LECTURE NOTES ON MATRIX GROUPS

C.C. REMSING

Contents

1. Groups of Transformations	3
1.1. Maps and groups	3
1.2. Permutations of a finite set	8
1.3. Morphisms of groups	10
1.4. Cosets and quotient groups	15
Problems (1–5)	18
2. Actions of Groups on Sets	21
2.1. Group actions	21
2.2. Orbits and stabilizers	27
2.3. Particular G-sets	28
2.4. Examples of group actions	31
Problems (6–10)	34
3. Euclidean Spaces	37
3.1. Inner product and norm	37
3.2. Open and closed sets	40
3.3. Continuity	42
3.4. Differentiation	45
Problems (11–15)	50
4. Matrix Groups	53
4.1. Matrix algebra	53
4.2. Matrix groups	56
4.3. Linear Lie groups: examples	58
4.4. Complex matrix groups as real matrix groups	71
Problems $(16-25)$	72
5. The Matrix Exponential	77
5.1. Definition and basic properties	77
5.2. Some useful formulas	82
5.3. The product and commutator formulas (optional)	87

Date: February 2018.

Key words and phrases. Group of transformations, symmetric group, group action, permutation representation, Euclidean space, linear Lie group, matrix exponential, Lie algebra.

C.C. REMSING

5.4. The adjoint action	91
Problems $(26-32)$	93
6. Lie Algebras	95
6.1. Tangent space to a linear Lie group	95
6.2. Lie algebras	99
6.3. Homomorphisms of Lie algebras	102
6.4. Lie algebras of linear Lie groups: examples	104
Problems $(33-44)$	111
7. Groups and Geometry (Optional)	115
7.1. Geometries	115
7.2. The "Erlanger Programm"	115
7.3. Classical geometries	115
7.4. Other geometries (in the sense of Klein)	115
References	115

2