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2. Actions of Groups on Sets

Group actions • Orbits and stabilizers • Particular G-sets • Examples of

group actions.

2.1. Group actions. A valuable technique in studying a group is to represent it in terms

of something familiar and concrete: if the elements happen to be permutations or matrices,

however, we may be able to obtain results by using this extra information.

Note: We began with (examples of) transformation groups, i.e., subgroups of the symmetric

group SM on a set M. This approach is consistent both with the historical path along which

group theory developed and with the importance of transformation groups in other areas of

mathematics. The so-called abstract theory of groups, which arose in a later era – the first half

of the 20th century – has gone far beyond transformation groups, but many of the concepts of

this theory bear the imprint of earlier times. In fact, the most common source of these concepts

is the idea of a realization (or representation) of a given group G in SM , where M is some

suitably chosen set.

Let G be a group and M a (non-empty) set.

Definition 18. A (left) action of G on M is a function θ : G×M→ M such that

(LA1)′ θ(g2, θ(g1, x)) = θ(g2g1, x) for all g1, g2 ∈ G and x ∈ M;

(LA2)′ θ(1, x) = x for all x ∈ M.

We write g · x in place of the pedantic notation θ(g, x). We can now write the above

conditions (axioms) as follows:

(LA1) g2 · (g1 · x) = (g2g1) · x for all g1, g2 ∈ G and x ∈ M;

(LA2) 1 · x = x for all x ∈ M.

The set M is called a (left) G-set. One also says that the group G acts on the set M.

Note: In this definition, the elements of G act from the left. There is a “right” version

of G-sets that is sometimes convenient. Define a right action of G on M to be a function

τ : M× G→ M, (x, g) 7→ x · g such that

(RA1) (x · g1) · g2 = x · (g1g2) for all g1, g2 ∈ G and x ∈ M;

(RA2) x · 1 = x for all x ∈ M.

It is easy to see that every right action τ : M×G→ M gives rise to a left action θ : G×M→ M

if one defines θ(g, x) := x · g−1.
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Any action of G on M induces an action of G on (the Cartesian product) Mk =

M× · · · ×M (k factors) by the obvious rule:

g · (x1, . . . , xk) := (g · x1, . . . , g · xk) .

� Exercise 19. Let G be a group and let θ1 : G×M1 → M1 and θ2 : G×M2 → M2 be

actions of G on the sets M1 and M2, respectively. Define

M1 + M2 := (M1 × {1}) ∪ (M2 × {2})

and θ∨ : G× (M1 + M2)→ M1 + M2 by

(g, (x, i)) 7→ (g · x, i)

for i = 1, 2, x ∈ Mi and g ∈ G. Show that θ∨ is an action (of G on the sum M1 + M2).

� Exercise 20. Let G be a group and let θ1 : G×M1 → M1 and θ2 : G×M2 → M2 be

actions of G on the sets M1 and M2, respectively. Define θ∧ : G× (M1 ×M2)→ M1 ×M2 by

(g, (x1, x2)) 7→ (g · x1, g · x2)

for x1 ∈ M1, x2 ∈ M2 and g ∈ G. Show that θ∧ is an action (of G on the product M1 ×M2).

There is also an induced action of G on the set of all subsets P(M) of M. We set

g · ∅ := ∅ and, if S is a non-empty subset of M, then we set g · S := {g · x : x ∈ S}.

� Exercise 21. Let M and N be sets, and let θ be an action of the group G on the set

M. Consider the set NM of all N-valued functions defined on M. Show that the correspondence

(g, F ) 7→ g · F := F ◦ θg−1

for g ∈ G and F : M→ N, defines an action (of G on the function set NM). (For M = R this

gives the induced action on the function set FM = RM; for N = {0, 1} this gives the induced

action on the the power set P(M) = {0, 1}M.)

� Exercise 22. Let L and M be sets, and let τ be an action of the group G on the set

M. Consider the set ML of all M-valued functions defined on L. Show that the correspondence

(g, C) 7→ g · C := τg ◦ C

for g ∈ G and C : L → M, defines an action (of G on the function set ML). (For L = R this

gives the induced action on the set CM = MR of M-valued parametrised curves.)

Example 19. Let G be a subgroup of the symmetric group SM on M: G ≤ SM (G

is a transformation group). Then the function

G×M 3 (α, x) 7→ α(x) ∈ M

is an action of G on M; this is the most frequent case. For example, G can be defined

as a subgroup of SM satisfying certain conditions.
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Example 20. (The regular representation) Given a group G, we can make G into

a G-set (i.e., take M to be G) by defining g · x to be the group product : the function

G× G 3 (g, x) 7→ gx ∈ G

is an action of G on itself. The map La : G→ G, g 7→ ag is the left translation by a.

Our action (by left translations) induces an action of G on the set of subsets of G. In

particular, let H ≤ G. It is clear that the function (denoted λH )

G× G/H 3 (g, aH) 7→ g(aH) := (ga) H

is an action of G on the orbit set G/H. The corresponding homomorphism

ΦH : G→ SG/H, g 7→ λHg ( : G/H→ G/H)

is the so-called (left) regular representation of G. (Here λHg takes the left coset aH

to (ga) H.)

� Exercise 23. Show that the map ΦH : G→ SG/H, g 7→ λHg is a homomorphism.

The regular representation of the group G by permutations of cosets of the subgroup

H in G is much more efficient than the one obtained using Cayley’s Theorem.

Example 21. (The conjugation action) Another way to make G into a G-set is to

use conjugation: the function

G× G 3 (g, x) 7→ gxg−1 ∈ G

is also an action of G on itself. Clearly, 1x = x and

g2(g1x) = g2

(
g1xg

−1
1

)
g−1

2 = (g2g1)x(g2g1)−1 = (g2g1)x

for all x ∈ G. The conjugation action carries over to subsets and subgroups of G. Two

subsets S,T ⊆ G are conjugate if T = g S g−1 for some g ∈ G. Let H ≤ G. It is

customary to call (the group) N (H) := {g ∈ G : gH g−1 = H} the normalizer of H in

G. (The subgroup H is normal in G precisely when N (H) = H.)

Note: The first mathematicians who studied group-theoretic problems (e.g., J.L. La-

grange) were concerned with the question: What happens to the polynomial f(X1, . . . , Xm)

if one permutes the variables ? More precisely, if π ∈ Sm, define

π · f(X1, . . . , Xm) := f(Xπ(1), . . . , Xπ(m));

given f ∈ R[X1, . . . , Xm], how many distinct polynomials π ·f are there ? (Here R[X1, . . . , Xm]

denotes the set – in fact, ring – of polynomials in m variables X1, . . . , Xm with real coefficients.)

If π · f = f for all π ∈ Sm, then (the polynomial) f is called a symmetric function. If

a polynomial f(X) =
∑m

i=0 aiX
i ∈ R[X] has roots r1, . . . , rm, then each of the coefficients ai

of f(X) = amΠm
i=0(X − ri) is a symmetric function of r1, . . . , rm. Other interesting functions

of the roots may not be symmetric. For example, the discriminant of f(X) is defined to be
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the number d2, where d := Πi<j(ri − rj). If D(X1, . . . , Xm) = Πi<j(Xi −Xj), then it is easy

to see that π · D = ±D for every π ∈ Sm. Indeed, D is an alternating function of the

roots: π · D = D if and only if π ∈ Am. This suggests a slight change in viewpoint. Given

f(X1, . . . , Xm), find S(f) := {π ∈ Sm : π · f = f}; this is precisely what Lagrange did. It

is easy to see that S(f) ≤ Sm; moreover, f is symmetric if and only if S(f) = Sm, while

S(D) = Am.

Modern mathematicians are concerned with the same type of problem. If M is a G-set, then

the set of all α : M → M such that α(g · x) = α(x) for all x ∈ M and all g ∈ G is usually

valuable in analyzing M.

Example 22. Let k be a field (think of either R or C). The symmetric group Sm

acts on the set M = k[X1, . . . , Xm] by

Sm ×M 3 (π, f) 7→ π · f

where π · f(X1, . . . , Xm) = f(Xπ(1), . . . , Xπ(m)).

� Exercise 24. For any permutation π ∈ Sm and x = (x1, . . . , xm) ∈ Rm, define

π · x :=
(
xπ−1(1), . . . , xπ−1(m)

)
.

Show that α · (β · x) = (αβ) · x for α, β ∈ Sm and x ∈ Rm. (This means that the map

(π, x) 7→ π · x is an action of the symmetric group Sm on the set Rm. What is the induced

action on the function set FRm ? But on the ring of polynomial functions R[X1, . . . , Xm] ?)

Any homomorphism Φ : G→ SM gives rise to an action θ of G on M defined by

θ(g, x) = g · x := Φ(g)(x)

for all g ∈ G and all x ∈ M. This really is an action because

g2 · (g1 · x) = Φ(g2) (Φ(g1)(x)) = (Φ(g2)Φ(g1)) (x) = Φ(g2g1)(x) = (g2g1) · x

for all g1, g2 ∈ G and all x ∈ M, and

1 · x = Φ(1)(x) = 1M(x) = x

for all x ∈ M.

Conversely, suppose that θ is an action of G on M. For a fixed element g ∈ G consider

the mapping

θ(g, ·) := θg : M→ M, x 7→ g · x.

This is invertible: it has an inverse, namely θg−1 because (for all x ∈ M)

θgθg−1(x) = θg (θg−1(x)) = g · (g−1 · x) = (gg−1) · x = 1 · x = x

and similarly θg−1θg(x) = x, which shows that

θgθg−1 = θg−1θg = 1M.
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In this way each element of G acts as a permutation of M. Furthermore, the map

Φ : G→ SM, g 7→ θg

is a homomorphism. Indeed, for all x ∈ M, we have

Φ(g2g1)(x) = (g2g1) · x = g2 · (g1 · x) = Φ(g2) (Φ(g1)(x)) = (Φ(g2)Φ(g1)) (x)

and so

Φ(g2g1) = Φ(g2)Φ(g1).

We call a homomorphism Φ : G→ SM a permutation representation of G on M or

a representation of G as a group of transformations (permutations) of M. What we have

just shown is that every such representation gives rise to an action of G on M and that,

conversely, every action gives rise to a permutation representation.

To summarize, we have

Proposition 15. There is a one-to-one correspondence between actions of the group

G on the set M and the representations of G by permutations of M.

In view of this result we shall use the language of group actions and of permutation

representations interchangeably.

Note: All this can be done with right actions, but a little care must be exercised. If

(x, g) 7→ x · g is the right action of G on M, the corresponding permutation representation of

G on M is given by g 7→ τ(·, g−1). (Without this inverse we would not obtain a homomorphism

from G to SM but an “anti-homomorphism” or, if one prefers, a homomorphism from the

opposite group Gop to SM.)

One can use right translations Ra : G→ G, g 7→ ga to define natural actions of G on itself

and on the set of right cosets (denoted by G\H). The action ρH of G on the set G\H has a

corresponding right regular representation

G→ SG\H, g 7→ ρHg−1 .

A major theme of mathematical endeavour is to understand groups in terms of their

actions. An interesting (and important) case is when the set M on which the group acts

carries some extra structure—which will generally have a “geometric” flavour—and we

will require the group action to respect this structure.

Consider the case when M = Rm, which is a vector space, and require G to act on

Rm by linear transformations. That is, we replace the symmetric group SRm with

GL (Rm), the group of invertible linear maps Rm → Rm; this group is (isomorphic to) the

general linear group GL (m,R). A homomorphism ρ : G → GL (m,R) is called a linear

representation of G. To put it another way, a linear representation of G is a concrete

realization of the group G as a collection of invertible matrices.
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A faithful linear representation of a group G is an embedding of G into a matrix

group; that is, the homomorphism ρ : G → GL (m,R) is injective: distinct elements of

the group correspond to distinct matrices. In this case we refer to G as a linear group.

Example 23. For every m ∈ N, the symmetric group Sm can be embedded into

GL (m,R). In order to embed Sm into (the general linear group) GL (m,R), we must

find an injective homomorphism ρ : Sm → GL (m,R); this involves assigning to each

permutation π ∈ Sm an invertible linear map ρπ : Rm → Rm.

Given an ordered basis (ei)1≤i≤m of Rm, let ρπ : Rm → Rm be the unique linear map

that permutes these elements according to the permutation π ∈ Sm. That is, each π

corresponds to a bijection π : [m] → [m]; define now the action of ρπ on the vectors ei

by

ρπ(ei) := eπ(i), i = 1, . . . ,m.

Since the vectors ei are linearly independent, ρπ extends uniquely to a linear map on

their span, which is Rm: it sends the vector x = x1e1 + · · ·+ xmem ∈ Rm to the vector

ρπ(x) = x1ρπ(e1) + · · ·+ xmρπ(em)

= x1eπ(1) + · · ·+ xmeπ(m)

= xπ−1(1)e1 + · · ·+ xπ−1(m)em ∈ Rm.

(The action (π, x) 7→ π · x := ρπ(x) of Sm on Rm is given by π · (x1, . . . , xm) =

(xπ−1(1), . . . , xπ−1(m)).) The map ρ : π 7→ ρπ is a homomorphism since

ρπρσ(ei) = ρπ
(
eσ(i)

)
= eπ(σ(i)) = ρπσ(ei).

(It is easy to see that this homomorphism is injective.)

Choosing the standard basis for the vector space Rm, the linear transformations ρπ
are represented by permutation matrices P = Φ(π) ∈ GL (m,R) (see Example 15).

� Exercise 25. Verify that the natural homomorphism ρ : Sm → GL (m,R) is injective.

One wants to think of two G-sets M and M as being “essentially the same” if M can

be identified with M in such a way that the actions θ and θ become the same. Formally,

we say that M and M are equivalent if there exist an automorphism φ ∈ Aut (G) and

a bijection β : M→ M such that for all g ∈ G the following diagram commutes:

M
β−−−→ M

θg

y yθφ(g)
M

β−−−→ M

In other words, β(g · x) = φ(g) · β(x) for all x ∈ M and all g ∈ G. (We say that β is

φ-equivariant.)
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� Exercise 26. Show that two G-sets M and M are equivalent if and only if there exist

an automorphism φ ∈ Aut (G) and a bijection β : M → M such that the following diagram

commutes:

G×M
φ×β−−−−→ G×M

θ

y yθ
M

β−−−−→ M

2.2. Orbits and stabilizers. There are two fundamental aspects of G-sets: orbits and

stabilizers. Let M be a G-set (with respect to Φ : G → SM). Two points x, y ∈ M are

said to be G-equivalent if y = g · x for some g ∈ G.

� Exercise 27. Verify that the G-equivalence relation is a genuine equivalence relation

on M (which divides M into disjoint equivalence classes).

Each equivalence class is called a G-orbit. (Usually, we will say simply orbit instead

of G-orbit.) The orbit containing x ∈ M is denoted Orb (x) or Gx; thus

Orb (x) = Gx := {g · x : g ∈ G}.

Note: The notion of an orbit arose from geometry. For example, if G = SO (2) is the group

of rotations of the (Euclidean) plane about the origin, then the orbit of a point P is the circle

centered at the origin passing through P , and the set M = R2 is the union of all the concentric

circles, including the one with zero radius (consisting of a single point, the origin).

Let x ∈ M. Consider the set

St (x) = Gx := {g ∈ G : g · x = x}.

It is called the stabilizer (or the isotropy group) of x.

� Exercise 28. Show that for any G-set M and any element x ∈ M, the stabilizer St (x)

is a subgroup of G.

Example 24. If G acts on itself by left translations and x ∈ G, then Orb (x) = G

(there is only one orbit) and St (x) is the trivial group {1}.

Example 25. If G acts on itself by conjugation and x ∈ G, then Orb (x) is the

conjugacy class C(x) of x (i.e., the set of all group elements of the form gxg−1 as g

varies over G), and

St (x) =
{
g ∈ G : gxg−1 = x

}
= {g ∈ G : gx = xg}

(the centralizer Z (x) of x).
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Example 26. If G acts by conjugation on the set of all its subgroups and H ≤ G,

then Orb (H) = {gH g−1 : g ∈ G} (all the conjugates of H) and St (H) is the normalizer

N (H) of H.

Example 27. Let M = k[X1, . . . , Xm] and G = Sm. If f ∈ M, then Orb (f) is the

set of distinct polynomials of the form π · f, π ∈ Sm, and

St (f) = S (f) = {π ∈ Sm : π · f = f} .

� Exercise 29. Show that St (g · x) = g St (x) g−1 for all x ∈ M and all g ∈ G. (This

means that points in the same orbit have conjugate stabilizers.)

Theorem 16. (Orbit-Stabilizer Theorem) For each x ∈ M, the correspondence

g ·x 7→ g St (x) is a bijection between the orbit Orb (x) and the set G/St (x) of left cosets

of the stabilizer St (x) in G.

Proof. The correspondence is clearly surjective. It is injective because if g St (x) =

g′ St (x), then g = g′h for some element h ∈ St (x), and therefore

g · x = (g′h) · x = g′ · (h · x) = g′ · x.

�

Corollary 17. If G is finite, the size of each orbit is a divisor of the order of G.

Proof. By the Orbit-Stabilizer Theorem, the size of the orbit Orb (x) is |G/St (x)| =
|G|/|St (x)|, therefore

|Orb (x)| · |St (x)| = |G|.

�

� Exercise 30. Let M and M be two G-sets such that there exists a bijection β : M→ M

such that β(g · x) = g · β(x) for all g ∈ G and all x ∈ M. (This means that M and M are

equivalent.) Let x ∈ M and x ∈ M such that x = β(x). Show that St (x) = St (x).

2.3. Particular G-sets. Let M be a G-set (with respect to the homomorphism Φ : G→
SM ). We define some particular properties the action θ : G×M→ M can have.

Definition 28. θ is an effective action if Φ is injective (i.e., Ker Φ = {1}).

This always happens when G ≤ SM. We observe that Ker Φ =
⋂
x∈M St (x), an element

of Ker Φ being exactly an element of G contained in every isotropy group. If θ is not

effective, then there exists a factorization Φ̂ through G/Ker Φ
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G −−−→ G/Ker Φ

Φ

y yΦ̂

SM SM

and G/Ker Φ acts effectively on M.

Example 29. The action of G on itself by conjugation (inner automorphisms) has

the center Z (G) as kernel.

In case of an effective action, we think of the group G as being identified with its image

under (the associated homomorphism) Φ, a subgroup of the symmetric group SM and

we are essentially back with the important special case of permutation (transformation)

groups.

Definition 30. θ is a free action if g · x = x for some x ∈ M implies g = 1.

This means that the transformation θg : x 7→ g · x for g 6= 1 has no fix points

(free means “free of fix points”). The isotropy group is reduced to trivial subgroup:

St (x) = {1} for every x ∈ M. Clearly, every free action is effective. A G-set with a free

action is also called a principal G-set.

Example 31. The action of G on itself by left translations is free.

Definition 32. θ is a transitive action if for x1, x2 ∈ M there exists a g ∈ G such

that g · x1 = x2, and simply transitive if, moreover, the element g is unique.

A simply transitive action is free. Conversely, a free action is simply transitive on each

orbit. Indeed, let x = g1 · x0 = g2 · x0 ∈ Orb (x0). Then

x0 = g−1
2 · x = g−1

2 · (g1 · x0) =
(
g−1

2 g1

)
· x0

and therefore g−1
2 g1 ∈ St (x0) = {1}, hence g1 = g2.

Note: Stabilizers, in some sense, tell us how far a group is from acting simply transitively:

just notice that g · x = h · x ⇐⇒ h−1g ∈ St (x).

Proposition 18. If G is an Abelian group, any effective and transitive action is

simply transitive.

Proof. Let M be a G-set and let x, y ∈ M. Since our action is transitive, there is at

least some element g ∈ G such that g · x = y. Assume that we have g1, g2 ∈ G with

g1 · x = g2 · x = y. We shall prove that, actually, g1 · z = g2 · z for all z ∈ M. As our

action is effective, we must have g1 = g2, and this proves our statement.
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Let z ∈ M. There is some g′ ∈ G such that z = g′ · x. Then we have

g1 · z = g1 · (g′ · x)

= (g1g
′) · x

= (g′g1) · x (since G is Abelian)

= g′ · (g1 · x)

= g′ · (g2 · x)

= (g′g2) · x

= (g2g
′) · x (since G is Abelian)

= g2 · (g′ · x)

= g2 · z.

Therefore, g1 · z = g2 · z for all z ∈ M, as claimed. �

Definition 33. A G-set M is called homogeneous if G acts transitively on M.

Example 34. The action of G on itself by left translations is transitive. For, if

x, y ∈ M = G, and if we take g := yx−1, then gx = y.

Example 35. The action of the general linear group GL (n,k) on kn\{0} is transitive.

For, given any non-zero vector x in kn, there certainly exists an invertible n× n matrix

A over k, whose first column is x and then

A

1
...

0

 = x.

The transitivity of the action follows. Why ?

Example 36. The orthogonal group O (n) acts transitively on the unit sphere Sn−1 ⊂
Rn. More generally, an action of G on M induces a transitive action on each orbit.

It is not difficult to see that every G-set is expressible in a unique way as a disjoint

union of orbits (this is Problem 7). So many questions about actions of groups (on sets)

can be reduced to the study of homogeneous G-sets.

There is a simple method for constructing a homogeneous set (this is Example 20).

Let G be a group and consider a subgroup H ≤ G. Then we can define an action of G

on the orbit set G/H. The left translation Lg : G → G satisfies Lg (aH) = (ga) H and

therefore defines a transformation (of G/H)

λHg : G/H→ G/H, aH 7→ (ga) H.

This makes G/H a G-set, which is homogeneous.
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� Exercise 31. Show that the action (of G on G/H)

G× G/H 3 (g, aH) 7→ (ga) H ∈ G/H

is transitive.

The method of constructing a homogeneous set (as described above) is, in a certain

sense, universal: every homogeneous G-set is equivalent to a (homogeneous) G-set of the

form G/H for a suitable H ≤ G. (This orbit set provides a sort of “canonical form” for

homogeneous G-sets, under equivalence). Indeed, let M be an arbitrary homogeneous

G-set and let x0 ∈ M. Put H = St (x0) ≤ G. Then the map

β : M 3 x = g · x0 7→ gH ∈ G/H

is an equivalence of G. ( β is well defined, bijective and equivariant.)

Note: If M is a homogeneous G-set, then we have (for each x ∈ M)

M = Orb (x) ≈ G/St (x) (one-to-one correspondence).

This equation is invaluable, for it reduces the study of a set M (usually endowed with some

“structure”) to an algebraic problem, namely the study of the pair (G,St (x)).

In the context of group actions (on sets), the homogeneous G-sets play a role somewhat

similar to that played by the vector spaces kn in the context of linear algebra. The result,

stated above, regarding the homogeneous G-sets corresponds to the classical result which states

that every finite-dimensional vector space V over k is isomorphic to some (vector space) kn.

In the same way an isomorphism between V and kn assumes the choice of a basis for V, an

equivalence (G-isomorphism) between a homogeneous G-set M and G/H assumes the choice of

a point in G. Also, in the same way a vector space kn admits a preferred basis, a homogeneous

set admits a preferred point. Finally, the statement that two vector spaces km and kn are

isomorphic if and only if m = n, corresponds to the statement that two homogeneous G-sets

G/H1 and G/H2 are equivalent if and only if H1 and H2 are conjugate in G (this is Problem

10).

2.4. Examples of group actions. We now give some further examples of group actions

on sets.

Example 37. Let M = G be a group. Then G acts on itself in several important

ways:

(a) θg(x) = gx (left translation);

(b) θg(x) = xg−1 (right translation);

(c) θg(x) = gxg−1 (inner automorphism).

Example 38. If M = V is a vector space (over the field k), its linear group

G = GL (V) :=
{
α ∈ VV : α is linear and bijective

}
≤ SV
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acts on M. When V = kn, the group GL (kn) is (isomorphic to) the general linear group

GL (n,k). So the group GL (n,k) acts on kn by left multiplication:

GL (n,k)× kn 3 (A, x) 7→ Ax ∈ kn

(here the elements of kn are viewed as n× 1 matrices over k).

Example 39. Let M = E be an Euclidean vector space, and put

G = O (E) := {α ∈ GL (E) : α is an isometry} .

Then there is a natural action of G on M. When E = Rn, the group O (Rn) is the orthog-

onal group O (n) ≤ GL (n,R). In particular, the rotation group SO (n) acts naturally on

Rn. For n ≥ 1, let

Sn−1 :=
{

(x1, . . . , xn) ∈ Rn : x2
1 + · · ·+ x2

n = 1
}
⊂ Rn

be the unit sphere. In particular, S2 is the usual sphere in R3. Thus, we have an action

SO (3)× S2 → S2, (R, x) 7→ Rx.

This action is transitive. This is so because, for any two points x, y ∈ S2, there is

a rotation whose axis is perpendicular to the plane containing x, y, and the center of

the sphere (this plane is not unique when x and y are antipodal, i.e., on a diameter).

Similarly, for n ≥ 1, we get an action of SO (n) on Sn−1.

Note: An Euclidean vector space E is a finite-dimensional vector space over R, together

with a positive definite symmetric bilinear form φ (i.e., φ : E × E → R is symmetric and

bilinear, and φ(x, x) > 0 for all x 6= 0). We write φ(x, y) = (x | y) and call this number the

scalar product of x and y. The norm of x is ‖x‖ :=
√
φ(x, x) =

√
(x |x). If (x | y) = 0, we

say that x and y are orthogonal.

The standard example of an Euclidean vector space is E = Rn, with

φ((x1, . . . , xn), (y1, . . . , yn)) = x1y1 + · · ·+ xnyn.

An orthogonal set of non-zero vectors is linearly independent. If (ei)1≤i≤n is an orthonormal

basis for E, the coefficients of the decomposition x = x1e1 + · · ·+xnen are given by xi = (x | ei).
Moreover,

(x1e1 + · · ·+ xnen | y1e1 + · · ·+ ynen) = x1y1 + · · ·+ xnyn.

Let E,E be two Euclidean vector spaces of the same dimension, and let α : E→ E be a map.

The following conditions are logically equivalent:

(a) α is linear, and ‖α(x)‖ = ‖x‖ for all x ∈ E;

(b) (α(x) |α(y)) = (x | y) for all x, y ∈ E.

Such a map is necessarily bijective and is called an isometry. The set of all such isometries is

denoted by O (E; E). Every n-dimensional Euclidean vector space is isometric to Rn.

The group O (E) := O (E; E) is called the orthogonal group of E; we write O (n) = O (Rn).

The condition α ∈ O (E) is equivalent to A>A = 1, where A is the matrix of α in some
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(or any) orthonormal basis and 1 is the identity matrix. In particular, detα = ±1. We set

SO (E) := {α ∈ O (E) : detα = 1}. The elements of (the group) SO (E) are called rotations.

Example 40. Let k be a field (think of R or C). Given A ∈ GL (n,k) and b ∈ kn,

we define a map

τA,b : kn → kn, x 7→ Ax+ b.

These maps are known as affine transformations of kn; they constitute the affine

group

Aff (n,k) := {τA,b : A ∈ GL (n,k), b ∈ kn} ≤ Skn .

The group Aff (n,k) acts naturally on kn: this makes kn an Aff (n,k)-set (known as the

n-dimensional affine space over k). Notice that GL (n,k) is a subgroup of Aff (n,k); that

is, invertible linear transformations are some of the affine transformations of kn. Notice

also that the group of translations x 7→ x+ b (which is a normal subgroup of Aff (n,k))

acts on the affine space kn regularly (in the sense of Example 20).

Note: Let M be a (non-empty) set and let V be vector space over the field k (think again

of R or C) considered with its additive group structure. An affine space over k is a structure

(M,V, θ), where θ : V×M→ M is an effective and transitive action on M. The vector space V

is said to underlie the affine space M. We put

θ(v, x) = x+ v.

The map θv = θ(v, ·) is called the translation of M by the vector v. The action θ is simply

transitive (see Proposition 18), so there exists a function Θ : M × M → V such that y =

θ (Θ(x, y), x) for all x, y ∈ M. We set −→xy := Θ(x, y), and sometimes say that −→xy is the free

vector associated with the pair (x, y). We also write −→xy = y−x. The fact that θ is a V-action

can be translated as follows:

(x+ v) + w = x+ (v + w).

In particular, Θ satisfies the following conditions:

(AS1) Θx : M 3 y 7→ Θ(x, y) ∈ V is a bijection for all x ∈ M;

(AS2) Θ(x, y) + Θ(y, z) = Θ(x, z) for all x, y, z ∈ M

since we have Θ−1
x (v) = x+v. (The identity Θ(x, y)+Θ(y, z) = Θ(x, z) is known as Chasles’s

Relation.)

Alternative definition. Given a (non-empty) set M and a vector space V over the field k,

assume that Θ : M ×M → V is a function satisfying conditions (AS1) and (AS2). Then M is

an affine space under the action θ(v, x) = Θ−1
x (v). This indeed is an equivalent definition, for

we have Θ(x, x) = 0, Θ(y, x) = −Θ(x, y), θ(−v) ◦ θ(v) = 1M, and thus

θ(v) ◦ θ(w) = θ(v + w).

Affine maps (morphisms) can be defined between two affine spaces (over the same field k).

Heuristically, such a map consists of a translation and a linear transformation. (If M = M = R,
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we recover the well-known maps x 7→ ax+ b for a, b ∈ R, a 6= 0.) The set

AGL (M) := {α ∈ SM : α is an affine map}

is a group, called the affine group of M. It turns out that (the affine space) M is a homogeneous

AGL (M)-set. The vector space kn has a natural affine structure: when M = V = kn, the

function

kn × kn 3 (x, y) 7→ y − x ∈ kn

induces an action of kn on itself. We write AGL (kn) = Aff (n, k) ≤ Skn .

Example 41. Let G = R and M = S3 := {x ∈ R4 : ‖x‖ = 1} ⊂ R4. Identifying R4

with C2, we can define the action

R× S3 → S3, (t, z, z′) 7→
(
eitz, eitz′

)
.

This example is of great importance in geometry.

Problems (6–10)

(6) (a) The upper half-plane H2 is the (open) subset of R2 consisting of all points

(x, y) ∈ R2 with y > 0. It is convenient to identify R2 with the set of complex

numbers. So

H2 := {z = x+ iy ∈ C : y > 0} .

Define the map

θ : SL (2,R)×H2 → H2,

(
A =

[
a b

c d

]
, z

)
7→ az + b

cz + d
·

Show that θ is an action of the special linear group SL (2,R) on the upper

half-plane H2. Is this action transitive ?

(b) Consider the set of all Möbius transformations µabcd : C∞ → C∞ correspond-

ing to the case a, b, c, d ∈ R with ad− bc = 1. This set is denoted by Möb+
R .

Show that Möb+
R is a subgroup of the Möbius group Möb.

(c) Define the function

Φ : SL (2,R)→ Möb+
R , A =

[
a b

c d

]
7→ µabcd.

Show that Φ is a surjective homomorphism (epimorphism) whose kernel is

Ker (Φ) = {1,−1}. Hence deduce that the group Möb+
R is isomorphic to the

quotient group SL (2,R)/{1,−1}, denoted by PSL (2,R). (This latter group

turns out to be the group of projective transformations of the real projective

line RP1.)
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(7) Show that every G-set can be expressed in just one way as the disjoint union of a

family of orbits.

(8) For which n is the special linear group SL (n,R) acting transitively on Rn \{0} ?

(9) Show that two homogeneous G-spaces M and M are equivalent if and only if

there exist a automorphism φ ∈ Aut (G) and elements x0 ∈ M and x0 ∈ M such

that

φ (St (x0)) = St (x0).

(10) Show that two homogeneous G-sets M = G/H1 and M = G/H2 are equivalent

if and only if the subgroups H1 and H2 are conjugate in G.




