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5. The Matrix Exponential

Definition and basic properties • Some useful formulas • The product and commutator

formulas (optional) • The adjoint action.

5.1. Definition and basic properties. The exponential of a matrix plays a crucial role

in the study of linear (Lie) groups. (It is the mechanism for passing information from the

Lie algebra to the Lie group.) Let A ∈ kn×n and consider the matrix series∑
k≥0

1

k!
Ak = 1 + A+

1

2!
A2 +

1

3!
A3 + · · ·

Note : This matrix series is a series in the complete normed vector space (in fact, algebra)

(kn×n, ‖ · ‖), where ‖ · ‖ is the operator norm (induced by the Euclidean norm on kn). In a

complete normed vector space, an absolutely convergent series
∑
k≥0

ak (i.e., such that the series∑
k≥0

‖ak‖ is convergent) is convergent, and

∥∥∥∥∥
∞∑
k=0

ak

∥∥∥∥∥ ≤
∞∑
k=0

‖ak‖.

(The converse is not true.) Also, every rearrangement of an absolutely convergent series is

absolutely convergent, with same sum. Given two absolutely convergent series
∑
k≥0

ak and∑
k≥0

bk (in a complete normed algebra), their Cauchy product
∑
k≥0

ck, where ck =
∑
i+j=k

aibj =

a0bk + a1bk−1 + · · ·+ akb0 is also absolutely convergent, and

∞∑
k=0

ck =

( ∞∑
k=0

ak

)( ∞∑
k=0

bk

)
.

� Exercise 71. Show that the matrix series
∑
k≥0

1

k!
Ak is absolutely convergent.

Let
∞∑
k=0

1

k!
Ak denote the sum of the (absolutely) convergent matrix series

∑
k≥0

1

k!
Ak. We

set

eA = exp (A) : =
∞∑
k=0

1

k!
Ak.

This matrix is called the matrix exponential of A. Clearly, exp (0) = 1. It follows that

‖ exp (A)‖ ≤ ‖1‖+ ‖A‖+
1

2!
‖A‖2 + · · · = e‖A‖.
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� Exercise 72. Given A ∈ kn×n, show that

‖ exp (A)− 1‖ ≤ e‖A‖ − 1.

� Exercise 73. Show that (for λ, µ ∈ k)

exp ((λ+ µ)A) = exp (λA) exp (µA).

[Hint : These series are absolutely convergent. Think of the Cauchy product.]

It follows that

1 = exp (0) = exp ((1 + (−1))A) = exp (A) exp (−A)

and hence exp (A) is invertible with inverse exp (−A). So exp (A) ∈ GL (n,k).

Note : The “group property” exp ((λ + µ)A) = exp (λA) exp (µA) may be rephrased by

saying that, for fixed A ∈ kn×n, the mapping λ 7→ exp (λA) is a (continuous) homomorphism

from the additive group of scalars k into the general linear group GL (n,k).

Definition 61. The mapping

exp : kn×n → GL (n,k), A 7→ exp (A)

is called the matrix exponential map.

Let A ∈ kn×n (with k either R or C). Let A† denote the transpose A> when k = R,

and the conjugate transpose A∗ when k = C.

� Exercise 74. Show that

exp (A)† = exp (A†).

It is not true in general that exp (A + B) = exp (A) exp (B), although it is true if A

and B commute. (This is a crucial point, with some significant consequences.)

Proposition 33. If A,B ∈ kn×n commute, then

exp (A+B) = exp (A) exp (B).
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Proof. We expand the series and perform a sequence of manipulations that are legitimate

since these series are absolutely convergent :

exp (A) exp (B) =

(
∞∑
r=0

1

r!
Ar

)(
∞∑
s=0

1

s!
Bs

)

=
∞∑

r,s=0

1

r!s!
ArBs

=
∞∑
k=0

(
k∑
r=0

1

r!(k − r)!
ArBk−r

)

=
∞∑
k=0

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)

=
∞∑
k=0

1

k!
(A+B)k

= exp (A+B).

�

Note : We have made crucial use of the commutativity of A and B in the identity

k∑
r=0

(
k

r

)
ArBk−r = (A+B)k.

In particular, for the (commuting) matrices λA and µA, we reobtain the property exp ((λ +

µ)A) = exp (λA) exp (µA). It is important to realize that, in fact, the following statements are

equivalent (for A,B ∈ kn×n):

(1) AB = BA.

(2) exp (λA) exp (µB) = exp (µB) exp (λA) for all λ, µ ∈ k.

(3) exp (λA+ µB) = exp (λA) exp (µB) for all λ, µ ∈ k.

� Exercise 75. Compute (for a, b ∈ R)

exp

([
a 0

0 a

])
, exp

([
a −b
b a

])
, exp

([
a b

b a

])
, exp

([
a b

0 a

])
.

Note : Every real 2 × 2 matrix is conjugate to exactly one of the following types (with

a, b ∈ R, b 6= 0 ) :

• a

[
1 0

0 1

]
(scalar).

• a

[
1 0

0 1

]
+ b

[
0 −1

1 0

]
(elliptic).

• a

[
1 0

0 1

]
+ b

[
0 1

1 0

]
(hyperbolic).
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• a

[
1 0

0 1

]
+ b

[
0 1

0 0

]
(parabolic).

� Exercise 76.

(a) Show that if A ∈ Rn×n is skew-symmetric, then exp (A) is orthogonal.

(b) Show that if A ∈ Cn×n is skew-Hermitian, then exp (A) is unitary.

� Exercise 77. Let A ∈ kn×n and B ∈ GL (n,k). Show that

exp (BAB−1) = B exp (A)B−1.

Deduce that if B−1AB = diag (λ1, λ2, . . . , λn), then

exp (A) = B diag
(
eλ1 , eλ2 , . . . , eλn

)
B−1.

� Exercise 78. Show (for λ ∈ R)

exp



λ 1 0 . . . 0

0 λ 1 . . . 0
...

...
...

...

0 0 0 . . . λ


 =


eλ eλ 1

2!e
λ . . . 1

(n−1)!e
λ

0 eλ eλ . . . 1
(n−2)!e

λ

...
...

...
...

0 0 0 . . . eλ

 .

Note : When the matrix A ∈ kn×n is diagonalizable over C (i.e., A =

C diag (λ1, . . . , λn)C−1 for some C ∈ GL (n,C)), we have

exp (A) = C diag
(
eλ1 , eλ2 , . . . , eλn

)
C−1.

This means that the problem of calculating the exponential of a diagonalizable matrix is solved

once an explicit diagonalization is found. Many important types of matrices are indeed diagonal-

izable (over C), including skew-symmetric, skew-Hermitian, orthogonal, and unitary matrices.

However, there are also many non-diagonalizable matrices. If Ak = 0 for some positive integer

k, then A` = 0 for all ` ≥ k. In this case the matrix series which defines exp (A) terminates

after the first k terms, and so can be computed explicitly. A general matrix A may be neither

nilpotent nor diagonalizable. This situation is best discussed in terms of the Jordan canonical

form.

For λ ∈ C and r ≥ 1, we have the Jordan block matrix

J(λ, r) : =


λ 1 0 . . . 0 0

0 λ 1 . . . 0 0
...

...
...

...
...

0 0 0 . . . λ 1

0 0 0 . . . 0 λ

 ∈ Cr×r.

The characteristic polynomial of J(λ, r) is

charJ(λ,r)(s) := det (sIr − J(λ, r)) = (s− λ)r
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and by the Cayley-Hamilton Theorem, (J(λ, r)− λIr)r = 0, which implies that

(J(λ, r)− λIr)r−1 6= O (and hence charJ(λ,r)(s) = minJ(λ,r)(s) ∈ C [s]). The main result on

Jordan form is the following : Given A ∈ Cn×n, there exists a matrix P ∈ GL (n,C) such that

P−1AP =


J(λ1, r1) 0 . . . 0

0 J(λ2, r2) . . . 0
...

...
...

0 0 . . . J(λm, rm)

 ∈ Cn×n.

This form is unique except for the order in which the Jordan blocks J(λi, ri) ∈ Cri×ri occur.

(The elements λ1, λ2, . . . , λm are the eigenvalues of A and in fact charA(s) = (s − λ1)r1(s −
λ2)r2 · · · (s− λm)rm .)

Using the Jordan canonical form we can see that every matrix A ∈ Cn×n can be written

as A = S +N , where S is diagonalizable (over C), N is nilpotent, and SN = NS.

� Exercise 79. Compute

exp


λ a b

0 λ c

0 0 λ


 .

The exponential mapping exp : kn×n → GL (n,k) is continuous (in fact, infinitely

differentiable). Indeed, since any power Ak is a continuous mapping of A, the sequence

of partial sums
(∑r

k=0
1
k!
Ak
)
r≥0

consists of continuous mappings. But the matrix series

defining the exponential matrix converges uniformly on each set of the form {A : ‖A‖ ≤
ρ}, and so the sum (i.e., the limit of its sequence of partial sums) is again continuous. By

continuity (of the exponential mapping at the origin 0), there is a number δ > 0 such

that

B kn×n(0, δ) ⊆ exp−1
(
BGL (n,k)(1, 1)

)
.

In fact we can actually take δ = ln 2 since

exp (B kn×n(0, δ)) ⊆ B kn×n
(
1, eδ − 1

)
.

Hence we have the following result

Proposition 34. The exponential mapping exp : kn×n → GL (n,k) is injective when

restricted to the open subset B kn×n(0, ln 2). (Hence it is locally a diffeomorphism at the

origin 0.)

Let A ∈ kn×n. For every t ∈ R, the matrix series
∑
k≥0

tk

k!
Ak is (absolutely) convergent

and we have
∞∑
k=0

tk

k!
Ak =

∞∑
k=0

1

k!
(tA)k = exp(tA).
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So the mapping

α : R→ kn×n, t 7→ exp(tA)

is defined and differentiable with

α̇(t) =
∞∑
k=1

tk−1

(k − 1)!
Ak = exp (tA)A = A exp (tA).

Note : This mapping can be viewed as a curve in kn×n. The curve is in fact smooth (i.e.,

infinitely differentiable) and satisfies the differential equation (in matrices) α̇(t) = α(t)A with

initial condition α(0) = 1. Also (for t, s ∈ R),

α(t+ s) = α(t)α(s).

In particular, this shows that α(t) is always invertible with α(t)−1 = α(−t).

� Exercise 80. Let A,C ∈ kn×n. Show that the differential equation (in matrices)

α̇ = αA has a unique differentiable solution α : R→ kn×n for which α(0) = C. (This solution

is α(t) = C exp (tA).) Furthermore, if C is invertible, then so is α(t) for t ∈ R, hence α is in

fact a curve in GL (n, k).

5.2. Some useful formulas.

5.2.1. First formula. The following formula can be considered as another definition of the

matrix exponential.

Proposition 35. Let A ∈ kn×n. Then

exp (A) = lim
r→∞

(
1 +

1

r
A

)r
.

Proof. Consider the difference

exp (A)−
(

1 +
1

r
A

)r
=
∞∑
k=0

(
1

k!
− 1

rk

(
r

k

))
Ak.

This matrix series converges since the series for the matrix exponential exp(A) converges

and
(
1 + 1

r
A
)r

is a polynomial. The coefficients in the rhs are nonnegative since

1

k!
≥ r(r − 1) · · · (r − k + 1)

r · r · · · r
1

k!
·

Therefore, setting ‖A‖ = a, we get∥∥∥∥exp (A)−
(

1 +
1

r
Ar
)r∥∥∥∥ ≤ ∞∑

k=0

(
1

k!
− 1

rk

(
r

k

))
ak = ea −

(
1 +

a

r

)r
where the expression on the right approaches zero (as r → ∞). The result now follows.

�
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5.2.2. Second formula.

Proposition 36. Let A ∈ kn×n and ε ∈ R. Then

det (1 + εA) = 1 + ε trA+O(ε2) (as ε→ 0).

Proof. The determinant of 1 + εA equals the product of the eigenvalues of the matrix.

But the eigenvalues of 1 + εA (with due regard for multiplicity) equal 1 + ε λi, where

the λi are the eigenvalues of A. It follows that

det (1 + εA) = (1 + ε λ1)(1 + ε λ2) · · · (1 + ε λn)

= 1 + ε (λ1 + λ2 + · · ·+ λn) +O(ε2)

= 1 + ε trA+O(ε2).

�

Note : Whenever we have a mapping Z from some (open) interval (a, b), a < 0 < b into a

finite-dimensional normed vector space (e.g. kn×n ), then Z will often be denoted by O(tk) if

t 7→ 1
tk
Z(t) is bounded in an (open) neighborhood of the origin 0 (i.e. there are constants C1

and C2 such that

‖Z(t)‖ ≤ C1|tk| for |t| < C2.)

Thus O(tk) may denote different mappings at different times. The big-O notation was first

introduced in 1892 by Paul G.H. Bachmann (1837-1920) in a book on number theory, and

is currently used in several areas of mathematics and computer science (including mathematical

analysis and the theory of algorithms).

5.2.3. Third formula.

Proposition 37. Let α : (a, b)→ kn×n be a curve. Then

d

dt
det α(t)

∣∣∣∣
t=0

= tr α̇(0).

Proof. The operation ∂ := d
dt

∣∣
t=0

has the derivation property

∂(γ1γ2) = (∂γ1)γ2(0) + γ1(0)∂γ2.

Put α(t) = [aij(t)] and notice that (when t = 0) aij = δij. Write Cij for the cofactor

matrix obtained from α(t) by deleting the ith row and the jth column. By expanding

along the nth row we get

det α(t) =
n∑
j=1

(−1)n+janj det Cnj.

For t = 0 (since α(0) = 1) we have

det Cnj = δnj.
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Then

∂ det α(t) =
n∑
j=1

(−1)n+j((∂anj) det Cnj + anj(∂ det Cnj))

=
n∑
j=1

(−1)n+j((∂anj) det Cnj) + (∂ det Cnn)

= ∂ann + ∂ det Cnn.

We can repeat this calculation with the (n − 1) × (n − 1) matrix Cnn and so on. This

gives

∂ det α(t) = ∂ann + ∂an−1,n−1 + ∂ det Cn−1,n−1

...

= ∂ann + ∂an−1,n−1 + · · ·+ ∂a11

= tr α̇(0).

�

5.2.4. Liouville’s formula. We can now prove a remarkable (and very useful) result, known

as Liouville’s Formula. Three different proofs will be given.

Theorem 38 (Liouville’s Formula). For A ∈ kn×n we have

det exp (A) = etrA.

First Proof (using the second definition of the exponential) : We have

det exp (A) = det lim
r→∞

(
1 +

1

r
A

)r
= lim

r→∞
det

(
1 +

1

r
A

)r
since the determinant function det : kn×n → k is continuous. Moreover, by Proposition

36,

det

(
1 +

1

r
A

)r
=

[
det

(
1 +

1

r
A

)]r
=

[
1 +

1

r
trA+O

(
1

r2

)]r
(as r →∞).

It only remains to note that (for any a ∈ k)

lim
r→∞

[
1 +

a

r
+O

(
1

r2

)]r
= ea.

In particular, for a = trA, we get the desired result. �

Second Proof (using differential equations) : Consider the curve

γ : R→ GL (1,k) = k×, t 7→ det exp (tA).
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Then (by Proposition 37 applied to the curve γ)

γ̇(t) = lim
h→0

1

h
[det exp ((t+ h)A)− det exp (tA)]

= det exp (tA) lim
h→0

1

h
[det exp (hA)− 1]

= det exp (tA) trA

= γ(t) trA.

So γ satisfies the same differential equation and initial condition as the curve t 7→ et trA.

By the uniqueness of the solution (see Exercise 80), it follows that

γ(t) = det exp (tA) = et trA.

In particular, for t = 1, we get the desired result. �

Third Proof (using Jordan canonical form) : If B ∈ GL (n,k), then (see Exercise

77)

det exp (BAB−1) = det (B exp (A)B−1)

= det B · det exp(A) · det B−1

= det exp (A)

and

etr (BAB−1) = etrA.

So it suffices to prove the identity for BAB−1 for a suitably chosen invertible matrix B.

Using for example the theory of Jordan canonical forms, there is a suitable choice of such

a B for which

BAB−1 = D +N

with D diagonal and N strictly upper triangular (i.e., Nij = 0 for i ≥ j). Then N is

nilpotent (i.e., Nk = O for some k ≥ 1). We have

exp (BAB−1) =
∞∑
k=0

1

k!
(D +N)k

=
∞∑
k=0

1

k!
Dk +

∞∑
k=0

1

(k + 1)!

(
(D +N)k+1 −Dk+1

)
= exp (D) +

∞∑
k=0

1

(k + 1)!
N(Dk +Dk−1N + · · ·+Nk).

The matrix

N(Dk +Dk−1N + · · ·+Nk)

is strictly upper triangular, and so

exp (BAB−1) = exp (D) +N ′
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where N ′ is strictly upper triangular. Now, if D = diag (λ1, λ2, . . . , λn), we have

det exp (A) = det exp (BAB−1)

= det exp (D)

= det diag (eλ1 , eλ2 , . . . , eλn)

= eλ1eλ2 · · · eλn

= eλ1+λ2+···+λn

= etrD

= etr (BAB−1)

= etrA.

�

The exponential mapping

exp : kn×n → GL (n,k)

is a basic link between the linear structure on kn×n and the multiplicative structure on

GL (n,k). Let G be a linear Lie subgroup of GL (n,k). Applying Proposition 34, we

may choose ρ ∈ R so that 0 < ρ ≤ 1
2

and if A,B ∈ B kn×n(O, ρ), then exp (A) exp (B) ∈
exp

(
B kn×n(O, 1

2
)
)
. Since exp is one-to-one on B kn×n(O, ρ), there is a unique matrix

C ∈ kn×n for which

exp (A) exp (B) = exp (C).

Note : There is a beautiful formula, the Baker-Campbell-Hausdorff formula which

expresses C as a power series in A and B. To develop this completely would take too long.

Specifically, (one form of) the B-C-H formula says that if X and Y are sufficiently small, then

exp(X) exp(Y ) = exp(Z) with

Z = X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + · · ·

It is not supposed to be evident at the moment what “. . . ” refers to. The only important point

is that all the terms (in the expansion of Z) are given in terms of X and Y , Lie brackets of X

and Y , Lie brackets of Lie brackets involving X and Y , etc. Then it follows that the mapping

φ : G→ GL (n,R) “defined” by the relation

φ (exp(X)) = exp (φ(X))

is such that on elements of the form exp(X), with X sufficiently small, is a group homomor-

phism. Hence the B-C-H formula shows that all the information about the group product, a least

near the identity, is “encoded” in the Lie algebra.
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An interesting special case is the following : If X,Y ∈ Cn×n and X,Y commute with their

commutator (i.e., [X, [X,Y ]] = [Y, [X,Y ] ), then

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X, Y ]

)
·

� Exercise 81. Show by direct computation that for

X,Y ∈ h3 =


0 a b

0 0 c

0 0 0

 : a, b, c ∈ R


(the Lie algebra of the Heisenberg group H3)

exp (X) exp (Y ) = exp

(
X + Y +

1

2
[X,Y ]

)
·

5.3. The product and commutator formulas (optional). We set

R = C − A−B ∈ kn×n.

For X ∈ kn×n, we have

exp (X) = 1 +X +R1(X),

where the remainder term R1(X) is given by

R1(X) =
∞∑
k=2

1

k!
Xk.

Hence

‖R1(X)‖ ≤ ‖X‖2

∞∑
k=2

1

k!
‖X‖k−2

and therefore if ‖X‖ < 1, then

‖R1(X)‖ ≤ ‖X‖2

∞∑
k=2

1

k!
= ‖X‖2 (e− 2) < ‖X‖2.

Now for X = C ∈ B kn×n(O, 1
2
), we have

exp (C) = 1 + C +R1(C)

with

‖R1(C)‖ < ‖C‖2.

Similar considerations lead to

exp (C) = exp (A) exp (B) = 1 + A+B +R1(A,B),

where

R1(A,B) =
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
ArBk−r

)
.
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This gives

‖R1(A,B)‖ ≤
∞∑
k=2

1

k!

(
k∑
r=0

(
k

r

)
‖A‖r‖B‖k−r

)

=
∞∑
k=0

1

k!
(‖A‖+ ‖B‖)k

= (‖A‖+ ‖B‖)2
∞∑
k=2

1

k!
(‖A‖+ ‖B‖)k−2

≤ (‖A‖+ ‖B‖)2

since ‖A‖+ ‖B‖ < 1.

Combining the two ways of writing exp (C) from above, we have

C = A+B +R1(C)−R1(A,B)

and so

‖C‖ ≤ ‖A‖+ ‖B‖+ ‖R1(A,B)‖+ ‖R1(C)‖

< ‖A‖+ ‖B‖+ (‖A‖+ ‖B‖)2 + ‖C‖2

≤ 2 (‖A‖+ ‖B‖) +
1

2
‖C‖

since ‖A‖, ‖B‖, ‖C‖ ≤ 1
2
. Finally this gives

‖C‖ ≤ 4 (‖A‖+ ‖B‖) .

We also have

‖R‖ = ‖C − A−B‖ ≤ ‖R1(A,B)‖+ ‖R1(C)‖

≤ (‖A‖+ ‖B‖)2 + (4(‖A‖+ ‖B‖))2

= 17 (‖A‖+ ‖B‖)2 .

We have proved the following result.

Proposition 39. Let A,B,C ∈ B kn×n(O, 1
2
) such that exp (A) exp (B) = exp (C).

Then C = A+B +R, where the remainder term R satisfies

‖R‖ ≤ 17 (‖A‖+ ‖B‖)2 .

We can refine this estimate (to second order). We only point out the essential steps

(details will be omitted). Set

S = C − A−B − 1

2
[A,B] ∈ kn×n

and write

exp (C) = 1 + C +
1

2
C2 +R2(C)
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with

‖R2(C)‖ ≤ 1

3
‖C‖3.

Then

exp(C) = 1 + A+B +
1

2
[A,B] + S +

1

2
C2 +R2(C)

= 1 + A+B +
1

2
(A2 + 2AB +B2) + T,

where

T = S +
1

2
(C2 − (A+B)2) +R2(C).

Also

exp (A) exp (B) = 1 + A+B +
1

2
(A2 + 2AB +B2) +R2(A,B)

with

‖R2(A,B)‖ ≤ 1

3
(‖A‖+ ‖B‖)3 .

We see that

S = R2(A,B) +
1

2
((A+B)2 − C2)−R2(C)

and by taking norms we get

‖S‖ ≤ ‖R2(A,B)‖+
1

2
‖(A+B)(A+B − C) + (A+B − C)C‖+ ‖R2(C)‖

≤ 1

3
(‖A‖+ ‖B‖)3 +

1

2
(‖A‖+ ‖B‖+ ‖C‖)‖A+B − C‖+

1

3
‖C‖3

≤ 65 (‖A‖+ ‖B‖)3 .

The following estimation holds.

Proposition 40. Let A,B,C ∈ B kn×n(O, 1
2
) such that exp (A) exp (B) = exp (C).

Then C = A+B + 1
2
[A,B] + S, where the remainder term S satisfies

‖S‖ ≤ 65 (‖A‖+ ‖B‖)3 .

We will derive two main consequences of Proposition 39 and Proposition 40.

(These relate group operations in GL (n,k) to the linear operations in kn×n and are

crucial ingredients in the proof that every linear Lie group is a Lie group.)

Theorem 41 (Lie-Trotter Product Formula). For U, V ∈ kn×n we have

exp (U + V ) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

))r
.

(This formula relates addition in kn×n to multiplication in GL (n,k).)
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Proof. For large r we may take A = 1
r
U and B = 1

r
V and apply Proposition 39 to

give

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp (Cr)

with ∥∥∥∥Cr − 1

r
(U + V )

∥∥∥∥ ≤ 17 (‖U‖+ ‖V ‖)2

r2
·

As r →∞,

‖rCr − (U + V )‖ ≤ 17 (‖U‖+ ‖V ‖)2

r
→ 0

and hence

rCr → U + V.

Since exp (rCr) = exp (Cr)
r, the Lie-Trotter Product Formula follows by conti-

nuity of the exponential mapping. �

Theorem 42 (Commutator Formula). For U, V ∈ kn×n we have

exp([U, V ]) = lim
r→∞

(
exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

))r2
.

(This formula relates the Lie bracket - or commutator - in kn×n to the group commutator

in GL (n,k).)

Proof. For large r (as in the proof of Theorem 41) we have

exp

(
1

r
U

)
exp

(
1

r
V

)
= exp(Cr)

with (as r →∞)

rCr → U + V.

We also have

Cr =
1

r
(U + V ) +

1

2r2
[U, V ] + Sr,

where

‖Sr‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·

Similarly (replacing U, V with −U,−V ) we obtain :

exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(C ′r),

where

C ′r = −1

r
(U + V ) +

1

2r2
[U, V ] + S ′r

and

‖S ′r‖ ≤ 65
(‖U‖+ ‖V ‖)3

r3
·
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Combining these we get

exp

(
1

r
U

)
exp

(
1

r
V

)
exp

(
−1

r
U

)
exp

(
−1

r
V

)
= exp(Cr) exp(C ′r)

= exp(Er),

where

Er = Cr + C ′r +
1

2
[Cr, C

′
r] + Tr

=
1

r2
[U, V ] +

1

2
[Cr, C

′
r] + Sr + S ′r + Tr.

One can verify that

[Cr, C
′
r] =

1

r3
[U + V, [U, V ]] +

1

r
[U + V, Sr + S ′r]

+
1

2r2
[[U, V ], S ′r − Sr] + [Sr, S

′
r].

All four of these terms have norm bounded by an expression of the form constant
r3

so the

same is true of [Cr, C
′
r]. Also Sr, S

′
r, Tr have similarly bounded norms. Setting

Qr : = r2Er − [U, V ]

we obtain (as r →∞)

‖Qr‖ = r2‖Er −
1

r2
[U, V ]‖ ≤ constant

r
→ 0

and hence

exp(Er)
r2 = exp ([U, V ] +Qr)→ exp([U, V ]).

The Commutator Formula now follows using continuity of the exponential mapping.

�

Note : If g, h are elements of a group, then the expression ghg−1h−1 is called the group

commutator of g and h.

5.4. The adjoint action. There is one further concept involving the exponential map-

ping that is basic in Lie theory. It involves conjugation, which is generally referred to as

the adjoint action. For g ∈ GL (n,k) and A ∈ kn×n, we can form the conjugate

Adg(A) := g A g−1.

� Exercise 82. Let A,B ∈ kn×n and g, h ∈ GL (n,k). Show that (for λ, µ ∈ k)

(a) Adg(λA+ µB) = λAdg(A) + µAdg(B).

(b) Adg([A,B]) = [Adg(A),Adg(B)].

(c) Adgh(A) = Adg(Adh(A)).

In particular, Ad−1
g = Adg−1 .
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Formulas (a) an (b) say that Adg is an automorphism of the Lie algebra kn×n, and

formula (c) says the mapping

Ad : GL (n,k)→ Aut (kn×n), g 7→ Adg

is a group homomorphism. The mapping Ad is called the adjoint representation of

GL (n,k).

Formula (c) implies in particular that if t 7→ exp (tA) is a one-parameter subgroup of

GL (n,k), then Ad exp (tA) is a one-parameter group (of linear transformations) in kn×n.

Observe that we can identify Aut (kn×n) with GL (n2,k) (and thus view Aut (kn×n) as a

linear Lie group). Then (see Theorem 44)

Ad exp (tA) = exp (tA)

for some A ∈ kn2×n2
= End (kn×n). Since

A(B) =
d

dt
Ad exp(tA)(B)

∣∣∣∣
t=0

=
d

dt
exp (tA)B exp (−tA)

∣∣∣∣
t=0

= [A,B]

by setting (for A,B ∈ kn×n)

adA(B) : = [A,B]

we have the following formula

Ad exp (tA) = exp (t adA).

Explicitly, the formula says that

exp (tA)B exp (−tA) =
∞∑
k=0

tk

k!
(adA)k B.

(Here (adA)0 = A and (adA)k = ad(adA)k−1 for k ≥ 1.)

Note : The mapping

ad : kn×n → End (kn×n), X 7→ adX

is called the adjoint representation of (the Lie algebra) kn×n. From the Jacobi identity for

Lie algebras, we have

adX([Y, Z]) = [adX(Y ), Z] + [Y, adX(Z)].

That is, adX is a derivation of the Lie algebra kn×n. The formula above gives the relation

between the automorphism Ad exp (tX) of the Lie algebra kn×n and the derivation adX of

kn×n. One also has

exp (tAdg(X)) = g exp (tX)g−1.

Using this formula, we can see that [X,Y ] = 0 if and only if exp (tX) and exp (sY ) commute

for arbitrary s, t ∈ R.
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Problems (26–32)

(26) A matrix A ∈ kn×n is nilpotent if Ak = 0 for some k ≥ 1.

(a) Prove that a nilpotent matrix is singular.

(b) Prove that a strictly upper triangular matrix A = [aij] (i.e. with aij = 0

whenever i ≥ j ) is nilpotent.

(c) Find two nilpotent matrices whose product is not nilpotent.

(27) Suppose that A ∈ kn×n and ‖A‖ < 1.

(a) Show that the matrix series∑
k≥0

Ak = 1 + A+ A2 + A3 + · · ·

converges (in kn×n).

(b) Show that the matrix 1− A is invertible and find a formula for (1− A)−1.

(c) If A is nilpotent, determine (1− A)−1 and exp (A).

(28) Let A ∈ kn×n.

(a) Prove that A is nilpotent if and only if all its eigenvalues are equal to zero.

(b) The matrix A is called unipotent if 1− A is nilpotent (i.e., (1− A)k = 0

for some k ≥ 1). Prove that A is unipotent if and only if all its eigenvalues

are equal to 1.

(c) If A is a strictly upper triangular matrix, show that exp (A) is unipotent.

(29) Let A ∈ kn×n. Show that the functional equation (in matrices) α(t+s) = α(t)α(s)

has a unique differentiable solution α : R → kn×n for which α(0) = 1 and

α̇(0) = A. (This solution is α(t) = exp (tA).)

(30) If A,B ∈ kn×n commute, show that

d

dt
exp (A+ tB)

∣∣∣∣
t=0

= exp (A)B = B exp (A).

(This is a formula for the derivative of the exponential mapping exp at an arbi-

trary A, evaluated only at those B such that AB = BA. The general situation

is more complicated.)

(31) Let A,B ∈ kn×n.

(a) Verify that

ad [A,B] = adA adB − adB adA = [adA, adB] .

(This means that ad : kn×n → End (kn×n) is a Lie algebra homomorphism.)

(b) Show by induction that

(adA)n (B) =
n∑
k=0

(
n

k

)
AkB(−A)n−k.
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(c) Show by direct computation that

exp (adA)(B) = Adexp (A)(B) = exp (A)B exp (−A).

(32) Let α : R→ kn×n be a differentiable curve in kn×n. Prove the formula

d

dt
exp (α(t)) = exp (α(t))

1− exp (−adα(t))

adα(t)

dα

dt
·

(The fraction of linear transformations of kn×n is defined by its – everywhere

convergent – power series

1− exp (−adX)

adX
:=

∞∑
k=0

(−1)k

(k + 1)!
(adX)k .)

This exercise (statement) may also be read as saying that the differential of

the matrix exponential map exp : kn×n → kn×n at any X ∈ kn×n is the linear

transformation d expX = D exp(X) : kn×n → kn×n given by

d expX Y = exp (X)
1− exp (−adX)

adX
Y.

(The statement, together with the Inverse Function Theorem, gives informa-

tion on the local behaviour of the matrix exponential map: the Inverse Func-

tion Theorem says that exp has a local inverse around a point X ∈ kn×n at

which its differential d expX is invertible, and the statement says that this is the

case precisely when (1 − exp (−adX))/adX is invertible, i.e., when zero is not

an eigenvalue of this linear transformation of kn×n.)


