
LECTURE NOTES ON MATRIX GROUPS 53

4. Matrix Groups

Matrix algebra • Matrix groups • Linear Lie groups: examples • Complex matrix

groups as real matrix groups.

4.1. Matrix algebra. Throughout, we shall denote by k either the field R of real

numbers or the field C of complex numbers. Let km be the set of all m-tuples of

elements of k. Under the usual addition and scalar multiplication, km is a vector space

over k. The set Hom (kn,km) of all linear mappings from kn to km (i.e., mappings

L : kn → km such that L(λx + µy) = λL(x) + µL(y) for every x, y ∈ kn and λ, µ ∈ k)

is also a vector space over k.

� Exercise 43. Determine the dimension of the vector space Hom (kn,km).

Let km×n be the set of all m × n matrices with elements (entries) from k. Under

the usual matrix addition and multiplication, km×n is a vector space over k. There is

a natural one-to-one correspondence A 7→ LA (: x 7→ Ax) between the m × n matrices

with elements from k and the linear mappings from kn to km.

� Exercise 44. Show that the vector spaces km×n and Hom (kn, km) are isomorphic.

In particular, the (n-dimensional) vector spaces k1×n and Hom (kn, k) = (kn)∗ (the

dual of kn ) are isomorphic. Any matrix A ∈ km×n can be interpreted as a linear mapping

LA ∈ Hom (kn,km), whereas any linear mapping L ∈ Hom (kn,km) can be realized as a

matrix A ∈ km×n. Henceforth we shall not distinguish notationwise between a matrix A

and its corresponding linear mapping x 7→ Ax.

Note : A matrix (or linear mapping, if one prefers) A ∈ kn×n can be viewed as a vector

field (on kn) : A associates to each point p in kn the tangent vector A(p) = Ap ∈ kn. We

may think of a fluid in motion, so that the velocity of the fluid particles passing through p is

always A(p). The vector field is then the current of the flow and the paths of the fluid particles

are the trajectories. This kind of flow is, of course, very special : A(p) is independent of time,

and depends linearly on p.

The (structured) set kn×n is not just a vector space. It also has a multiplication which

is associative and distributes over addition (on either side). In other words, under the

usual addition and multiplication, kn×n is a ring (in general not commutative), with

identity 1. Moreover, for all A,B ∈ kn×n and λ ∈ k,

λ(AB) = (λA)B = A(λB).
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Such a structure is called an (associative) algebra over k.

For x ∈ kn (= kn×1), let

‖x‖2 : =
√
|x1|2 + |x2|2 + · · ·+ |xn|2

be the 2-norm (or Euclidean norm) on kn.

Note : For r ≥ 1, the r-norm of x ∈ kn is defined as

‖x‖r : = (|x1|r + |x2|r + · · ·+ |xn|r)1/r .

The following properties hold (for x, y ∈ kn and λ ∈ k) :

‖x‖r ≥ 0, and ‖x‖r = 0 ⇐⇒ x = 0 ;

‖λx‖r = |λ| ‖x‖r ;

‖x+ y‖r ≤ ‖x‖r + ‖y‖r.
In practice, only three of the r-norms are used, and they are :

‖x‖1 = |x1|+ |x2|+ · · ·+ |xn| (the grid norm);

‖x‖2 =
√
|x1|2 + |x2|2 + · · ·+ |xn|2 (the Euclidean norm);

‖x‖∞ = lim
r→∞

‖x‖r = max{|x1|, |x2|, . . . , |xn|} (the max norm).

For x ∈ kn, we have

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 ≤
√
n · ‖x‖2 ≤ n · ‖x‖∞

and so any two of these norms are equivalent (i.e., the associated metric topologies are identical).

In fact, all norms on a finite-dimensional vector space (over k ) are equivalent.

The metric topology induced by (the Euclidean distance) (x, y) 7→ ‖x − y‖2 is the

natural topology on the set (vector space) kn.

� Exercise 45. Show that, for x, y ∈ kn,

| ‖x‖2 − ‖y‖2 | ≤ ‖x− y‖2.

Hence deduce that the function ‖ · ‖2 : kn → R, x 7→ ‖x‖2 is continuous (with respect to the

natural topologies on kn and R).

� Exercise 46. Given A ∈ kn×n, show that the linear mapping (on kn) x 7→ Ax is

continuous (with respect to the natural topology on kn).

Let A ∈ kn×n. The 2-norm ‖·‖2 on kn×1 induces a (matrix) norm on kn×n by setting

‖A‖ : = max
‖x‖2=1

‖Ax‖2.

The subset K = {x ∈ kn : ‖x‖2 = 1} ⊂ kn is closed and bounded, and so is compact.

[A subset of the metric space kn is compact if and only if it is closed and bounded.] On

the other hand, the function f : K → R, x 7→ ‖Ax‖2 is continuous. [The composition

of two continuous maps is a continuous map.] Hence the maximum value maxx∈K ‖Ax‖2

must exist.
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Note : The following topological result holds : If K ⊂ kn is a (non-empty) compact set,

then any continuous function f : K → R is bounded; that is, the image set f(K) = {f(x) :

x ∈ K} ⊆ R is bounded. Moreover, f has a global maximum (and a global minimum).

� Exercise 47. Show that the induced norm ‖ ·‖ is compatible with its underlying norm

‖ · ‖2; that is (for A ∈ kn×n and x ∈ kn),

‖Ax‖2 ≤ ‖A‖ ‖x‖2.

‖ · ‖ is a matrix norm on kn×n, called the operator norm; that is, it has the following

four properties (for A,B ∈ kn×n and λ ∈ k) :

(MN1) ‖A‖ ≥ 0, and ‖A‖ = 0 ⇐⇒ A = 0 ;

(MN2) ‖λA‖ = |λ| ‖A‖ ;

(MN3) ‖A+B‖ ≤ ‖A‖+ ‖B‖ ;

(MN4) ‖AB‖ ≤ ‖A‖ ‖B‖.

Note : There is a simple procedure (well known in numerical linear algebra) for calculating

the operator norm of an n × n matrix A . This is ‖A‖ =
√
λmax, where λmax is the largest

eigenvalue of the matrix A∗A. Here A∗ denotes the Hermitian conjugate (i.e., the conjugate

transpose) matrix of A; in the case k = R, A∗ = A>.

We define a metric ρ on (the algebra) kn×n by

ρ(A,B) : = ‖A−B‖.

Associated to this metric is a natural topology on kn×n. Hence fundamental topological

concepts, like open sets, closed sets, compactness, connectedness, as well as continuity,

can be introduced. In particular, we can speak of continuous functions kn×n → k.

� Exercise 48. For 1 ≤ i, j ≤ n, show that the coordinate function

coordij : kn×n → k, A 7→ aij

is continuous. [Hint : Show first that |aij | ≤ ‖A‖ and then verify the defining condition for

continuity.]

It follows immediately that if f : kn2 → k is continuous, then the associated function

f̃ = f ◦ (coordij) : kn×n → k, A 7→ f((aij))

is also continuous. Here (aij) = (a11, . . . , an1, . . . , a1n, . . . , ann) ∈ kn2
.

� Exercise 49. Show that the determinant function

det : kn×n → k, A 7→ detA :=
∑
σ∈Sn

(−1)|σ|a1σ(1)a2σ(2) · · · anσ(n)
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and the trace function

tr : kn×n → k, A 7→ trA : =

n∑
i=1

aii

are continuous.

The metric space (kn×n, ρ) is complete. This means that every Cauchy sequence

(Ar)r≥0 in kn×n has a unique limit lim
r→∞

Ar. Furthermore,(
lim
r→∞

Ar

)
ij

= lim
r→∞

(Ar)ij.

Indeed, the limit on the RHS exists, so it is sufficient to check that the required matrix

limit is the matrix A with aij = lim
r→∞

(Ar)ij. The sequence (Ar − A)r≥0 satisfies

‖Ar − A‖ ≤
n∑

i,j=1

|(Ar)ij − aij| → 0 as r →∞

and so Ar → A.

4.2. Matrix groups. Let GL (n,k) be the set of all invertible n × n matrices over k.

So

GL (n,k) := {A ∈ kn×n : detA 6= 0}.

� Exercise 50. Verify that the set GL (n, k) is a group under matrix multiplication.

GL (n,k) is called the general linear group over k. We will refer to GL (n,R) and

GL (n,C) as the real and complex general linear group, respectively. A 1 × 1 matrix

over k is just an element of k and matrix multiplication of two such elements is just

multiplication in k. So we see that

GL (1,k) = k× (the multiplicative group of k \ {0}) .

Any subgroup of GL (n,k) is customarily referred to as a linear group or sometimes as

a matrix group.

Proposition 31. GL (n,k) is an open subset of kn×n.

Proof. We have seen that the function det : kn×n → k is continuous (see Exercise 49).

Then observe that

GL (n,k) = kn×n \ det−1(0).

Since the set {0} is closed (in k), it follows that det−1(0) = det−1({0}) ⊂ kn×n is also

closed. [The preimage of a closed set under a continuous map is a closed set.] Hence

GL (n,k) is open. [The complement of a closed set is an open set.] �
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We observe that the general linear group GL (n,k) has more than just an algebraic

structure: it has a topological structure as well (Proposition 31). Thus we may natu-

rally consider subsets which are not only closed in the algebraic sense (that is, subgroups),

but in the topological sense as well.

Definition 55. A linear Lie group is a closed subgroup of GL (n,k).

Linear Lie groups are also known as matrix Lie groups. This terminology emphasizes

the remarkable fact that every closed linear group is a Lie group.

Note : The condition that a set (group) of matrices G ⊆ GL (n,k) is a closed subset of

(the metric space) GL (n, k) means that the following condition is satisfied : if (Ar)r≥0 is

any sequence of matrices in G and Ar → A, then either A ∈ G or A is not invertible (i.e.

A 6∈ GL (n,k)). The condition that G be a closed subgroup, as opposed to merely a subgroup,

should be regarded as a “technicality” since most of the interesting subgroups of GL (n,k) have

this property. Almost all of the matrix groups we will consider have the stronger property that

if (Ar)r≥0 is any sequence of matrices in G converging to some matrix A, then A ∈ G.

We shall use the customary notation G ≤ GL (n,k) to indicate that G is a subgroup of

GL (n,k).

Example 56. The general linear group GL (n,k) is a linear Lie group.

Example 57. An example of a group of matrices which is not a linear Lie group

is the set GL (n,Q) of all n × n invertible matrices all of whose entries are rational

numbers. This is in fact a subgroup of GL (n,C) but not a closed subgroup; that is, one

can (easily) have a sequence of invertible matrices with rational entries converging to an

invertible matrix with some irrational entries.

Note : The closure of GL (2,Q) (in GL (2,C) ) can be thought of as (the direct product)

S1 × S1 and so is a linear Lie group (see Exercise 61).

Proposition 32. Let G be a linear Lie group and H a closed subgroup of G. Then

H is a linear Lie group.

Proof. Every sequence (Ar)r≥0 in H with a limit in GL (n,k) actually has its limit in

G since each Ar ∈ H ⊆ G and G is closed in GL (n,k). Since H is closed in G, this

means that (Ar)r≥0 has a limit in H. So H is closed in GL (n,k), showing it is a linear

Lie group. �

� Exercise 51. Prove that any intersection of linear Lie groups is a linear Lie group.
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Example 58. Denote by SL (n,k) the set of all n × n matrices over k, having

determinant one. So

SL (n,k) : = {A ∈ kn×n : detA = 1} ⊂ GL (n,k).

� Exercise 52. Show that SL (n, k) is a closed subgroup of GL (n, k) and hence is a

linear Lie group.

SL (n,k) is called the special linear group over k. We will refer to SL (n,R) and

SL (n,C) as the real and complex special linear group, respectively.

Definition 59. A closed subgroup of a linear Lie group G is called a linear Lie

subgroup.

Example 60. We can consider GL (n,k) as a subgroup of GL (n+1,k) by identifying

the n× n matrix A = [ aij ] with

[
1 0

0 A

]
=


1 0 . . . 0

0 a11 . . . a1n

0 a21 . . . a2n

...
...

...

0 an1 . . . ann

 .

It is easy to verify that GL (n,k) is closed in GL (n+1,k) and hence GL (n,k) is a linear

Lie subgroup of GL (n+ 1,k).

� Exercise 53. Show that SL (n,k) is a linear Lie subgroup of SL (n+ 1, k).

4.3. Linear Lie groups: examples. The vector space kn×n over k can be considered

to be a real vector space, of dimension n2 or 2n2, respectively. Explicitly, Rn×n is

(isomorphic to) Rn2
, and Cn×n is (isomorphic to) Cn2 ∼= R2n2

. Hence we may assume,

without any loss of generality, that kn×n is some Euclidean space Rm.

4.3.1. The real general linear group GL (n,R). We have seen that GL (n,R) is a linear

Lie group and that it is an open subset of the vector space Rn×n ( = Rn2)
. Since the

set GL (n,R) is not closed, it is not compact. [Any compact set is a closed set.] The

determinant function det : GL (n,R) → R is continuous (in fact, smooth) and maps

GL (n,R) onto the two components of R×. Thus GL (n,R) is not connected. [The image

of a connected set under a continuous map is a connected set.]

Note : A linear Lie group G is said to be connected if given any two matrices A,B ∈ G,

there exists a continuous path γ : [a, b]→ G with γ(a) = A and γ(b) = B. This property is what

is called path-connectedness in topology, which is not (in general) the same as connectedness.

However, it is a fact (not particularly obvious at the moment) that a linear Lie group is connected
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if and only if it is path-connected. So in a slight abuse of terminology we shall continue to refer

to the above property as connectedness.

A linear Lie group G which is not connected can be decomposed (uniquely) as a union of

several pieces, called components, such that two elements of the same component can be joined

by a continuous path, but two elements of different components cannot. The component of G

containing the identity is a closed subgroup of G and hence a connected linear Lie group.

Consider the sets

GL+ (n,R) := {A ∈ GL (n,R) : detA > 0}

GL− (n,R) := {B ∈ GL (n,R) : detB < 0}.

These two disjoint subsets of GL (n,R) are open and satisfy

GL+ (n,R) ∪ GL− (n,R) = GL (n,R).

[The preimage of an open set under a continuous map is an open set.]

� Exercise 54. Show that GL+ (n,R) is a linear Lie subgroup of GL (n,R) but GL− (n,R)

is not.

The mapping

A ∈ GL+ (n,R) 7→ SA ∈ GL− (n,R)

where S = diag (1, . . . , 1,−1), is a bijection (in fact, a diffeomorphism). The transforma-

tion x 7→ Sx may be thought of as a reflection in the hyperplane Rn−1 = Rn−1×{0} ⊂ Rn.

Note : The group GL+ (n,R) is connected, which proves that GL+ (n,R) is the connected

component of the identity in GL (n,R) and that GL (n,R) has two (connected) components.

4.3.2. The real special linear group SL (n,R). Recall that

SL (n,R) := {A ∈ GL (n,R) : detA = 1} = det−1(1).

It follows that SL (n,R) is a closed subgroup of GL (n,R) and hence is a linear Lie group.

[The preimage of a closed set under a continuous map is a closed set.] We introduce a

new matrix norm on Rn×n, called the Frobenius norm, as follows :

‖A‖F : =
√

tr (A>A) =

√√√√ n∑
i,j=1

a2
ij.

Note : The Frobenius norm coincides with the Euclidean norm on Rn2
, and is much easier

to compute than the operator norm. However, all matrix norms on Rn×n are equivalent (i.e.,

they generate the same metric topology).
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We shall use this (matrix) norm to show that SL (n,R) is not compact. Indeed, all

matrices of the form 
1 0 . . . t

0 1 . . . 0
...

...
...

0 0 . . . 1


are elements of SL (n,R) whose norm equals

√
n+ t2 for any t ∈ R. Thus SL (n,R) is

not a bounded subset of Rn×n and hence is not compact. [In a metric space, any compact

set is bounded.]

Note : The special linear group SL (n,R) is connected.

4.3.3. The orthogonal and special orthogonal groups O (n) and SO (n). The set

O (n) := {A ∈ Rn×n : A>A = 1}

is the orthogonal group. Clearly, every orthogonal matrix A ∈ O (n) has an inverse,

namely A>. Hence O (n) ⊂ GL (n,R).

� Exercise 55. Verify that O (n) is a subgroup of the general linear group GL (n,R).

The single matrix equation A>A = 1 is equivalent to n2 equations for the n2 real

numbers aij, i, j = 1, n:
n∑
k=1

akiakj = δij.

This means that O (n) is a closed subset of Rn×n and hence of GL (n,R).

� Exercise 56. Prove that O (n) is a closed subset of Rn2
.

Thus O (n) is a linear Lie group. The group O (n) is also bounded in Rn×n. Indeed,

the (Frobenius) norm of A ∈ O (n) is

‖A‖F =
√

tr (A>A) =
√

tr 1 =
√
n.

Hence the group O (n) is compact. [A subset of Rn×n is compact if and only if it is

closed and bounded.] Let us consider the determinant function (restricted to O (n)),

det : O (n)→ R×. Then for A ∈ O (n)

det 1 = det (A>A) = detA> · detA = (detA)2.

Hence detA = ±1. So we have

O (n) = O+ (n) ∪ O− (n)

where

O+ (n) := {A ∈ O (n) : detA = 1} and O− (n) := {A ∈ O (n) : detA = −1}.
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Note : The group O+ (n) is connected, which proves that O+ (n) is the connected component

of the identity in O (n).

The special orthogonal group is defined as

SO (n) := O (n) ∩ SL (n,R).

That is,

SO (n) = {A ∈ O (n) : detA = 1} = O+ (n).

It follows that SO (n) is a closed subset of O (n) and hence is compact. [A closed subset

of a compact set is compact.]

Note : One of the main reasons for the study of these groups O (n), SO (n) is their rela-

tionship with isometries (i.e., distance-preserving transformations on the Euclidean space Rn).

If such an isometry fixes the origin, then it is actually a linear transformation and so – with

respect to the standard basis – corresponds to a matrix A. The isometry condition is equivalent

to the fact that (for all x, y ∈ Rn)

Ax •Ay = x • y

which in turn is equivalent to the condition that A>A = 1 (i.e., A is orthogonal). Elements of

SO (n) are (identified with) rotations (or direct isometries); elements of O− (n) are sometimes

referred to as indirect isometries.

4.3.4. The Lorentz group Lor (1, n). Consider the inner product (i.e., non-degenerate sym-

metric bilinear form) � on the vector space Rn+1 given by (for x, y ∈ Rn+1)

x� y := −x1y1 +
n+1∑
i=2

xiyi

(the so-called Minkowski product). It is standard to denote this inner product space

by R1,n.

� Exercise 57. Show that the group of all linear isometries (i.e., linear transformations

on R1,n that preserve the Minkowski product) is isomorphic to the matrix group

O(1, n) :=
{
A ∈ GL (n+ 1,R) : A>SA = S

}
where

S = diag (−1, 1, . . . , 1) =

[
−1 0

0 1

]
∈ GL (n+ 1,R).

In a similar fashion, one can define more general matrix groups

O (k, `) ≤ GL (k + `,R) and SO (k, `) ≤ SL (k + `,R)

usually called “pseudo-orthogonal” groups (this is Problem 21).

Note : Since O (k, `) and O (`, k) are essentially the same group, we may assume (without

any loss of generality) that 1 ≤ k ≤ `. The pseudo-orthogonal groups are neither compact nor
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connected. The groups O (k, `) have four (connected) components, whereas the groups SO (k, `)

have two components.

For each positive number ρ > 0, the hyperboloid

H1,n(ρ) :=
{
x ∈ R1,n : x� x = −ρ

}
has two (connected) components

H+
1,n(ρ) = {x ∈ H1,n(ρ) : x1 > 0} and H−1,n(ρ) = {x ∈ H1,n(ρ) : x1 < 0} .

We define the Lorentz group Lor (1, n) to be the (closed) subgroup of SO (1, n) pre-

serving each of the connected sets H±1,n(1). Thus

Lor (1, n) :=
{
A ∈ SO (1, n) : AH±1,n(1) = H±1,n(1)

}
≤ SO (1, n).

It turns out that A ∈ Lor (1, n) if and only if it preserves the hyperboloids H±1,n(ρ), ρ > 0

and the “light cones” H±1,n(0).

Note : The Lorentz group Lor (1, n) is connected .

Of particular interest in physics is the Lorentz group Lor = Lor (1, 3). That is,

Lor =
{
L ∈ SO (1, 3) : LH±1,3(ρ) = H±1,3(ρ), ρ ≥ 0

}
≤ SO (1, 3).

Note : We can write

SO (1, 1) = Lor (1, 1) ∪

[
−1 0

0 −1

]
Lor (1, 1)

O (1, 1) = SO (1, 1) ∪

[
1 0

0 −1

]
SO (1, 1).

(See also Problem 22.)

4.3.5. The real symplectic group Sp (2n,R). Let

J : =

[
0 1

−1 0

]
∈ SL (2n,R).

A matrix A ∈ R2n×2n is called symplectic if

A>JA = J.

Note : The word symplectic was invented by Hermann Weyl (1885-1955), who substituted

Greek for Latin roots in the word complex to obtain a term which would describe a group (related

to “line complexes” but which would not be confused with complex numbers).

Let Sp (2n,R) be the set of all 2n× 2n symplectic matrices. Taking determinants of

the condition A>JA = J gives

1 = det J = (detA>) · (det J) · (detA) = (detA)2.
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Hence detA = ±1, and so A ∈ GL (2n,R). Furthermore, if A,B ∈ Sp (2n,R), then

(AB)>J(AB) = B>A>JAB = J.

Hence AB ∈ Sp (2n,R). Now, if A>JA = J, then

JA = (A>)−1J = (A−1)>J

so

J = (A−1)>JA−1.

It follows that A−1 ∈ Sp (2n,R) and hence Sp (2n,R) is a group. In fact, it is a closed

subgroup of GL (2n,R), and thus a linear Lie group.

Note : The symplectic group Sp (2n,R) is connected. (It turns out that the determinant of

a symplectic matrix must be positive; this fact is by no means obvious.)

� Exercise 58. Check that Sp (2,R) = SL (2,R). (In general, it is not true that

Sp (2n,R) = SL (2n,R).)

All matrices of the form [
1 0

t1 1

]
∈ SL (2n,R)

are symplectic. However, the (Frobenius) norm of such a matrix is equal to
√

2n+ t2n,

which is unbounded if t ∈ R. Therefore, Sp (2n,R) is not a bounded subset of R2n×2n

and hence is not compact.

� Exercise 59. Consider the skew-symmetric bilinear form on (the vector space) R2n

defined by

Ω(x, y) : =
n∑
i=1

(xiyn+i − xn+iyi)

(the standard symplectic form or the “canonical” symplectic structure). Show that a linear

transformation (on R2n ) x 7→ Ax preserves the symplectic form Ω if and only if A>JA =

J (i.e., the matrix A is symplectic). Such a structure-preserving transformation is called a

symplectic transformation.

The group of all symplectic transformations on R2n (equipped with the symplectic

form Ω ) is isomorphic to the linear Lie group Sp (2n,R).

Note : The symplectic group is related to classical mechanics. Consider a particle of mass

m moving in a potential field V . Newton’s second law states that the particle moves along a

curve t 7→ x(t) in Euclidean space R3 in such a way that mẍ = −gradV (x). Introduce the

conjugate momenta pi = mẋi, i = 1, 2, 3 and the energy (Hamiltonian)

H(x, p) : =
1

2m

3∑
i=1

p2
i + V (x).
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Then
∂H

∂xi
=
∂V

∂xi
= −mẍi = −ṗi and

∂H

∂pi
=

1

m
pi = ẋi

and hence Newton’s law F = ma is equivalent to Hamilton’s equations

ẋi =
∂H

∂pi
and ṗi = −∂H

∂xi
(i = 1, 2, 3).

Writing z = (x, p),

J · gradH(z) =

[
0 I3

−I3 0

]
∂H
∂x

∂H
∂p

 = (ẋ, ṗ) = ż

so Hamilton equations read ż = J · gradH(z). Now let

F : R3 × R3 → R3 × R3

and write w(t) = F (z(t)). If z(t) satisfies Hamilton’s equations

ż = J · gradH(z)

then w(t) = F (z(t)) satisfies ẇ = A>ż, where A> = [∂wi/∂zj ] is the Jacobian matrix of F .

By the chain rule,

ẇ = A>J gradzH(z) = A>JA gradwH(z(w)).

Thus, the equations for w(t) have the form of Hamilton’s equations with energy K(w) =

H(z(w)) if and only if A>JA = J; that is, if and only if A is symplectic. A nonlinear trans-

formation F is canonical if and only if its Jacobian matrix is symplectic (or, if one prefers, its

tangent mapping is a symplectic transformation).

As a special case, consider a (linear transformation) A ∈ Sp (2n,R) and let w = Az. Suppose

H is quadratic (i.e., of the form H(z) = 1
2z
>Bz where B is a symmetric matrix). Then

gradH(z) = Bz and thus the equations of motion become the linear equations ż = JBz. Now

ẇ = Aż = AJBz = J(A>)−1Bz = J(A>)−1BA−1Az = JB′w

where B′ = (A>)−1BA−1 is symmetric. For the new Hamiltonian we get

H ′(w) =
1

2
w>(A>)−1BA−1w =

1

2
(A−1w)>BA−1w

= H(A−1w) = H(z).

Thus Sp (2n,R) is the linear invariance group of classical mechanics.

4.3.6. The complex general linear group GL (n,C). Many important matrix groups involve

complex matrices. As in the real case,

GL (n,C) := {A ∈ Cn×n : detA 6= 0}

is an open subset of Cn×n, and hence is not compact. Clearly GL (n,C) is a group under

matrix multiplication.

Note : The general linear group GL (n,C) is connected. This is in contrast with the fact

that GL (n,R) has two components.
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4.3.7. The complex special linear group SL (n,C). This group is defined by

SL (n,C) := {A ∈ GL (n,C) : detA = 1}

and is treated as in the real case. The matrix group SL (n,C) is not compact but

connected.

4.3.8. The unitary and special unitary groups U (n) and SU (n). For A = [aij] ∈ Cn×n,

A∗ := Ā> = A>

is the Hermitian conjugate (i.e., the conjugate transpose) matrix of A; thus, (A∗)ij = āji.

The unitary group is defined as

U (n) := {A ∈ GL (n,C) : A∗A = 1}.

� Exercise 60. Verify that U (n) is a subgroup of the general linear group GL (n,C).

The unitary condition amounts to n2 equations for the n2 complex numbers aij, i, j =

1, n
n∑
k=1

ākiakj = δij.

By taking real and imaginary parts, these equations actually give 2n2 equations in the

2n2 real and imaginary parts of the aij (although there is some redundancy). This means

that U (n) is a closed subset of Cn×n = R2n2
and hence of GL (n,C). Thus U (n) is a

complex linear Lie group.

Note : The unitary group U (n) is compact and connected.

Let A ∈ U (n). From |detA| = 1, we see that the determinant function det :

GL (n,C)→ C maps U (n) onto the unit circle S1 = {z ∈ C : |z| = 1}.

Note : In the special case n = 1, a complex linear mapping φ : C→ C is multiplication by

some complex number z, and φ is an isometry if and only if |z| = 1. In this way, the unitary

group U (1) is identified with the unit circle S1. The group U (1) is more commonly known as

the circle group or the one-dimensional torus, and is also denoted by T1.

The dot product on Rn can be extended to Cn by setting (for x, y ∈ Cn×1 )

x • y : = x∗y = x̄1y1 + x̄2y2 + · · ·+ x̄nyn.

Note : This is not C-linear but satisfies (for x, y ∈ Cn×1 and u, v ∈ C)

(ux) • (vy) = ūv (x • y).

This dot product allows us to define the norm of a complex vector x ∈ Cn×1 by

‖x‖ : =
√
x • x.
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Then a matrix A ∈ Cn×n is unitary if and only if

Ax • Ay = x • y (x, y ∈ Cn).

� Exercise 61. If Gi ≤ GL (ni,k), i = 1, 2 are linear Lie groups, show that their (direct)

product G1 ×G2 is also a linear Lie group (in GL (n1 + n2,k)). Observe, in particular, that the

k-dimensional torus

Tk : = T1 × T1 × · · · × T1

is a linear Lie group (in GL (k,C)). These groups are compact connected Abelian linear Lie

groups. (In fact, they are the only linear Lie groups with these properties.)

The special unitary group

SU (n) := {A ∈ U (n) : detA = 1}

is a closed subgroup of U (n) and hence a complex matrix group.

Note : The matrix group SU (n) is compact and connected. In the special case n = 2,

SU (2) is diffeomorphic to the unit sphere S3 in C2 (or R4). The group SU (2) is used in

the construction of the gauge group for the Yang-Mills equations in elementary particle physics.

Also, there is a two-to-one surjection (in fact, a surjective submersion)

π : SU (2)→ SO (3)

which is of crucial importance in computational mechanics (it is related to the quaternionic

representation of rotations in Euclidean space R3).

4.3.9. The complex orthogonal groups O (n,C) and SO (n,C). Consider the bilinear form

on the vector space C defined by

(x, y) := x1y1 + x2y2 + · · ·+ xnyn (x, y ∈ Cn).

This form is not an inner product because of the lack of complex conjugation in the

definition. The set of all complex n×n matrices which preserve this form (i.e., such that

(Ax,Ay) = (x, y) for all x, y ∈ Cn) is the complex orthogonal group O (n,C). Thus

O (n,C) :=
{
A ∈ GL (n,C) : A>A = 1

}
⊂ GL (n,C).

It is easy to show that O (n,C) is a liner Lie group, and that detA = ±1 for all O (n,C).

Note : The linear Lie group O (n,C) is not the same as the unitary group U (n).

The complex special orthogonal group

SO (n,C) := {A ∈ O (n,C) : detA = 1}

is also a linear Lie group.
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4.3.10. The unipotent group UT (n,k). A matrix A = [aij] ∈ kn×n is upper triangular if

all the entries below the main diagonal are equal to 0. Let T (n,k) denote the set of all

n× n invertible upper triangular matrices (over k). Thus

T (n,k) := {A ∈ GL (n,k) : aij = 0 for i > j}.

� Exercise 62. Show that T (n,k) is a closed subgroup of the general linear group

GL (n,k) and hence a linear Lie group.

The group T (n,k) is called the (upper) triangular group. This group is not compact.

Note : Likewise, one can define the lower triangular group

T̃ (n, k) := {A ∈ GL (n, k) : aij = 0 for i < j}.

Clearly, A ∈ T̃ (n,k) if and only if A> ∈ T (n,k). The matrix groups T (n,k) and T̃ (n, k) are

isomorphic and there is no need to distinguish between them.

� Exercise 63. Show that the diagonal group

D (n, k) := {A ∈ GL (n,k) : aij = 0 for i 6= j}

is a closed subgroup of T (n, k) and hence a linear Lie group.

� Exercise 64. For k ≤ n, let P (k) denote the group of all linear transformations (i.e.,

invertible linear mappings) on Rn that preserve the subspace Rk = Rk × {0} ⊆ Rn. Show that

P (k) is (isomorphic to) the matrix group{[
A X

0 B

]
: A ∈ GL (k,R), B ∈ GL (n− k,R), X ∈ Rk×(n−k)

}
.

An upper triangular matrix A = [aij] is unipotent if it has all diagonal entries equal

to 1. The (real or complex) unipotent group is (the subgroup of GL (n,k))

UT (n,k) := {A ∈ GL (n,k) : aij = 0 for i > j and aii = 1}.

It is easy to see that the unipotent group UT (n,k) is a closed subgroup of GL (n,k) and

hence a liner Lie group.

Note : UT (n,k) is a closed subgroup of T (n,k).

For the case

UT (2,k) =

{[
1 t

0 1

]
∈ GL (n,k) : t ∈ k

}
the mapping

θ : k→ UT (2, k), t 7→

[
1 t

0 1

]
is a continuous group homomorphism which is an isomorphism with continuous inverse.

This allows us to view k as a linear Lie group.
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Note : Given two linear Lie groups G and G, a group homomorphism θ : G → G is a

continuous homomorphism if it is continuous and its image θ(G) ≤ G is a closed subset of G.

For instance,

θ : UT (2,R)→ U (1),

[
1 t

0 1

]
7→ e2πti

is a continuous homomorphism of matrix groups, but (for a ∈ R \Q)

θ′ : G =

{[
1 k

0 1

]
∈ UT (2,R) : k ∈ Z

}
→ U (1),

[
1 k

0 1

]
7→ e2πkai

is not (since its image is a dense proper subset of U (1)). Whenever we have a continuous

homomorphism of linear Lie groups θ : G → G which is a homeomorphism (i.e., a continuous

bijection with continuous inverse) we say that θ is a continuous isomorphism and regard G

and G as “identical” (as linear Lie groups).

The unipotent group UT (3,R) is the Heisenberg group

H3 :=


1 a b

0 1 c

0 0 1

 : a, b, c ∈ R


which is particularly important in quantum physics ; the Lie algebra of H3 gives a real-

ization of the Heisenberg commutation relations of quantum mechanics.

� Exercise 65. Verify that the 4× 4 unipotent matrices A of the form

A =


1 a2 a3 a4

0 1 a1
a21
2

0 0 1 a1

0 0 0 1


form a closed subgroup of UT (4,R) and hence a linear Lie group. Generalize (to n×n matrices).

Several other matrix groups are of great interest. We describe briefly some of them.

4.3.11. The general affine group AGL (n,k). The general affine group (over k) is the

group

AGL (n,k) :=

{[
1 0

c A

]
∈ GL (n+ 1,k) : c ∈ kn×1 and A ∈ GL (n,k)

}
.

This is clearly a closed subgroup of the general linear group GL (n + 1,k) and hence a

linear Lie group. The general affine group AGL (n,k) is not compact. Likewise the case

of the general linear group, the linear Lie group AGL (n,C) is connected but AGL (n,R)

is not.
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Note : If we identify the element x ∈ kn with

[
1

x

]
∈ k(n+1)×1, then since

[
1 0

c A

][
1

x

]
=

[
1

Ax+ c

]
we obtain an action of the group AGL (n, k) on the vector space kn. Transformations on kn

having the form x 7→ Ax + c (with A invertible) are called affine transformations and they

preserve lines (i.e., one-dimensional linear submanifolds of kn). The associated geometry is

affine geometry that has AGL (n,k) as its symmetry group.

The (additive group of the) vector space kn (in fact, kn×1 ) can be viewed as (and identified

with) the translation subgroup of AGL (n,k){[
1 0

c 1

]
∈ GL (n+ 1, k) : c ∈ kn×1

}
≤ AGL (n, k)

and this is a closed subgroup.

The identity component of the general affine group AGL (n,R) is (the linear Lie group)

AGL+ (n,R) =

{[
1 0

c A

]
: c ∈ Rn×1 and A ∈ GL+ (n,R)

}
.

In particular,

AGL+ (1,R) =

{[
1 0

c ea

]
: a, c ∈ R

}
is a connected linear Lie group (of “dimension” 2). Its elements are (in fact, can be

identified with) transformations of the real line R having the form x 7→ bx + c (with

b, c ∈ R and b > 0).

4.3.12. The Euclidean group E (n). This is the matrix group

E (n) :=

{[
1 0

c A

]
∈ GL (n+ 1,R) : c ∈ Rn×1 and A ∈ O (n)

}
.

The Euclidean group E (n) is a closed subgroup of the general affine group AGL (n,R)

and also is neither compact nor connected. It can be viewed as (and thus identified with)

the group of all isometries (i.e., rigid motions) of the Euclidean space Rn.

4.3.13. The special Euclidean group SE (n). The special Euclidean group SE (n) is

(the linear Lie group) defined by

SE (n) :=

{[
1 0

c R

]
∈ GL (n+ 1,R) : c ∈ Rn×1 and R ∈ SO (n)

}
.

This group is isomorphic to the group of all orientation-preserving isometries (i.e., proper

rigid motions) on the Euclidean space Rn. It is not compact but connected.
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4.3.14. Further examples. Several important groups which are not naturally groups of

matrices can be viewed as linear Lie groups. We have seen that the multiplicative groups

R× and C× (of non-zero real numbers and complex numbers, respectively) are isomorphic

to the linear Lie groups GL (1,R) and GL (1,C), respectively. Also, the circle group S1

(of complex numbers with absolute value one) is isomorphic to U (1). The n-torus (the

direct product of n copies of S1)

Tn = S1 × · · · × S1 ≤ GL (n,C)

is isomorphic to the linear Lie group of n × n diagonal matrices with complex entries

of modulus one. (Tn can also be realized as the quotient group Rn/Zn: an element

(θ1, . . . , θn) mod Zn of Rn/Zn can be identified with the diagonal matrix

diag
(
e2πiθ1 , . . . , e2πiθn

)
.)

Note : If θ : G → G is a continuous homomorphism of linear Lie groups, then its kernel

Ker θ ≤ G is a linear Lie group. Moreover, the quotient group G/Ker θ can be identified with

the linear Lie group Im θ by the usual quotient isomorphism θ̃ : G/Ker θ → Im θ. However,

it is important to realize that not every normal matrix subgroup H of the linear Lie group G

gives rise to a linear Lie group G/H; there are examples for which G/H is a Lie group but not

a linear Lie group. (It is true, but by no means obvious, that every linear Lie group is in fact a

Lie group.)

Recall that the (additive) groups R and C are isomorphic to the unipotent groups

UT (2,R) and UT (2,C), respectively.

� Exercise 66. Verify that the map

x ∈ R 7→ [ex] ∈ GL+ (1,R)

is a continuous isomorphism of linear Lie groups, and then show that the additive group Rn is

isomorphic to the linear Lie group of all n× n diagonal matrices with positive entries.

The symmetric group Sn of permutations on n elements may be considered as well

as a linear Lie group. Indeed, we can make Sn to act on kn by linear transformations :

σ ·


x1

x2

...

xn

 =


xσ−1(1)

xσ−1(2)

...

xσ−1(n)

 .
Thus (for the standard unit vectors e1, e2, . . . , en) σ · ei = eσ(i), i = 1, n.

The matrix [σ] of the linear transformation induced by σ ∈ Sn (with respect to the

standard basis) has all its entries 0 or 1, with exactly one 1 in each row and column.

Such a matrix is usually called a permutation matrix.
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� Exercise 67. Write down the permutations matrices induces by the elements (permu-

tations) of S3.

When k = R each of these permutation matrices is orthogonal, while when k = C it

is unitary. So, for a given n ≥ 1, the symmetric group Sn is (isomorphic to) a closed

subgroup of O (n) or U (n).

Note : Any finite group is (isomorphic to) a linear Lie subgroup of some orthogonal group

O (n).

4.4. Complex matrix groups as real matrix groups. Recall that the (complex)

vector space C can be viewed as a real two-dimensional vector space (with basis {1, i},
for example).

� Exercise 68. Show that the mapping

ρ : C→ R2×2, z = x+ iy 7→

[
x −y
y x

]

is an injective ring homomorphism (i.e., a one-to-one mapping such that, for z, z′ ∈ C,

ρ(z + z′) = ρ(z) + ρ(z′) and ρ(zz′) = ρ(z)ρ(z′).)

We can view C as a subring of R2×2. In other words, we can identify the complex

number z = x+ iy with the 2× 2 real matrix ρ(z).

Note : This can also be expressed as

ρ(x+ iy) = xI2 − yJ2, where J2 : =

[
0 1

−1 0

]
.

Also, for z ∈ C,

ρ(z̄) = ρ(z)>

(complex conjugation corresponds to transposition).

More generally, given Z = [zrs] ∈ Cn×n with zrs = xrs + iyrs, we can write

Z = X + iY,

where X = [xrs], Y = [yrs] ∈ Rn×n.

� Exercise 69. Show that the mapping

ρn : Cn×n → R2n×2n, Z = X + iY 7→

[
X −Y
Y X

]
is an injective ring homomorphism.
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Hence we can identify the complex matrix Z = X + iY with the 2n× 2n real matrix

ρn(Z). Let

J = J2n :=

[
0 1

−1 0

]
∈ SL (2n,R).

Then we can write

ρn(Z) = ρn(X + iY ) =

[
X 0

0 X

]
−

[
Y 0

0 Y

]
J.

� Exercise 70. First verify that

J2 = −I2n and J> = −J

and then show that, for Z ∈ Cn×n,

ρn(Z̄) = ρn(Z)> ⇐⇒ X = X> and Y = Y >.

We see that ρn(GL (n,C)) is a closed subgroup of GL (2n,R), so any linear Lie subgroup

G of GL (n,C) can be viewed as a linear Lie subgroup of GL (2n,R) (by identifying it

with its image ρn(G) under ρn). The following characterizations are sometimes useful:

ρn(Cn×n) =
{
A ∈ Rn×n : AJ = JA

}
ρn(GL (n,C)) = {A ∈ GL (2n,R) : AJ = JA} .

Note : In a slight abuse of notation, the real symplectic group Sp (2n,R) is related to the

unitary group U (n) by

Sp (2n,R) ∩ O (2n) = U (n).

Problems (16–25)

(16) Consider a matrix A ∈ kn×n.

(a) Assume that rankA = k; show that there exist matrices P,Q ∈ GL (n,k)

such that

A = P

[
Ik 0

0 0

]
Q.

(b) Verify that the sequence (Ar)r∈N in GL (n,k) with

Ar = P

[
Ik 0

0 1
r
In−k

]
Q

converges to A. Hence deduce that the set GL (n,k) is dense in kn×n. (A

set whose closure is the whole space is said to be dense in the space.)
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(17) Let A,B ∈ kn×n. By using the result of Problem 16 or otherwise, prove that

the matrices AB and BA have the same characteristic polynomial and hence

the same eigenvalues. (The characteristic polynomial of A is defined by

charA(λ) := det (λ1− A) ∈ k [λ].)

[Hint: For an alternative proof, compare the determinants of the two products

of the block matrices

[
A −λIn
In 0

]
and

[
B −λIn
−In A

]
.]

(18) (a) Determine the center Z(GL (n,k)) of the general linear group GL (n,k).

(b) Show that

(i) Z(GL (n,k)) and SL (n,k) are normal subgroups of GL (n,k).

(ii) GL+ (n,R) is a normal subgroup of GL (n,R) (see section 4.3.1).

(iii) for each subset M ⊆ kn×n, the centralizer

ZGL (n,k)(M) := {A ∈ GL (n,k) : AX = XA for all X ∈ M}

is a closed subgroup of GL (n,k).

(19) Let A ∈ GL (n,R).

(a) Show that the symmetric matrix S = A>A is positive definite (i.e., its eigen-

values are all positive real numbers). Deduce that S has a positive definite

(real) symmetric square root, i.e., there is a positive definite symmetric matrix

S1 such that S2
1 = S.

(b) Show that the matrix S−1
1 A is orthogonal.

(c) If PR = QS, where P,Q are positive definite symmetric matrices and R, S ∈
O (n), show that P 2 = Q2.

(d) Let S2 be a positive definite symmetric matrix for which S2
2 = diag (λ1, . . . , λn).

Show that S2 = diag (
√
λ1, . . . ,

√
λn).

(e) Show that A can be uniquely expressed as A = PR, where P is a positive

definite symmetric matrix and R ∈ O (n). If det A > 0, show that R ∈
SO (n). (Such factorization is called polar decomposition of A.)

(20) Let a ∈ R \Q. Show that

G =

{[
eit 0

0 eiat

]
: t ∈ R

}
is a subgroup of GL (2,C), and then find a sequence of matrices in G which

converges to −I2 6∈ G. This means that G is not a linear Lie group.

[Hint : By taking t = (2n + 1)π for a suitably chosen n ∈ Z, we can make ta

arbitrarily close to an odd integer multiple of π, (2m+ 1)π say. It is sufficient to

show that for any positive integer N , there exist n,m ∈ Z such that |(2n+ 1)a−
(2m+ 1)| < 1

N
·]
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(21) Define the inner product 〈·, ·〉k,` on Rk+` by the formula

〈x, y〉k,` : = −x1y1 − · · · − xkyk + xk+1yk+1 + · · ·+ xk+`yk+`.

The pseudo-orthogonal group O (k, `) consists of all matrices A ∈ GL (k+`,R)

which preserve this inner product (i.e., such that 〈Ax,Ay〉k,` = 〈x, y〉k,` for all

x, y ∈ Rk+`).

(a) Verify that O (k, `) is a linear Lie subgroup of GL (k + `,R).

(b) Let

Q = diag (−1, . . . ,−1, 1, . . . , 1) =

[
−Ik 0

0 I`

]
.

Prove that a matrix A ∈ GL (k+`,R) is in O (k, `) if and only if A>QA = Q.

Hence deduce that detA = ±1.

(c) Verify that SO (k, `) := O (k, `) ∩ SL (k + `,R) is a linear Lie subgroup of

SL (k + `,R).

(22) Show that

(a) The matrix A =

[
cosh t sinh t

sinh t cosh t

]
is in SO (1, 1).

(b) For every s, t ∈ R[
cosh s sinh s

sinh s cosh s

][
cosh t sinh t

sinh t cosh t

]
=

[
cosh(s+ t) sinh(s+ t)

sinh(s+ t) cosh(s+ t)

]
.

(c) Every element (matrix) of O (1, 1) can be written in one of the four forms[
cosh t sinh t

sinh t cosh t

]
,

[
− cosh t sinh t

sinh t − cosh t

]
,

[
cosh t − sinh t

sinh t − cosh t

]
,

[
− cosh t − sinh t

sinh t cosh t

]
.

(Since cosh t is always positive, there is no overlap among the four cases. Matrices

of the first two forms have determinant one; matrices of the last two forms have

determinant minus one.)

(23) Given A =

[
a b

c d

]
∈ GL (2n,R), show that A ∈ Sp (2n,R) if and only if a>c

and b>d are symmetric and a>d− c>b = 1.

(24) Let Zn ≤ Rn be the discrete subgroup of vectors with integer entries and set

GL (n,Z) := {A ∈ GL (n,R) : A (Zn) = Zn} .

Show that GL (n,Z) is a linear Lie group. (This linear group consists of n × n
matrices over (the ring) Z with determinant ± 1.)
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(25) Verify the folowing set of equalities :

ρn(U (n)) = O (n) ∩ ρn(GL (n,C))

= O (n) ∩ Sp (2n,R)

= ρn(GL (n,C)) ∩ Sp (2n,R).




