebra su (2) with (the Lie algebra) R3.

Note : The Lie algebras su (2) and so (3) look the same algebraically (they are isomorphic).

An explicit isomorphism (of Lie algebras) is given by

ψ : x1H1 + x2H2 + x3H3 7→ x1A1 + x2A2 + x3A3.

This suggests that there might be a close relationship between the matrix groups themselves.

Indeed there is a (surjective) Lie homomorphism SU (2)→ SO (3) whose derivative (at 1) is ψ.

Recall the adjoint representation

Ad : SU (2)→ Aut (su(2)), A 7→ AdA (: U 7→ AUA∗).

Each AdA is a linear isomorphism of su (2). AdA is actually an orthogonal transformation on

su (2) (the mapping (X,Y ) 7→ −tr (XY ) is an inner product on su (2)) and so AdA corresponds

to an element of O (3) (in fact, SO (3)). The mapping

Ad : SU (2)→ SO (3), A 7→ AdA

turns out to be a continuous homomorphism of matrix groups that is differentiable (i.e., a Lie

homomorphism) and such that its derivative dAd : su (2)→ so (3) is ψ.

6.4.7. The Lie algebras of T (n,k) and UT (n,k). Let α : (a, b)→ T (n,k) be a curve in

T (n,k) with α(0) = 1. Then α̇(0) is upper triangular. Moreover, using the argument

for GL (n,k) we see that given any upper triangular matrix A ∈ kn×n, there is a curve

σ : (−ε, ε)→ kn×n, t 7→ 1 + tA

such that σ(t) ∈ T (n,k) and σ̇(0) = A. Hence the Lie algebra t (n,k) of T (n,k)

consists of all n × n upper triangular matrices, with the usual commutator as the Lie

bracket. Thus

t (n,k) = T1 T (n,k) =
{
A ∈ kn×n : aij = 0 for i > j

}
.

It follows that

dim T (n,k) = dimR t (n,k) =
n(n+ 1)

2
dimR k.

An upper triangular matrix A ∈ kn×n is strictly upper triangular if all its diagonal entries

are 0. Then the Lie algebra of the unipotent group UT (n,k) consists of all n×n strictly

upper triangular matrices, with the usual commutator as the Lie bracket. So

ut (n,k) = T1 UT (n,k) =
{
A ∈ kn×n : aij = 0 for i ≥ j

}
.

� Exercise 105. Find dimR ut (n, k).
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Problems (33–44)

(33) Let G ≤ GL (n,k) be a linear Lie group.

(a) Prove that if A = α̇(0) ∈ T1 G, then exp (A) ∈ G. (This means that the

matrix exponential map exp : kn×n → GL (n,k) maps the Lie algebra g =

T1 G into G.)

(b) Hence deduce that

T1 G = {X ∈ kn×n : exp (tX) ∈ G for all t ∈ R}.

(34) Let G be a linear Lie group. Prove that the following statements are logically

equivalent.

(a) Any two elements of G may be joined by a path in G.

(b) G is not the disjoint union of two non-empty open sets.

(c) G is generated by any neighborhood of 1.

(d) G is generated by exp (g). (A subset of G generates G if every element of G

is a finite product of elements of the subset and their inverses; in this case, it

means that every element of G is of the form exp (X1) exp (X2) · · · exp (Xk)

for some X1, X2, . . . , Xk in the Lie algebra g of G.)

(35) Let G be a linear Lie group with associated Lie algebra g. Prove that the group

G is Abelian if and only if the Lie algebra g is Abelian (i.e., [x, y] = 0 for all

x, y ∈ g).

(36) Let g be a (real) Lie algebra. A vector subspace k of g is called an ideal if

[x, y] ∈ k for all x ∈ g, y ∈ k.

(a) Verify that any ideal k is a Lie subalgebra (of g).

(b) Show that the center of g

z (g) := {x ∈ g : [x, y] = 0 for all y ∈ g}

is an ideal in g.

(c) Show that the vector subspace

[g, g] := span {[x, y] : x, y ∈ g}

is an ideal in g. (It is called the commutator subalgebra.)

(d) Show that the set

sl (n,k) := {x ∈ kn×n : tr x = 0}

is an ideal in kn×n. (It is called the special linear Lie algebra.)

(37) Show that if φ : g1 → g2 is a Lie algebra homomorphism, then the kernel Kerφ

is an ideal of g1, and the image Imφ is a Lie subalgebra of g2.
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(38) Let G ≤ GL (n,k) be a linear Lie group. Prove that if H is a normal subgroup of

G, then T1 H is an ideal of the Lie algebra T1 G.

(39) A matrix A ∈ Cn×n is called skew-Hermitian if A∗ + A = 0.

(a) Show that the diagonal terms of a skew-Hermitian matrix are purely imagi-

nary and hence deduce that the set Sk-Herm (n) of all skew-Hermitian ma-

trices in Cn×n is not a vector space over C.

(b) Prove that Sk-Herm (n) is a real vector space of dimension

n+ 2
n(n− 1)

2
= n2.

(c) If σ is a curve through the identity in U (n), show that σ̇(0) is skew-

Hermitian and hence

dim U (n) ≤ n2.

(40) Consider the set (of n× n skew-symmetric matrices)

so (n) = {x ∈ Rn×n : x> + x = 0}.

(It is called the special orthogonal Lie algebra.)

(a) Show that so (n) is a Lie subalgebra of Rn×n.

(b) Show that the Lie algebra so (3) contains no ideals other than itself and (the

trivial ideal) {0}. (Such a Lie algebra is called simple.)

[Hint : Show that any non-trivial ideal must contain all the elements of the

standard basis.]

(41) For each of the following linear Lie group G, determine its Lie algebra g and

hence its dimension.

(a) G =
{
A ∈ GL (2,R) : A>QA = Q

}
, where Q =

[
1 0

0 0

]
.

(b) G =
{
A ∈ GL (2,R) : A>QA = Q

}
, where Q =

[
1 0

0 −1

]
.

(c) G = AGL (3,R).

(d) G = H3.

(e) G = G4 ≤ UTu (4,R) from Exercise 65.

(f) G = E (n).

(g) G = SE (n).

(42) (a) Show that the Lie algebra of the symplectic group Sp (2n,R) is

sp (2n,R) =
{
A ∈ R2n×2n : A>J + JA = 0

}
.

(b) If

A =

[
a b

c d

]
∈ sl (2n,R)
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show that A ∈ sp (2n,R) if and only if

d = −a>, c = c>, and b = b>.

(c) Calculate the dimension of sp (2n,R).

(43) Show that the Lie algebra of the Lorentz group Lor is

lor =
{
A ∈ R4×4 : SA+ A>S = 0

}
=




0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

a3 a5 a6 0

 : a1, a2, a3, a4, a5, a6 ∈ R

 .

(44) Consider the linear Lie group k× = GL (1,k). (Its Lie algebra is clearly k.)

(a) Show that the determinant function

det : GL (n,k)→ k×

is a Lie homomorphism (i.e., a continuous homomorphism of linear Lie groups

that is also differentiable; cf. Definition 70).

(b) Show that the induced homomorphism of Lie algebras (i.e., the derivative of

det) is the trace function

tr : kn×n → k.

(c) Derive from (b) that (for A,B ∈ kn×n )

tr (AB) = tr (BA).
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7. Groups and Geometry (Optional)

Geometries • The “Erlanger Programm” • Classical geometries • Other geometries

(in the sense of Klein).

7.1. Geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.2. The “Erlanger Programm”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3. Classical geometries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.3.1. Euclidean geometry.

7.3.2. Spherical geometry.

7.3.3. Elliptic geometry.

7.3.4. Hyperbolic geometry.

7.3.5. Affine geometry.

7.3.6. Projective geometry.

7.4. Other geometries (in the sense of Klein). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7.4.1. Galilean geometry.

7.4.2. Lorentzian geometry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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