LECTURE NOTES ON MATRIX GROUPS 7

5. THE MATRIX EXPONENTIAL

Definition and basic properties e  Some useful formulas e The product and commutator

formulas (optional) e The adjoint action.

5.1. Definition and basic properties. The exponential of a matrix plays a crucial role
in the study of linear (Lie) groups. (It is the mechanism for passing information from the

Lie algebra to the Lie group.) Let A € k™™ and consider the matriz series

L Lo 1,3
ZHA =T Ad AT AT
k>0
NOTE : This matrix series is a series in the complete normed vector space (in fact, algebra)
(k™™ | - ||), where || - || is the operator norm (induced by the Euclidean norm on k™). In a

complete normed vector space, an absolutely convergent series Z ar (i.e., such that the series
k>0

Z llak|| is convergent) is convergent, and

k>0

o0 oo
Dol <D llaxl
k=0 k=0

(The converse is not true.) Also, every rearrangement of an absolutely convergent series is

absolutely convergent, with same sum. Given two absolutely convergent series Zak and

k>0
Zbk (in a complete normed algebra), their Cauchy product ch, where ¢, = Z ab; =
k>0 k>0 i+j=k

aobr + a1bp_1 + - - - + axbp is also absolutely convergent, and

S (B (50

1
¢ Exercise 71. Show that the matrix series Z EAIC is absolutely convergent.
k>0

1 . 1

Let Z EA]“ denote the sum of the (absolutely) convergent matrix series Z HA’“. We
k=0 k>0

set

oo 1
A _ - k
e’ =exp(A):= ,;0 k;!A :
This matrix is called the matrix exponential of A. Clearly, exp (0) = 1. It follows that

1
lexp (A)] < I+ AN + A + - = el
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o Exercise 72. Given A € k™*", show that

Jlexp (4) — 1]| < el — 1.

o Exercise 73. Show that (for A\, u € k)
exp (A + p)A) = exp (AA) exp (pA).

[HINT : These series are absolutely convergent. Think of the Cauchy product.]

It follows that
1 =exp(0) = exp ((1 + (-1))A) = exp (A) exp (—A)
and hence exp (A) is invertible with inverse exp (—A). So exp (A) € GL (n, k).

NOTE : The “group property” exp ((A + u)A) = exp(AA)exp (nA) may be rephrased by
saying that, for fixed A € k"*", the mapping A — exp (AA) is a (continuous) homomorphism

from the additive group of scalars k into the general linear group GL (n,k).

DEFINITION 61. The mapping
exp : k™" — GL (n,k), A exp(A)

is called the matrix exponential map.

Let A € k™" (with k either R or C). Let A" denote the transpose A" when k = R,

and the conjugate transpose A* when k = C.

¢ Exercise 74. Show that

exp (A)T = exp (AT).

It is not true in general that exp (A + B) = exp (A) exp (B), although it is true if A
and B commute. (This is a crucial point, with some significant consequences.)

ProprosiTION 33. If A, B € k™" commute, then

exp (A+ B) = exp (A) exp (B).
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Proof. We expand the series and perform a sequence of manipulations that are legitimate
since these series are absolutely convergent :

exp (A)exp (B) = (Z;’A’) (Z%BS)

NOTE : We have made crucial use of the commutativity of A and B in the identity

3 (s - s by

r=0
In particular, for the (commuting) matrices AA and pA, we reobtain the property exp ((A +
w)A) = exp (AA) exp (nA). It is important to realize that, in fact, the following statements are
equivalent (for A, B € k™*"):

(1) AB = BA.

(2) exp (AA)exp (uB) = exp (uB) exp (AA) for all A\, pu € k.

(3) exp (AA + uB) = exp (AA) exp (uB) for all A\, u € k.

¢ Exercise 75. Compute (for a,b € R)

o () e () B Bt ()

NOTE : Every real 2 x 2 matrix is conjugate to exactly one of the following types (with
a,beR, b#£0):

1
e a 0 (scalar).
01
'y -
* a, (1) +0b ? 0] (elliptic).
1 0] 1
* a, (1) +b [1) 0] (hyperbolic).
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10 01
a [O 1] +b [0 0] (parabolic).

¢ Exercise 76.

(a) Show that if A € R™*" is skew-symmetric, then exp (A) is orthogonal.
(b) Show that if A € C"*" is skew-Hermitian, then exp (A) is unitary.

o Exercise 77. Let A € k™" and B € GL (n,k). Show that
exp (BAB™!) = B exp (A) B~
Deduce that if B~'AB = diag (A1, A2, ..., \n), then
exp (A) = Bdiag <e’\1,e’\2, cel e)‘") B~ L.

¢ Exercise 78. Show (for A € R)

A10 ... 0 gt L piyed

O N1 ... 0 B 0 e e .. ﬁ@‘
exp| |. . . 1= _

00 0 A 0 0 0 e

NOTE : When the matrix A € k"*" is diagonalizable over C (i.e., A =
Cdiag (A1,...,A\,) C~! for some C € GL (n,C)), we have

exp (A) = C diag (e’\l,e)‘Q, . .,e)‘”) ct

This means that the problem of calculating the exponential of a diagonalizable matrix is solved
once an explicit diagonalization is found. Many important types of matrices are indeed diagonal-
izable (over C), including skew-symmetric, skew-Hermitian, orthogonal, and unitary matrices.
However, there are also many non-diagonalizable matrices. If A¥ = 0 for some positive integer
k, then A’ = 0 for all ¢ > k. In this case the matrix series which defines exp (A) terminates
after the first k& terms, and so can be computed explicitly. A general matrix A may be neither
nilpotent nor diagonalizable. This situation is best discussed in terms of the Jordan canonical
form.
For A € C and r > 1, we have the Jordan block matriz

A 10 ... 0 0]
0A 1 ..00
JOwr) =1 . | ecr
000 ... A1
00 0 ... 0 A

The characteristic polynomial of J(\,r) is

char j(y ,y(s) := det (s, — J(A, 7)) = (s = A)"
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and by the CAYLEY-HAMILTON THEOREM, (J(\,r) — AI.)" = 0, which implies that
(J\,7) = ALYt # O (and hence char () »)(s) = miny(, )(s) € Cls]). The main result on
Jordan form is the following : Given A € C™*", there exists a matriz P € GL (n,C) such that

J()\l,’l“l) 0 0
0 J(Ag, T 0
plap=| ( 2 2) , e Crxm,
0 0 coe J(AmyTm)

This form is unique except for the order in which the Jordan blocks J(A;,r;) € C'*"i occur.
(The elements A, Ag,..., A\, are the eigenvalues of A and in fact chara(s) = (s — A1) (s —
A)'E e (5= Am)'™)

Using the Jordan canonical form we can see that every matrix A € C"*" can be written
as A= S5+ N, where S is diagonalizable (over C), N is nilpotent, and SN = NS.

¢ Exercise 79. Compute

exp

[
S > 9
> o o

The exponential mapping exp : k™" — GL(n,k) is continuous (in fact, infinitely
differentiable). Indeed, since any power A* is a continuous mapping of A, the sequence
of partial sums (Z};:O %Ak)rzo consists of continuous mappings. But the matrix series
defining the exponential matrix converges uniformly on each set of the form {A : ||A] <
p}, and so the sum (i.e., the limit of its sequence of partial sums) is again continuous. By
continuity (of the exponential mapping at the origin 0), there is a number § > 0 such
that

Binxn(0,8) C exp™" (BaL (i) (1, 1)) .

In fact we can actually take § = In2 since
exp (Bynxn (0,6)) € Byaxn (1,€° —1).
Hence we have the following result
PROPOSITION 34. The exponential mapping exp : k"™ — GL (n,k) is injective when

restricted to the open subset Bynxn(0,In2). (Hence it is locally a diffeomorphism at the
origin 0.)

tk
Let A € k™. For every t € R, the matrix series Z EAk is (absolutely) convergent
k>0
and we have

tk 1
> HA’f = H(m)’f = exp(tA).
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So the mapping
a:R = k™" texp(tA)

is defined and differentiable with

tk*l

at) =Y ———AF =exp(tA)A = Aexp (tA).
(t) ;(k_l)! p(tA) p(tA)
NOTE : This mapping can be viewed as a curve in k™. The curve is in fact smooth (i.e.,

infinitely differentiable) and satisfies the differential equation (in matrices) &(t) = «a(t)A with
initial condition «(0) = 1. Also (for ¢,s € R),

a(t+s) = a(t)a(s).
In particular, this shows that a(t) is always invertible with ()™ = a(—t).

¢ Exercise 80. Let A,C € k™ ™. Show that the differential equation (in matrices)
& = a A has a unique differentiable solution « : R — k™™ for which a(0) = C. (This solution
is a(t) = Cexp (tA).) Furthermore, if C is invertible, then so is «(t) for ¢t € R, hence « is in

fact a curve in GL (n, k).

5.2. Some useful formulas.

5.2.1. First formula. The following formula can be considered as another definition of the

matrix exponential.

ProrosITION 35. Let A € k™. Then

exp (A) = lim <1 + %A) :

r—00

Proof. Consider the difference
1\ (1 1/(r
k=0 ’

This matrix series converges since the series for the matrix exponential exp(A) converges
and (1 + %A)T is a polynomial. The coefficients in the rhs are nonnegative since

l>r(r—1)-~-(r—k+1)i
k! — rerTeeer k!
Therefore, setting ||A|| = a, we get
L\ o~=(1 1/(r ay"
o ~oAr < - k’: a d
exp (4) (1+TA) _kz:;(kz! r’“(k‘))a ‘ (1+r>

where the expression on the right approaches zero (as r — o0). The result now follows.
O
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5.2.2. Second formula.

PRrROPOSITION 36. Let A € k™" and € € R. Then

det(1+eA)=1+etr A+ O(¢%) (as € — 0).

Proof. The determinant of 1 + ¢ A equals the product of the eigenvalues of the matrix.
But the eigenvalues of 1+ ¢ A (with due regard for multiplicity) equal 1 + € \;, where
the \; are the eigenvalues of A. It follows that

det(1+eA) = (I4+eA)(14+eX)---(1+€eA,)
= 14+eM+XA+-+A)+0()
= l+etrA+0O(e).
OJ
NOTE : Whenever we have a mapping Z from some (open) interval (a,b), a <0 < b into a
finite-dimensional normed vector space (e.g. k™™, then Z will often be denoted by O(t*) if
t— tikZ(t) is bounded in an (open) neighborhood of the origin 0 (i.e. there are constants C}

and C9 such that
1Z(#)|| < Ci|t*] for |t| < Cy.)

Thus O(t*) may denote different mappings at different times. The big- O notation was first
introduced in 1892 by PAuL G.H. BACHMANN (1837-1920) in a book on number theory, and
is currently used in several areas of mathematics and computer science (including mathematical

analysis and the theory of algorithms).
5.2.3. Third formula.

PROPOSITION 37. Let a: (a,b) — k™™ be a curve. Then

d .
7 det «(t) e tr &(0).

Proof. The operation 0 := %| .o has the derivation property

I(1172) = (071)72(0) +71(0)9s.

Put «(t) = [a;;(t)] and notice that (when t = 0) a;; = 6;;. Write Cy; for the cofactor
matriz obtained from «(t) by deleting the i*®® row and the ;™ column. By expanding

along the n'" row we get

n

det a(t) = Z(—l)”ﬂam det Cl;.

j=1
For ¢t =0 (since a(0) =1) we have

det Cj = 6.
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Then

ddet a(t) = Y (=1)"7((Dan;) det Cpj + an; (9 det Cpy))

j=1

— i(—l)”*j((aam) det Cp;) + (0 det Cyy,)

= Oay,y, + 0det C,,,.

We can repeat this calculation with the (n — 1) x (n — 1) matrix C,, and so on. This

gives

ddet a(t) = Oapy + 0ap—1n-1 +0det Cp_y 1

= 8ann + 8a'n—1,n—1 + 8all
= tra(0).

O

5.2.4. Liouville’s formula. We can now prove a remarkable (and very useful) result, known
as LIOUVILLE’S FORMULA. Three different proofs will be given.

THEOREM 38 (LIOUVILLE’S FORMULA). For A € k"*" we have
det exp (A) = ™.

FIRST PROOF (using the second definition of the exponential) : We have

1\ 1\
det exp (A) = det lim (1 + —A) = lim det <1 + —A)
r r

r—00 T—00

since the determinant function det : k"*" — k is continuous. Moreover, by PROPOSITION

36,
1\ 1 " 1 1\1"
det <1+—A) = [det (1+—A>] = {l—i-—trA—i-O(—Q)] (as 7 — 00).
T r r r

It only remains to note that (for any a € k)

1 T
lim [I—FE-I—O(—Q)} = e“.
T—>00 T T

In particular, for a = tr A, we get the desired result. OJ
SECOND PROOF (using differential equations) : Consider the curve

v:R—=GL(1,k) =k, ¢+ detexp(tA).
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Then (by PROPOSITION 37 applied to the curve =)

A(t) = }lllir(l)% [det exp ((t + h)A) — det exp (tA)]
1

= det exp (tA) }Lil% 7 [det exp (hA) — 1]

= det exp (tA)tr A
= 7(t)tr A

So ~ satisfies the same differential equation and initial condition as the curve t s et 4.

By the uniqueness of the solution (see Exercise 80), it follows that
v(t) = det exp (tA) = '™ 4.
In particular, for ¢t = 1, we get the desired result. 0
THIRD PROOF (using Jordan canonical form) : If B € GL (n,k), then (see Exercise
77)
det exp (BAB™') = det(Bexp(A)B™)
= det B -det exp(A)-det B!
= det exp (A)

and
—1
etr (BAB™1) etrA.

So it suffices to prove the identity for BAB~! for a suitably chosen invertible matrix B.
Using for example the theory of Jordan canonical forms, there is a suitable choice of such
a B for which

BAB'=D+N
with D diagonal and N strictly upper triangular (ie., N;; =0 for ¢ > j). Then N is
nilpotent (i.e., N¥ = O for some k > 1). We have

=1
exp (BAB™Y) = ZE(DJFN)’“
k=0
=1 = 1
= — Dk D 4 N)E+L _ pktl
20 +Z(k:+1)!(( +N) )
k=0 k=0
=1
= exp(D)+ ) (k+1)!N(Dk+Dk*1N+...+N’“).

The matrix
N(D* 4+ DFIN + ... 4+ N¥)
is strictly upper triangular, and so

exp (BAB™') = exp (D) + N’
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where N’ is strictly upper triangular. Now, if D = diag (A1, As, ..., \,), we have

det exp (A) = det exp(BAB™)
= det exp (D)

= det diag (e™, e, ..., eM)

)\1 )\2..

= e'le An

- €
— €>\1+)\2+---+)\n
— etrD

ot (BAB™1)

— etrA.

The exponential mapping
exp : k™" — GL (n, k)

is a basic link between the linear structure on k™" and the multiplicative structure on
GL (n,k). Let G be a linear Lie subgroup of GL (n,k). Applying PROPOSITION 34, we
may choose p € R so that 0 < p < 3 and if A, B € Bynxn(O, p), then exp (A) exp (B) €
exp (Bknxn(O,%)). Since exp is one-to-one on Bynxn (O, p), there is a unique matriz
C e k™™ for which

exp (A) exp (B) = exp (C).

NOTE : There is a beautiful formula, the BAKER-CAMPBELL-HAUSDORFF FORMULA which
expresses C' as a power series in A and B. To develop this completely would take too long.
Specifically, (one form of) the B-C-H formula says that if X and Y are sufficiently small, then

exp(X)exp(Y) =exp(Z) with

%[X, Y]+ %[x, X, Y] — %[y, X, V] 4

”

Z=X+Y+

It is not supposed to be evident at the moment what “...” refers to. The only important point
is that all the terms (in the expansion of Z) are given in terms of X and Y, Lie brackets of X
and Y, Lie brackets of Lie brackets involving X and Y, etc. Then it follows that the mapping

¢ :G— GL(n,R) “defined” by the relation

¢ (exp(X)) = exp (¢(X))

is such that on elements of the form exp(X), with X sufficiently small, is a group homomor-
phism. Hence the B-C-H formula shows that all the information about the group product, a least
near the identity, is “encoded” in the Lie algebra.



LECTURE NOTES ON MATRIX GROUPS 87

An interesting special case is the following : If XY € C™*" and X,Y commute with their
commutator (i.e., [X,[X,Y]] =[Y,[X,Y]), then

exp (X)exp (V) = exp (X+Y+ %[X,YD :

¢ Exercise 81. Show by direct computation that for

0 a b
X, Y ebhs = 0 0 cf| :abceR
0 00

(the Lie algebra of the Heisenberg group Hs)
1
exp (X)exp (Y) = exp (X +Y + §[X, Y]) .

5.3. The product and commutator formulas (optional). We set
R=C—-A—-Bek™"

For X € k™", we have
exp(X) =1+ X+ Ri(X),

where the remainder term R;(X) is given by

R1<X):Z

| —

Xk
! .

-

Hence
o) 1 -
[ R (X)) < HXszEHXHk 2
k=2

and therefore if || X|| < 1, then

=1
Ry (X)) < ||X||ZZH = [|X]]* (e — 2) < [|X]*.

k=2

Now for X = C € Bynxn (O, 5), we have
exp(C)=1+C+ Ri(C)
with
IR ()] < lICP*.
Similar considerations lead to

exp (C) =exp(A)exp(B) =1+ A+ B+ Ri(A, B),

where
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This gives

o0

IR(A.B)| < Z%(Z (’j)nAnran’“—T)

k=2

1

= (Al + 1B

[
WE

b
Il

0
=1 N
= IAH+HBHQZE (I1A] + |1B])*?
k=2

< (Al +1BIl)*
since || Al + ||B]| < 1.

Combining the two ways of writing exp (C) from above, we have
C=A+B+R(C)—Ry(A,B)
and so
ICl < AT+ 1Bl + [[Bu (A, B)[| + |2 (C)]
< A+ 1Bl + QA+ 1B + lIC]?
< 2(IA1+ 1BI) + 5 lC)
since ||Al|,||B]],]|C|| < 3. Finally this gives
I < 4((lAl+1Bl)-

We also have

IR =€ —A-B]

IA

[17:(A, B)|| + [[ B2 (O]
(1AL -+ IBID* + (41 All + 1B11))?
L7 (1Al + 1BII)* -

A

We have proved the following result.

PROPOSITION 39. Let A, B,C € Bynxa(O, %) such that exp (A)exp (B) = exp (C).
Then C'= A+ B + R, where the remainder term R satisfies

IRII < 17 (1A + |1 BID* -

We can refine this estimate (to second order). We only point out the essential steps
(details will be omitted). Set

SzO—A—B—%[A,B]ek"X"

and write

exp (C)=1+C + %CQ + Ry(C)
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with
1
[R2(C)]| < §||C||3-
Then
1 1
exp(C) = 1+ A+ B+ [A, Bl +S+502+R2(0)
1
— 1+A+B+§(A2+2AB+B2)+T,
where
1
T=25+ 5(02 — (A+ B)?) + Ry(C).
Also
1
exp(A)exp(B) =1+ A+ B+ 5(142 +2AB + B*) + Ry(A, B)
with
1
172(4, Bl < 5 (Al + I1BI)°.
We see that

S = Ry(A, B) + %((A L B)? = C?) — Ry(C)

and by taking norms we get

ISI < [[R2(A, B)|| + %H(A +B)(A+ B —C)+(A+ B = C)C| + [[BC)]]

IN

1 1 1

3 (Al + IBI)” + (Al + 1Bl + ICHIA+ B = || + sl
< 65(1A +1I1BI)”.

The following estimation holds.

PROPOSITION 40. Let A, B,C € Bynxa(O, 1) such that exp (A)exp (B) = exp (C).

Then C = A+ B+ 3[A, B] + S, where the remainder term S satisfies
ISIF < 65 (I All + [1B1)*

We will derive two main consequences of PROPOSITION 39 and PROPOSITION 40.
(These relate group operations in GL (n,k) to the linear operations in k™™ and are
crucial ingredients in the proof that every linear Lie group is a Lie group.)

THEOREM 41 (Lie-TROTTER ProDUCT FORMULA). For U,V € k™™ we have

1 1 "
exp (U +V) = lim (exp <—U) exp (—V)) .
r—r00 T T

(This formula relates addition in k™*" to multiplication in GL (n,k).)
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Proof. For large r we may take A = %U and B = %V and apply PROPOSITION 39 to

give
1 1
exp (—U) exp <—V) = exp (C,)
r r
with ,
1 17(||U Vv
o, - L4 < TOVLEI
r r
As r — oo,
17 (U] + [V])?
e, - @+ vy < ULV
and hence
rC. —-U+V.
Since exp (rC,) = exp (C,)", the LIE-TROTTER PRODUCT FORMULA follows by conti-
nuity of the exponential mapping. O

THEOREM 42 (COMMUTATOR FOrMULA). For U,V € k™" we have

2

exp([U, V) = lim <exp (%U) exp Gv) exp <—%U> exp <—%v)) |

(This formula relates the Lie bracket - or commutator - in k™*" to the group commutator
in GL (n,k).)

Proof. For large r (as in the proof of THEOREM 41) we have
1 1
exp (—U) exp (—V> = exp(C,)
r r

rC. —-U+V.

with (as r — 00)

We also have . .
(l:#U+W+ZﬂmW+&,
where

(ol +1vin?
S| < 65——5—"

Similarly (replacing U,V with —U, —V') we obtain :

exp (—1U> exp <—1V> = exp(C)),
r r

1
212

where

1
Cl = —;(U+V) + U, V]+ S

and

U V)3
151 < 65UV
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Combining these we get

exp (%U) exp (%v) exp (—%U) exp (—%v) — exp(C)) exp(C)

= exp(F,),
where
E, = C.+C + %[OT, Cl+1T,
- %[U, V] + %[OT, Cl 4 S, + 8 + T
One can verify that
€0 = SWUAVOVI+1[U+V.S, +5)

1 , ,
+5.5 (U V]S = S+ 150, 5.

All four of these terms have norm bounded by an expression of the form %ﬁam so the

same is true of [C,,Cr]. Also S,,S., T, have similarly bounded norms. Setting
Qr:=1r"E, —[U,V]

we obtain (as r — 00)
1 constant
1@ = Il Br = SOV € —— =0

r

and hence
exp(E,)" = exp ([U, V] + Q.) — exp([U, V]).

The COMMUTATOR FORMULA now follows using continuity of the exponential mapping.
OJ

NOTE : If g,h are elements of a group, then the expression ghg 'h™' is called the group

commutator of g and h.

5.4. The adjoint action. There is one further concept involving the exponential map-
ping that is basic in Lie theory. It involves conjugation, which is generally referred to as

the adjoint action. For g € GL (n,k) and A € k™", we can form the conjugate
Ad,(A):=gAg".

o Exercise 82. Let A,B € k™" and g,h € GL (n,k). Show that (for A, u € k)
(a) Adg(AA + puB) = MAdy(A) + pAdy(B).
(b) Ady([A, B]) = [Ady(A4), Ady(B)].
(c) Adgn(A) = Adg(Ads(A)).
In particular, Adg_1 = Adg-1.
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Formulas (a) an (b) say that Ad, is an automorphism of the Lie algebra k™", and

formula (¢) says the mapping
Ad: GL (n,k) = Aut (k"*"), g+ Ad,
is a group homomorphism. The mapping Ad is called the adjoint representation of
GL (n, k).
Formula (¢) implies in particular that if ¢ +— exp (tA) is a one-parameter subgroup of
GL (n,k), then Adexpta) is a one-parameter group (of linear transformations) in k™*.

Observe that we can identify Aut (k"*") with GL (n? k) (and thus view Aut (k"*") as a
linear Lie group). Then (see THEOREM 44)

Ad exp (14) = exp (tA)

for some A € k""" = End (k"*"). Since

d
A(B) = EAd exp(t4)(B)

t=0

d
= S exXp (tA)Bexp (—tA)

t=0
= [A,B]
by setting (for A, B € k™*™)
ad A(B) : = [A, B]
we have the following formula
Adexp (tA) = exXp (t ad A)
Explicitly, the formula says that
o0 Lk
exp (tA)Bexp (—tA) = Z % (ad A)" B.
k=0

(Here (ad A)° = A and (ad A)* = ad(ad A)*~! for k >1.)

NOTE : The mapping
ad : k™" — End (k™*"), X —adX

is called the adjoint representation of (the Lie algebra) k™*™. From the Jacobi identity for
Lie algebras, we have

ad X([Y, Z]) = [ad X(Y), Z] + [Y,ad X (Z)].
That is, ad X is a derivation of the Lie algebra k™*™. The formula above gives the relation
between the automorphism Ady,;x) of the Lie algebra k™*™ and the derivation ad X of
k™ ™. One also has

exp (tAdy(X)) = gexp (tX)g .
Using this formula, we can see that [X,Y] =0 if and only if exp (tX) and exp (sY) commute
for arbitrary s,t € R.
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(26) A matrix A € k™" is nilpotent if A* =0 for some k > 1.
(a) Prove that a nilpotent matrix is singular.
(b) Prove that a strictly upper triangular matrix A = [a;;] (i.e. with a;; =0
whenever i > j) is nilpotent.

(c¢) Find two nilpotent matrices whose product is not nilpotent.

(27) Suppose that A € k™™ and ||A]| < 1.
(a) Show that the matrix series

S AR =14 A+ AL A
k>0

converges (in k™*™).
(b) Show that the matrix 1 — A is invertible and find a formula for (1 — A)~'.
(c) If A is milpotent, determine (1 — A)~! and exp (A).

(28) Let A € k™.
(a) Prove that A is nilpotent if and only if all its eigenvalues are equal to zero.
(b) The matrix A is called unipotent if 1 — A is nilpotent (i.e., (1 — A)* =0
for some k > 1). Prove that A is unipotent if and only if all its eigenvalues
are equal to 1.
(c) If A is a strictly upper triangular matrix, show that exp (A) is unipotent.

(29) Let A € k™*". Show that the functional equation (in matrices) a(t+s) = a(t)a(s)
has a unique differentiable solution a : R — k™" for which «(0) = 1 and
&(0) = A. (This solution is «a(t) = exp (tA).)

(30) If A, B € k™™ commute, show that

d
7 &XP (A+tB)| =exp(A)B = Bexp(A).
t=0
(This is a formula for the derivative of the exponential mapping exp at an arbi-
trary A, evaluated only at those B such that AB = BA. The general situation

is more complicated.)

(31) Let A, B € k™"
(a) Verify that

ad[A,B] =ad Aad B—ad Bad A = [ad A, ad B].

(This means that ad : k"™ — End (k"*") is a Lie algebra homomorphism.)
(b) Show by induction that

(ad A)" (B) = i (Z) AFB(— A"k,

k=0
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(¢) Show by direct computation that
exp (ad A)(B) = Adexp (4)(B) = exp (A)Bexp (—A).

(32) Let a: R — k™™ be a differentiable curve in k"*". Prove the formula

e (a(t) = exp () 22N

dt
(The fraction of linear transformations of k™*™ is defined by its — everywhere

convergent — power series

1 —exp(—ad X) -
ad X Z

adX) )

k:0

This exercise (statement) may also be read as saying that the differential of
the matrixz exponential map exp : k™" — kK™ at any X € K™ 1is the linear
transformation d expy = Dexp(X) : k™" — k™*" given by
1 —exp(—ad X)

ad X
(The statement, together with the INVERSE FUNCTION THEOREM, gives informa-
tion on the local behaviour of the matrix exponential map: the INVERSE FUNC-

dexpy Y =exp(X) Y.

TION THEOREM says that exp has a local inverse around a point X € k™" at
which its differential d expy is invertible, and the statement says that this is the
case precisely when (1 — exp (—ad X))/ad X is invertible, i.e., when zero is not

an eigenvalue of this linear transformation of k™*".)



