3. Euclidean Spaces

Inner product and norm • Open and closed sets • Continuity • Differentiation.
3.1. Inner product and norm. Let \mathbb{R} be the set of real numbers and let $\mathbb{R}^{m}(m \geq 1)$ denote the Cartesian product of m copies of \mathbb{R}. The elements of \mathbb{R}^{m} are ordered mtuples of real numbers. Thus

$$
\mathbb{R}^{m}:=\left\{x=\left(x_{1}, \ldots, x_{m}\right): x_{i} \in \mathbb{R}\right\} .
$$

An element of \mathbb{R}^{m} is often called a point. Under the usual operations

$$
x+y:=\left(x_{1}+y_{1}, \ldots, x_{m}+y_{m}\right) \quad \text { and } \quad \lambda x:=\left(\lambda x_{1}, \ldots, \lambda x_{m}\right) \quad\left(x, y \in \mathbb{R}^{m}, \lambda \in \mathbb{R}\right)
$$

\mathbb{R}^{m} is a vector space over \mathbb{R}. Hence the elements of \mathbb{R}^{m} can also be referred to as vectors.
Note : The set \mathbb{R}^{m} may be equipped with various natural structures (e.g., group structure, vector space structure, topological structure, etc.) thus yielding various spaces, each such space having the same underlying set \mathbb{R}^{m}. We must usually decide from the context which structure is intended.

Many geometric concepts require an extra structure on \mathbb{R}^{m} that we now define.
Definition 42. The Euclidean space \mathbb{R}^{m} is the above mentioned vector space \mathbb{R}^{m} together with the standard inner product (or dot product)

$$
x \bullet y:=x_{1} y_{1}+\cdots+x_{m} y_{m} \quad\left(x, y \in \mathbb{R}^{m}\right)
$$

We say that $x, y \in \mathbb{R}^{m}$ are orthogonal if $x \bullet y=0$. The most important properties of the standard inner product are the following.

Proposition 19. If x, y, z are vectors in \mathbb{R}^{m} and $\lambda \in \mathbb{R}$, then
(IP1) $x \bullet y=y \bullet x \quad$ (symmetry).
(IP2) $\quad(\lambda x+y) \bullet z=\lambda x \bullet z+y \bullet z \quad$ (linearity).
(IP3) $\quad x \bullet x \geq 0$, and $x \bullet x=0$ if and only if $x=0 \quad$ (positive definiteness).
Proof. Straightforward computation.
Definition 43. The Euclidean norm $\|x\|$ of $x \in \mathbb{R}^{m}$ is defined as

$$
\|x\|:=\sqrt{x \bullet x}
$$

If $m=1$, then $\|x\|$ is the usual absolute value $|x|$ of x. The relationship between the norm and the vector structure of \mathbb{R}^{m} is very important.
\diamond Exercise 32. Show that if $x, y \in \mathbb{R}^{m}$ and $\lambda \in \mathbb{R}$, then
(a) $\|x\| \geq 0$, and $\|x\|=0$ if and only if $x=0 \quad$ (positivity).
(b) $\|\lambda x\|=|\lambda|\|x\| \quad$ (homogeneity).
(c) $x \bullet y=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right) \quad$ (polarization identity).
(d) $\|x \pm y\|^{2}=\|x\|^{2}+\|y\|^{2}$ if and only if $x \bullet y=0 \quad$ (Pythagorean property).

Theorem 20. (Cauchy-Schwarz Inequality) If $x, y \in \mathbb{R}^{m}$, then

$$
|x \bullet y| \leq\|x\|\|y\| .
$$

Equality holds if and only if x and y are linearly dependent.
Proof. If x and y are linearly dependent, equality clearly holds. Why? If not, then $\lambda x-y \neq 0$ for all $\lambda \in \mathbb{R}$, so

$$
\begin{aligned}
0<\|\lambda x-y\|^{2} & =\left(\lambda x_{1}-y_{1}\right)^{2}+\cdots+\left(\lambda x_{m}-y_{m}\right)^{2} \\
& =\left(x_{1}^{2}+\cdots+x_{m}^{2}\right) \lambda^{2}-2\left(x_{1} y_{1}+\cdots+x_{m} y_{m}\right) \lambda+y_{1}^{2}+\cdots+y_{m}^{2}
\end{aligned}
$$

Therefore the right hand side is a quadratic equation in λ with no real solution, and its discriminant must be negative. Thus

$$
\begin{gathered}
4\left(x_{1} y_{1}+\cdots+x_{m} y_{m}\right)^{2}-4\left(x_{1}^{2}+\cdots+x_{m}^{2}\right)\left(y_{1}^{2}+\cdots+y_{m}^{2}\right)<0 \\
(x \bullet y)^{2}<\|x\|^{2}\|y\|^{2}
\end{gathered}
$$

which implies $|x \bullet y|<\|x\|\|y\|$.
The Cauchy-Schwarz Inequality serves in proving several other inequalities (this is Problem 11).

Definition 44. The standard basis for \mathbb{R}^{m} consists of the vectors

$$
e_{j}=\left(\delta_{1 j}, \ldots, \delta_{m j}\right), \quad j=\overline{1, m}
$$

where $\delta_{i j}$ equals 1 if $i=j$ and equals 0 if $i \neq j$.
Thus we write

$$
x=x_{1} e_{1}+\cdots+x_{m} e_{m} \quad\left(x \in \mathbb{R}^{m}\right)
$$

With respect to the standard inner product on \mathbb{R}^{m}, the standard basis is orthonormal, i.e., $e_{i} \bullet e_{j}=\delta_{i j}$ for $i, j=\overline{1, m}$. (Thus $\left\|e_{j}\right\|=1$, while e_{i} and e_{j} for distinct i and j are orthogonal vectors.)

Definition 45. For $x, y \in \mathbb{R}^{m}$ we define the Euclidean distance $d(x, y)$ by

$$
d(x, y):=\|x-y\| .
$$

From Exercise 32 and Problem 11 we immediately obtain (for $x, y, z \in \mathbb{R}^{m}$)
(M1) $\quad d(x, y) \geq 0$, and $d(x, y)=0$ if and only if $x=y$.
(M2) $\quad d(x, y)=d(y, x)$.
(M3) $\quad d(x, z) \leq d(x, y)+d(y, z)$.
Note: (1) More generally, a metric space is defined as a set M equipped with a distance between its elements satisfying the properties (M1) - (M3). So the Euclidean space \mathbb{R}^{m} is a metric space. The notation $d(x, y)=\|x-y\|$ is frequently useful even when we are dealing with the Euclidean space \mathbb{R}^{m} as a metric space and not using its vector space structure. In particular, $\|x\|=d(x, 0)$.
(2) An abstract concept of Euclidean space (i.e., a space satisfying the axioms of Euclidean geometry) can be introduced. It is defined as a structure ($\mathrm{M}, \mathrm{E}, \Phi$), consisting of a (non-empty) set M, an associated standard vector space E (which is a real Euclidean vector space, i.e., a real vector space equipped with a scalar product $(\cdot \mid \cdot): \mathrm{E} \times \mathrm{E} \rightarrow \mathbb{R}$), and a structure map

$$
\Phi: \mathrm{M} \times \mathrm{M} \rightarrow \mathrm{E}, \quad(x, y) \mapsto \overrightarrow{x y}
$$

such that
(ES1) $\overrightarrow{x y}+\overrightarrow{y z}=\overrightarrow{x z}$ for every $x, y, z \in \mathrm{M}$;
(ES2) for every $o \in \mathrm{M}$ and every $v \in \mathrm{E}$, there is a unique $x \in \mathrm{M}$ such that $\overrightarrow{o x}=v$.
Elements of M are called points, whereas elements of E are called vectors. ($\overrightarrow{o x}$ is the position vector of x with the initial point o.) The dimension of the space M is the dimension of the vector space E. It turns out that
(i) if we fix an arbitrary point $o \in \mathrm{M}$, there is a one-to-one correspondence between (the space) M and (the associated vector space) E (the mapping $x \mapsto \overrightarrow{o x}$ is a bijection);
(ii) in addition, if we fix an arbitrary (ordered) orthonormal basis $\left(e_{1}, e_{2}, \ldots, e_{m}\right)$ of \mathbf{E}, the (inner product) spaces E and \mathbb{R}^{m} are isomorphic. In other words, the scalar product on E "is" the dot product: for $v, w \in \mathrm{E}$,

$$
\begin{aligned}
(v \mid w) & =\left(v_{1} e_{1}+\cdots+v_{m} e_{m} \mid w_{1} e_{1}+\cdots+w_{m} e_{m}\right) \\
& =v_{1} w_{1}+\cdots+v_{m} w_{m} .
\end{aligned}
$$

In this sense, we identify the abstract m-dimensional Euclidean space M with the (concrete) Euclidean space \mathbb{R}^{m}.

We conclude this section with some important remarks (about notation). The element (vector) $(0, \ldots, 0) \in \mathbb{R}^{m}$ will usually be denoted simply 0 .

If $\tau: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a linear transformation, the matrix of τ with respect to the standard basis of \mathbb{R}^{m} is the $m \times m$ matrix $T=\left[t_{i j}\right]$, where $T\left(e_{j}\right)=\sum_{i=1}^{m} t_{i j} e_{i}$ (the coefficients of $T\left(e_{j}\right)$ appear in the $j^{\text {th }}$ column of the matrix). If the linear transformation $\sigma: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ has the matrix S, then (the composite) transformation $\sigma \tau$ has the matrix $S T$ (matrix multiplication).
3.2. Open and closed sets. The analog in \mathbb{R}^{m} of an open interval in \mathbb{R} is introduced in the following

Definition 46. For $p \in \mathbb{R}^{m}$ and $\delta>0$, we denote the open ball of center p and radius δ by

$$
\mathcal{B}(p, \delta):=\left\{x \in \mathbb{R}^{m}:\|x-p\|<\delta\right\} .
$$

A point p in a set $\mathrm{A} \subseteq \mathbb{R}^{m}$ is said to be an interior point of A if there exists $\delta>0$ such that $\mathcal{B}(p, \delta) \subseteq \mathrm{A}$. The set of interior points of A is called the interior of A and is denoted by int (A). Note that $\operatorname{int}(A) \subseteq A$.

Definition 47. A set $\mathrm{A} \subseteq \mathbb{R}^{m}$ is said to be open (in \mathbb{R}^{m}) if $\mathrm{A}=\operatorname{int}$ (A) (i.e., if every point of A is an interior point of A).

Note that the empty set \emptyset satisfies every definition involving conditions on its elements, therefore \emptyset is open. Furthermore, the whole space \mathbb{R}^{m} is open.

Proposition 21. The set $\mathcal{B}(p, \delta)$ is open in \mathbb{R}^{m}, for every $p \in \mathbb{R}^{m}$ and $\delta>0$.
Proof. For arbitrary $q \in \mathcal{B}(p, \delta)$ set $\beta=\|q-p\|$, then $\delta-\beta>0$. Hence $\mathcal{B}(q, \delta-\beta) \subseteq$ $\mathcal{B}(p, \delta)$, because for every $x \in \mathcal{B}(q, \delta-\beta)$

$$
\|x-p\| \leq\|x-q\|+\|q-p\|<(\delta-\beta)+\beta=\delta .
$$

Proposition 22. For any $\mathrm{A} \subseteq \mathbb{R}^{m}$, the interior $\operatorname{int}(\mathrm{A})$ is the largest open set contained in A .

Proof. First, we show that int (A) is open. If $p \in \operatorname{int}(\mathrm{~A})$, there is $\delta>0$ such that $\mathcal{B}(p, \delta) \subseteq \mathrm{A}$. As in the proof of Proposition 21, we find for any $q \in \mathcal{B}(p, \delta)$ a $\beta>0$ such that $\mathcal{B}(q, \beta) \subseteq \mathrm{A}$. But this implies $\mathcal{B}(p, \delta) \subseteq \operatorname{int}(\mathrm{A})$, and hence int (A) is an open set.

Furthermore, if $\mathrm{U} \subseteq A$ is open, it is clear by definition that $U \subseteq \operatorname{int}(A)$, thus int (A) is the largest open set contained in A.
\diamond Exercise 33. Show that
(a) the union of any collection of open subsets of \mathbb{R}^{m} is again open in \mathbb{R}^{m};
(b) the intersection of finitely many open subsets of \mathbb{R}^{m} is open in \mathbb{R}^{m}.

Let $\emptyset \neq A \subseteq \mathbb{R}^{m}$. An open neighborhood of A is an open set containing A, and a neighborhood of A is any set containing an open neighborhood of A. A neighborhood of a set $\{p\}$ is also called a neighborhood of the point $p \in \mathbb{R}^{m}$. (Note that $p \in \mathrm{~A} \subseteq \mathbb{R}^{m}$ is an interior point of A if and only if A is a neighborhood of p.)

Definition 48. A set F is said to be closed if its complement $\mathrm{F}^{c}:=\mathbb{R}^{m} \backslash \mathrm{~F}$ is open. The empty set is closed, and so is the entire space \mathbb{R}^{m}.

Proposition 23. For every $p \in \mathbb{R}^{m}$ and $\delta>0$, the set $\overline{\mathcal{B}}(p, \delta):=\left\{x \in \mathbb{R}^{m}\right.$: $\|x-p\| \leq \delta\}$ is closed. $(\overline{\mathcal{B}}(p, \delta)$ is the closed ball of center p and radius δ.)

Proof. For arbitrary $q \in \overline{\mathcal{B}}(p, \delta)^{c}$ set $\beta=\|p-q\|$, then $\beta-\delta>0$. So $\mathcal{B}(q, \beta-\delta) \subseteq$ $\overline{\mathcal{B}}(p, \delta)^{c}$, because by the reverse triangle inequality (this is Problem 11), for every $x \in \mathcal{B}(q, \beta-\delta)$

$$
\|p-x\| \geq\|p-q\|-\|x-q\|>\beta-(\beta-\delta)=\delta
$$

This proves that $\overline{\mathcal{B}}(p, \delta)^{c}$ is open.
Definition 49. A point $p \in \mathbb{R}^{m}$ is said to be a cluster point of a set $\mathrm{A} \subseteq \mathbb{R}^{m}$ if for every $\delta>0$ we have $\mathcal{B}(p, \delta) \cap \mathrm{A} \neq \emptyset$. The set of cluster points of A is called the closure of A and is denoted by $\operatorname{cl}(A)$.

Proposition 24. Let $\mathrm{A} \subseteq \mathbb{R}^{m}$. Then $\operatorname{cl}(\mathrm{A})^{c}=\operatorname{int}\left(A^{c}\right)$; in particular, the closure of A is a closed set. Moreover, $\operatorname{int}(A)^{c}=\operatorname{cl}\left(A^{c}\right)$.

Proof. Note that $\mathrm{A} \subseteq \operatorname{cl}(\mathrm{A})$. To say that x is not a cluster point of A means that it is an interior point of A^{c}. Thus $\operatorname{cl}(A)^{c}=\operatorname{int}\left(A^{c}\right)$, or $\operatorname{cl}(A)=\operatorname{int}\left(A^{c}\right)^{c}$, which implies that $\operatorname{cl}(\mathrm{A})$ is closed in \mathbb{R}^{m}.

Furthermore, by applying this identity to A^{c} we obtain that $\operatorname{int}(A)^{c}=\operatorname{cl}\left(A^{c}\right)$.
By taking complements of sets we immediately obtain the following result.
Proposition 25. For any $\mathrm{A} \subseteq \mathbb{R}^{m}$, the closure $\mathrm{cl}(\mathrm{A})$ is the smallest closed set containing A.

From set theory we recall De Morgan's Laws, which state, for arbitrary collections $\left(\mathrm{A}_{i}\right)_{i \in I}$ of sets $\mathrm{A}_{i} \subseteq \mathbb{R}^{m}$, that

$$
\left(\bigcup_{i \in I} A_{i}\right)^{c}=\bigcap_{i \in I} A_{i}^{c} \quad \text { and } \quad\left(\bigcap_{i \in I} A_{i}\right)^{c}=\bigcup_{i \in I} A_{i}^{c}
$$

In view of these laws and Exercise 33 we find, by taking complements of sets,
Proposition 26.
(a) The intersection of any collection of closed subsets of \mathbb{R}^{m} is again closed in \mathbb{R}^{m}.
(b) The union of finitely many closed subsets of \mathbb{R}^{m} is closed in \mathbb{R}^{m}.
3.3. Continuity. Let $\mathrm{U} \subseteq \mathbb{R}^{m}$ be an open set. A mapping $F: U \rightarrow \mathbb{R}^{n}$ is continuous at $p \in \mathrm{U}$ if given $\varepsilon>0$, there exists a $\delta>0$ such that

$$
F(\mathcal{B}(p, \delta)) \subseteq \mathcal{B}(F(p), \varepsilon)
$$

In other words, F is continuous at p if points arbitrarily close to $F(p)$ are images of points sufficiently close to p. We say that F is continuous provided it is continuous at each $p \in \mathbf{U}$.

Note : Equivalently, F is continuous at $p \in \mathrm{U}$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|F(x)-F(p)\|<\varepsilon$ for $\|x-p\|<\delta$. This simply means that $\lim _{x \rightarrow p} F(x)=F(p)$.

A mapping $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ determines $n \mathbb{R}$-valued functions (of m variables) as follows. Let $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathrm{U}$ and $F(x)=\left(y_{1}, \ldots, y_{n}\right)$. Then we can write

$$
y_{1}=F_{1}\left(x_{1}, \ldots, x_{m}\right), \quad y_{2}=F_{2}\left(x_{1}, \ldots, x_{m}\right), \quad \ldots, \quad y_{n}=F_{n}\left(x_{1}, \ldots, x_{m}\right) .
$$

The functions $F_{i}: \mathrm{U} \rightarrow \mathbb{R}, i=\overline{1, n}$ are the component functions of F. The continuity of the mapping F is equivalent to the continuity of its component functions.
\diamond Exercise 34. Prove that a mapping $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous if and only if each component function $F_{i}: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous.

The following results are standard (and easy to prove).
Proposition 27. Let $F, G: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be continuous mappings and let $\lambda \in \mathbb{R}$. Then $F+G, \lambda F$, and $F \bullet G$ are each continuous. If $n=1$ and $G(x) \neq 0$ for all $x \in \mathbf{U}$, then the quotient $\frac{F}{G}$ is also continuous.

Proposition 28. Let $F: U \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ and $G: V \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be continuous mappings, where U and V are open sets such that $F(\mathrm{U}) \subseteq \mathrm{V}$. Then $G \circ F$ is a continuous mapping.
\diamond Exercise 35. Show that the following mappings are continuous.
(a) The identity mapping $\mathbf{1}_{\mathbb{R}^{m}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}, \quad x \mapsto x$.
(b) The norm function $\nu: \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad x \mapsto\|x\|$.
(c) The $i^{\text {th }}$ natural projection $\operatorname{pr}_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad x \mapsto x_{i}$.

Hence derive that every polynomial function (in several variables)

$$
p_{k}: \mathbb{R}^{m} \rightarrow \mathbb{R}, \quad x=\left(x_{1}, \ldots, x_{m}\right) \mapsto \sum_{\substack{i_{1}, \ldots, i_{m}=0 \\ i_{1}+\ldots+i_{m} \leq k}}^{k} a_{i_{1} \ldots i_{m}} x_{1}^{i_{1}} \ldots x_{m}^{i_{m}}
$$

is continuous.

Note : More generally, every rational function (i.e., a quotient of two polynomial functions) is continuous. It can be shown that elementary functions like exp, log, \sin, and cos are also continuous.

Linear mappings $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ play an important role in differentiation. Such mappings are continuous.
\diamond Exercise 36. Show that every linear mapping $L: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous.

In most applications it is convenient to express continuity in terms of neighborhoods instead of open balls.
\diamond Exercise 37. Prove that a mapping $F: \mathrm{U} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous at $p \in \mathrm{U}$ if and only if given a neighborhood \mathcal{N} of $F(p)$ in \mathbb{R}^{n} there exists a neighborhood \mathcal{M} of p in \mathbb{R}^{m} such that $F(\mathcal{M}) \subseteq \mathcal{N}$.

It is often necessary to deal with mappings (functions) defined on arbitrary (i.e., not necessarily open) sets. To extend the previous ideas to this situation, we shall proceed as follows.

Let $F: \mathrm{A} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a mapping, where A is an arbitrary set. We say that F is continuous on A provided there exists an open set $\mathcal{U} \subseteq \mathbb{R}^{m}$ containing A, and a continuous mapping $\bar{F}: \mathcal{U} \rightarrow \mathbb{R}^{n}$ such that (the restriction) $\left.\bar{F}\right|_{\mathrm{A}}=F$. In other words, F is continuous on A if it is the restriction of a continuous mapping defined on an open neighborhood of A.

Note : It is clear that if $F: \mathrm{A} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous and $p \in \mathrm{~A}$, then given a neighborhood \mathcal{N} of $F(p)$ in \mathbb{R}^{n}, there exists a neighborhood \mathcal{M} of p in \mathbb{R}^{m} such that $F(\mathcal{M} \cap \mathrm{~A}) \subseteq \mathcal{N}$. For this reason, it is convenient to call the set $\mathcal{M} \cap \mathrm{A}$ a neighborhood of p in A.

Example 50. An important class of continuous mappings is formed by the mappings $F: \mathrm{A} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ that are Lipschitz continuous, i.e., for which there exists $k>0$ such that

$$
\|F(x)-F(y)\| \leq k\|x-y\| \quad(x, y \in \mathrm{~A})
$$

Such a number k is called a Lipschitz constant for F. For example, the norm function $\nu: x \mapsto\|x\|$ is a Lipschitz continuous on \mathbb{R}^{m} with Lipschitz constant 1.
\diamond Exercise 38. Consider a mapping $F: \mathrm{A} \rightarrow \mathbb{R}^{n}$, where $\mathrm{A} \subseteq \mathbb{R}^{m}$ is an arbitrary set. Show that the following statements are logically equivalent.
(a) F is continuous.
(b) $F^{-1}(\mathrm{O})$ is open in A for every open set O in \mathbb{R}^{n}. (In particular, if A is open in \mathbb{R}^{m} then: $F^{-1}(\mathrm{O})$ is open in \mathbb{R}^{m} for every open set O in \mathbb{R}^{n}.)
(c) $F^{-1}(\mathrm{~F})$ is closed in A for every closed set F in \mathbb{R}^{n}. (In particular, if A is closed in \mathbb{R}^{m} then: $F^{-1}(\mathrm{~F})$ is closed in \mathbb{R}^{m} for every closed set F in \mathbb{R}^{n}.)
(A subset $U \subseteq A$ is said to be open in A if there is an open set W such that $U=A \cap W$. Likewise, a subset V is said to be closed in A if there exists a closed set W such that $\mathrm{V}=\mathrm{A} \cap \mathrm{W}$.)

Definition 51. A set $A \subseteq \mathbb{R}^{m}$ is said to be disconnected if there exist open sets U and V in \mathbb{R}^{m} such that

$$
\mathrm{A} \cap \mathrm{U} \neq \emptyset, \quad \mathrm{A} \cap \mathrm{~V} \neq \emptyset, \quad(\mathrm{A} \cap \mathrm{U}) \cap(\mathrm{A} \cap \mathrm{~V})=\emptyset, \quad(\mathrm{A} \cap \mathrm{U}) \cup(\mathrm{A} \cap \mathrm{~V})=\mathrm{A}
$$

(In other words, A is the union of two disjoint non-empty subsets that are open in A.) The set A is said to be connected if A is not disconnected.

It is not difficult to prove that the only connected subsets of \mathbb{R} are the intervals: open, closed or half-open (these include the singletons and the set \mathbb{R} itself). The following result then follows (this is Problem 14):

Theorem 29 (Intermediate Value Theorem). Let $A \subseteq \mathbb{R}^{m}$ be connected and let $F: A \rightarrow \mathbb{R}$ be a continuous function. Then $F(A)$ is an interval in \mathbb{R}; in particular, F takes all values between any two that it assumes.

DEFINITION 52. We say that a continuous mapping $F: \mathrm{A} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is a homeomorphism onto $F(\mathrm{~A})$ if F is one-to-one and the inverse $F^{-1}: F(\mathrm{~A}) \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is continuous. In this case A and $F(\mathrm{~A})$ are homeomorphic sets.

ExAMPLE 53. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be given by

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left(a x_{1}, b x_{2}, c x_{3}\right), \quad a, b, c \in \mathbb{R} \backslash\{0\}
$$

F is clearly continuous, and the restriction of F to the (unit) sphere

$$
\mathbb{S}^{2}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}
$$

is a continuous mapping $\widetilde{F}: \mathbb{S}^{2} \rightarrow \mathbb{R}^{3}$. Observe that $\widetilde{F}\left(\mathbb{S}^{2}\right)=\mathbb{E}$, where \mathbb{E} is the ellipsoid

$$
\mathbb{E}=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}: \frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}}+\frac{x_{3}^{2}}{c^{2}}=1\right\}
$$

It is also clear that F is one-to-one and that

$$
F^{-1}\left(x_{1}, x_{2}, x_{3}\right)=\left(\frac{x_{1}}{a}, \frac{x_{2}}{b}, \frac{x_{3}}{c}\right)
$$

Thus $\widetilde{F}^{-1}=\left.F^{-1}\right|_{\mathbb{E}}$ is continuous. Therefore, \widetilde{F} is a homeomorphism of the sphere \mathbb{S}^{2} onto the ellipsoid \mathbb{E}.

NOTE : There is a class of infinite sets, called compact sets, that in certain limited aspects behave very much like finite sets. A set $K \subseteq \mathbb{R}^{m}$ is said to be sequentially compact if every sequence of elements in K contains a subsequence which converges to a point in K. (A
sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of elements $x_{k} \in \mathbb{R}^{m}$ is said to be convergent, with limit $p \in \mathbb{R}^{m}$, if $\lim _{k \rightarrow \infty}\left\|x_{k}-p\right\|=0$, which is a limit of numbers in \mathbb{R}. Recall that this limit means: for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that $\left\|x_{k}-p\right\|<\varepsilon$ for $k \geq N$. In this case we write $\lim _{k \rightarrow \infty} x_{k}=p$.) It follows immediately that a subset of a sequentially compact set $\mathrm{K} \subseteq \mathbb{R}^{m}$ is sequentially compact if and only if it is closed in K .

Continuous mapping do not necessarily preserve closed sets; on the other hand, they do preserve (sequentially) compact sets. (In this sense compact and finite sets behave similarly: the image of a finite set under a mapping is a finite set too.) More precisely, if $\mathrm{K} \subset \mathbb{R}^{m}$ is a sequentially compact set and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is continuous, then $F(\mathrm{~K}) \subset \mathbb{R}^{n}$ is sequentially compact. The following characterization is very useful: A set $\mathrm{K} \subset \mathbb{R}^{m}$ is sequentially compact if and only if it is bounded and closed. (A set $\mathrm{A} \subset \mathbb{R}^{m}$ is bounded if there exists a number $k>0$ such that $\|x\| \leq k$ for all $x \in \mathrm{~A}$; equivalently, if there exists a number $k>0$ such that $\mathrm{A} \subseteq \overline{\mathcal{B}}(0, k)$.)

There is an alternative, more general, definition of compactness for sets. A subset $K \subset \mathbb{R}^{m}$ is said to be compact if every open covering of K contains a finite subcovering of K. (A collection $\left(\mathrm{O}_{i}\right)_{i \in I}$ of open sets in \mathbb{R}^{m} is said to be an open covering of a set $\mathrm{K} \subseteq \mathbb{R}^{m}$ if $\mathrm{K} \subseteq \bigcup_{i \in I} \mathrm{O}_{i}$.)

In spaces like \mathbb{R}^{m}, however, the two definitions of compactness coincide; this is a consequence of the following result.
(Heine-Borel Theorem) A set $\mathrm{K} \subset \mathbb{R}^{m}$ is compact if and only if it is bounded and closed.
3.4. Differentiation. Let U be an open subset of \mathbb{R}^{m} and let $p \in \mathbb{U}$. A function $F: U \rightarrow \mathbb{R}$ is differentiable at p if there exists a linear functional $L_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ such that

$$
\lim _{x \rightarrow p} \frac{F(x)-F(p)-L_{p}(x-p)}{\|x-p\|}=0
$$

or, equivalently, if there exist a linear functional $L_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ and a function $R(\cdot, p)$, defined on an open neighborhood \mathcal{V} of p, such that

$$
F(x)=F(p)+L_{p}(x-p)+\|x-p\| \cdot R(x, p), \quad x \in \mathcal{V}
$$

and

$$
\lim _{x \rightarrow p} R(x, p)=0
$$

Then L_{p} is called a derivative (or differential) of F at p. We say that F is differentiable provided it is differentiable at each $p \in \mathrm{U}$.
Note : We think of a derivative L_{p} as a "linear" approximation of F near p. By the definition, the error involved in replacing $F(x)$ by $F(p)+L_{p}(x-p)$ (this is an affine map) is negligible compared to the distance from x to p, provided that this distance is sufficiently small.

If $L_{p}(x)=b_{1} x_{1}+\cdots+b_{m} x_{m}$ is a derivative of F at p, then

$$
b_{i}=\frac{\partial F}{\partial x_{i}}(p):=\lim _{t \rightarrow 0} \frac{1}{t}\left(F\left(p+t e_{i}\right)-F(p)\right), \quad i=\overline{1, m} .
$$

In particular, if F is differentiable at p, these partial derivatives exist and the derivative L_{p} is unique. We denote by $D F(p)$ (or sometimes $F^{\prime}(p)$) the derivative of F at p, and write (by a slight abuse of notation)

$$
D F(p)=\frac{\partial F}{\partial x_{1}}(p)\left(x_{1}-p_{1}\right)+\frac{\partial F}{\partial x_{2}}(p)\left(x_{2}-p_{2}\right)+\cdots+\frac{\partial F}{\partial x_{m}}(p)\left(x_{m}-p_{m}\right) .
$$

\diamond Exercise 39. Show that any linear functional $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is differentiable and $D F(p)=F$ for all $p \in \mathbb{R}^{m}$.
\diamond Exercise 40. Prove that any differentiable function $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ is continuous.

Note : Mere existence of partial derivatives is not sufficient for differentiability (of the function F). For example, the function $F: \mathbb{R}^{2} \rightarrow \mathbb{R}$ defined by

$$
F\left(x_{1}, x_{2}\right)=\frac{x_{1} x_{2}}{x_{1}^{2}+x_{2}^{2}} \quad \text { and } \quad F(0,0)=0
$$

is not continuous at $(0,0)$, yet both partial derivatives are defined there. However, if all partial derivatives $\frac{\partial F}{\partial x_{i}}, i=\overline{1, m}$ are defined and continuous in a neighborhood of p, then F is differentiable at p.

If the function $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ has all partial derivatives continuous (on U) we say that F is continuously differentiable (or of class C^{1}) on U . We denote this class of functions by $C^{1}(\mathrm{U})$. (The class of continuous functions on U is denoted by $C^{0}(\mathrm{U})$.)

Note : We have seen that

$$
\left.F \in C^{1}(\mathbf{U}) \Rightarrow F \text { is differentiable (on } \mathbf{U}\right) \Rightarrow \text { all partial derivatives } \frac{\partial F}{\partial x_{i}} \text { exist (on } \mathbf{U} \text {) }
$$

but the converse implications may fail. Many results actually need F to be of class C^{1} rather than differentiable.

If $r \geq 1$, the class $C^{r}(\mathrm{U})$ of functions $F: \mathrm{U} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ that are r-fold continuously differentiable (or C^{r} functions) is specified inductively by requiring that the partial derivatives of F exist and belong to $C^{r-1}(\mathrm{U})$. If F is of class C^{r} for all r, then we say that F is of class C^{∞} or simply smooth. The class of smooth functions on U is denoted by $C^{\infty}(\mathrm{U})$.

Note : If $F \in C^{r}(\mathrm{U})$, then (at any point of U) the value of the partial derivatives of order $k, 1<k \leq r$ is independent of the order of differentiation; that is, if $\left(j_{1}, \ldots, j_{k}\right)$ is a permutation of $\left(i_{1}, \ldots, i_{k}\right)$, then

$$
\frac{\partial^{k} F}{\partial x_{i_{1}} \ldots \partial x_{i_{k}}}=\frac{\partial^{k} F}{\partial x_{j_{1}} \ldots \partial x_{j_{k}}} .
$$

We are now interested in extending the notion of differentiability to mappings $F: \mathrm{U} \subseteq$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$. We say that F is differentiable at $p \in \mathrm{U}$ if its component functions are
differentiable at p; that is, by writing

$$
F\left(x_{1}, \ldots, x_{m}\right)=\left(F_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, F_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

the functions $F_{i}: \mathrm{U} \rightarrow \mathbb{R}, i=\overline{1, n}$ have partial derivatives at $p \in \mathrm{U} . F$ is differentiable provided it is differentiable at each $p \in \mathrm{U}$. (For the case $m=1$, we obtain the notion of a differentiable parametrized curve in Euclidean space \mathbb{R}^{n}.)

The class $C^{r}\left(\mathrm{U}, \mathbb{R}^{n}\right), 1 \leq r \leq \infty$ of C^{r}-mappings $F: \mathrm{U} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is defined in the obvious way. We will be concerned primarily with smooth (i.e., of class C^{∞}) mappings. So if F is a smooth mapping, then its component functions F_{i} have continuous partial derivatives of all orders and each such derivative is independent of the order of differentiation.

Note : Let us define a (geometric) tangent vector at $p \in \mathbb{R}^{m}$ as an ordered pair (p, v). As a matter of notation, we will abbreviate (p, v) as v_{p}. We think of v_{p} as the vector v with its initial point at p. (In other words, $p+v$ is considered as the "position vector" of a point; we shall always picture v_{p} as the "arrow" from the point p to the point $p+v$.) Clearly, two tangent vectors v_{p} and w_{q} are equal if $v=w$ and $p=q$. (It is essential to recognize that v_{p} and v_{q} are different tangent vectors if $p \neq q$.)

The set $\{p\} \times \mathbb{R}^{m}$ of all tangent vectors at p is denoted by $T_{p} \mathbb{R}^{m}$, and is called the tangent space of \mathbb{R}^{m} at p. Thus

$$
T_{p} \mathbb{R}^{m}:=\left\{v_{p}=(p, v): p, v \in \mathbb{R}^{m}\right\}
$$

This set is a vector space over \mathbb{R} (obviously isomorphic to \mathbb{R}^{m} itself) under the natural operations: $v_{p}+w_{p}:=(v+w)_{p}$ and $\lambda v_{p}:=(\lambda v)_{p}$. The tangent vectors $\left(e_{i}\right)_{p}, i=\overline{1, m}$ form a basis for $T_{p} \mathbb{R}^{m}$. (In fact, as a vector space, $T_{p} \mathbb{R}^{m}$ is essentially the same as \mathbb{R}^{m} itself; the only reason we add T_{p} is so that the geometric tangent spaces $T_{p} \mathbb{R}^{m}$ and $T_{q} \mathbb{R}^{m}$ at distinct points p and q be disjoint sets.)

Let v_{p} be a tangent vector in \mathbb{R}^{m}. One can associate with it the function (parametrized line)

$$
\mathbb{R} \ni t \mapsto p+t v \in \mathbb{R}^{m}
$$

If $F: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is a differentiable function, then $t \mapsto F(p+t v)$ is an ordinary function $\mathbb{R} \rightarrow \mathbb{R}$. (The derivative of this function at $t=0$ tells the initial rate of change of F as p moves in the v direction.) The number

$$
v_{p}[F]:=\left.\frac{d}{d t} F(p+t v)\right|_{t=0}
$$

is called the directional derivative of F with respect to v_{p}. We have

$$
v_{p}[F]=v_{1} \frac{\partial F}{\partial x_{1}}(p)+\cdots+v_{m} \frac{\partial F}{\partial x_{m}}(p) \quad\left(v=\left(v_{1}, \ldots, v_{m}\right) \in \mathbb{R}^{m}\right) .
$$

The map $v_{p}[\cdot]: C^{\infty}\left(\mathbb{R}^{m}\right) \rightarrow \mathbb{R}, \quad F \mapsto v_{p}[F]$ is linear and satisfies the Leibniz rule (i.e., $v_{p}[F G]=v_{p}[F] G(p)+F(p) v_{p}[G]$ for $\left.F, G \in C^{\infty}\left(\mathbb{R}^{m}\right)\right)$; such a mapping is called a derivation at p. So any geometric tangent vector v_{p} defines a derivation $v_{p}[\cdot]$ at p. In fact, each derivation at p is defined by a unique geometric tangent vector (at p). Moreover, for any $p \in \mathbb{R}^{m}$, the
correspondence $v_{p} \mapsto v_{p}[\cdot]$ is an isomorphism from the tangent space $T_{p} \mathbb{R}^{m}$ to the vector space of all derivations on p. It is customary (and convenient) to denote the derivation $\left(e_{i}\right)_{p}[\cdot]$ by $\left.\frac{\partial}{\partial x_{i}}\right|_{p} ;$ thus, $\left.\frac{\partial}{\partial x_{i}}\right|_{p}[F]=\frac{\partial F}{\partial x_{i}}(p)$.

Let $T_{p} \mathbb{R}^{m}$ be the tangent space to \mathbb{R}^{m} at p; this vector space can be identified with \mathbb{R}^{m} via

$$
\left.v_{1} \frac{\partial}{\partial x_{1}}\right|_{p}+\cdots+\left.v_{m} \frac{\partial}{\partial x_{m}}\right|_{p} \mapsto\left(v_{1}, \cdots, v_{m}\right) .
$$

Let $\alpha: \mathrm{U} \subseteq \mathbb{R} \rightarrow \mathbb{R}^{m}$ be a smooth (parametrized) curve with component functions $\alpha_{1}, \ldots, \alpha_{m}$. The velocity vector (or tangent vector) to α at $t \in \mathrm{U}$ is the element

$$
\dot{\alpha}(t):=\left(\frac{d \alpha_{1}}{d t}(t), \cdots, \frac{d \alpha_{m}}{d t}(t)\right) \in T_{\alpha(t)} \mathbb{R}^{m}
$$

Example 54. Given a point $p \in \mathrm{U} \subseteq \mathbb{R}^{m}$ and a tangent vector $v \in T_{p} \mathbb{R}^{m}$, we can always find a smooth curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow \mathrm{U}$ with $\alpha(0)=p$ and $\dot{\alpha}(0)=v$. Simply define $\alpha(t)=p+t v, t \in(-\varepsilon, \varepsilon)$. By writing $p=\left(p_{1}, \ldots, p_{m}\right)$ and $v=\left(v_{1}, \ldots, v_{m}\right)$, the component functions of α are $\alpha_{i}(t)=p_{i}+t v_{i}, i=\overline{1, m}$. Thus α is smooth, $\alpha(0)=p$ and

$$
\dot{\alpha}(0)=\left(\frac{d \alpha_{1}}{d t}(0), \cdots, \frac{d \alpha_{m}}{d t}(0)\right)=\left(v_{1}, \ldots, v_{m}\right)=v .
$$

We shall now introduce the concept of derivative (or differential) of a differentiable mapping. Let $F: \mathbf{U} \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be a differentiable mapping. To each $p \in \mathrm{U}$ we associate a linear mapping

$$
D F(p): \mathbb{R}^{m}=T_{p} \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}=T_{F(p)} \mathbb{R}^{n}
$$

which is called the derivative (or differential) of F at p and is defined as follows. Let $v \in T_{p} \mathbb{R}^{m}$ and let $\alpha:(-\varepsilon, \varepsilon) \rightarrow \mathbf{U}$ be a differentiable curve such that $\alpha(0)=p$ and $\dot{\alpha}(0)=v$. By the chain rule (for functions), the curve $\beta=F \circ \alpha:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{n}$ is also differentiable. Then

$$
D F(p) \cdot v:=\dot{\beta}(0) .
$$

Note : The above definition of $D F(p)$ does not depend on the choice of the curve which passes through p with tangent vector v, and $D F(p)$ is, in fact, linear. So

$$
D F(p) \cdot v=\left.\frac{d}{d t} F(\alpha(t))\right|_{t=0} \in T_{F(p)} \mathbb{R}^{n}=\mathbb{R}^{n}
$$

The derivative $D F(p)$ is also denoted by $T_{p} F$ and called the tangent mapping of F at p.

The matrix of the linear mapping $D F(p)$ (relative to bases $\left(\left.\frac{\partial}{\partial x_{1}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x_{m}}\right|_{p}\right)$ of $T_{p} \mathbb{R}^{m}$ and $\left(\left.\frac{\partial}{\partial y_{1}}\right|_{F(p)}, \ldots,\left.\frac{\partial}{\partial y_{n}}\right|_{F(p)}\right)$ of $\left.T_{F(p)} \mathbb{R}^{n}\right)$ is the Jacobian matrix

$$
\frac{\partial F}{\partial x}(p)=\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(x_{1}, \ldots, x_{m}\right)}(p):=\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}}(p) & \cdots & \frac{\partial F_{1}}{\partial x_{m}}(p) \\
\vdots & & \vdots \\
\frac{\partial F_{n}}{\partial x_{1}}(p) & \cdots & \frac{\partial F_{n}}{\partial x_{m}}(p)
\end{array}\right] \in \mathbb{R}^{n \times m}
$$

of F at p. When $m=n$ this is a square matrix and its determinant is then defined. This determinant is called the Jacobian of F at p and is denoted by $J_{F}(p)$. Thus

$$
J_{F}(p)=\left|\frac{\partial F}{\partial x}(p)\right|:=\operatorname{det} \frac{\partial F}{\partial x}(p)
$$

\diamond Exercise 41. Let $f: \boldsymbol{I} \rightarrow \mathbb{R}$ and $g: \mathrm{J} \rightarrow \mathbb{R}$ be differentiable functions, where I and \mathbf{J} are open intervals such that $f(\mathbf{I}) \subseteq \mathbf{J}$. Show that the function $g \circ f$ is differentiable and (for $t \in \mathrm{I})$

$$
(g \circ f)^{\prime}(t)=g^{\prime}(f(t)) \cdot f^{\prime}(t)
$$

The standard chain rule (for scalar-valued) functions extends to (vector-valued) mappings.

Proposition 30 (General Chain Rule). Let $F: \mathrm{U} \subseteq \mathbb{R}^{\ell} \rightarrow \mathbb{R}^{m}$ and $G: \mathrm{V} \subseteq$ $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be differentiable mappings, where U and V are open sets such that $F(\mathrm{U}) \subseteq \mathrm{V}$. Then $G \circ F$ is a differentiable mapping and (for $p \in \mathbf{U}$)

$$
D(G \circ F)(p)=D G(F(p)) \circ D F(p)
$$

Proof. The fact that $G \circ F$ is differentiable is a consequence of the chain rule for functions. Now, let $v \in T_{p} \mathbb{R}^{\ell}$ be given and let us consider a (differentiable) curve $\alpha:(-\varepsilon, \varepsilon) \rightarrow \mathbf{U}$ with $\alpha(0)=p$ and $\dot{\alpha}(0)=v$. Set $D F(p) \cdot v=w$ and observe that

$$
D G(F(p)) \cdot w=\left.\frac{d}{d t}(G \circ F \circ \alpha)\right|_{t=0}
$$

Then

$$
\begin{aligned}
D(G \circ F)(p) \cdot v & =\left.\frac{d}{d t}(G \circ F \circ \alpha)\right|_{t=0} \\
& =D G(F(p)) \cdot w \\
& =D G(F(p)) \circ D F(p) \cdot v
\end{aligned}
$$

Note: In terms of Jacobian matrices, the general chain rule can be written

$$
\frac{\partial(G \circ F)}{\partial x}(p)=\frac{\partial G}{\partial y}(F(p)) \cdot \frac{\partial F}{\partial x}(p) .
$$

Thus if $H=G \circ F$ and $y=F(x)$, then

$$
\frac{\partial H}{\partial x}=\left[\begin{array}{ccc}
\frac{\partial G_{1}}{\partial y_{1}} & \cdots & \frac{\partial G_{1}}{\partial y_{m}} \\
\vdots & & \vdots \\
\frac{\partial G_{n}}{\partial y_{1}} & \cdots & \frac{\partial G_{n}}{\partial y_{m}}
\end{array}\right]\left[\begin{array}{ccc}
\frac{\partial F_{1}}{\partial x_{1}} & \cdots & \frac{\partial F_{1}}{\partial x_{\ell}} \\
\vdots & & \vdots \\
\frac{\partial F_{m}}{\partial x_{1}} & \cdots & \frac{\partial F_{m}}{\partial x_{\ell}}
\end{array}\right]
$$

where $\frac{\partial G_{1}}{\partial y_{1}}, \ldots, \frac{\partial G_{n}}{\partial y_{m}}$ are evaluated at $y=F(x)$ and $\frac{\partial F_{1}}{\partial x_{1}}, \cdots, \frac{\partial F_{m}}{\partial x_{\ell}}$ at x. Writing this out, we obtain

$$
\frac{\partial H_{i}}{\partial x_{j}}=\frac{\partial G_{i}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{j}}+\cdots+\frac{\partial G_{i}}{\partial y_{m}} \frac{\partial y_{m}}{\partial x_{j}} \quad(i=\overline{1, n} ; j=\overline{1, \ell}) .
$$

\diamond Exercise 42. Let

$$
F\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}-x_{2}^{2}+x_{1} x_{2}, x_{2}^{2}-1\right) \quad \text { and } \quad G\left(y_{1}, y_{2}\right)=\left(y_{1}+y_{2}, 2 y_{1}, y_{2}^{2}\right)
$$

(a) Show that F and G are differentiable, and that $G \circ F$ exists.
(b) Compute $D(G \circ F)(1,1)$
(i) directly
(ii) using the chain rule.

Note: The precise sense in which the derivative $D F(p)$ of the (differentiable) mapping F at p is an (affine) approximation of F near p is given by the following result (in which $D F(p)$ is interpreted as a linear mapping from \mathbb{R}^{m} to \mathbb{R}^{n}): If the mapping $F: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is differentiable, then for each $p \in \mathbf{U}$,

$$
\lim _{x \rightarrow p} \frac{\|F(x)-F(p)-D F(p) \cdot(x-p)\|}{\|x-p\|}=0
$$

or, equivalently, there exists a (local) map $\epsilon_{p}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ satisfying, for all h with $p+h \in \mathbb{U}$,

$$
\begin{equation*}
F(p+h)=F(p)+D F(p) \cdot h+\epsilon_{p}(h) \quad \text { with } \quad \lim _{h \rightarrow 0} \frac{\left\|\epsilon_{p}(h)\right\|}{\|h\|}=0 \tag{5}
\end{equation*}
$$

The mapping $\mathbb{R}^{m} \rightarrow \mathbb{R}^{n}, \quad x \mapsto F(p)+D F(p) \cdot(x-p)$ is the best affine approximation to F at p. (It is the unique affine approximation for which the difference mapping ϵ_{p} satisfies the estimate (5).)

If $\mathrm{A} \subseteq \mathbb{R}^{m}$ is an arbitrary set, then $C^{\infty}(\mathrm{A})$ denotes the set of all functions $F: \mathrm{A} \rightarrow \mathbb{R}$ such that $F=\left.\bar{F}\right|_{\mathrm{A}}$, where $\bar{F}: \mathcal{U} \rightarrow \mathbb{R}$ is a smooth function on some open neighborhood \mathcal{U} of A .

Problems (11-15)

(11) Let $x, y \in \mathbb{R}^{m}$. Prove the following inequalities.
(a) $\|x+y\| \leq\|x\|+\|y\| \quad$ (triangle inequality).
(b) $|\|x\|-\|y\|| \leq\|x-y\| \quad$ (reverse triangle inequality).
(c) $\left|x_{i}\right| \leq\|x\| \leq\left|x_{1}\right|+\cdots+\left|x_{m}\right| \leq \sqrt{m}\|x\|, \quad i=\overline{1, m}$.
(12) Let $\tau: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be a linear transformation, and let $A \in \mathbb{R}^{m \times m}$ denote its matrix with respect to the standard basis of \mathbb{R}^{m}. Show that the following statements are logically equivalent.
(a) $\|\tau(x)\|=\|x\|$ for all $x \in \mathbb{R}^{m}$.
(b) $\tau(x) \bullet \tau(y)=x \bullet y$ for all $x, y \in \mathbb{R}^{m}$.
(c) $A^{\top} A=1$ (i.e., the matrix A is orthogonal).
(Such a linear transformation is called an orthogonal transformation.) Hence deduce that such a linear transformation τ is invertible. Is τ^{-1} of the same sort?
(13) Let F be a subset of \mathbb{R}^{m}. Show that the following statements are logically equivalent.
(a) F is closed.
(b) $\mathrm{F}=\operatorname{cl}(\mathrm{F})$.
(c) For every sequence $\left(x_{k}\right)_{k \in \mathbb{N}}$ of points $x_{k} \in \mathbb{R}^{m}$ that is convergent to a limit, say p, we have $p \in \mathrm{~F}$.
(14) Let $\mathrm{A} \subseteq \mathbb{R}^{m}$ be an arbitrary set.
(a) Show that the following statements are logically equivalent.
(i) A is disconnected.
(ii) There exists a surjective continuous function $\mathrm{A} \rightarrow\{0,1\}$.
(Recall the definition of the characteristic function χ_{A} of a set $\mathrm{A}: \chi_{\mathrm{A}}(x)=$ 1 if $x \in \mathrm{~A}$ and $\chi_{\mathrm{A}}(x)=0$ if $x \notin \mathrm{~A}$.)
(b) Assume that A is connected and let $F: \mathrm{A} \rightarrow \mathbb{R}^{n}$ be a continuous mapping. Show that $F(\mathrm{~A})$ is connected in \mathbb{R}^{n}.
(c) Let A be connected and let $F: \mathrm{A} \rightarrow \mathbb{R}$ be a continuous function. Show that $F(\mathrm{~A})$ is an interval in \mathbb{R}; in particular, F takes all the values between any two that it assumes.
(15) Show that
(i) if $\sigma: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $\sigma(x, y)=x+y$, then $D \sigma(a, b)=\sigma$.
(ii) if $\pi: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $\pi(x, y)=x \cdot y$, then $D \pi(a, b) \cdot(x, y)=$ $b x+a y$.
Hence deduce that if the functions $F, G: U \subseteq \mathbb{R}^{m} \rightarrow \mathbb{R}$ are differentiable at $p \in \mathbf{U}$, then

$$
\begin{aligned}
D(F+G)(p) & =D F(p)+D G(p) \\
D(F \cdot G)(p) & =G(p) D F(p)+F(p) D G(p)
\end{aligned}
$$

If moreover $G(p) \neq 0$, then

$$
D\left(\frac{F}{G}\right)(p)=\frac{G(p) D F(p)-F(p) D G(p)}{(G(p))^{2}}
$$

