Inner product and norm • Open and closed sets • Continuity • Differentiation.

3.1. Inner product and norm. Let \mathbb{R} be the *set* of real numbers and let \mathbb{R}^m $(m \ge 1)$ denote the Cartesian product of m copies of \mathbb{R} . The elements of \mathbb{R}^m are ordered m-tuples of real numbers. Thus

$$\mathbb{R}^m := \left\{ x = (x_1, \dots, x_m) : x_i \in \mathbb{R} \right\}.$$

An element of \mathbb{R}^m is often called a *point*. Under the usual operations

 $x + y := (x_1 + y_1, \dots, x_m + y_m)$ and $\lambda x := (\lambda x_1, \dots, \lambda x_m)$ $(x, y \in \mathbb{R}^m, \lambda \in \mathbb{R})$

 \mathbb{R}^m is a vector space over \mathbb{R} . Hence the elements of \mathbb{R}^m can also be referred to as vectors.

NOTE : The set \mathbb{R}^m may be equipped with various natural structures (e.g., group structure, vector space structure, topological structure, etc.) thus yielding various *spaces*, each such space having the same underlying *set* \mathbb{R}^m . We must usually decide from the context which structure is intended.

Many geometric concepts require an extra structure on \mathbb{R}^m that we now define.

DEFINITION 42. The Euclidean space \mathbb{R}^m is the above mentioned vector space \mathbb{R}^m together with the standard inner product (or dot product)

$$x \bullet y := x_1 y_1 + \dots + x_m y_m \qquad (x, y \in \mathbb{R}^m).$$

We say that $x, y \in \mathbb{R}^m$ are **orthogonal** if $x \bullet y = 0$. The most important properties of the standard inner product are the following.

PROPOSITION 19. If x, y, z are vectors in \mathbb{R}^m and $\lambda \in \mathbb{R}$, then

(IP1) $x \bullet y = y \bullet x$ (symmetry). (IP2) $(\lambda x + y) \bullet z = \lambda x \bullet z + y \bullet z$ (linearity). (IP3) $x \bullet x \ge 0$, and $x \bullet x = 0$ if and only if x = 0 (positive definiteness).

Proof. Straightforward computation.

DEFINITION 43. The Euclidean norm ||x|| of $x \in \mathbb{R}^m$ is defined as

$$||x|| := \sqrt{x \bullet x}.$$

If m = 1, then ||x|| is the usual absolute value |x| of x. The relationship between the norm and the vector structure of \mathbb{R}^m is very important.

\diamond Exercise 32. Show that if $x, y \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}$, then

- (a) $||x|| \ge 0$, and ||x|| = 0 if and only if x = 0 (positivity).
- (b) $\|\lambda x\| = |\lambda| \|x\|$ (homogeneity).
- (c) $x \bullet y = \frac{1}{4} \left(\|x+y\|^2 \|x-y\|^2 \right)$ (polarization identity). (d) $\|x \pm y\|^2 = \|x\|^2 + \|y\|^2$ if and only if $x \bullet y = 0$ (Pythagorean property).

THEOREM 20. (CAUCHY-SCHWARZ INEQUALITY) If $x, y \in \mathbb{R}^m$, then

$$|x \bullet y| \le ||x|| \, ||y||$$

Equality holds if and only if x and y are linearly dependent.

Proof. If x and y are linearly dependent, equality clearly holds. Why? If not, then $\lambda x - y \neq 0$ for all $\lambda \in \mathbb{R}$, so

$$0 < \|\lambda x - y\|^2 = (\lambda x_1 - y_1)^2 + \dots + (\lambda x_m - y_m)^2$$

= $(x_1^2 + \dots + x_m^2) \lambda^2 - 2(x_1 y_1 + \dots + x_m y_m) \lambda + y_1^2 + \dots + y_m^2.$

Therefore the right hand side is a quadratic equation in λ with no real solution, and its discriminant must be negative. Thus

$$4 (x_1 y_1 + \dots + x_m y_m)^2 - 4 (x_1^2 + \dots + x_m^2) (y_1^2 + \dots + y_m^2) < 0$$
$$(x \bullet y)^2 < ||x||^2 ||y||^2$$

which implies $|x \bullet y| < ||x|| ||y||$.

The CAUCHY-SCHWARZ INEQUALITY serves in proving several other inequalities (this is Problem 11).

DEFINITION 44. The standard basis for \mathbb{R}^m consists of the vectors

$$e_j = (\delta_{1j}, \dots, \delta_{mj}), \quad j = \overline{1, m}$$

where δ_{ij} equals 1 if i = j and equals 0 if $i \neq j$.

Thus we write

$$x = x_1 e_1 + \dots + x_m e_m \qquad (x \in \mathbb{R}^m).$$

With respect to the standard inner product on \mathbb{R}^m , the standard basis is **orthonormal**, i.e., $e_i \bullet e_j = \delta_{ij}$ for $i, j = \overline{1, m}$. (Thus $||e_j|| = 1$, while e_i and e_j for distinct i and jare orthogonal vectors.)

DEFINITION 45. For $x, y \in \mathbb{R}^m$ we define the **Euclidean distance** d(x, y) by

$$d(x,y) := \|x - y\|.$$

From Exercise 32 and PROBLEM 11 we immediately obtain (for $x, y, z \in \mathbb{R}^m$)

- (M1) $d(x, y) \ge 0$, and d(x, y) = 0 if and only if x = y.
- (M2) d(x,y) = d(y,x).
- (M3) $d(x, z) \le d(x, y) + d(y, z).$

NOTE : (1) More generally, a **metric space** is defined as a set M equipped with a *distance* between its elements satisfying the properties (M1) – (M3). So the Euclidean space \mathbb{R}^m is a *metric space*. The notation d(x,y) = ||x - y|| is frequently useful even when we are dealing with the Euclidean space \mathbb{R}^m as a metric space and not using its vector space structure. In particular, ||x|| = d(x, 0).

(2) An *abstract* concept of **Euclidean space** (i.e., a space satisfying the *axioms* of Euclidean geometry) can be introduced. It is defined as a structure (M, E, Φ) , consisting of a (non-empty) set M, an associated standard vector space E (which is a real Euclidean vector space, i.e., a real vector space equipped with a scalar product $(\cdot|\cdot) : E \times E \to \mathbb{R}$), and a structure map

$$\Phi: \mathsf{M} \times \mathsf{M} \to \mathsf{E}, \quad (x, y) \mapsto \overrightarrow{xy}$$

such that

 $\begin{array}{ll} (\mathrm{ES1}) & \overrightarrow{xy'} + \overrightarrow{yz'} = \overrightarrow{xz'} \mbox{ for every } x, y, z \in \mathsf{M}; \\ (\mathrm{ES2}) & \mbox{ for every } o \in \mathsf{M} \mbox{ and every } v \in \mathsf{E}, \mbox{ there is a unique } x \in \mathsf{M} \mbox{ such that } \overrightarrow{ox'} = v. \end{array}$

Elements of M are called **points**, whereas elements of E are called **vectors**. (\overrightarrow{ox} is the *position* vector of x with the initial point o.) The dimension of the space M is the dimension of the vector space E. It turns out that

(i) if we fix an arbitrary point $o \in M$, there is a one-to-one correspondence between (the space) M and (the associated vector space) E (the mapping $x \mapsto \overline{ox}$ is a bijection);

(ii) in addition, if we fix an arbitrary (ordered) orthonormal basis (e_1, e_2, \ldots, e_m) of E, the (inner product) spaces E and \mathbb{R}^m are *isomorphic*. In other words, the scalar product on E "is" the dot product: for $v, w \in \mathsf{E}$,

$$(v | w) = (v_1 e_1 + \dots + v_m e_m | w_1 e_1 + \dots + w_m e_m)$$

= $v_1 w_1 + \dots + v_m w_m.$

In this sense, we *identify* the abstract *m*-dimensional Euclidean space M with the (concrete) Euclidean space \mathbb{R}^m .

We conclude this section with some important remarks (about notation). The element (vector) $(0, \ldots, 0) \in \mathbb{R}^m$ will usually be denoted simply 0.

If $\tau : \mathbb{R}^m \to \mathbb{R}^m$ is a linear transformation, the matrix of τ with respect to the standard basis of \mathbb{R}^m is the $m \times m$ matrix $T = [t_{ij}]$, where $T(e_j) = \sum_{i=1}^m t_{ij}e_i$ (the coefficients of $T(e_j)$ appear in the j^{th} column of the matrix). If the linear transformation $\sigma : \mathbb{R}^m \to \mathbb{R}^m$ has the matrix S, then (the composite) transformation $\sigma \tau$ has the matrix ST (matrix multiplication).

3.2. Open and closed sets. The analog in \mathbb{R}^m of an *open interval* in \mathbb{R} is introduced in the following

DEFINITION 46. For $p \in \mathbb{R}^m$ and $\delta > 0$, we denote the **open ball** of center p and radius δ by

$$\mathcal{B}(p,\delta) := \left\{ x \in \mathbb{R}^m : \|x - p\| < \delta \right\}.$$

A point p in a set $A \subseteq \mathbb{R}^m$ is said to be an **interior point** of A if there exists $\delta > 0$ such that $\mathcal{B}(p, \delta) \subseteq A$. The set of interior points of A is called the **interior** of A and is denoted by int (A). Note that int (A) $\subseteq A$.

DEFINITION 47. A set $A \subseteq \mathbb{R}^m$ is said to be **open** (in \mathbb{R}^m) if A = int(A) (i.e., if every point of A is an interior point of A).

Note that the *empty set* \emptyset satisfies every definition involving conditions on its elements, therefore \emptyset is open. Furthermore, the whole space \mathbb{R}^m is open.

PROPOSITION 21. The set $\mathcal{B}(p, \delta)$ is open in \mathbb{R}^m , for every $p \in \mathbb{R}^m$ and $\delta > 0$.

Proof. For arbitrary $q \in \mathcal{B}(p, \delta)$ set $\beta = ||q - p||$, then $\delta - \beta > 0$. Hence $\mathcal{B}(q, \delta - \beta) \subseteq \mathcal{B}(p, \delta)$, because for every $x \in \mathcal{B}(q, \delta - \beta)$

$$||x - p|| \le ||x - q|| + ||q - p|| < (\delta - \beta) + \beta = \delta.$$

PROPOSITION 22. For any $A \subseteq \mathbb{R}^m$, the interior int (A) is the largest open set contained in A.

Proof. First, we show that $\operatorname{int}(A)$ is open. If $p \in \operatorname{int}(A)$, there is $\delta > 0$ such that $\mathcal{B}(p,\delta) \subseteq A$. As in the proof of PROPOSITION 21, we find for any $q \in \mathcal{B}(p,\delta)$ a $\beta > 0$ such that $\mathcal{B}(q,\beta) \subseteq A$. But this implies $\mathcal{B}(p,\delta) \subseteq \operatorname{int}(A)$, and hence $\operatorname{int}(A)$ is an open set.

Furthermore, if $U \subseteq A$ is open, it is clear by definition that $U \subseteq int(A)$, thus int(A) is the largest open set contained in A.

 \diamond **Exercise 33.** Show that

- (a) the union of any collection of open subsets of \mathbb{R}^m is again open in \mathbb{R}^m ;
- (b) the intersection of finitely many open subsets of \mathbb{R}^m is open in \mathbb{R}^m .

Let $\emptyset \neq A \subseteq \mathbb{R}^m$. An **open neighborhood** of A is an open set containing A, and a **neighborhood** of A is any set containing an open neighborhood of A. A neighborhood of a set $\{p\}$ is also called a neighborhood of the point $p \in \mathbb{R}^m$. (Note that $p \in A \subseteq \mathbb{R}^m$ is an interior point of A if and only if A is a neighborhood of p.)

DEFINITION 48. A set F is said to be closed if its complement $F^c := \mathbb{R}^m \setminus F$ is open.

The empty set is closed, and so is the entire space \mathbb{R}^m .

PROPOSITION 23. For every $p \in \mathbb{R}^m$ and $\delta > 0$, the set $\overline{\mathcal{B}}(p, \delta) := \{x \in \mathbb{R}^m : \|x - p\| \leq \delta\}$ is closed. ($\overline{\mathcal{B}}(p, \delta)$ is the **closed ball** of center p and radius δ .)

Proof. For arbitrary $q \in \overline{\mathcal{B}}(p,\delta)^c$ set $\beta = ||p-q||$, then $\beta - \delta > 0$. So $\mathcal{B}(q,\beta - \delta) \subseteq \overline{\mathcal{B}}(p,\delta)^c$, because by the reverse triangle inequality (this is PROBLEM 11), for every $x \in \mathcal{B}(q,\beta - \delta)$

$$||p - x|| \ge ||p - q|| - ||x - q|| > \beta - (\beta - \delta) = \delta$$

This proves that $\overline{\mathcal{B}}(p,\delta)^c$ is open.

DEFINITION 49. A point $p \in \mathbb{R}^m$ is said to be a **cluster point** of a set $A \subseteq \mathbb{R}^m$ if for every $\delta > 0$ we have $\mathcal{B}(p, \delta) \cap A \neq \emptyset$. The set of cluster points of A is called the **closure** of A and is denoted by cl(A).

PROPOSITION 24. Let $A \subseteq \mathbb{R}^m$. Then $\operatorname{cl}(A)^c = \operatorname{int}(A^c)$; in particular, the closure of A is a closed set. Moreover, $\operatorname{int}(A)^c = \operatorname{cl}(A^c)$.

Proof. Note that $A \subseteq cl(A)$. To say that x is *not* a cluster point of A means that it is an interior point of A^c . Thus $cl(A)^c = int(A^c)$, or $cl(A) = int(A^c)^c$, which implies that cl(A) is closed in \mathbb{R}^m .

Furthermore, by applying this identity to A^c we obtain that $int(A)^c = cl(A^c)$.

By taking complements of sets we immediately obtain the following result.

PROPOSITION 25. For any $A \subseteq \mathbb{R}^m$, the closure cl(A) is the smallest closed set containing A.

From set theory we recall DE MORGAN'S LAWS, which state, for arbitrary collections $(A_i)_{i \in I}$ of sets $A_i \subseteq \mathbb{R}^m$, that

$$\left(\bigcup_{i\in I}A_i\right)^c = \bigcap_{i\in I}A_i^c \quad \text{and} \quad \left(\bigcap_{i\in I}A_i\right)^c = \bigcup_{i\in I}A_i^c.$$

In view of these laws and **Exercise 33** we find, by taking complements of sets,

Proposition 26.

- (a) The intersection of any collection of closed subsets of \mathbb{R}^m is again closed in \mathbb{R}^m .
- (b) The union of finitely many closed subsets of \mathbb{R}^m is closed in \mathbb{R}^m .

3.3. Continuity. Let $U \subseteq \mathbb{R}^m$ be an *open* set. A mapping $F : U \to \mathbb{R}^n$ is continuous at $p \in U$ if given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$F(\mathcal{B}(p,\delta)) \subseteq \mathcal{B}(F(p),\varepsilon).$$

In other words, F is continuous at p if points arbitrarily close to F(p) are images of points sufficiently close to p. We say that F is **continuous** provided it is continuous at each $p \in U$.

NOTE : Equivalently, F is continuous at $p \in U$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||F(x) - F(p)|| < \varepsilon$ for $||x - p|| < \delta$. This simply means that $\lim_{x \to p} F(x) = F(p)$.

A mapping $F : \mathsf{U} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ determines n \mathbb{R} -valued functions (of m variables) as follows. Let $x = (x_1, \ldots, x_m) \in \mathsf{U}$ and $F(x) = (y_1, \ldots, y_n)$. Then we can write

$$y_1 = F_1(x_1, \dots, x_m), \quad y_2 = F_2(x_1, \dots, x_m), \quad \dots, \quad y_n = F_n(x_1, \dots, x_m).$$

The functions $F_i : U \to \mathbb{R}$, $i = \overline{1, n}$ are the **component functions** of F. The continuity of the mapping F is equivalent to the continuity of its component functions.

♦ **Exercise 34.** Prove that a mapping $F : U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is continuous if and only if each component function $F_i : U \subseteq \mathbb{R}^m \to \mathbb{R}$ is continuous.

The following results are standard (and easy to prove).

PROPOSITION 27. Let $F, G : U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ be continuous mappings and let $\lambda \in \mathbb{R}$. Then F + G, λF , and $F \bullet G$ are each continuous. If n = 1 and $G(x) \neq 0$ for all $x \in U$, then the quotient $\frac{F}{G}$ is also continuous.

PROPOSITION 28. Let $F : U \subseteq \mathbb{R}^{\ell} \to \mathbb{R}^{m}$ and $G : V \subseteq \mathbb{R}^{m} \to \mathbb{R}^{n}$ be continuous mappings, where U and V are open sets such that $F(U) \subseteq V$. Then $G \circ F$ is a continuous mapping.

♦ Exercise 35. Show that the following mappings are continuous.

- (a) The identity mapping $\mathbf{1}_{\mathbb{R}^m} : \mathbb{R}^m \to \mathbb{R}^m, \quad x \mapsto x.$
- (b) The norm function $\nu : \mathbb{R}^m \to \mathbb{R}, \quad x \mapsto \|x\|.$
- (c) The *i*th natural projection $pr_i : \mathbb{R}^m \to \mathbb{R}, \quad x \mapsto x_i.$

Hence derive that every *polynomial function* (in several variables)

$$p_k : \mathbb{R}^m \to \mathbb{R}, \quad x = (x_1, \dots, x_m) \mapsto \sum_{\substack{i_1, \dots, i_m = 0\\i_1 + \dots + i_m \le k}}^k a_{i_1 \dots i_m} x_1^{i_1} \dots x_m^{i_m}$$

is continuous.

NOTE : More generally, every *rational function* (i.e., a quotient of two polynomial functions) is continuous. It can be shown that *elementary* functions like exp, log, sin, and cos are also continuous.

Linear mappings $L : \mathbb{R}^m \to \mathbb{R}^n$ play an important role in differentiation. Such mappings are continuous.

 \diamond Exercise 36. Show that every linear mapping $L: \mathbb{R}^m \to \mathbb{R}^n$ is continuous.

In most applications it is convenient to express continuity in terms of neighborhoods instead of open balls.

♦ Exercise 37. Prove that a mapping $F : U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is continuous at $p \in U$ if and only if given a neighborhood \mathcal{N} of F(p) in \mathbb{R}^n there exists a neighborhood \mathcal{M} of p in \mathbb{R}^m such that $F(\mathcal{M}) \subseteq \mathcal{N}$.

It is often necessary to deal with mappings (functions) defined on arbitrary (i.e., not necessarily open) sets. To extend the previous ideas to this situation, we shall proceed as follows.

Let $F : \mathsf{A} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ be a mapping, where A is an *arbitrary* set. We say that F is **continuous** on A provided there exists an open set $\mathcal{U} \subseteq \mathbb{R}^m$ containing A , and a continuous mapping $\overline{F} : \mathcal{U} \to \mathbb{R}^n$ such that (the restriction) $\overline{F}|_{\mathsf{A}} = F$. In other words, F is continuous on A if it is the restriction of a continuous mapping defined on an open neighborhood of A.

NOTE : It is clear that if $F : A \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is continuous and $p \in A$, then given a neighborhood \mathcal{N} of F(p) in \mathbb{R}^n , there exists a neighborhood \mathcal{M} of p in \mathbb{R}^m such that $F(\mathcal{M} \cap A) \subseteq \mathcal{N}$. For this reason, it is convenient to call the set $\mathcal{M} \cap A$ a *neighborhood* of p in A.

EXAMPLE 50. An important class of continuous mappings is formed by the mappings $F : \mathsf{A} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ that are **Lipschitz continuous**, i.e., for which there exists k > 0 such that

$$||F(x) - F(y)|| \le k ||x - y|| \qquad (x, y \in \mathsf{A}).$$

Such a number k is called a *Lipschitz constant* for F. For example, the norm function $\nu : x \mapsto ||x||$ is a Lipschitz continuous on \mathbb{R}^m with Lipschitz constant 1.

 \diamond Exercise 38. Consider a mapping $F : A \to \mathbb{R}^n$, where $A \subseteq \mathbb{R}^m$ is an *arbitrary* set. Show that the following statements are logically equivalent.

- (a) F is continuous.
- (b) $F^{-1}(\mathsf{O})$ is open in A for every open set O in \mathbb{R}^n . (In particular, if A is open in \mathbb{R}^m then: $F^{-1}(\mathsf{O})$ is open in \mathbb{R}^m for every open set O in \mathbb{R}^n .)

(c) $F^{-1}(\mathsf{F})$ is closed in A for every closed set F in \mathbb{R}^n . (In particular, if A is closed in \mathbb{R}^m then: $F^{-1}(\mathsf{F})$ is closed in \mathbb{R}^m for every closed set F in \mathbb{R}^n .)

(A subset $U \subseteq A$ is said to be *open in* A if there is an open set W such that $U = A \cap W$. Likewise, a subset V is said to be *closed in* A if there exists a closed set W such that $V = A \cap W$.)

DEFINITION 51. A set $A \subseteq \mathbb{R}^m$ is said to be **disconnected** if there exist open sets U and V in \mathbb{R}^m such that

$$\mathsf{A} \cap \mathsf{U} \neq \emptyset, \quad \mathsf{A} \cap \mathsf{V} \neq \emptyset, \quad (\mathsf{A} \cap \mathsf{U}) \cap (\mathsf{A} \cap \mathsf{V}) = \emptyset, \quad (\mathsf{A} \cap \mathsf{U}) \cup (\mathsf{A} \cap \mathsf{V}) = \mathsf{A}.$$

(In other words, A is the union of two disjoint non-empty subsets that are open in A.) The set A is said to be **connected** if A is *not* disconnected.

It is not difficult to prove that the only connected subsets of \mathbb{R} are the intervals: open, closed or half-open (these include the singletons and the set \mathbb{R} itself). The following result then follows (this is PROBLEM 14):

THEOREM 29 (INTERMEDIATE VALUE THEOREM). Let $A \subseteq \mathbb{R}^m$ be connected and let $F : A \to \mathbb{R}$ be a continuous function. Then F(A) is an interval in \mathbb{R} ; in particular, F takes all values between any two that it assumes.

DEFINITION 52. We say that a continuous mapping $F : \mathsf{A} \subseteq \mathbb{R}^m \to \mathbb{R}^m$ is a **home-omorphism** onto $F(\mathsf{A})$ if F is one-to-one and the inverse $F^{-1} : F(\mathsf{A}) \subseteq \mathbb{R}^m \to \mathbb{R}^m$ is continuous. In this case A and $F(\mathsf{A})$ are *homeomorphic* sets.

EXAMPLE 53. Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$F(x_1, x_2, x_3) = (ax_1, bx_2, cx_3), \qquad a, b, c \in \mathbb{R} \setminus \{0\}.$$

F is clearly continuous, and the restriction of F to the (unit) sphere

$$\mathbb{S}^2 = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 \ : \ x_1^2 + x_2^2 + x_3^2 = 1 \right\}$$

is a continuous mapping $\widetilde{F}: \mathbb{S}^2 \to \mathbb{R}^3$. Observe that $\widetilde{F}(\mathbb{S}^2) = \mathbb{E}$, where \mathbb{E} is the *ellipsoid*

$$\mathbb{E} = \left\{ (x_1, x_2, x_3) \in \mathbb{R}^3 : \frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} = 1 \right\}.$$

It is also clear that F is one-to-one and that

$$F^{-1}(x_1, x_2, x_3) = \left(\frac{x_1}{a}, \frac{x_2}{b}, \frac{x_3}{c}\right)$$
.

Thus $\widetilde{F}^{-1} = F^{-1}|_{\mathbb{E}}$ is continuous. Therefore, \widetilde{F} is a homeomorphism of the sphere \mathbb{S}^2 onto the ellipsoid \mathbb{E} .

NOTE : There is a class of infinite sets, called *compact sets*, that in certain limited aspects behave very much like finite sets. A set $\mathsf{K} \subseteq \mathbb{R}^m$ is said to be **sequentially compact** if every sequence of elements in K contains a subsequence which *converges* to a point in K . (A

sequence $(x_k)_{k\in\mathbb{N}}$ of elements $x_k \in \mathbb{R}^m$ is said to be **convergent**, with *limit* $p \in \mathbb{R}^m$, if $\lim_{k\to\infty} ||x_k - p|| = 0$, which is a limit of numbers in \mathbb{R} . Recall that this limit means: for every $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that $||x_k - p|| < \varepsilon$ for $k \ge N$. In this case we write $\lim_{k\to\infty} x_k = p$.) It follows immediately that a subset of a sequentially compact set $\mathsf{K} \subseteq \mathbb{R}^m$ is sequentially compact if and only if it is closed in K .

Continuous mapping do not necessarily preserve closed sets; on the other hand, they do preserve (sequentially) compact sets. (In this sense compact and finite sets behave similarly: the image of a finite set under a mapping is a finite set too.) More precisely, if $\mathsf{K} \subset \mathbb{R}^m$ is a sequentially compact set and $F : \mathbb{R}^m \to \mathbb{R}^n$ is continuous, then $F(\mathsf{K}) \subset \mathbb{R}^n$ is sequentially compact. The following characterization is very useful: A set $\mathsf{K} \subset \mathbb{R}^m$ is sequentially compact if and only if it is bounded and closed. (A set $\mathsf{A} \subset \mathbb{R}^m$ is **bounded** if there exists a number k > 0 such that $||x|| \leq k$ for all $x \in \mathsf{A}$; equivalently, if there exists a number k > 0 such that $\mathsf{A} \subseteq \overline{\mathcal{B}}(0, k)$.)

There is an alternative, more general, definition of compactness for sets. A subset $\mathsf{K} \subset \mathbb{R}^m$ is said to be **compact** if every open covering of K contains a finite subcovering of K . (A collection $(\mathsf{O}_i)_{i\in I}$ of open sets in \mathbb{R}^m is said to be an *open covering* of a set $\mathsf{K} \subseteq \mathbb{R}^m$ if $\mathsf{K} \subseteq \bigcup_{i\in I} \mathsf{O}_i$.)

In spaces like \mathbb{R}^m , however, the two definitions of compactness coincide; this is a consequence of the following result.

(HEINE-BOREL THEOREM) A set $\mathsf{K} \subset \mathbb{R}^m$ is compact if and only if it is bounded and closed.

3.4. Differentiation. Let U be an open subset of \mathbb{R}^m and let $p \in U$. A function $F: U \to \mathbb{R}$ is differentiable at p if there exists a linear functional $L_p: \mathbb{R}^m \to \mathbb{R}$ such that

$$\lim_{x \to p} \frac{F(x) - F(p) - L_p(x - p)}{\|x - p\|} = 0$$

or, equivalently, if there exist a linear functional $L_p : \mathbb{R}^m \to \mathbb{R}$ and a function $R(\cdot, p)$, defined on an open neighborhood \mathcal{V} of p, such that

$$F(x) = F(p) + L_p(x-p) + ||x-p|| \cdot R(x,p), \qquad x \in \mathcal{V}$$

and

$$\lim_{x \to p} R(x, p) = 0$$

Then L_p is called a **derivative** (or differential) of F at p. We say that F is **differentiable** provided it is differentiable at each $p \in U$.

NOTE : We think of a derivative L_p as a "linear" approximation of F near p. By the definition, the error involved in replacing F(x) by $F(p) + L_p(x - p)$ (this is an affine map) is negligible compared to the distance from x to p, provided that this distance is sufficiently small.

If
$$L_p(x) = b_1 x_1 + \dots + b_m x_m$$
 is a derivative of F at p , then

$$b_i = \frac{\partial F}{\partial x_i}(p) := \lim_{t \to 0} \frac{1}{t} \left(F(p + te_i) - F(p) \right), \quad i = \overline{1, m}$$

In particular, if F is differentiable at p, these partial derivatives exist and the derivative L_p is unique. We denote by DF(p) (or sometimes F'(p)) the derivative of F at p, and write (by a slight abuse of notation)

$$DF(p) = \frac{\partial F}{\partial x_1}(p)(x_1 - p_1) + \frac{\partial F}{\partial x_2}(p)(x_2 - p_2) + \dots + \frac{\partial F}{\partial x_m}(p)(x_m - p_m).$$

♦ Exercise 39. Show that any linear functional $F : \mathbb{R}^m \to \mathbb{R}$ is differentiable and DF(p) = F for all $p \in \mathbb{R}^m$.

♦ **Exercise 40.** Prove that any differentiable function $F : U \subseteq \mathbb{R}^m \to \mathbb{R}$ is continuous.

NOTE : Mere existence of partial derivatives is *not* sufficient for differentiability (of the function F). For example, the function $F : \mathbb{R}^2 \to \mathbb{R}$ defined by

$$F(x_1, x_2) = \frac{x_1 x_2}{x_1^2 + x_2^2}$$
 and $F(0, 0) = 0$

is not continuous at (0,0), yet both partial derivatives are defined there. However, if all partial derivatives $\frac{\partial F}{\partial x_i}$, $i = \overline{1,m}$ are defined and continuous in a neighborhood of p, then F is differentiable at p.

If the function $F : U \subseteq \mathbb{R}^m \to \mathbb{R}$ has all partial derivatives continuous (on U) we say that F is **continuously differentiable** (or of *class* C^1) on U. We denote this class of functions by $C^1(U)$. (The class of continuous functions on U is denoted by $C^0(U)$.)

NOTE : We have seen that

 $F \in C^1(\mathsf{U}) \Rightarrow F$ is differentiable (on U) \Rightarrow all partial derivatives $\frac{\partial F}{\partial x_i}$ exist (on U)

but the converse implications may fail. Many results actually need F to be of class C^1 rather than differentiable.

If $r \geq 1$, the class $C^r(\mathsf{U})$ of functions $F : \mathsf{U} \subseteq \mathbb{R}^m \to \mathbb{R}$ that are *r*-fold continuously differentiable (or C^r functions) is specified inductively by requiring that the partial derivatives of F exist and belong to $C^{r-1}(\mathsf{U})$. If F is of class C^r for all r, then we say that F is of class C^{∞} or simply **smooth**. The class of smooth functions on U is denoted by $C^{\infty}(\mathsf{U})$.

NOTE : If $F \in C^r(U)$, then (at any point of U) the value of the partial derivatives of order $k, 1 < k \leq r$ is independent of the order of differentiation; that is, if (j_1, \ldots, j_k) is a permutation of (i_1, \ldots, i_k) , then

$$\frac{\partial^k F}{\partial x_{i_1} \dots \partial x_{i_k}} = \frac{\partial^k F}{\partial x_{j_1} \dots \partial x_{j_k}}.$$

We are now interested in extending the notion of differentiability to mappings $F : U \subseteq \mathbb{R}^m \to \mathbb{R}^n$. We say that F is **differentiable** at $p \in U$ if its component functions are

differentiable at p; that is, by writing

$$F(x_1,\ldots,x_m) = (F_1(x_1,\ldots,x_m),\ldots,F_n(x_1,\ldots,x_m))$$

the functions $F_i: U \to \mathbb{R}$, $i = \overline{1, n}$ have partial derivatives at $p \in U$. F is **differentiable** provided it is differentiable at each $p \in U$. (For the case m = 1, we obtain the notion of a differentiable parametrized curve in Euclidean space \mathbb{R}^n .)

The class $C^r(\mathsf{U},\mathbb{R}^n)$, $1 \leq r \leq \infty$ of C^r -mappings $F : \mathsf{U} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is defined in the obvious way. We will be concerned primarily with *smooth* (i.e., of class C^∞) mappings. So if F is a smooth mapping, then its component functions F_i have continuous partial derivatives of all orders and each such derivative is independent of the order of differentiation.

NOTE : Let us define a (geometric) **tangent vector** at $p \in \mathbb{R}^m$ as an ordered pair (p, v). As a matter of notation, we will abbreviate (p, v) as v_p . We think of v_p as the vector v with its *initial point* at p. (In other words, p + v is considered as the "position vector" of a point; we shall always picture v_p as the "arrow" from the point p to the point p + v.) Clearly, two tangent vectors v_p and w_q are equal if v = w and p = q. (It is essential to recognize that v_p and v_q are different tangent vectors if $p \neq q$.)

The set $\{p\} \times \mathbb{R}^m$ of all tangent vectors at p is denoted by $T_p \mathbb{R}^m$, and is called the **tangent** space of \mathbb{R}^m at p. Thus

$$T_p \mathbb{R}^m := \{ v_p = (p, v) : p, v \in \mathbb{R}^m \}.$$

This set is a vector space over \mathbb{R} (obviously isomorphic to \mathbb{R}^m itself) under the natural operations: $v_p + w_p := (v + w)_p$ and $\lambda v_p := (\lambda v)_p$. The tangent vectors $(e_i)_p$, $i = \overline{1, m}$ form a basis for $T_p \mathbb{R}^m$. (In fact, as a vector space, $T_p \mathbb{R}^m$ is essentially the same as \mathbb{R}^m itself; the only reason we add T_p is so that the geometric tangent spaces $T_p \mathbb{R}^m$ and $T_q \mathbb{R}^m$ at distinct points p and q be disjoint sets.)

Let v_p be a tangent vector in \mathbb{R}^m . One can associate with it the function (parametrized line)

$$\mathbb{R} \ni t \mapsto p + tv \in \mathbb{R}^m.$$

If $F : \mathbb{R}^m \to \mathbb{R}$ is a differentiable function, then $t \mapsto F(p+tv)$ is an ordinary function $\mathbb{R} \to \mathbb{R}$. (The derivative of this function at t = 0 tells the *initial rate of change* of F as p moves in the v direction.) The number

$$v_p[F] := \left. \frac{d}{dt} F(p+tv) \right|_{t=t}$$

is called the **directional derivative** of F with respect to v_p . We have

$$v_p[F] = v_1 \frac{\partial F}{\partial x_1}(p) + \dots + v_m \frac{\partial F}{\partial x_m}(p) \qquad (v = (v_1, \dots, v_m) \in \mathbb{R}^m).$$

The map $v_p[\cdot] : C^{\infty}(\mathbb{R}^m) \to \mathbb{R}$, $F \mapsto v_p[F]$ is linear and satisfies the Leibniz rule (i.e., $v_p[FG] = v_p[F]G(p) + F(p)v_p[G]$ for $F, G \in C^{\infty}(\mathbb{R}^m)$); such a mapping is called a **derivation** at p. So any geometric tangent vector v_p defines a derivation $v_p[\cdot]$ at p. In fact, each derivation at p is defined by a unique geometric tangent vector (at p). Moreover, for any $p \in \mathbb{R}^m$, the

correspondence $v_p \mapsto v_p[\cdot]$ is an isomorphism from the tangent space $T_p \mathbb{R}^m$ to the vector space of all derivations on p. It is customary (and convenient) to denote the derivation $(e_i)_p[\cdot]$ by $\frac{\partial}{\partial x_i}\Big|_p$; thus, $\frac{\partial}{\partial x_i}\Big|_p [F] = \frac{\partial F}{\partial x_i}(p)$.

Let $T_p \mathbb{R}^m$ be the tangent space to \mathbb{R}^m at p; this vector space can be *identified* with \mathbb{R}^m via

$$v_1 \left. \frac{\partial}{\partial x_1} \right|_p + \dots + v_m \left. \frac{\partial}{\partial x_m} \right|_p \mapsto (v_1, \dots, v_m).$$

Let $\alpha : \mathsf{U} \subseteq \mathbb{R} \to \mathbb{R}^m$ be a smooth (parametrized) curve with component functions $\alpha_1, \ldots, \alpha_m$. The **velocity vector** (or tangent vector) to α at $t \in \mathsf{U}$ is the element

$$\dot{\alpha}(t) := \left(\frac{d\alpha_1}{dt}(t), \cdots, \frac{d\alpha_m}{dt}(t)\right) \in T_{\alpha(t)} \mathbb{R}^m$$

EXAMPLE 54. Given a point $p \in U \subseteq \mathbb{R}^m$ and a tangent vector $v \in T_p \mathbb{R}^m$, we can always find a smooth curve $\alpha : (-\varepsilon, \varepsilon) \to U$ with $\alpha(0) = p$ and $\dot{\alpha}(0) = v$. Simply define $\alpha(t) = p + tv$, $t \in (-\varepsilon, \varepsilon)$. By writing $p = (p_1, \ldots, p_m)$ and $v = (v_1, \ldots, v_m)$, the component functions of α are $\alpha_i(t) = p_i + tv_i$, $i = \overline{1, m}$. Thus α is smooth, $\alpha(0) = p$ and

$$\dot{\alpha}(0) = \left(\frac{d\alpha_1}{dt}(0), \cdots, \frac{d\alpha_m}{dt}(0)\right) = (v_1, \dots, v_m) = v.$$

We shall now introduce the concept of *derivative* (or differential) of a differentiable mapping. Let $F : \mathsf{U} \subseteq \mathbb{R}^m \to \mathbb{R}^n$ be a differentiable mapping. To each $p \in \mathsf{U}$ we associate a linear mapping

$$DF(p): \mathbb{R}^m = T_p \mathbb{R}^m \to \mathbb{R}^n = T_{F(p)} \mathbb{R}^n$$

which is called the **derivative** (or *differential*) of F at p and is defined as follows. Let $v \in T_p \mathbb{R}^m$ and let $\alpha : (-\varepsilon, \varepsilon) \to \mathsf{U}$ be a differentiable curve such that $\alpha(0) = p$ and $\dot{\alpha}(0) = v$. By the chain rule (for functions), the curve $\beta = F \circ \alpha : (-\varepsilon, \varepsilon) \to \mathbb{R}^n$ is also differentiable. Then

$$DF(p) \cdot v := \dot{\beta}(0).$$

NOTE : The above definition of DF(p) does not depend on the choice of the curve which passes through p with tangent vector v, and DF(p) is, in fact, linear. So

$$DF(p) \cdot v = \left. \frac{d}{dt} F(\alpha(t)) \right|_{t=0} \in T_{F(p)} \mathbb{R}^n = \mathbb{R}^n.$$

The derivative DF(p) is also denoted by $T_p F$ and called the *tangent mapping* of F at p.

The matrix of the linear mapping DF(p) (relative to bases $\left(\frac{\partial}{\partial x_1}\Big|_p, \ldots, \frac{\partial}{\partial x_m}\Big|_p\right)$ of $T_p \mathbb{R}^m$ and $\left(\frac{\partial}{\partial y_1}\Big|_{F(p)}, \ldots, \frac{\partial}{\partial y_n}\Big|_{F(p)}\right)$ of $T_{F(p)} \mathbb{R}^n$) is the **Jacobian matrix**

$$\frac{\partial F}{\partial x}(p) = \frac{\partial (F_1, \dots, F_n)}{\partial (x_1, \dots, x_m)}(p) := \begin{bmatrix} \frac{\partial F_1}{\partial x_1}(p) & \cdots & \frac{\partial F_1}{\partial x_m}(p) \\ \vdots & & \vdots \\ \frac{\partial F_n}{\partial x_1}(p) & \cdots & \frac{\partial F_n}{\partial x_m}(p) \end{bmatrix} \in \mathbb{R}^{n \times m}$$

of F at p. When m = n this is a square matrix and its determinant is then defined. This determinant is called the **Jacobian** of F at p and is denoted by $J_F(p)$. Thus

$$J_F(p) = \left| \frac{\partial F}{\partial x}(p) \right| := \det \frac{\partial F}{\partial x}(p)$$

♦ Exercise 41. Let $f : I \to \mathbb{R}$ and $g : J \to \mathbb{R}$ be differentiable functions, where I and J are open intervals such that $f(I) \subseteq J$. Show that the function $g \circ f$ is differentiable and (for $t \in I$)

$$(g \circ f)'(t) = g'(f(t)) \cdot f'(t).$$

The standard *chain rule* (for scalar-valued) functions extends to (vector-valued) mappings.

PROPOSITION 30 (GENERAL CHAIN RULE). Let $F : U \subseteq \mathbb{R}^{\ell} \to \mathbb{R}^{m}$ and $G : V \subseteq \mathbb{R}^{m} \to \mathbb{R}^{n}$ be differentiable mappings, where U and V are open sets such that $F(U) \subseteq V$. Then $G \circ F$ is a differentiable mapping and (for $p \in U$)

$$D(G \circ F)(p) = DG(F(p)) \circ DF(p).$$

Proof. The fact that $G \circ F$ is differentiable is a consequence of the chain rule for functions. Now, let $v \in T_p \mathbb{R}^{\ell}$ be given and let us consider a (differentiable) curve $\alpha : (-\varepsilon, \varepsilon) \to \mathsf{U}$ with $\alpha(0) = p$ and $\dot{\alpha}(0) = v$. Set $DF(p) \cdot v = w$ and observe that

$$DG(F(p)) \cdot w = \left. \frac{d}{dt} (G \circ F \circ \alpha) \right|_{t=0}$$

Then

$$D(G \circ F)(p) \cdot v = \left. \frac{d}{dt} (G \circ F \circ \alpha) \right|_{t=0}$$
$$= \left. DG(F(p)) \cdot w \right|_{t=0}$$
$$= DG(F(p)) \circ DF(p) \cdot v$$

NOTE : In terms of Jacobian matrices, the general chain rule can be written

$$\frac{\partial (G\circ F)}{\partial x}(p) = \frac{\partial G}{\partial y}(F(p))\cdot \frac{\partial F}{\partial x}(p)\cdot$$

Thus if $H = G \circ F$ and y = F(x), then

$$\frac{\partial H}{\partial x} = \begin{bmatrix} \frac{\partial G_1}{\partial y_1} & \cdots & \frac{\partial G_1}{\partial y_m} \\ \vdots & & \vdots \\ \frac{\partial G_n}{\partial y_1} & \cdots & \frac{\partial G_n}{\partial y_m} \end{bmatrix} \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \cdots & \frac{\partial F_1}{\partial x_\ell} \\ \vdots & & \vdots \\ \frac{\partial F_m}{\partial x_1} & \cdots & \frac{\partial F_m}{\partial x_\ell} \end{bmatrix}$$

where $\frac{\partial G_1}{\partial y_1}, \dots, \frac{\partial G_n}{\partial y_m}$ are evaluated at y = F(x) and $\frac{\partial F_1}{\partial x_1}, \dots, \frac{\partial F_m}{\partial x_\ell}$ at x. Writing this out, we obtain

$$\frac{\partial H_i}{\partial x_j} = \frac{\partial G_i}{\partial y_1} \frac{\partial y_1}{\partial x_j} + \dots + \frac{\partial G_i}{\partial y_m} \frac{\partial y_m}{\partial x_j} \qquad (i = \overline{1, n}; j = \overline{1, \ell}).$$

 \diamond Exercise 42. Let

$$F(x_1, x_2) = (x_1^2 - x_2^2 + x_1 x_2, x_2^2 - 1)$$
 and $G(y_1, y_2) = (y_1 + y_2, 2y_1, y_2^2)$

- (a) Show that F and G are differentiable, and that $G \circ F$ exists.
- (b) Compute $D(G \circ F)(1, 1)$
 - (i) directly
 - (ii) using the chain rule.

NOTE : The precise sense in which the derivative DF(p) of the (differentiable) mapping F at p is an (affine) approximation of F near p is given by the following result (in which DF(p) is interpreted as a linear mapping from \mathbb{R}^m to \mathbb{R}^n) : If the mapping $F : U \subseteq \mathbb{R}^m \to \mathbb{R}^n$ is differentiable, then for each $p \in U$,

$$\lim_{x \to p} \frac{\|F(x) - F(p) - DF(p) \cdot (x - p)\|}{\|x - p\|} = 0$$

or, equivalently, there exists a (local) map $\epsilon_p : \mathbb{R}^m \to \mathbb{R}^n$ satisfying, for all h with $p + h \in U$,

(5)
$$F(p+h) = F(p) + DF(p) \cdot h + \epsilon_p(h) \quad with \quad \lim_{h \to 0} \frac{\|\epsilon_p(h)\|}{\|h\|} = 0.$$

The mapping $\mathbb{R}^m \to \mathbb{R}^n$, $x \mapsto F(p) + DF(p) \cdot (x-p)$ is the best affine approximation to F at p. (It is the unique affine approximation for which the difference mapping ϵ_p satisfies the estimate (5).)

If $A \subseteq \mathbb{R}^m$ is an *arbitrary* set, then $C^{\infty}(A)$ denotes the set of all functions $F : A \to \mathbb{R}$ such that $F = \overline{F}|_A$, where $\overline{F} : \mathcal{U} \to \mathbb{R}$ is a smooth function on some open neighborhood \mathcal{U} of A.

PROBLEMS (11-15)

(11) Let $x, y \in \mathbb{R}^m$. Prove the following inequalities.

- (a) $||x + y|| \le ||x|| + ||y||$ (triangle inequality).
- (b) $|||x|| ||y||| \le ||x y||$ (reverse triangle inequality).
- (c) $|x_i| \le ||x|| \le |x_1| + \dots + |x_m| \le \sqrt{m} ||x||, \quad i = \overline{1, m}.$

- (12) Let $\tau : \mathbb{R}^m \to \mathbb{R}^m$ be a linear transformation, and let $A \in \mathbb{R}^{m \times m}$ denote its matrix with respect to the standard basis of \mathbb{R}^m . Show that the following statements are logically equivalent.
 - (a) $\|\tau(x)\| = \|x\|$ for all $x \in \mathbb{R}^m$.
 - (b) $\tau(x) \bullet \tau(y) = x \bullet y$ for all $x, y \in \mathbb{R}^m$.
 - (c) $A^{\top}A = \mathbf{1}$ (i.e., the matrix A is orthogonal).

(Such a linear transformation is called an **orthogonal transformation**.) Hence deduce that such a linear transformation τ is invertible. Is τ^{-1} of the same sort?

- (13) Let F be a subset of \mathbb{R}^m . Show that the following statements are logically equivalent.
 - (a) F is closed.
 - (b) $\mathsf{F} = \operatorname{cl}(\mathsf{F})$.
 - (c) For every sequence $(x_k)_{k\in\mathbb{N}}$ of points $x_k\in\mathbb{R}^m$ that is convergent to a limit, say p, we have $p\in\mathsf{F}$.
- (14) Let $\mathsf{A} \subseteq \mathbb{R}^m$ be an arbitrary set.
 - (a) Show that the following statements are logically equivalent.
 - (i) A is disconnected.
 - (ii) There exists a surjective continuous function $A \rightarrow \{0, 1\}$.

(Recall the definition of the **characteristic function** χ_A of a set $A: \chi_A(x) = 1$ if $x \in A$ and $\chi_A(x) = 0$ if $x \notin A$.)

- (b) Assume that A is connected and let $F : A \to \mathbb{R}^n$ be a continuous mapping. Show that F(A) is connected in \mathbb{R}^n .
- (c) Let A be connected and let $F : A \to \mathbb{R}$ be a continuous function. Show that F(A) is an interval in \mathbb{R} ; in particular, F takes all the values between any two that it assumes.

(15) Show that

- (i) if $\sigma : \mathbb{R}^2 \to \mathbb{R}$ is defined by $\sigma(x, y) = x + y$, then $D\sigma(a, b) = \sigma$.
- (ii) if $\pi : \mathbb{R}^2 \to \mathbb{R}$ is defined by $\pi(x, y) = x \cdot y$, then $D\pi(a, b) \cdot (x, y) = bx + ay$.

Hence deduce that if the functions $F, G : U \subseteq \mathbb{R}^m \to \mathbb{R}$ are differentiable at $p \in U$, then

$$D(F+G)(p) = DF(p) + DG(p)$$
$$D(F \cdot G)(p) = G(p)DF(p) + F(p)DG(p)$$

If moreover $G(p) \neq 0$, then

$$D\left(\frac{F}{G}\right)(p) = \frac{G(p)DF(p) - F(p)DG(p)}{(G(p))^2}$$