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6. Lie Algebras

Tangent space to a linear Lie group • Lie algebras • Homomorhisms of Lie algebras

• Lie algebras of linear Lie groups: examples.

6.1. Tangent space to a linear Lie group. Let G ≤ GL (n,k) be a linear Lie group.

Definition 62. A one-parameter subgroup of G is a continuous mapping γ :

R→ G which satisfies (the homomorphism property)

γ(s+ t) = γ(s)γ(t) (t, s ∈ R).

Note : Recall that R can be viewed as a linear Lie group. Hence (the one-parameter sub-

group) γ is a continuous homomorphism of linear Lie groups. It can be shown that every

one-parameter subgroup of G is differentiable at 0 (in fact, differentiable at every t ∈ R).

A one-parameter subgroup γ : R → G can be viewed as a collection (γ(t))t∈R of linear

transformations on kn such that (for t, s ∈ R)

• γ(0) = id kn .

• γ(s+ t) = γ(s)γ(t).

• γ(t) ∈ G depends continuously on t.

In other words, γ is a linear representation of the (Abelian) group R on (the vector space) kn.

(So γ defines a continuous action of R on kn.) On the other hand, the (parametrized) curve

γ : R→ G has a tangent vector γ̇(0) ∈ kn×n at γ(0) = 1.

Proposition 43. Let γ : R → G be a one-parameter subgroup of G. Then γ is

differentiable at every t ∈ R and

γ̇(t) = γ̇(0) γ(t) = γ(t) γ̇(0).

Proof. We have (for t, h ∈ R)

γ̇(t) = lim
h→0

1

h
(γ(t+ h)− γ(t))

= lim
h→0

1

h
(γ(h)γ(t)− γ(t))

=

(
lim
h→0

1

h
(γ(h)− 1)

)
γ(t)

= γ̇(0) γ(t)

and similarly

γ̇(t) = γ(t) γ̇(0).

�
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We can now determine the form of all one-parameter subgroups of G.

Theorem 44. Let γ : R → G be a one-parameter subgroup of G. Then it has the

form

γ(t) = exp (tA)

for some A ∈ kn×n.

Proof. Let A = γ̇(0). This means that γ satisfies (the differential equation)

γ̇(t) = Aγ(t)

and is subject to (the initial condition)

γ(0) = 1.

This initial value problem (IVP) has the unique solution γ(t) = exp (tA). �

We cannot yet reverse this process and decide for which A ∈ kn×n the one-parameter

subgroup

γ : R→ GL (n,k), t 7→ exp (tA)

actually takes values in G. (The answer involves the Lie algebra of G.)

Note : We have a curious phenomenon in the fact that although the definition of a one-

parameter group only involves first order differentiability, the general form exp (tA) is always

infinitely differentiable (and indeed analytic) as a function of t. This is an important character-

istic of much of the Lie theory, namely that conditions of first order differentiability (and even

continuity) often lead to much stronger conditions.

Let G ≤ GL (n,k) be a linear Lie group. Recall that kn×n may be considered to be

some Euclidean space Rm.

Definition 63. A (parametrized) curve in G is a differentiable mapping γ : (a, b) ⊆
R→ kn×n such that

γ(t) ∈ G for all t ∈ (a, b).

The derivative

γ̇(t) := lim
h→0

1

h
(γ(t+ h)− γ(t)) ∈ kn×n

is called the tangent vector to γ at γ(t). We will usually assume that a < 0 < b.

� Exercise 83. Given two curves γ, σ : (a, b)→ G, we define a new curve, the product

curve, by

(γ σ)(t) := γ(t)σ(t).

Show that (for t ∈ (a, b))

(γ σ)·(t) = γ(t) σ̇(t) + γ̇(t)σ(t).
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� Exercise 84.

(a) Let γ : (−1, 1)→ R3×3 be given by

γ(t) :=

1 0 0

0 cos t sin t

0 − sin t cos t

 .
Show that γ is a curve in SO (3) and find γ̇(0). Show that

(γ2)·(0) = 2γ̇(0).

(b) Let σ : (−1, 1)→ R3×3 be given by

σ(t) :=

0 0 0

0 cos t sin t

0 − sin t cos t

 .
Calculate σ̇(0). Write the matrix γ(t)σ(t) and verify that

(γ σ)·(0) = γ̇(0) + σ̇(0).

� Exercise 85. Let α : (−1, 1)→ Cn×n be given by

α(t) :=

e
iπt 0 0

0 ei
πt
2 0

0 0 ei
πt
2

 .
Show that α is a curve in U (3). Calculate α̇(0).

Definition 64. The tangent space to G at A ∈ G is the set

TA G := {γ̇(0) ∈ kn×n : γ is a curve in G with γ(0) = A}.

Proposition 45. The set TA G is a real vector subspace of kn×n.

Proof. Let α, β : (a, b) → kn×n be two curves in G through A (i.e., α(0) = β(0) = A).

Then

γ : (a, b)→ kn×n, t 7→ α(t)A−1 β(t)

is also a curve in G with γ(0) = A. We have

γ̇(t) = α̇(t)A−1 β(t) + α(t)A−1 β̇(t)

and hence

γ̇(0) = α̇(0)A−1 β(0) + α(0)A−1 β̇(0) = α̇(0) + β̇(0)

which shows that TA G is closed under (vector) addition.

Similarly, if λ ∈ R and α : (a, b)→ kn×n is a curve in G with α(0) = A, then

η : (a, b)→ kn×n, t 7→ α(λt)

is another such curve. Since η̇(0) = λ α̇(0), we see that TA G is closed under (real) scalar

multiplication. So TA G is a (real) vector subspace of kn×n. �
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Note : Since the vector space kn×n is finite dimensional, so is (the tangent space) TA G.

Definition 65. If G ≤ GL (n,k) is a linear Lie group, its dimension is the dimension

of the (real) vector space T1 G (1 is the identity matrix). So

dim G := dimR T1 G.

Note : If the linear Lie group G is complex, then its complex dimension is

dimC G := dimC T1 G.

� Exercise 86. Show that the matrix group U (1) has dimension 1.

Note : The only connected linear Lie groups (up to isomorphism) of dimension 1 are T1 =

U (1) and R, and of dimension 2 are R2,T1 × R,T2, and AGL+ (1,R).

Example 66. The real general linear group GL (n,R) has dimension n2. The deter-

minant function det : Rn×n → R is continuous and det (1) = 1. So there is some ε-ball

about 1 in Rn×n such that, for each A in this ball, det A 6= 0 (i.e., A ∈ GL (n,R)). If

B ∈ Rn×n, then define a curve σ in Rn×n by

σ(t) := 1 + tB.

Then σ(0) = 1 and σ̇(0) = B, and (for small t) σ(t) ∈ GL (n,R). Hence the tangent

space T1 GL (n,R) is all of Rn×n which has dimension n2. So dim GL (n,R) = n2.

� Exercise 87. Show that the dimension of the complex general linear group GL (n,C)

is 2n2.

Proposition 46. Let Sk-sym (n) denote the set of all skew-symmetric matrices in

Rn×n. Then Sk-sym (n) is a linear subspace of Rn×n and its dimension is n(n−1)
2
·

Proof. If A,B ∈ Sk-sym (n), then

(A+B)> + (A+B) = A> + A+B> +B = 0

so that Sk-sym (n) is closed under (vector) addition.

It is also closed under scalar multiplication, for if A ∈ Sk-sym (n) and λ ∈ R, then

(λA)> = λA> so that

(λA)> + λA = λ (A> + A) = 0.

To check the dimension of Sk-sym (n) we construct a basis. Let Eij denote the matrix

whose entries are all zero except the ij-entry, which is 1, and the ji-entry, which is −1.

If we define these Eij only for i < j, we can see that they form a basis for Sk-sym (n).

It is easy to compute that there are

(n− 1) + (n− 2) + · · ·+ 2 + 1 =
n(n− 1)

2
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of them. �

� Exercise 88. Show that if σ is a curve through the identity (i.e., σ(0) = 1) in the

orthogonal group O (n), then σ̇(0) is skew-symmetric.

Note : It follows that dim O (n) ≤ n(n−1)
2 · (Later we will show that this estimation is an

equality.)

6.2. Lie algebras. We will adopt the notation g := T1 G for this real vector subspace of

kn×n. In fact, g has a more interesting algebraic structure, namely that of a Lie algebra.

Note : It is customary to use lower case Gothic (Fraktur) characters (such as a, g and h)

to refer to Lie algebras.

Definition 67. A (real) Lie algebra a is a real vector space equipped with a product

[·, ·] : a× a→ a, (x, y) 7→ [x, y]

such that (for λ, µ ∈ R and x, y, z ∈ a)

(LA1) [x, y] = −[y, x].

(LA2) [λx+ µy, z] = λ [x, z] + µ [y, z].

(LA3) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

The product [·, ·] is called the Lie bracket of the Lie algebra a.

Note : (1) Condition (LA3) is called the Jacobi identity. So the Lie bracket [·, ·] of (the

Lie algebra) a is a skew-symmetric bilinear mapping (on a ) which satisfies the Jacobi identity.

Hence Lie algebras are non-associative algebras. The Lie bracket plays for Lie algebras the same

role that the associative law plays for associative algebras.

(2) While we can define complex Lie algebras (or, more generally, Lie algebras over any field),

we shall only consider Lie algebras over R.

Example 68. Let a = Rn and set (for all x, y ∈ Rn)

[x, y] := 0.

The trivial product is a skew-symmetric bilinear multiplication (on Rn) which satisfies the

Jacobi identity and hence is a Lie bracket. Rn equipped with this product (Lie bracket)

is a Lie algebra. Such a Lie algebra is called an Abelian Lie algebra.

� Exercise 89. Show that the only Lie algebra structure on (the vector space) R is the

trivial one.

Example 69. Let a = R3 and set (for x, y ∈ R3)

[x, y] := x× y (the cross product).
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For the standard unit vectors e1, e2, e3 we have

[e1, e2] = −[e2, e1] = e3, [e2, e3] = −[e3, e2] = e1, [e3, e1] = −[e1, e3] = e2.

Then R3 equipped with this bracket operation is a Lie algebra. In fact, as we will see

later, this is the Lie algebra of (the matrix group) SO (3) and also of SU (2) in disguise.

Given two matrices A,B ∈ kn×n, their commutator is

[A,B] := AB −BA.

A and B commute (i.e., AB = BA ) if and only if [A,B] = 0. The commutator [·, ·] is

a product on kn×n satisfying conditions (LA1) – (LA3).

� Exercise 90. Verify the Jacobi identity for the commutator [·, ·].

The real vector space kn×n equipped with the commutator [·, ·] is a Lie algebra.

Note : The procedure to give kn×n a Lie algebra structure can be extended to any associative

algebra. A Lie bracket can be defined in any associative algebra by the commutator [x, y] =

xy−yx, making it a Lie algebra. Here the skew-symmetry condition (axiom) is clearly satisfied,

and one can check easily that in this case the Jacobi identity for the commutator follows from

the associativity law for the ordinary product.

There is another way in which Lie algebras arise in the study of algebras. A derivation d of

a non-associative algebra A (i.e., a vector space endowed with a bilinear mapping A×A → A)

is a linear mapping A → A satisfying the formal analogue of the Leibniz rule for differentiating

a product (for all x, y ∈ A )

d(xy) = (dx)y + x(dy).

(The concept of a derivation is an abstraction of the idea of a first-order differential operator.)

The set of all derivations on A is clearly a vector subspace of the algebra End (A) of all linear

mappings A → A. Although the product of derivations is in general not a derivation, the

commutator d1 ◦ d2 − d2 ◦ d1 of two derivations is again a derivation. Thus the set of all

derivations of a non-associative algebra is a Lie algebra, called the derivation algebra of the

given non-associative algebra.

Suppose that a is a vector subspace of the Lie algebra kn×n. Then a is a Lie sub-

algebra of kn×n if it is closed under taking commutators of pairs of alements in a; that

is,

A,B ∈ a ⇒ [A,B] ∈ a.

Of course, kn×n is a Lie subalgebra of itself.

Theorem 47. If G ≤ GL (n,k) is a linear Lie group, then the tangent space g = T1 G

is a Lie subalgebra of kn×n.
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Proof. We will show that two curves α, β in G with α(0) = β(0) = 1, there is such a

curve γ with γ̇(0) = [α̇(0), β̇(0)], where [·, ·] is the matrix commutator.

Consider the mapping

F : (s, t) 7→ F (s, t) := α(s) β(t)α(s)−1.

This is clearly differentiable with respect to each of the variables s, t. For each s (in the

domain of α), F (s, ·) is a curve in G with F (s, 0) = 1. Differentiating gives

d

dt
F (s, t)

∣∣∣∣
t=0

= α(s) β̇(0)α(s)−1

and so

α(s) β̇(0)α(s)−1 ∈ g.

Since g is a closed subspace of kn×n (any vector subspace is an intersection of hyper-

planes), whenever this limit exists we also have

lim
s→0

1

s

(
α(s) β̇(0)α(s)−1 − β̇(0)

)
∈ g.

� Exercise 91. Verify the following matrix version of the usual rule for differentiating

an inverse :
d

dt

(
α(t)−1

)
= −α(t)−1 α̇(t)α(t)−1.

We have

lim
s→0

1

s

(
α(s) β̇(0)α(s)−1 − β̇(0)

)
=

d

ds
α(s) β̇(0)α(s)−1

∣∣∣∣
s=0

= α̇(0) β̇(0)α(0)− α(0) β̇(0)α(0)−1α̇(0)α(0)−1

= α̇(0) β̇(0)α(0)− α(0) β̇(0) α̇(0)

= α̇(0) β̇(0)− β̇(0) α̇(0)

= [α̇(0), β̇(0)].

This shows that [α̇(0), β̇(0)] ∈ g, hence it must be of the form γ̇(0) for some curve γ. �

So, for each linear Lie group G, there is a Lie algebra g = T1 G. We call g the Lie

algebra of G.

Note : The essential phenomenon behind Lie theory is that one may associate, in a natural

way, to a linear Lie group G its Lie algebra g. The Lie algebra is first of all a (real) vector space

and secondly is endowed with a skew-symmetric bilinear product (the Lie bracket). Amazingly,

the group G is almost completely determined by g and its Lie bracket. Thus, for many purposes,

one can replace G with g. Since G is a complicated nonlinear object and g is just a vector

space, it is usually vastly simpler to work with g. Otherwise intractable computations may

become straightforward linear algebra; this is one source of the power of Lie theory.
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6.3. Homomorphisms of Lie algebras. A suitable type of homomorphism G → H

between linear Lie groups gives rise to a linear mapping g→ h respecting the Lie algebra

structures.

Definition 70. Let G ≤ GL (n,k), H ≤ GL (m,k) be linear Lie groups and let Φ :

G → H be a continuous mapping. Then Φ is said to be differentiable if for every

(differentiable) curve γ : (a, b) → G, the composite mapping Φ ◦ γ : (a, b) → H is a

(differentiable) curve with derivative

(Φ ◦ γ)·(t) =
d

dt
Φ(γ(t))

and, if two (differentiable) curves α, β : (a, b)→ G both satisfy the conditions

α(0) = β(0) and α̇(0) = β̇(0),

then (Φ ◦ α)·(0) = (Φ ◦ β)·(0).

Such a mapping Φ is a differentiable homomorphism if it is also a group homomorphism.

A continuous homomorphism of matrix groups that is also differentiable is called a Lie

homomorphism.

Note : The “technical restriction” in the definition of a Lie homomorphism is, in fact, un-

necessary. (It turns out, but by no means easy to prove, that every continuous homomorphism

between Lie groups is differentiable – in fact, analytic.)

If Φ : G→ H is the restriction of a differentiable mapping GL (n,k)→ GL (m,k), then

Φ is also a differentiable mapping.

Proposition 48. Let G, H, K be linear Lie groups and let Φ : G → H,Ψ : H → K

be differentiable homomorphisms.

(a) For each A ∈ G there is a linear mapping dΦA : TA G→ TΦ(A) H given by

dΦA(γ̇(0)) = (Φ ◦ γ)·(0).

(b) We have

dΨΦ(A) ◦ dΦA = d(Ψ ◦ Φ)A.

(c) For the identity mapping 1G : G→ G and A ∈ G,

d (1G)A = 1TA G.

Proof. (a) The definition of dΦA makes sense since (by the definition of differentiability),

given X ∈ TA G, for any curve γ with γ(0) = A and γ̇(0) = X, (Φ ◦ γ)·(0) depends

only on X and not on γ. The identities (b) and (c) are straightforward to verify. �

� Exercise 92. Verify that the map dΦA : TA G→ TΦ(A) H is linear.
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If Φ : G → H is a differentiable homomorphism, then (since Φ(1) = 1) dΦ1 : T1 G →
T1 H is a linear mapping, called the derivative of Φ and usually denoted by

dΦ : g→ h.

Definition 71. Let g, h be Lie algebras. A linear mapping φ : g → h is a homo-

morphism of Lie algebras if (for x, y ∈ g )

φ ([x, y]) = [φ (x), φ (y)].

Theorem 49. Let G, H be linear Lie groups and Φ : G→ H be a Lie homomorphism.

Then the derivative dΦ : g→ h is a homomorphism of Lie algebras.

Following ideas and notation in the proof of Theorem 47, for curves α, β in G with

α(0) = β(0) = 1, we can use the composite mapping

Φ ◦ F : (s, t) 7→ Φ(F (s, t)) = Φ(α(s))Φ(β(t))Φ(α(s))−1

to deduce dΦ([α̇(0), β̇(0)]) = [dΦ(α̇(0)), dΦ(β̇(0))].

� Exercise 93. Write down a full proof of Theorem 49.

Corollary 50. Let G, H be linear Lie groups and Φ : G→ H be a Lie isomorphism

of linear Lie groups. Then the derivative dΦ : g→ h is an isomorphism of Lie algebras.

Proof. Φ−1 ◦ Φ is the identity, so

dΦ−1 ◦ dΦ : T1 G→ T1 G

is the identity. Thus dΦ−1 is surjective and dΦ is injective.

Likewise, Φ ◦Φ−1 is the identity, so dΦ ◦ dΦ−1 is the identity. Thus dΦ−1 is injective,

and dΦ is surjective. The result now follows. �

Note : Isomorphic linear Lie groups have isomorphic Lie algebras. The converse (i.e., linear

Lie groups with isomorphic Lie algebras are isomorphic) is false. For example, the rotation

group SO (2) and the diagonal group

D1 =

{[
1 0

0 ea

]
: a ∈ R

}
≤ AGL+ (1,R)

both have Lie algebras isomorphic to R (the only Lie algebra structure on R), but SO (2) is

homeomorphic to a circle, while D1 is homeomorphic to R, so they are certainly not isomorphic.

However, the converse is – in a sense – almost true, so that the bracket operation on g almost

determines G as a group. After the existence of the Lie algebra, this fact is the most remarkable

in Lie theory. Its precise formulation is known as Lie’s Third Theorem.
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6.4. Lie algebras of linear Lie groups: examples.

6.4.1. The Lie algebras of GL (n,R) and GL (n,C). Let us start with the real general

linear group GL (n,R) ⊂ Rn×n. We have shown (see Example 90) that T1 GL (n,R) =

Rn×n. Hence the Lie algebra gl(n,R) of GL (n,R) consists of all n × n matrices (with

real entries), with the commutator as the Lie bracket. Thus gl (n,R) = Rn×n. It follows

that

dim GL (n,R) = dim gl (n,R) = n2.

Similarly, the Lie algebra of the complex general linear group GL (n,C) is gl (n,C) =

Cn×n and

dim GL (n,C) = dimR gl (n,C) = 2n2.

6.4.2. The Lie algebras of SL (n,R) and SL (n,C). For SL (n,R) ≤ GL (n,R), suppose

that α : (a, b)→ SL (n,R) is a curve in SL (n,R) with α(0) = 1. For t ∈ (a, b) we have

det α(t) = 1 and so

d

dt
det α(t) = 0.

Using Proposition 37, it follows that tr α̇(0) = 0 and thus

T1 SL (n,R) ⊆ Ker tr :=
{
A ∈ Rn×n : trA = 0

}
.

If A ∈ Ker tr ⊆ Rn×n, the curve α : (a, b)→ Rn×n, t 7→ exp (tA) satisfies (the boundary

conditions)

α(0) = 1 and α̇(0) = A.

Moreover, using Liouville’s Formula, we get

det α(t) = det exp (tA) = et trA = 1.

Hence the Lie algebra sl (n,R) of SL (n,R) consists of all n × n matrices (with real

entries) having trace zero, with the commutator as the Lie bracket. Thus

sl (n,R) = T1 SL (n,R) = {A ∈ gl (n,R) : trA = 0} .

Since trA = 0 imposes one condition on A, it follows that

dim SL (n,R) = dimR sl (n,R) = n2 − 1.

Similarly, the Lie algebra of the complex special linear group SL (n,C) is

sl (n,C) = T1 SL (n,C) = {A ∈ gl (n,C) : trA = 0}

and

dim SL (n,C) = dimR sl (n,C) = 2(n2 − 1).
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6.4.3. The Lie algebras of O (n) and SO (n). First, consider the orthogonal group O (n);

that is,

O (n) =
{
A ∈ GL (n,R) : A>A = 1

}
≤ GL (n,R).

Given a curve α : (a, b)→ O (n) with α(0) = 1, we have

d

dt
α(t)Tα(t) = 0

and so

α̇(t)>α(t) + α(t)>α̇(t) = 0

which implies

α̇(0)> + α̇(0) = 0.

Thus we must have α̇(0) ∈ Rn×n is skew-symmetric. So

T1 O (n) ⊆ Sk-sym (n) =
{
A ∈ Rn×n : A> + A = 0

}
(the set of all n× n skew-symmetric matrices in Rn×n).

On the other hand, if A ∈ Sk-sym (n) ⊆ Rn×n, we consider the curve

α : (a, b)→ GL (n,R), t 7→ exp (tA).

Then

α(t)>α(t) = exp (tA)> exp (tA)

= exp (tA>) exp (tA)

= exp (−tA) exp (tA)

= 1.

Hence we can view α as a curve in O (n). Since α̇(0) = A, this shows that

Sk-sym (n) ⊆ T1 O (n)

and hence the Lie algebra o(n) of the orthogonal group O (n) consists of all n × n

skew-symmetric matrices, with the usual commutator as the Lie bracket. Thus

o(n) = T1 O (n) = Sk-sym (n) =
{
A ∈ Rn×n : A> + A = 0

}
.

It follows that (see Proposition 46)

dim O (n) = dim o(n) =
n(n− 1)

2
·

� Exercise 94. Show that if A ∈ Sk-sym (n), then trA = 0.
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By Liouville’s Formula, we have

det α(t) = det exp (tA) = 1

and hence α : (a, b) → SO (n), where SO (n) is the special orthogonal group. We have

actually shown that the Lie algebra of the special orthogonal group SO (n) is

so (n) = o (n) =
{
A ∈ Rn×n : A> + A = 0

}
.

6.4.4. The Lie algebra of SO (3). We will discuss the Lie algebra so(3) of the rotation

group SO (3) in some detail.

� Exercise 95. Show that

so (3) =


 0 −c b

c 0 −a
−b a 0

 ∈ R3×3 : a, b, c ∈ R

 .

The Lie algebra so(3) is a three-dimensional real vector space. Consider the rotations

R1(t) =

1 0 0

0 cos t − sin t

0 sin t cos t

 , R2(t) =

 cos t 0 sin t

0 1 0

− sin t 0 cos t

 , R3 =

cos t − sin t 0

sin t cos t 0

0 0 1

 .
Then the mappings

ρi : t 7→ Ri(t), i = 1, 2, 3

are curves in SO (3) and clearly ρi(0) = 1. It follows that

ρ̇i(0) := Ai ∈ so(3), i = 1, 2, 3.

These elements (matrices) are

A1 =

0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

0 −1 0

1 0 0

0 0 0

 .
� Exercise 96. Verify that the matrices A1, A2, A3 form a basis for so(3). (We shall

refer to this basis as the standard basis.)

� Exercise 97. Compute all the Lie brackets (commutators) [Ai, Aj ], i, j = 1, 2, 3 and

then determine the coefficients ckij defined by

[Ai, Aj ] = c1
ijA1 + c2

ijA2 + c3
ijA3, i, j = 1, 2, 3.

(These coefficients are called the structure constants of the Lie algebra. They completely

determine the Lie bracket [·, ·].)
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The Lie algebra so(3) may be identified with (the Lie algebra) R3 as follows. We

define the mapping

̂ : R3 → so (3), x = (x1, x2, x3) 7→ x̂ :=

 0 −x3 x2

x3 0 −x1

−x2 x1 0

 .
This mapping is called the hat map.

� Exercise 98. Show that the hat map ̂ : R3 → so (3) is an isomorphism of vector

spaces.

� Exercise 99. Show that (for x, y ∈ R3)

(a) x× y = x̂ y.

(b) x̂× y = [x̂, ŷ].

(c) x • y = −1
2tr (x̂ ŷ).

Formula (b) says that the hat map is in fact an isomorphism of Lie algebras and so we

can identify the Lie algebra so(3) with (the Lie algebra) R3.

Note : For x ∈ R3 and t ∈ R, the matrix exponential exp (t x̂) is a rotation about (the axis)

x through the angle t‖x‖. The following explicit formula for exp (x̂) is known as Rodrigues’

Formula:

exp (x̂) = 1 +
sin ‖x‖
‖x‖

x̂+
1

2

sin
(
‖x‖
2

)
‖x‖
2

2

x̂2.

This result says that the exponential map

exp : so (3)→ SO (3)

is onto. Rodrigues’ Formula is useful in computational solid mechanics, along with its

quaternionic counterpart.

6.4.5. The Lie algebras of U (n) and SU (n). Consider the unitary group U (n); that is,

U (n) = {A ∈ GL (n,C) : A∗A = 1} .

For a curve α in U (n) with α(0) = 1, we obtain

α̇(0)∗ + α̇(0) = 0

and so α̇(0) ∈ Cn×n is skew-Hermitian. So

T1 U (n) ⊆ Sk-Herm (n) =
{
A ∈ Cn×n : A∗ + A = 0

}
(the set of all n× n skew-Hermitian matrices in Cn×n ).

If H ∈ Sk-Herm (n), then the curve

α : (a, b)→ GL (n,C), t 7→ exp (tH)
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satisfies

α(t)∗α(t) = exp (tH)∗ exp (tH)

= exp (tH∗) exp (tH)

= exp (−tH) exp (tH)

= 1.

Hence we can view α as a curve in U (n). Since α̇(0) = H, this shows that

Sk-Herm (n) ⊆ T1 U (n)

and hence the Lie algebra u (n) of the unitary group U (n) consists of all n × n skew-

Hermitian matrices, with the usual commutator as the Lie bracket. Thus

u(n) = T1 U (n) = Sk-Herm (n) =
{
H ∈ Cn×n : H∗ +H = 0

}
.

It follows that (see Problem 39)

dim U (n) = dimR u (n) = n2.

The special unitary group SU (n) can be handled in a similar way. Again we have

su (n) = T1 SU (n) ⊆ Sk-Herm (n).

If α : (a, b)→ SU (n) is a curve with α(0) = 1 then, as in the analysis for SL (n,R), we

have tr α̇(0) = 0. Writing

Sk-Herm0 (n) := {H ∈ Sk-Herm (n) : trH = 0}

this gives su (n) ⊆ Sk-Herm0 (n). On the other hand, if H ∈ Sk-Herm0 (n) then the curve

α : (a, b)→ U (n), t 7→ exp (tH)

takes values in SU (n) and α̇(0) = H. Hence

su (n) = T1 SU (n) = Sk-Herm0 (n) =
{
H ∈ Cn×n : H∗ +H = 0 and trH = 0

}
.

Note : For a linear Lie group G ≤ GL (n,R) (with Lie algebra g), the following are true

(and can be used in determining Lie algebras of linear Lie groups).

• The mapping

expG : g→ GL (n,R), X 7→ exp (X)

has image contained in G, expG (g) ⊆ G. We will normally write expG : g→ G for the

exponential mapping on G (and sometimes even just exp). In general, the exponential

mapping expG is neither one-to-one nor onto.

• If G is compact and connected, then expG is onto.

• The mapping expG maps a neighborhood of 0 in g bijectively onto a neighborhood of

1 in G.
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� Exercise 100. Verify that the exponential map

expU (1) : R→ U (1) = S1, t 7→ eit

is onto but not one-to-one.

Example 72. The exponential map

expSL (2,R) : sl (2,R)→ SL (2,R)

is not onto. Let

A =

[
λ 0

0 1
λ

]
with λ < −1.

We see that A ∈ SL (2,R) and we shall show that A is not of the form exp (X) with

X ∈ sl (2,R). If A = exp (X), then the eigenvalues of A are of the form ea and eb,

where a and b are the eigenvalues of X. Suppose λ = ea and 1
λ

= eb. Then

a = −b+ 2kπ i, k ∈ Z.

However, since λ is negative, a is actually complex and therefore its conjugate is also an

eigenvalue; that is, b = ā. This gives a as pure imaginary. Then

1 = |ea| = |λ| = −λ

which contradicts the assumption that λ < −1.

6.4.6. The Lie algebra of SU (2). We will discuss the Lie algebra su (2) in some detail.

� Exercise 101. Show that

su (2) =

{[
ci −b+ ai

b+ ai −ci

]
∈ C2×2 : a, b, c ∈ R

}
.

The Lie algebra su (2) is a three-dimensional real vector space. Consider the matrices

H1 =
1

2

[
0 i

i 0

]
, H2 =

1

2

[
0 −1

1 0

]
, H3 =

1

2

[
i 0

0 −i

]
.

Clearly,

Hi ∈ su (2), i = 1, 2, 3.

� Exercise 102. Verify that the matrices H1, H2, H3 form a basis for su (2).

� Exercise 103. Compute all the Lie brackets (commutators) [Hi, Hj ], i, j = 1, 2, 3 and

then determine the structure constants of the Lie algebra su (2).

Consider the mapping

φ : R3 → su (2), x = (x1, x2, x3) 7→ x1H1 + x2H2 + x3H3.



110 C.C. REMSING

� Exercise 104. Show that the mapping φ : R3 → su (2) is an isomorphism of Lie

algebras (R3 with the cross product).

Thus we can identify the Lie algebra su (2) with (the Lie algebra) R3.

Note : The Lie algebras su (2) and so (3) look the same algebraically (they are isomorphic).

An explicit isomorphism (of Lie algebras) is given by

ψ : x1H1 + x2H2 + x3H3 7→ x1A1 + x2A2 + x3A3.

This suggests that there might be a close relationship between the matrix groups themselves.

Indeed there is a (surjective) Lie homomorphism SU (2)→ SO (3) whose derivative (at 1) is ψ.

Recall the adjoint representation

Ad : SU (2)→ Aut (su(2)), A 7→ AdA (: U 7→ AUA∗).

Each AdA is a linear isomorphism of su (2). AdA is actually an orthogonal transformation on

su (2) (the mapping (X,Y ) 7→ −tr (XY ) is an inner product on su (2)) and so AdA corresponds

to an element of O (3) (in fact, SO (3)). The mapping

Ad : SU (2)→ SO (3), A 7→ AdA

turns out to be a continuous homomorphism of matrix groups that is differentiable (i.e., a Lie

homomorphism) and such that its derivative dAd : su (2)→ so (3) is ψ.

6.4.7. The Lie algebras of T (n,k) and UT (n,k). Let α : (a, b)→ T (n,k) be a curve in

T (n,k) with α(0) = 1. Then α̇(0) is upper triangular. Moreover, using the argument

for GL (n,k) we see that given any upper triangular matrix A ∈ kn×n, there is a curve

σ : (−ε, ε)→ kn×n, t 7→ 1 + tA

such that σ(t) ∈ T (n,k) and σ̇(0) = A. Hence the Lie algebra t (n,k) of T (n,k)

consists of all n × n upper triangular matrices, with the usual commutator as the Lie

bracket. Thus

t (n,k) = T1 T (n,k) =
{
A ∈ kn×n : aij = 0 for i > j

}
.

It follows that

dim T (n,k) = dimR t (n,k) =
n(n+ 1)

2
dimR k.

An upper triangular matrix A ∈ kn×n is strictly upper triangular if all its diagonal entries

are 0. Then the Lie algebra of the unipotent group UT (n,k) consists of all n×n strictly

upper triangular matrices, with the usual commutator as the Lie bracket. So

ut (n,k) = T1 UT (n,k) =
{
A ∈ kn×n : aij = 0 for i ≥ j

}
.

� Exercise 105. Find dimR ut (n, k).
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Problems (33–44)

(33) Let G ≤ GL (n,k) be a linear Lie group.

(a) Prove that if A = α̇(0) ∈ T1 G, then exp (A) ∈ G. (This means that the

matrix exponential map exp : kn×n → GL (n,k) maps the Lie algebra g =

T1 G into G.)

(b) Hence deduce that

T1 G = {X ∈ kn×n : exp (tX) ∈ G for all t ∈ R}.

(34) Let G be a linear Lie group. Prove that the following statements are logically

equivalent.

(a) Any two elements of G may be joined by a path in G.

(b) G is not the disjoint union of two non-empty open sets.

(c) G is generated by any neighborhood of 1.

(d) G is generated by exp (g). (A subset of G generates G if every element of G

is a finite product of elements of the subset and their inverses; in this case, it

means that every element of G is of the form exp (X1) exp (X2) · · · exp (Xk)

for some X1, X2, . . . , Xk in the Lie algebra g of G.)

(35) Let G be a linear Lie group with associated Lie algebra g. Prove that the group

G is Abelian if and only if the Lie algebra g is Abelian (i.e., [x, y] = 0 for all

x, y ∈ g).

(36) Let g be a (real) Lie algebra. A vector subspace k of g is called an ideal if

[x, y] ∈ k for all x ∈ g, y ∈ k.

(a) Verify that any ideal k is a Lie subalgebra (of g).

(b) Show that the center of g

z (g) := {x ∈ g : [x, y] = 0 for all y ∈ g}

is an ideal in g.

(c) Show that the vector subspace

[g, g] := span {[x, y] : x, y ∈ g}

is an ideal in g. (It is called the commutator subalgebra.)

(d) Show that the set

sl (n,k) := {x ∈ kn×n : tr x = 0}

is an ideal in kn×n. (It is called the special linear Lie algebra.)

(37) Show that if φ : g1 → g2 is a Lie algebra homomorphism, then the kernel Kerφ

is an ideal of g1, and the image Imφ is a Lie subalgebra of g2.
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(38) Let G ≤ GL (n,k) be a linear Lie group. Prove that if H is a normal subgroup of

G, then T1 H is an ideal of the Lie algebra T1 G.

(39) A matrix A ∈ Cn×n is called skew-Hermitian if A∗ + A = 0.

(a) Show that the diagonal terms of a skew-Hermitian matrix are purely imagi-

nary and hence deduce that the set Sk-Herm (n) of all skew-Hermitian ma-

trices in Cn×n is not a vector space over C.

(b) Prove that Sk-Herm (n) is a real vector space of dimension

n+ 2
n(n− 1)

2
= n2.

(c) If σ is a curve through the identity in U (n), show that σ̇(0) is skew-

Hermitian and hence

dim U (n) ≤ n2.

(40) Consider the set (of n× n skew-symmetric matrices)

so (n) = {x ∈ Rn×n : x> + x = 0}.

(It is called the special orthogonal Lie algebra.)

(a) Show that so (n) is a Lie subalgebra of Rn×n.

(b) Show that the Lie algebra so (3) contains no ideals other than itself and (the

trivial ideal) {0}. (Such a Lie algebra is called simple.)

[Hint : Show that any non-trivial ideal must contain all the elements of the

standard basis.]

(41) For each of the following linear Lie group G, determine its Lie algebra g and

hence its dimension.

(a) G =
{
A ∈ GL (2,R) : A>QA = Q

}
, where Q =

[
1 0

0 0

]
.

(b) G =
{
A ∈ GL (2,R) : A>QA = Q

}
, where Q =

[
1 0

0 −1

]
.

(c) G = AGL (3,R).

(d) G = H3.

(e) G = G4 ≤ UTu (4,R) from Exercise 65.

(f) G = E (n).

(g) G = SE (n).

(42) (a) Show that the Lie algebra of the symplectic group Sp (2n,R) is

sp (2n,R) =
{
A ∈ R2n×2n : A>J + JA = 0

}
.

(b) If

A =

[
a b

c d

]
∈ sl (2n,R)
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show that A ∈ sp (2n,R) if and only if

d = −a>, c = c>, and b = b>.

(c) Calculate the dimension of sp (2n,R).

(43) Show that the Lie algebra of the Lorentz group Lor is

lor =
{
A ∈ R4×4 : SA+ A>S = 0

}
=




0 a1 a2 a3

−a1 0 a4 a5

−a2 −a4 0 a6

a3 a5 a6 0

 : a1, a2, a3, a4, a5, a6 ∈ R

 .

(44) Consider the linear Lie group k× = GL (1,k). (Its Lie algebra is clearly k.)

(a) Show that the determinant function

det : GL (n,k)→ k×

is a Lie homomorphism (i.e., a continuous homomorphism of linear Lie groups

that is also differentiable; cf. Definition 70).

(b) Show that the induced homomorphism of Lie algebras (i.e., the derivative of

det) is the trace function

tr : kn×n → k.

(c) Derive from (b) that (for A,B ∈ kn×n )

tr (AB) = tr (BA).




