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3. Euclidean Spaces

Inner product and norm • Open and closed sets • Continuity • Differen-

tiation.

3.1. Inner product and norm. Let R be the set of real numbers and let Rm (m ≥ 1)

denote the Cartesian product of m copies of R. The elements of Rm are ordered m-

tuples of real numbers. Thus

Rm := {x = (x1, . . . , xm) : xi ∈ R} .

An element of Rm is often called a point. Under the usual operations

x+ y := (x1 + y1, . . . , xm + ym) and λx := (λx1, . . . , λxm) (x, y ∈ Rm, λ ∈ R)

Rm is a vector space over R. Hence the elements of Rm can also be referred to as vectors.

Note : The set Rm may be equipped with various natural structures (e.g., group structure,

vector space structure, topological structure, etc.) thus yielding various spaces, each such space

having the same underlying set Rm. We must usually decide from the context which structure

is intended.

Many geometric concepts require an extra structure on Rm that we now define.

Definition 42. The Euclidean space Rm is the above mentioned vector space Rm

together with the standard inner product (or dot product)

x • y := x1y1 + · · ·+ xmym (x, y ∈ Rm).

We say that x, y ∈ Rm are orthogonal if x • y = 0. The most important properties

of the standard inner product are the following.

Proposition 19. If x, y, z are vectors in Rm and λ ∈ R, then

(IP1) x • y = y • x (symmetry).

(IP2) (λx+ y) • z = λx • z + y • z (linearity).

(IP3) x • x ≥ 0, and x • x = 0 if and only if x = 0 (positive definiteness).

Proof. Straightforward computation. �

Definition 43. The Euclidean norm ‖x‖ of x ∈ Rm is defined as

‖x‖ :=
√
x • x.
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If m = 1, then ‖x‖ is the usual absolute value |x| of x. The relationship between the

norm and the vector structure of Rm is very important.

� Exercise 32. Show that if x, y ∈ Rm and λ ∈ R, then

(a) ‖x‖ ≥ 0, and ‖x‖ = 0 if and only if x = 0 (positivity).

(b) ‖λx‖ = |λ| ‖x‖ (homogeneity).

(c) x • y = 1
4

(
‖x+ y‖2 − ‖x− y‖2

)
(polarization identity).

(d) ‖x± y‖2 = ‖x‖2 + ‖y‖2 if and only if x • y = 0 (Pythagorean property).

Theorem 20. (Cauchy-Schwarz Inequality) If x, y ∈ Rm, then

|x • y| ≤ ‖x‖ ‖y‖.

Equality holds if and only if x and y are linearly dependent.

Proof. If x and y are linearly dependent, equality clearly holds. Why ? If not, then

λx− y 6= 0 for all λ ∈ R, so

0 < ‖λx− y‖2 = (λx1 − y1)2 + · · ·+ (λxm − ym)2

= (x2
1 + · · ·+ x2

m)λ2 − 2(x1y1 + · · ·+ xmym)λ+ y2
1 + · · ·+ y2

m.

Therefore the right hand side is a quadratic equation in λ with no real solution, and its

discriminant must be negative. Thus

4 (x1y1 + · · ·+ xmym)2 − 4
(
x2

1 + · · ·+ x2
m

) (
y2

1 + · · ·+ y2
m

)
< 0

(x • y)2 < ‖x‖2 ‖y‖2

which implies |x • y| < ‖x‖ ‖y‖. �

The Cauchy-Schwarz Inequality serves in proving several other inequalities (this

is Problem 11).

Definition 44. The standard basis for Rm consists of the vectors

ej = (δ1j, . . . , δmj), j = 1,m

where δij equals 1 if i = j and equals 0 if i 6= j.

Thus we write

x = x1e1 + · · ·+ xmem (x ∈ Rm).

With respect to the standard inner product on Rm, the standard basis is orthonormal,

i.e., ei • ej = δij for i, j = 1,m. (Thus ‖ej‖ = 1 , while ei and ej for distinct i and j

are orthogonal vectors.)

Definition 45. For x, y ∈ Rm we define the Euclidean distance d(x, y) by

d(x, y) := ‖x− y‖.
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From Exercise 32 and Problem 11 we immediately obtain (for x, y, z ∈ Rm)

(M1) d(x, y) ≥ 0, and d(x, y) = 0 if and only if x = y.

(M2) d(x, y) = d(y, x).

(M3) d(x, z) ≤ d(x, y) + d(y, z).

Note : (1) More generally, a metric space is defined as a set M equipped with a distance

between its elements satisfying the properties (M1) – (M3). So the Euclidean space Rm is a

metric space. The notation d(x, y) = ‖x − y‖ is frequently useful even when we are dealing

with the Euclidean space Rm as a metric space and not using its vector space structure. In

particular, ‖x‖ = d(x, 0).

(2) An abstract concept of Euclidean space (i.e., a space satisfying the axioms of Euclidean

geometry) can be introduced. It is defined as a structure (M,E,Φ), consisting of a (non-empty)

set M, an associated standard vector space E (which is a real Euclidean vector space, i.e., a real

vector space equipped with a scalar product (·|·) : E× E→ R), and a structure map

Φ : M×M→ E, (x, y) 7→ −→xy

such that

(ES1) −→xy +−→yz = −→xz for every x, y, z ∈ M;

(ES2) for every o ∈ M and every v ∈ E, there is a unique x ∈ M such that −→ox = v.

Elements of M are called points, whereas elements of E are called vectors. (−→ox is the position

vector of x with the initial point o.) The dimension of the space M is the dimension of the

vector space E. It turns out that

(i) if we fix an arbitrary point o ∈ M, there is a one-to-one correspondence between (the

space) M and (the associated vector space) E (the mapping x 7→ −→ox is a bijection);

(ii) in addition, if we fix an arbitrary (ordered) orthonormal basis (e1, e2, . . . , em) of E, the

(inner product) spaces E and Rm are isomorphic. In other words, the scalar product on E “is”

the dot product: for v, w ∈ E,

(v |w) = ( v1e1 + · · ·+ vmem |w1e1 + · · ·+ wmem )

= v1w1 + · · ·+ vmwm.

In this sense, we identify the abstract m-dimensional Euclidean space M with the (concrete)

Euclidean space Rm.

We conclude this section with some important remarks (about notation). The element

(vector) (0, . . . , 0) ∈ Rm will usually be denoted simply 0.

If τ : Rm → Rm is a linear transformation, the matrix of τ with respect to the standard

basis of Rm is the m×m matrix T = [tij], where T (ej) =
∑m

i=1 tijei (the coefficients of

T (ej) appear in the jth column of the matrix). If the linear transformation σ : Rm → Rm

has the matrix S, then (the composite) transformation στ has the matrix ST (matrix

multiplication).
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3.2. Open and closed sets. The analog in Rm of an open interval in R is introduced

in the following

Definition 46. For p ∈ Rm and δ > 0, we denote the open ball of center p and

radius δ by

B (p, δ) := {x ∈ Rm : ‖x− p‖ < δ} .

A point p in a set A ⊆ Rm is said to be an interior point of A if there exists δ > 0

such that B (p, δ) ⊆ A. The set of interior points of A is called the interior of A and is

denoted by int (A). Note that int (A) ⊆ A.

Definition 47. A set A ⊆ Rm is said to be open (in Rm) if A = int (A) (i.e., if

every point of A is an interior point of A).

Note that the empty set ∅ satisfies every definition involving conditions on its elements,

therefore ∅ is open. Furthermore, the whole space Rm is open.

Proposition 21. The set B (p, δ) is open in Rm, for every p ∈ Rm and δ > 0.

Proof. For arbitrary q ∈ B (p, δ) set β = ‖q − p‖ , then δ − β > 0. Hence B (q, δ − β) ⊆
B (p, δ), because for every x ∈ B (q, δ − β)

‖x− p‖ ≤ ‖x− q‖+ ‖q − p‖ < (δ − β) + β = δ.

�

Proposition 22. For any A ⊆ Rm, the interior int (A) is the largest open set con-

tained in A.

Proof. First, we show that int (A) is open. If p ∈ int (A), there is δ > 0 such that

B (p, δ) ⊆ A. As in the proof of Proposition 21, we find for any q ∈ B (p, δ) a β > 0

such that B (q, β) ⊆ A. But this implies B (p, δ) ⊆ int (A), and hence int (A) is an open

set.

Furthermore, if U ⊆ A is open, it is clear by definition that U ⊆ int (A), thus int (A)

is the largest open set contained in A. �

� Exercise 33. Show that

(a) the union of any collection of open subsets of Rm is again open in Rm;

(b) the intersection of finitely many open subsets of Rm is open in Rm.

Let ∅ 6= A ⊆ Rm. An open neighborhood of A is an open set containing A, and a

neighborhood of A is any set containing an open neighborhood of A. A neighborhood

of a set {p} is also called a neighborhood of the point p ∈ Rm. (Note that p ∈ A ⊆ Rm

is an interior point of A if and only if A is a neighborhood of p.)
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Definition 48. A set F is said to be closed if its complement Fc := Rm \F is open.

The empty set is closed, and so is the entire space Rm.

Proposition 23. For every p ∈ Rm and δ > 0, the set B (p, δ) := {x ∈ Rm :

‖x− p‖ ≤ δ} is closed. (B (p, δ) is the closed ball of center p and radius δ.)

Proof. For arbitrary q ∈ B (p, δ)c set β = ‖p − q‖, then β − δ > 0. So B (q, β − δ) ⊆
B (p, δ)c, because by the reverse triangle inequality (this is Problem 11), for every

x ∈ B (q, β − δ)

‖p− x‖ ≥ ‖p− q‖ − ‖x− q‖ > β − (β − δ) = δ.

This proves that B (p, δ)c is open. �

Definition 49. A point p ∈ Rm is said to be a cluster point of a set A ⊆ Rm if

for every δ > 0 we have B (p, δ) ∩ A 6= ∅. The set of cluster points of A is called the

closure of A and is denoted by cl (A).

Proposition 24. Let A ⊆ Rm. Then cl (A)c = int (Ac); in particular, the closure of

A is a closed set. Moreover, int (A)c = cl (Ac).

Proof. Note that A ⊆ cl (A). To say that x is not a cluster point of A means that it is

an interior point of Ac. Thus cl (A)c = int (Ac), or cl (A) = int (Ac)c, which implies that

cl (A) is closed in Rm.

Furthermore, by applying this identity to Ac we obtain that int (A)c = cl (Ac). �

By taking complements of sets we immediately obtain the following result.

Proposition 25. For any A ⊆ Rm, the closure cl (A) is the smallest closed set

containing A.

From set theory we recall De Morgan’s Laws, which state, for arbitrary collections

(Ai)i∈I of sets Ai ⊆ Rm, that(⋃
i∈I

Ai

)c

=
⋂
i∈I

Aci and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Aci .

In view of these laws and Exercise 33 we find, by taking complements of sets,

Proposition 26.

(a) The intersection of any collection of closed subsets of Rm is again closed in

Rm.

(b) The union of finitely many closed subsets of Rm is closed in Rm.
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3.3. Continuity. Let U ⊆ Rm be an open set. A mapping F : U→ Rn is continuous

at p ∈ U if given ε > 0, there exists a δ > 0 such that

F (B(p, δ)) ⊆ B(F (p), ε).

In other words, F is continuous at p if points arbitrarily close to F (p) are images of

points sufficiently close to p. We say that F is continuous provided it is continuous at

each p ∈ U.

Note : Equivalently, F is continuous at p ∈ U if for every ε > 0 there exists δ > 0 such

that ‖F (x)− F (p)‖ < ε for ‖x− p‖ < δ. This simply means that limx→p F (x) = F (p).

A mapping F : U ⊆ Rm → Rn determines n R-valued functions (of m variables) as

follows. Let x = (x1, . . . , xm) ∈ U and F (x) = (y1, . . . , yn). Then we can write

y1 = F1(x1, . . . , xm), y2 = F2(x1, . . . , xm), . . . , yn = Fn(x1, . . . , xm).

The functions Fi : U→ R, i = 1, n are the component functions of F . The continuity

of the mapping F is equivalent to the continuity of its component functions.

� Exercise 34. Prove that a mapping F : U ⊆ Rm → Rn is continuous if and only if

each component function Fi : U ⊆ Rm → R is continuous.

The following results are standard (and easy to prove).

Proposition 27. Let F,G : U ⊆ Rm → Rn be continuous mappings and let λ ∈ R.

Then F +G, λF, and F •G are each continuous. If n = 1 and G(x) 6= 0 for all x ∈ U,

then the quotient F
G

is also continuous.

Proposition 28. Let F : U ⊆ R` → Rm and G : V ⊆ Rm → Rn be continuous

mappings, where U and V are open sets such that F (U) ⊆ V. Then G◦F is a continuous

mapping.

� Exercise 35. Show that the following mappings are continuous.

(a) The identity mapping 1Rm : Rm → Rm, x 7→ x.

(b) The norm function ν : Rm → R, x 7→ ‖x‖.
(c) The ith natural projection pri : Rm → R, x 7→ xi.

Hence derive that every polynomial function (in several variables)

pk : Rm → R, x = (x1, . . . , xm) 7→
k∑

i1,...,im=0
i1+···+im≤k

ai1...imx
i1
1 . . . x

im
m

is continuous.
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Note : More generally, every rational function (i.e., a quotient of two polynomial functions)

is continuous. It can be shown that elementary functions like exp, log, sin, and cos are also

continuous.

Linear mappings L : Rm → Rn play an important role in differentiation. Such map-

pings are continuous.

� Exercise 36. Show that every linear mapping L : Rm → Rn is continuous.

In most applications it is convenient to express continuity in terms of neighborhoods

instead of open balls.

� Exercise 37. Prove that a mapping F : U ⊆ Rm → Rn is continuous at p ∈ U if and

only if given a neighborhood N of F (p) in Rn there exists a neighborhood M of p in Rm

such that F (M) ⊆ N .

It is often necessary to deal with mappings (functions) defined on arbitrary (i.e., not

necessarily open) sets. To extend the previous ideas to this situation, we shall proceed as

follows.

Let F : A ⊆ Rm → Rn be a mapping, where A is an arbitrary set. We say that F

is continuous on A provided there exists an open set U ⊆ Rm containing A, and a

continuous mapping F : U → Rn such that (the restriction) F
∣∣
A

= F . In other words,

F is continuous on A if it is the restriction of a continuous mapping defined on an open

neighborhood of A.

Note : It is clear that if F : A ⊆ Rm → Rn is continuous and p ∈ A, then given a

neighborhood N of F (p) in Rn, there exists a neighborhood M of p in Rm such that

F (M∩ A) ⊆ N . For this reason, it is convenient to call the set M∩ A a neighborhood of p in

A.

Example 50. An important class of continuous mappings is formed by the mappings

F : A ⊆ Rm → Rn that are Lipschitz continuous, i.e., for which there exists k > 0

such that

‖F (x)− F (y)‖ ≤ k ‖x− y‖ (x, y ∈ A).

Such a number k is called a Lipschitz constant for F . For example, the norm function

ν : x 7→ ‖x‖ is a Lipschitz continuous on Rm with Lipschitz constant 1.

� Exercise 38. Consider a mapping F : A → Rn, where A ⊆ Rm is an arbitrary set.

Show that the following statements are logically equivalent.

(a) F is continuous.

(b) F−1(O) is open in A for every open set O in Rn. (In particular, if A is open in

Rm then: F−1(O) is open in Rm for every open set O in Rn.)
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(c) F−1(F) is closed in A for every closed set F in Rn. (In particular, if A is closed

in Rm then: F−1(F) is closed in Rm for every closed set F in Rn.)

(A subset U ⊆ A is said to be open in A if there is an open set W such that U = A ∩W.

Likewise, a subset V is said to be closed in A if there exists a closed set W such that V = A∩W.)

Definition 51. A set A ⊆ Rm is said to be disconnected if there exist open sets

U and V in Rm such that

A ∩ U 6= ∅, A ∩ V 6= ∅, (A ∩ U) ∩ (A ∩ V) = ∅, (A ∩ U) ∪ (A ∩ V) = A.

(In other words, A is the union of two disjoint non-empty subsets that are open in A.)

The set A is said to be connected if A is not disconnected.

It is not difficult to prove that the only connected subsets of R are the intervals: open,

closed or half-open (these include the singletons and the set R itself). The following

result then follows (this is Problem 14):

Theorem 29 (Intermediate Value Theorem). Let A ⊆ Rm be connected and

let F : A → R be a continuous function. Then F (A) is an interval in R; in particular,

F takes all values between any two that it assumes.

Definition 52. We say that a continuous mapping F : A ⊆ Rm → Rm is a home-

omorphism onto F (A) if F is one-to-one and the inverse F−1 : F (A) ⊆ Rm → Rm is

continuous. In this case A and F (A) are homeomorphic sets.

Example 53. Let F : R3 → R3 be given by

F (x1, x2, x3) = (ax1, bx2, cx3), a, b, c ∈ R \ {0}.

F is clearly continuous, and the restriction of F to the (unit) sphere

S2 =
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}
is a continuous mapping F̃ : S2 → R3. Observe that F̃ (S2) = E, where E is the ellipsoid

E =

{
(x1, x2, x3) ∈ R3 :

x2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1

}
.

It is also clear that F is one-to-one and that

F−1(x1, x2, x3) =
(x1

a
,
x2

b
,
x3

c

)
·

Thus F̃−1 = F−1|E is continuous. Therefore, F̃ is a homeomorphism of the sphere S2

onto the ellipsoid E.

Note : There is a class of infinite sets, called compact sets, that in certain limited aspects

behave very much like finite sets. A set K ⊆ Rm is said to be sequentially compact if

every sequence of elements in K contains a subsequence which converges to a point in K. (A
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sequence (xk)k∈N of elements xk ∈ Rm is said to be convergent, with limit p ∈ Rm, if

limk→∞ ‖xk − p‖ = 0, which is a limit of numbers in R. Recall that this limit means: for

every ε > 0, there exists N ∈ N such that ‖xk − p‖ < ε for k ≥ N . In this case we write

limk→∞ xk = p.) It follows immediately that a subset of a sequentially compact set K ⊆ Rm is

sequentially compact if and only if it is closed in K.

Continuous mapping do not necessarily preserve closed sets; on the other hand, they do

preserve (sequentially) compact sets. (In this sense compact and finite sets behave similarly:

the image of a finite set under a mapping is a finite set too.) More precisely, if K ⊂ Rm is

a sequentially compact set and F : Rm → Rn is continuous, then F (K) ⊂ Rn is sequentially

compact. The following characterization is very useful: A set K ⊂ Rm is sequentially compact

if and only if it is bounded and closed. (A set A ⊂ Rm is bounded if there exists a number

k > 0 such that ‖x‖ ≤ k for all x ∈ A; equivalently, if there exists a number k > 0 such that

A ⊆ B (0, k).)

There is an alternative, more general, definition of compactness for sets. A subset K ⊂ Rm is

said to be compact if every open covering of K contains a finite subcovering of K. (A collection

(Oi)i∈I of open sets in Rm is said to be an open covering of a set K ⊆ Rm if K ⊆
⋃
i∈I Oi.)

In spaces like Rm , however, the two definitions of compactness coincide; this is a consequence

of the following result.

(Heine-Borel Theorem) A set K ⊂ Rm is compact if and only if it is bounded and closed.

3.4. Differentiation. Let U be an open subset of Rm and let p ∈ U. A function

F : U → R is differentiable at p if there exists a linear functional Lp : Rm → R such

that

lim
x→p

F (x)− F (p)− Lp(x− p)
‖x− p‖

= 0

or, equivalently, if there exist a linear functional Lp : Rm → R and a function R(·, p),
defined on an open neighborhood V of p, such that

F (x) = F (p) + Lp(x− p) + ‖x− p‖ ·R(x, p), x ∈ V

and

lim
x→p

R(x, p) = 0.

Then Lp is called a derivative (or differential) of F at p. We say that F is differen-

tiable provided it is differentiable at each p ∈ U.

Note : We think of a derivative Lp as a “linear” approximation of F near p. By the

definition, the error involved in replacing F (x) by F (p) + Lp(x − p) (this is an affine map)

is negligible compared to the distance from x to p, provided that this distance is sufficiently

small.

If Lp(x) = b1x1 + · · ·+ bmxm is a derivative of F at p, then

bi =
∂F

∂xi
(p) : = lim

t→0

1

t
(F (p+ tei)− F (p)) , i = 1,m.
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In particular, if F is differentiable at p, these partial derivatives exist and the derivative

Lp is unique. We denote by DF (p) (or sometimes F ′(p)) the derivative of F at p, and

write (by a slight abuse of notation)

DF (p) =
∂F

∂x1

(p)(x1 − p1) +
∂F

∂x2

(p)(x2 − p2) + · · ·+ ∂F

∂xm
(p)(xm − pm).

� Exercise 39. Show that any linear functional F : Rm → R is differentiable and

DF (p) = F for all p ∈ Rm.

� Exercise 40. Prove that any differentiable function F : U ⊆ Rm → R is continuous.

Note : Mere existence of partial derivatives is not sufficient for differentiability (of the func-

tion F ). For example, the function F : R2 → R defined by

F (x1, x2) =
x1x2

x2
1 + x2

2

and F (0, 0) = 0

is not continuous at (0, 0), yet both partial derivatives are defined there. However, if all par-

tial derivatives ∂F
∂xi
, i = 1,m are defined and continuous in a neighborhood of p, then F is

differentiable at p.

If the function F : U ⊆ Rm → R has all partial derivatives continuous (on U) we say

that F is continuously differentiable (or of class C1 ) on U. We denote this class of

functions by C1(U). (The class of continuous functions on U is denoted by C0(U).)

Note : We have seen that

F ∈ C1(U) ⇒ F is differentiable (on U) ⇒ all partial derivatives
∂F

∂xi
exist (on U)

but the converse implications may fail. Many results actually need F to be of class C1 rather

than differentiable.

If r ≥ 1, the class Cr(U) of functions F : U ⊆ Rm → R that are r-fold continu-

ously differentiable (or Cr functions) is specified inductively by requiring that the partial

derivatives of F exist and belong to Cr−1(U). If F is of class Cr for all r, then we

say that F is of class C∞ or simply smooth. The class of smooth functions on U is

denoted by C∞(U).

Note : If F ∈ Cr(U), then (at any point of U) the value of the partial derivatives of order

k, 1 < k ≤ r is independent of the order of differentiation; that is, if (j1, . . . , jk) is a permutation

of (i1, . . . , ik), then

∂kF

∂xi1 . . . ∂xik
=

∂kF

∂xj1 . . . ∂xjk
·

We are now interested in extending the notion of differentiability to mappings F : U ⊆
Rm → Rn. We say that F is differentiable at p ∈ U if its component functions are
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differentiable at p; that is, by writing

F (x1, . . . , xm) = (F1(x1, . . . , xm), . . . , Fn(x1, . . . , xm))

the functions Fi : U→ R, i = 1, n have partial derivatives at p ∈ U. F is differentiable

provided it is differentiable at each p ∈ U. (For the case m = 1, we obtain the notion of

a differentiable parametrized curve in Euclidean space Rn.)

The class Cr(U,Rn), 1 ≤ r ≤ ∞ of Cr-mappings F : U ⊆ Rm → Rn is defined

in the obvious way. We will be concerned primarily with smooth (i.e., of class C∞ )

mappings. So if F is a smooth mapping, then its component functions Fi have continuous

partial derivatives of all orders and each such derivative is independent of the order of

differentiation.

Note : Let us define a (geometric) tangent vector at p ∈ Rm as an ordered pair (p, v).

As a matter of notation, we will abbreviate (p, v) as vp. We think of vp as the vector v with

its initial point at p. (In other words, p + v is considered as the “position vector” of a point;

we shall always picture vp as the “arrow” from the point p to the point p + v.) Clearly, two

tangent vectors vp and wq are equal if v = w and p = q. (It is essential to recognize that vp

and vq are different tangent vectors if p 6= q.)

The set {p}×Rm of all tangent vectors at p is denoted by TpRm , and is called the tangent

space of Rm at p. Thus

TpRm := {vp = (p, v) : p, v ∈ Rm} .

This set is a vector space over R (obviously isomorphic to Rm itself) under the natural

operations: vp + wp := (v + w)p and λ vp := (λv)p. The tangent vectors (ei)p, i = 1,m form

a basis for TpRm. (In fact, as a vector space, TpRm is essentially the same as Rm itself; the

only reason we add Tp is so that the geometric tangent spaces TpRm and Tq Rm at distinct

points p and q be disjoint sets.)

Let vp be a tangent vector in Rm. One can associate with it the function (parametrized line)

R 3 t 7→ p+ tv ∈ Rm.

If F : Rm → R is a differentiable function, then t 7→ F (p+ tv) is an ordinary function R→ R.

(The derivative of this function at t = 0 tells the initial rate of change of F as p moves in the

v direction.) The number

vp[F ] :=
d

dt
F (p+ tv)

∣∣∣∣
t=0

is called the directional derivative of F with respect to vp. We have

vp[F ] = v1
∂F

∂x1
(p) + · · ·+ vm

∂F

∂xm
(p) (v = (v1, . . . , vm) ∈ Rm).

The map vp[·] : C∞(Rm) → R, F 7→ vp[F ] is linear and satisfies the Leibniz rule (i.e.,

vp[FG] = vp[F ]G(p) + F (p)vp[G] for F,G ∈ C∞(Rm)); such a mapping is called a derivation

at p. So any geometric tangent vector vp defines a derivation vp[·] at p. In fact, each derivation

at p is defined by a unique geometric tangent vector (at p). Moreover, for any p ∈ Rm, the
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correspondence vp 7→ vp[·] is an isomorphism from the tangent space TpRm to the vector space

of all derivations on p. It is customary (and convenient) to denote the derivation (ei)p[·] by
∂
∂xi

∣∣∣
p
; thus, ∂

∂xi

∣∣∣
p

[F ] = ∂F
∂xi

(p).

Let TpRm be the tangent space to Rm at p; this vector space can be identified with

Rm via

v1
∂

∂x1

∣∣∣∣
p

+ · · ·+ vm
∂

∂xm

∣∣∣∣
p

7→ (v1, · · · , vm).

Let α : U ⊆ R → Rm be a smooth (parametrized) curve with component functions

α1, . . . , αm. The velocity vector (or tangent vector) to α at t ∈ U is the element

α̇(t) : =

(
dα1

dt
(t), · · · , dαm

dt
(t)

)
∈ Tα(t) Rm.

Example 54. Given a point p ∈ U ⊆ Rm and a tangent vector v ∈ TpRm, we can

always find a smooth curve α : (−ε, ε) → U with α(0) = p and α̇(0) = v. Simply

define α(t) = p + tv, t ∈ (−ε, ε). By writing p = (p1, . . . , pm) and v = (v1, . . . , vm), the

component functions of α are αi(t) = pi + tvi, i = 1,m. Thus α is smooth, α(0) = p

and

α̇(0) =

(
dα1

dt
(0), · · · , dαm

dt
(0)

)
= (v1, . . . , vm) = v.

We shall now introduce the concept of derivative (or differential) of a differentiable

mapping. Let F : U ⊆ Rm → Rn be a differentiable mapping. To each p ∈ U we

associate a linear mapping

DF (p) : Rm = TpRm → Rn = TF (p) Rn

which is called the derivative (or differential) of F at p and is defined as follows. Let

v ∈ TpRm and let α : (−ε, ε) → U be a differentiable curve such that α(0) = p and

α̇(0) = v. By the chain rule (for functions), the curve β = F ◦ α : (−ε, ε) → Rn is also

differentiable. Then

DF (p) · v : = β̇(0).

Note : The above definition of DF (p) does not depend on the choice of the curve which

passes through p with tangent vector v, and DF (p) is, in fact, linear. So

DF (p) · v =
d

dt
F (α(t))

∣∣∣∣
t=0

∈ TF (p) Rn = Rn.

The derivative DF (p) is also denoted by Tp F and called the tangent mapping of F at p.
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The matrix of the linear mapping DF (p) (relative to bases

(
∂
∂x1

∣∣∣
p
, . . . , ∂

∂xm

∣∣∣
p

)
of

TpRm and

(
∂
∂y1

∣∣∣
F (p)

, . . . , ∂
∂yn

∣∣∣
F (p)

)
of TF (p) Rn ) is the Jacobian matrix

∂F

∂x
(p) =

∂(F1, . . . , Fn)

∂(x1, . . . , xm)
(p) : =


∂F1

∂x1
(p) · · · ∂F1

∂xm
(p)

...
...

∂Fn
∂x1

(p) · · · ∂Fn
∂xm

(p)

 ∈ Rn×m

of F at p. When m = n this is a square matrix and its determinant is then defined.

This determinant is called the Jacobian of F at p and is denoted by JF (p). Thus

JF (p) =

∣∣∣∣∂F∂x (p)

∣∣∣∣ : = det
∂F

∂x
(p)·

� Exercise 41. Let f : I → R and g : J → R be differentiable functions, where I and

J are open intervals such that f(I) ⊆ J. Show that the function g ◦ f is differentiable and (for

t ∈ I)

(g ◦ f)′ (t) = g′(f(t)) · f ′(t).

The standard chain rule (for scalar-valued) functions extends to (vector-valued) map-

pings.

Proposition 30 (General Chain Rule). Let F : U ⊆ R` → Rm and G : V ⊆
Rm → Rn be differentiable mappings, where U and V are open sets such that F (U) ⊆ V.

Then G ◦ F is a differentiable mapping and (for p ∈ U)

D(G ◦ F )(p) = DG(F (p)) ◦DF (p).

Proof. The fact that G◦F is differentiable is a consequence of the chain rule for functions.

Now, let v ∈ TpR` be given and let us consider a (differentiable) curve α : (−ε, ε)→ U

with α(0) = p and α̇(0) = v. Set DF (p) · v = w and observe that

DG(F (p)) · w =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

.

Then

D(G ◦ F )(p) · v =
d

dt
(G ◦ F ◦ α)

∣∣∣∣
t=0

= DG(F (p)) · w

= DG(F (p)) ◦DF (p) · v.

�

Note : In terms of Jacobian matrices, the general chain rule can be written

∂(G ◦ F )

∂x
(p) =

∂G

∂y
(F (p)) · ∂F

∂x
(p)·
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Thus if H = G ◦ F and y = F (x), then

∂H

∂x
=


∂G1
∂y1

· · · ∂G1
∂ym

...
...

∂Gn
∂y1

· · · ∂Gn
∂ym



∂F1
∂x1

· · · ∂F1
∂x`

...
...

∂Fm
∂x1

· · · ∂Fm
∂x`


where

∂G1

∂y1
, . . . ,

∂Gn
∂ym

are evaluated at y = F (x) and
∂F1

∂x1
, · · · , ∂Fm

∂x`
at x. Writing this out,

we obtain
∂Hi

∂xj
=
∂Gi
∂y1

∂y1

∂xj
+ · · ·+ ∂Gi

∂ym

∂ym
∂xj

(i = 1, n ; j = 1, `).

� Exercise 42. Let

F (x1, x2) = (x2
1 − x2

2 + x1x2, x
2
2 − 1) and G(y1, y2) = (y1 + y2, 2y1, y

2
2).

(a) Show that F and G are differentiable, and that G ◦ F exists.

(b) Compute D(G ◦ F )(1, 1)

(i) directly

(ii) using the chain rule.

Note : The precise sense in which the derivative DF (p) of the (differentiable) mapping F

at p is an (affine) approximation of F near p is given by the following result (in which DF (p)

is interpreted as a linear mapping from Rm to Rn) : If the mapping F : U ⊆ Rm → Rn is

differentiable, then for each p ∈ U,

lim
x→p

‖F (x)− F (p)−DF (p) · (x− p)‖
‖x− p‖

= 0

or, equivalently, there exists a (local) map εp : Rm → Rn satisfying, for all h with p+ h ∈ U,

(5) F (p+ h) = F (p) +DF (p) · h+ εp(h) with lim
h→0

‖εp(h)‖
‖h‖

= 0.

The mapping Rm → Rn, x 7→ F (p) +DF (p) · (x− p) is the best affine approximation to F

at p. (It is the unique affine approximation for which the difference mapping εp satisfies the

estimate (5).)

If A ⊆ Rm is an arbitrary set, then C∞(A) denotes the set of all functions F : A→ R
such that F = F

∣∣
A
, where F : U → R is a smooth function on some open neighborhood

U of A.

Problems (11–15)

(11) Let x, y ∈ Rm. Prove the following inequalities.

(a) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality).

(b) | ‖x‖ − ‖y‖ | ≤ ‖x− y‖ (reverse triangle inequality).

(c) |xi| ≤ ‖x‖ ≤ |x1|+ · · ·+ |xm| ≤
√
m ‖x‖, i = 1,m.
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(12) Let τ : Rm → Rm be a linear transformation, and let A ∈ Rm×m denote its matrix

with respect to the standard basis of Rm. Show that the following statements are

logically equivalent.

(a) ‖τ(x)‖ = ‖x‖ for all x ∈ Rm.

(b) τ(x) • τ(y) = x • y for all x, y ∈ Rm.

(c) A>A = 1 (i.e., the matrix A is orthogonal).

(Such a linear transformation is called an orthogonal transformation.) Hence

deduce that such a linear transformation τ is invertible. Is τ−1 of the same sort?

(13) Let F be a subset of Rm. Show that the following statements are logically equiv-

alent.

(a) F is closed.

(b) F = cl (F).

(c) For every sequence (xk)k∈N of points xk ∈ Rm that is convergent to a limit,

say p, we have p ∈ F.

(14) Let A ⊆ Rm be an arbitrary set.

(a) Show that the following statements are logically equivalent.

(i) A is disconnected.

(ii) There exists a surjective continuous function A→ {0, 1}.
(Recall the definition of the characteristic function χA of a set A : χA(x) =

1 if x ∈ A and χA(x) = 0 if x /∈ A.)

(b) Assume that A is connected and let F : A→ Rn be a continuous mapping.

Show that F (A) is connected in Rn.

(c) Let A be connected and let F : A→ R be a continuous function. Show that

F (A) is an interval in R; in particular, F takes all the values between any

two that it assumes.

(15) Show that

(i) if σ : R2 → R is defined by σ(x, y) = x+ y, then Dσ(a, b) = σ.

(ii) if π : R2 → R is defined by π(x, y) = x · y, then Dπ(a, b) · (x, y) =

bx+ ay.

Hence deduce that if the functions F,G : U ⊆ Rm → R are differentiable at

p ∈ U, then

D(F +G)(p) = DF (p) +DG(p)

D(F ·G)(p) = G(p)DF (p) + F (p)DG(p).

If moreover G(p) 6= 0, then

D

(
F

G

)
(p) =

G(p)DF (p)− F (p)DG(p)

(G(p))2
·




