Appendix B

Revision Problems

1. Define the term tautology. Determine whether the following propositions are tautologies.
(1) $p \wedge(p \rightarrow q) \rightarrow q$;
(2) $(p \rightarrow q) \wedge q \rightarrow p$.

Class test, March 1999
2. Suppose that p and q are propositions so that $p \vee q \rightarrow p$ is FALSE. Find the truth value of the following propositions :
(1) $(p \rightarrow q) \rightarrow(q \rightarrow p)$;
(2) $p \wedge(p \rightarrow q) \rightarrow q$.

Class test, March 2000

3. Write down the truth table for $p \rightarrow q$, and then determine whether the propositions

$$
(p \rightarrow q) \rightarrow r \quad \text { and } \quad p \rightarrow(q \rightarrow r)
$$

are logicaly equivalent.
Exam, November 2001
4. Determine whether the propositions

$$
(p \wedge q) \rightarrow r \quad \text { and } \quad(p \rightarrow r) \vee(q \rightarrow r)
$$

are logically equivalent.
Exam, June 2003
5. Define the logical operator \rightarrow and then show that the propositions

$$
(p \vee q) \rightarrow r \quad \text { and } \quad(p \rightarrow r) \wedge(q \rightarrow r)
$$

are logically equivalent
(a) using truth tables;
(b) using logical equivalences.

Class test, March 2004
6. Define the term tautology, and then determine whether the proposition

$$
p \wedge q \rightarrow(p \rightarrow q)
$$

is a tautology.
Exam, June 2004
7. The proposition " p nor q ", denoted by $p \downarrow q$, is the proposition that is TRUE when both p and q are FALSE, and is FALSE otherwise.
(a) Construct the truth table for the logical operator \downarrow.
(b) Show that

$$
p \downarrow p \Longleftrightarrow \neg p
$$

(c) Show (by using a truth table or otherwise) that the propositions

$$
(p \downarrow p) \downarrow(q \downarrow q) \quad \text { and } \quad p \wedge q
$$

are logically equivalent.
8.
(a) Construct the truth table for the logical operator \rightarrow.
(b) Determine whether the propositions

$$
p \wedge q \leftrightarrow q \quad \text { and } \quad q \rightarrow p
$$

are logically equivalent.

Supp Exam, February 2005

9.

(a) Suppose the variable x represents people, and $F(x): x$ is friendly, $\quad T(x): x$ is tall, $\quad A(x): x$ is angry.

Write each of the following statements using the above predicates and any needed quantifiers :
i. Some people are not angry.
ii. All tall people are friendly.
iii. No friendly people are angry.
(b) Write each of the following in good English. DO NOT use variables in your answers.
(1) $A($ Bill $)$;
(2) $\neg \exists x A(x) \wedge T(x)$;
(3) $\neg \forall x F(x)$.

Class test, March 2000

10. Consider the predicates :
$L(x, y) ; x<y, \quad Q(x, y): x=y, \quad E(x): x$ is even, $\quad G(x): x>0$, and $I(x): x$ is an integer,
where the variables x and y represent real numbers. Write the following statements using the above predicates and any needed quantifiers :
(a) Every integer is even.
(b) If $x<y$, then x is not equal to y.
(c) There is no largest number.
(d) Some real numbers are not positive.
(e) No even integers are odd.

Exam, June 2000
11. Let $B(x), G(x), S(x)$, and $L(x, y)$ be the open sentences " x is a boy", " x is a girl", " x likes soccer", and " x likes y ", respectively.
(a) Use quantifiers and these predicates to express
i. "Every boy likes some girl".
ii. "All boys like all girls who like soccer".
(b) In plain English negate the sentences (i) and (ii).
(c) Use quantifiers and predicates to express the negated sentences. Simplify each expression so that no quantifier or implication remains negated.
12. Explain the terms converse and contrapositive of a conditional $p \rightarrow q$. Consider the proposition "Alice will win the game only if she plays by the rules."
(a) Restate this proposition in good English in three different equivalent ways.
(b) State the converse of this proposition.
(c) State the contrapositive of this proposition.
(d) Suppose that Alice plays by the rules but loses. Determine with justification whether the original proposition is TRUE or FALSE.
13. Consider the predicate

$$
P(x, y): x+2 y=x y
$$

where the variables x and y represent real numbers. Determine with justification the truth values of the following propositions :
(a) $P(1,-1)$;
(b) $\forall x \exists y P(x, y)$;
(c) $\forall y \exists x P(x, y)$;
(d) $\exists x \exists y P(x, y)$;
(e) $\neg \forall x \exists y \neg P(x, y)$.

Class test, March 2004

14. Consider the predicate

$$
P(x, y): x^{2}+4 y^{2}=4 x y
$$

where the variables x and y represent real numbers. Determine with justification the truth values of the propositions :

$$
\text { (1) } \forall x \exists y P(x, y) \quad \text { and } \quad(2) \quad \neg \exists y \forall y \neg P(x, y) \text {. }
$$

Exam, June 2004
15. Consider the predicate

$$
T(x, y): x \text { is taking } y
$$

where the variable x represents students and the variable y represents courses. Use quantifiers to express each of the following statements :
(a) No student is taking all courses.
(b) There is a course that no students are taking.
(c) Some students are taking no courses.
(d) Every student is being taken by at least one student.

Class test, August 2004

16. Consider the predicate
$A(x): x$ is aggressive, $\quad S(x): x$ is short, $\quad T(x): x$ is talkative
where the variable x represents people. Write the following statements using the above predicate and any needed quantifiers :
(a) Some short people are not talkative.
(b) All talkative people are aggressive.
(c) No aggressive people are short.

Exam, November 2004
17. Investigate for injectivity, surjectivity, and bijectivity the function

$$
f: \mathbb{R} \rightarrow \mathbb{Z}, \quad x \mapsto\lfloor x+2\rfloor-\lfloor x\rfloor+\frac{x}{2}
$$

Class test, March 1999

18. TRUE or FALSE ? Motivate your answers.
(a) If A, B are sets, then $A \backslash B=A \backslash(A \cap B)$.
(b) If A, B, C are sets and $A \cup C=B \cup C$, then $A=B$.
(c) The function $f: \mathbb{Z} \rightarrow \mathbb{Z}, \quad f(x)=2\left\lfloor\frac{x}{2}\right\rfloor$ is one-to-one.
(d) The function $g: \mathbb{N} \rightarrow \mathbb{N}, \quad g(n)=n$! is not onto.

Exam, June 1999
19. Let $A=\{1,2,3,4,5\}$.
(a) Write all the subsets of A which contain the set $\{2,5\}$.
(b) Write all the subsets B of A such that $B \cap\{2,5\}=\{5\}$.
20. Prove that for any sets A and B

$$
(A \cap B) \cup\left(A \cap B^{c}\right)=A
$$

Class test, March 2001
21. Prove or disprove : If A, B, C are sets, then

$$
(A \cup B) \cap C=A \cup(B \cap C)
$$

Class test, August 2004

22. Let $A=\mathbb{R} \backslash\{1\}$ and consider the function

$$
f: A \rightarrow A, \quad x \mapsto \frac{x+1}{x-1}
$$

(a) Determine $f(-2), f(-1), f(0)$, and $f\left(\frac{1}{3}\right)$.
(b) Investigate the function for injectivity and surjectivity.
(c) If the function is bijective, find its inverse.
(d) Find $f \circ f$ and $f \circ f \circ f$.

Class test, March 2001

23. TRUE or FALSE ? Motivate your answers.
(a) If A, B are sets, then $A \backslash(A \backslash B)=A \cap B$.
(b) If A, B are finite sets, then $|A \cup B|=|A|+|B|$.
(c) If A is a finite set, then any function $f: A \rightarrow A$ that is one-to-one is also onto.
(d) The function $g: \mathbb{N} \rightarrow \mathbb{N}, \quad n \mapsto 2 n+1$ is one-to-one but not onto.
24. Consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)= \begin{cases}x^{2} & \text { if } x \geq 0 \\ 2 x & \text { if } x<0\end{cases}
$$

Sketch the graph of f and then investigate the function for injectivity and surjectivity. If the function is invertible, find its inverse.

Class test, March 2000

25. Let $A=\{1,2,3,4\}$ and $B=\{\alpha, \beta\}$.
(a) Give an example of a function $f: A \rightarrow B$ that is a surjection but not an injection, and then explain why it meets these conditions.
(b) State the domain, codomain, and range of the function you gave in part (a). Is your function invertible ?
(c) Construct two different invertible functions from the set A onto the set (Cartesian product) $B \times B$. How many such functions are there?

Class test, March 2003

26. TRUE or FALSE ? Justify your answers.
(a) The number 0 is an element of \emptyset.
(b) $\emptyset=\{\emptyset\}$.
(c) $\emptyset \in\{\emptyset\}$.
(d) If A, B, C are sets and $A \backslash C=B \backslash C$, then $A=B$.
(e) For all sets A and B, if $A \cap B=\emptyset$ then $A \times B=\emptyset$.
(f) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are one-to-one, then $g \circ f: A \rightarrow C$ is also one-to-one.
(g) $\{a, b\}=\{b, a\}$.
(h) $\{a\} \subseteq\{\{a\}\}$.
(i) The power set of $\{\emptyset\}$ is $\{\{\emptyset\}\}$.
(j) The function $g:\{a, b, c\} \rightarrow\{1,2,3\}, \quad a \mapsto 2, b \mapsto 1, c \mapsto 3$ is invertible.
(k) There exists a function $f:\{1,2,3\} \rightarrow\{N, O, P, E\}$ which is onto.
(1) If $A, B, C \in 2^{X}$, then

$$
A \backslash(B \backslash C)=(A \backslash B) \cup(A \cap C)
$$

27. TRUE or FALSE ? Justify your answers.
(a) $\emptyset \in\{\emptyset\}$ and $\emptyset \subseteq\{\emptyset\}$.
(b) For A, B, C sets, $A \backslash(B \cap B)=(A \backslash B) \cup(A \backslash C)$.
(c) For A, B sets, if $A \backslash B=\emptyset$, then $A=B$.
(d) The function $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, f(x)=\frac{x-1}{x}$ is invertible.
(e) If $f: A \rightarrow B$ and $g: B \rightarrow C$ are both one-to-one functions, then the composite function $g \circ f: A \rightarrow C$ is also one-to-one.

Class test, March 2004

28. TRUE or FALSE ? Justify your answers.
(a) $\emptyset \in\{\emptyset\}$.
(b) For A, B sets, if $A \cup B=A \cap B$, then $A=B$.
(c) The function $f: \mathbb{R} \rightarrow \mathbb{R}, x \mapsto(x-1)^{3}$ is one-to-one but not onto.

Exam, June 2004
29. Let $x \in \mathbb{R}$ and $n \in \mathbb{Z}$. Recall the definitions of the floor function and the ceiling function, and then show that
(a) $\lfloor x\rfloor \leq x<\lfloor x\rfloor+1 \quad$ (or, equivalently, $0 \leq x-\lfloor x\rfloor<1$).
(b) $\lceil x\rceil-1<x \leq\lceil x\rceil$ (or, equivalently, $0 \leq\lceil x\rceil-x<1$).
(c) $\lceil x\rceil+\lfloor-x\rfloor=0$.
(d) $\lfloor x+n\rfloor=\lfloor x\rfloor+n$.
(e) $\lfloor 2 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{2}\right\rfloor$.
30. Consider the function

$$
f: \mathbb{R} \rightarrow \mathbb{Z}, \quad x \mapsto\lfloor 1-x\rfloor:=\max \{n \in \mathbb{Z} \mid n \leq 1-x\} .
$$

(a) Determine $f(-1), f(0), f\left(\frac{1}{2}\right)$, and $f(1)$.
(b) Sketch the graph of f.
(c) Explain what is meant by saying that a function is injective (or one-to-one), surjective (or onto). Hence determine with justification whether function f is injective or/and surjective.

Class test, August 2004

31. Let $a, b, c, d \in \mathbb{R}$. Prove that
(a) $a^{2}+b^{2} \geq 2 a b$ with equality if and only if $a=b$.
(b) If $a+b+c \geq 0$, then

$$
a^{3}+b^{3}+c^{3} \geq 3 a b c
$$

with equality if and only if $a=b=c$ or $a+b+c=0$.
(c) If $a, b, c, d \geq 0$, then

$$
a^{4}+b^{4}+c^{4}+d^{4} \geq 4 a b c d
$$

with equality if and only if $a=b=c=d$.
[Hint: (b) Expand the product

$$
(a+b+c)\left(a^{2}+b^{2}+c^{2}-a b-b c-c a\right) .
$$

(c) Write

$$
\left.\frac{a^{4}+b^{4}+c^{4}+d^{4}}{4}=\frac{\frac{a^{4}+b^{4}}{2}+\frac{c^{4}+d^{4}}{2}}{2} \cdot\right]
$$

32. Let $a, b, c, a_{1}, a_{2}, a_{3}, b_{1}, b_{2}, b_{3} \in \mathbb{R}$. Prove that :
(a) (Mean inequalities) If $0<a \leq b \leq c$, then

$$
a \leq \frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}} \leq \sqrt[3]{a b c} \leq \frac{a+b+c}{3} \leq \sqrt{\frac{a^{2}+b^{2}+c^{2}}{3}} \leq c
$$

with equality if and only if $a=b=c$.
(b) (Cauchy-Schwarz inequality)

$$
\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)^{2} \leq\left(a_{1}^{2}+a_{2}^{2}+a_{3}^{2}\right)\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)
$$

with equality if and only if $a_{1}=r b_{1}, a_{2}=r b_{2}$ and $a_{3}=r b_{3} \quad(r \in$ $\mathbb{R})$.
(c) (Chebyshev inequality) If $a_{1} \leq a_{2} \leq a_{3}$ and $b_{1} \leq b_{2} \leq b_{3}$, then

$$
\left(a_{1}+a_{2}+a_{3}\right)\left(b_{1}+b_{2}+b_{3}\right) \leq 3\left(a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}\right)
$$

with equality if and only if $a_{1}=a_{2}=a_{3}$ and $b_{1}=b_{2}=b_{3}$.
33. Let $x, y \in \mathbb{R}$. Recall the definition of the absolute value function and then show that
(a) $|x| \geq 0 ;|x|=0 \Longleftrightarrow x=0$.
(b) $|x y|=|x||y|$.
(c) $|x+y| \leq|x|+|y|$.
(d) $||x|-|y|| \leq|x-y|$.
34. Let $a, b, c \in \mathbb{R}$ such that $1 \leq a$ and $b \leq c$. Prove that

$$
(1+a)(b+c) \leq 2(b+a c)
$$

with equality if and only if $a=1$ or $b=c$.
35. Let $\alpha, \beta \in S_{5}$ be given by

$$
\alpha=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 5 & 2 & 1
\end{array}\right] \quad \text { and } \quad \beta=(1,2,4)(3,5) .
$$

(a) Write the permutation α in cycle form.
(b) Calculate

$$
\alpha \beta, \quad \beta \alpha, \quad \alpha^{2}, \quad \beta^{-1}, \quad \text { and } \quad \beta^{-1} \alpha^{-1} .
$$

(c) Determine the signature of

$$
\alpha, \quad \alpha^{2}, \quad \text { and } \quad(\alpha \beta)^{-1} .
$$

Class test, May 2001

36. Write all permutations on three elements in cycle form, and then find all permutations $\alpha \in S_{3}$ such that $\alpha^{2}=(1,2,3)$.

Class test, May 2001

37. Define the term permutation on n elements and then explain what is meant by the cycle notation. Consider the permutation $\alpha=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2\end{array}\right]$.
(a) Write α, α^{2}, and α^{-1} in cycle form.
(b) Determine the permutation σ so that $\alpha \sigma=\alpha^{-1}$.

Class test, March 2003

38.

(a) Define the term permutation on n elements and then explain what is meant by the cycle notation.
(b) Consider the permutation $\alpha=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 4 & 5 & 3\end{array}\right]$.
i. Write α, α^{2}, and α^{-1} in cycle form.
ii. Determine the permutation π so that $\alpha \pi=\alpha^{-1}$.

Class test, March 2004

39. Consider the permutations (on five elements)

$$
\alpha=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
2 & 1 & 4 & 3 & 5
\end{array}\right] \quad \text { and } \beta=\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 5 \\
3 & 4 & 1 & 5 & 2
\end{array}\right]
$$

Write each of the permutations

$$
\alpha, \beta, \alpha \beta, \alpha^{2}, \quad \text { and } \quad \beta^{-1}
$$

in cycle form.
Exam, June 2004
40. Calculate the sum

$$
S_{n}=\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\frac{1}{3 \cdot 4}+\cdots+\frac{1}{n \cdot(n+1)}
$$

for $n=1,2,3,4$, and 5 . Guess a general formula for S_{n}, and then prove by mathematical induction this formula.

Class test, March 1999
41. Calculate the sum

$$
S_{n}=\frac{2}{3}+\frac{2}{3^{2}}+\frac{2}{3^{3}}+\cdots+\frac{2}{3^{n}}
$$

for $n=1,2,3$, and 4 . Guess a general formula for S_{n}, and then prove this formula by mathematical induction.

Exam, June 1999
42. For which natural numbers n is $n!>2^{n}$? Prove your answer using mathematical induction.
43. Calculate the sum

$$
S_{n}=\frac{1}{n^{2}}+\frac{3}{n^{2}}+\frac{5}{n^{2}}+\cdots+\frac{2 n-1}{n^{2}}
$$

for $n=1,2,3$, and 4 . Guess a general formula for S_{n}, and then prove this formula by mathematical induction.

Exam, June 2000
44.
(a) Write the sum

$$
S=\frac{1}{3}-\frac{2}{5}+\frac{3}{7}-\frac{4}{9} \cdots+\frac{99}{199}
$$

in sigma notation; that is in the form $\sum_{i=i_{0}}^{N} a_{i}$.
(b) Find

$$
T=\sum_{i=1}^{199}(2 i+1) .
$$

Class test, May 2001
45. Use mathematical induction to prove that

$$
n(n+1)(n+2) \quad \text { is divisible by } 6
$$

for every positive integer n.
Class test, May 2001
46. Calculate the sum

$$
S_{n}=\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\cdots+\frac{1}{(2 n-1) \cdot(2 n+1)}
$$

for $n=1,2,3,4$ and 5 . Guess a general formula for S_{n}, and then prove this formula by mathematical induction.
47. Prove by mathematical induction that

$$
5^{n}-1 \vdots 4
$$

for any natural number n.
Class test, March 2003
48. Prove by mathematical induction that

$$
3^{2 n-1}+4^{2 n-1} \vdots 7
$$

for any positive integer number n.
49. Consider the sum

$$
S_{n}=4 \cdot 7+7 \cdot 10+10 \cdot 13+13 \cdot 16+\cdots \quad \text { to } n \text { terms. }
$$

(a) What is the $n^{\text {th }}$ term of S_{n} ?
(b) Calculate the sum.
(c) Use mathematical induction to verify your result.

Class test, March 2003

50. Prove by mathematical induction that

$$
1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}=2\left(1-\frac{1}{2^{n+1}}\right)
$$

for all natural numbers n.
Exam, June 2003
51. Let $a, b \in \mathbb{R}$.
(a) Prove that

$$
\frac{a+b}{2} \leq \sqrt{\frac{a^{2}+b^{2}}{2}}
$$

with equality if and only if $a=b$.
(b) Use mathematical induction to prove that

$$
\left(\frac{a+b}{2}\right)^{n} \leq \frac{a^{n}+b^{n}}{2}
$$

for all natural numbers n.

Exam, June 2003
52.
(a) Explain the notation n ! (read:" n factorial"), and then compare the numbers 3^{6} and $6!$.
(b) Prove by mathematical induction that

$$
3^{n}<n!\text { for all integers } n \geq 7
$$

Class test, May 2004
53. Explain the notation $a \vdots b$ (read : " a is divisible by b "), and then prove by mathematical induction that

$$
n^{3}-n \vdots 6 \text { for all integers } n \geq 1
$$

Exam, June 2004
54. Consider the sum

$$
S_{n}=3 \cdot 5+5 \cdot 7+7 \cdot 9+9 \cdot 11+\cdots \quad \text { to } n \text { terms. }
$$

(a) What is the $n^{\text {th }}$ term of S_{n} ?
(b) Calculate the sum. (Hint : You may use the sums $\sum_{k=1}^{n} k$ and $\left.\sum_{k=1}^{n} k^{2}.\right)$
(c) Use mathematical induction to verify your result.
55.
(a) Explain the notation $\sum_{i=p}^{q} a_{i}$, and then calculate (the sum)

$$
S_{n}=\sum_{i=1}^{n}(2 i-1)
$$

(Hint: You may use the formula $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$.)
(b) Use mathematical induction to verify your result.

Exam, June 2004
56. Consider the sum

$$
S_{n}=4+7+10+13+\cdots \quad \text { to } n \text { terms. }
$$

(a) What is the $n^{\text {th }}$ term of S_{n} ?
(b) Calculate the sum. (Hint : You may use the sum $\sum_{i=1}^{n} i$.)
(c) Use mathematical induction to verify your result.

Class test, October 2004

57. Prove by mathematical induction that

$$
3^{2 n+1}+4^{2 n+1} \quad \text { is divisible by } 7
$$

for all natural numbers n.
Class test, October 2004
58. Consider the sum

$$
S_{n}=\sum_{k=1}^{n}(3 k+2) .
$$

(a) Calculate the sum. (Hint : You may use the formula $\sum_{k=1}^{n} k=$ $\frac{n(n+1)}{2}$.)
(b) Use mathematical induction to verify your result.

Exam, November 2004

59. Using only the digits $1,2,3,4,5,6$, and 7 , how many five-digit numbers can be formed that satisfy the following conditions ?
(a) no additional conditions ;
(b) at least one 7 ;
(c) no repeated digits ;
(d) at least one 1 and at least one 7 .

Class test, May 1999

60. How many solutions are there to the equation

$$
x+y+z=100
$$

if x, y, z are natural numbers?

Class test, May 1999

61. Consider a group of 12 people consisting of 7 men and 5 women. How many 5 -person teams can be chosen
(a) that contain 3 men and 2 women ?
(b) that contain at least one man ?
(c) that contain at most one man ?
(d) if a certain pair of people insist on been selected together or not at all?
(e) if a certain pair of people refuse to be selected together ?
62. How many positive integers not exceeding 1000 are not divisible by either 8 or 12 ?
63.

(a) How many functions are there from a set with 3 elements to a set with 8 elements?
(b) How many one-to-one functions are there from a set with 3 elements to a set with 8 elements?
(c) How many onto functions are there from a set with 3 elements to a set with 8 elements ?
(d) What is the coefficient of $x^{3} y^{8}$ in $(x+y)^{11}$ and $(2 x+3 y)^{11}$?

Class test, May 2000

64. How many ways are there to assign six jobs to four employees so that every employee is assigned at least one job ?

Class test, May 2000
65.
(a) Evaluate $\binom{4}{2}$ by listing all sets of size 2 whose elements belong to the set $\{a, b, c, d\}$.
(b) Evaluate $\left(\begin{array}{l}\binom{2}{4} \text {) by listing all multisets of size } 4 \text { whose elements }\end{array}\right.$ belong to the set $\{0,1\}$.
(c) List all 2-permutations with repetition of the set $\{0,1, a, b\}$.

Exam, June 2001
66. Determine the number of bit strings of length 10 that have
(a) exactly three 0s.
(b) the same number of 0 s and 1 s .
(c) at least seven 1 s .

Exam, June 2001
67.
(a) Consider the set $S=\{0,1, a, b\}$. List all

- 2-permutations
- 3 -combinations
- 2-permutations with repetition
- 3 -combinations with repetition.
of the set S.
(b) A person giving a party wants to set out 10 assorted cans of soft drink for his guests. He shops at a store that sells 5 different types of soft drinks. Use multisets to count how many selections of 10 soft drinks he can make.

Exam, June 2003
68. Explain what is meant by a bit string, and then determine the number of bit strings of length eight that
(a) have exactly three 0 s ;
(b) start and end with an 1;
(c) have at least six 1s.

Exam, June 2004
69.
(a) How many integers from 1 to 1000 are divisible by 3 ?
(b) How many integers from 1 to 1000 are divisible by 3 and 7 ?
(c) How many integers from 1 to 1000 are divisible by 3 or 7 ?
(d) How many three-digit integers (i.e. integers from 100 through 999) are divisible by 6 and 9 ?

Class test, October 2004
70. How many different committees of four can be selected from a group of twelve people if
(a) a certain pair of people insist on serving together or not at all ?
(b) a certain pair of people refuse to serve together ?

Class test, October 2004
71. How many different committees of six can be selected from a group of four men and four women
(a) that consist of three men and three women ?
(b) that consist of at least one woman ?
(c) that consist of at most one man ?

Supp Exam, February 2005
72. Find :
(a) the coefficient of $x^{5} y^{6}$ in the expansion of $(2 x-y)^{11}$.
(b) the middle term in the expansion of $(1-a)^{14}$.
(c) the largest coefficient in the expansion of $(x+2)^{7}$.
(d) $\binom{20}{1}+\binom{20}{2}+\binom{20}{3}+\cdots+\binom{20}{19}$.

Class test, May 1999
73. TRUE or FALSE ?
(a) The coefficient of $x^{2} y^{9}$ in the expansion of $(x+y)^{11}$ is 55.
(b) The middle term in the expansion of $\left(a-\frac{1}{a}\right)^{12}$ is -264 .
(c) The largest coefficient in the expansion of $\left(x+\frac{1}{x}\right)^{7}$ is 35 .

Exam, June 2001
74. Write down the binomial formula, and then use this formula to
(a) expand $(x-y)^{5}$;
(b) find the middle term in the expansion of $(2-a)^{10}$;
(c) calculate the sum

$$
\binom{50}{0}+\binom{50}{1}+\binom{50}{2}+\cdots+\binom{50}{50} .
$$

Exam, June 2004
75. Describe the sequence $\left(a_{n}\right)_{n \geq 0}: 0,1,0,1,0,1, \ldots$ recursively (include initial conditions) and then find an explicit formula for the sequence.

Class test, May 1999

76. Consider the sequence (of decimal fractions)

$$
a_{1}=0.1, \quad a_{2}=0.11, \quad a_{3}=0.111, \quad a_{4}=0.1111, \quad \ldots
$$

(a) Observe that

$$
a_{1}=\frac{1}{10} ; \quad a_{2}=\frac{1}{10}+\frac{1}{100} ; \quad a_{3}=\frac{1}{10}+\frac{1}{100}+\frac{1}{1000} .
$$

Hence express a_{n} as a sum (of n terms).
(b) Show that

$$
a_{n}=\frac{1}{9}\left(1-\frac{1}{10^{n}}\right)
$$

(c) Describe the sequence $\left(a_{n}\right)_{n \geq 1}$ recursively. (Include initial conditions.)
77. Describe the sequence

$$
1,11,111,1111,11111, \cdots
$$

recursively. (Include initial conditions.)
Supp Exam, February 2005
78. Solve the following recurrence relation :

$$
a_{n}=a_{n-2}+n ; \quad a_{0}=1, a_{1}=2
$$

Exam, June 1999
79. Let d_{n} denote the number of people infected by a disease and suppose that the change in the number infected in any period is proportional to the change in the number infected in the previous period. Show that there exists some constant k such that

$$
d_{n+2}-d_{n+1}=k\left(d_{n+1}-d_{n}\right)
$$

Obtain an expression for d_{n} (in terms of d_{0} and d_{1}) for $k=2$.
Exam, June 1999
80.
(a) Find a recurrence relation of the number of ways to climb n stairs if stairs can be climbed two or three at a time.
(b) What are the initial conditions ?
(c) How many ways are there to climb eight stairs ?

Class test, May 2000

81. Find the solution of the recurrence relation

$$
a_{n}=\frac{1}{2} a_{n-2} ; \quad a_{0}=a_{1}=1
$$

and then determine a_{20}.
82. Solve the recurrence relation:

$$
a_{n}=a_{n-2}+n ; \quad a_{0}=1, a_{1}=\frac{7}{4} .
$$

Exam, June 2000
83. Solve the following recurrence relation :

$$
F_{n}=F_{n-1}+F_{n-2} ; \quad F_{0}=1, F_{1}=0 .
$$

Exam, June 2001
84.
(a) Find a recurrence relation for the number of bit strings of length n that contain three consecutive 0s.
(b) What are the initial conditions ?
(c) How many bit strings of length seven contain three consecutive 0 ?

Exam, June 2001
85. Solve the following recurrence relation :

$$
a_{n}=2 a_{n-1}-a_{n-2}+2^{n} ; \quad a_{0}=4, a_{1}=9
$$

86.

(a) Find a recurrence relation for the number of bit strings of length n that do not contain the pattern 11.
(b) What are the initial conditions ?
(c) How many bit strings of length eight do not contain the pattern 11 ?
87. Let R_{n} denote the maximum number of regions into which n straight lines can cut a plane.
(a) Find the values of R_{0}, R_{1}, R_{2}, and R_{3}.
(b) Show that R_{n} satisfies the recurrence relation

$$
R_{n}=R_{n-1}+n .
$$

Give reasons for your answer.
(c) Solve this recurrence relation.
88. Solve the recurrence relation

$$
a_{n}=-2 a_{n-1}-a_{n-2}+n ; \quad a_{0}=\frac{1}{4} \text { and } a_{1}=\frac{1}{2} .
$$

(Hint : Try a particular solution of the form $A n+B$.)
Exam, June 2004
89. Solve the recurrence relation

$$
a_{n}=a_{n-1}+10^{-n}, \quad a_{1}=10^{-1} .
$$

(Hint : Try for a particular solution of the form $K \cdot 10^{-n}$.)

Class test, October 2004

90. Use Gaussian elimination to solve the linear system :

$$
\begin{aligned}
x-2 y+3 z & =7 \\
2 x-3 y-z & =6 \\
x-3 y+10 z & =15
\end{aligned}
$$

and then give a geometric interpretation.
91. Use Gaussian elimination to solve the linear system :

$$
\begin{aligned}
x+5 y & =12 \\
3 x-7 y & =14 \\
2 x-4 y & =10
\end{aligned}
$$

and then give a geometric interpretation.
Exam, June 2000
92. Use Gaussian elimination to solve the following linear system :

$$
\begin{aligned}
2 x+2 y+z & =3 \\
x+y+3 z & =-1 \\
3 x+3 y+4 z & =2
\end{aligned}
$$

Exam, November 2001
93. Explain what is meant by linear system and then use Gaussian elimination to solve the linear system :

$$
\begin{aligned}
3 x+y+z & =0 \\
x-2 y+3 z & =7 \\
2 x+y-z & =-1 \\
-x-4 y+5 z & =11
\end{aligned}
$$

Class test, May 2003
94. Use Gaussian elimination to solve the following linear system :

$$
\begin{aligned}
x+y+z & =2 \\
2 x+3 y+z & =-1 \\
3 x+y+2 z & =7 \\
x-2 y+z & =8 .
\end{aligned}
$$

95. Use Gaussian elimination to solve the linear system

$$
\begin{aligned}
2 x-y+3 z & =0 \\
x+4 y-z & =1 \\
x+13 y-6 z & =3
\end{aligned}
$$

Class test, May 2004
96. Consider the linear system

$$
\begin{aligned}
x-2 y+3 z & =0 \\
3 x+y-z & =1 \\
x+5 y-7 z & =k
\end{aligned}
$$

Determine for what values of the parameter $k \in \mathbb{R}$ the given system is consistent. If so, solve the system (by using Gaussian elimination).

Exam, June 2004
97. Consider the linear system

$$
\begin{aligned}
x-y+4 z & =-2 \\
2 x-y-5 z & =0 \\
x-2 y+7 z & =k
\end{aligned}
$$

(a) Determine for what values of the parameter $k \in \mathbb{R}$ the given system has at least one solution.
(b) Solve the system for those values of k determined in (a).

Supp Exam, February 2005

98. Find the inverse of the following matrix :

$$
A=\left[\begin{array}{ccc}
\frac{\sqrt{3}}{2} & -\frac{1}{2} & 0 \\
\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Use A^{-1} to solve the equation $A x=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.
Exam, June 1999
99. Evaluate the determinant

$$
\left|\begin{array}{llll}
0 & 1 & 2 & 3 \\
3 & 0 & 1 & 2 \\
2 & 3 & 0 & 1 \\
1 & 2 & 3 & 0
\end{array}\right| .
$$

Exam, June 1999
100. Consider the matrix

$$
A(x)=\left[\begin{array}{lll}
0 & 1 & x \\
1 & x & x \\
x & x & x
\end{array}\right]
$$

(a) Find all values of $x \in \mathbb{R}$ such that $A(x)$ is invertible.
(b) Compute the inverse of the matrix $A(2)$.

Class test, May 2000
101. Given the matrix $B=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3\end{array}\right]$, find all matrices A such that

$$
B A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

How many solutions A does this problem have?
Exam, June 2000
102. Find $\lambda \in \mathbb{R}$ such that the matrix

$$
A=\lambda\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]-\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

is not invertible (i.e. $\operatorname{det}(A)=0$).
Exam, June 2000
103. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 4 & 5 \\
0 & 0 & 6
\end{array}\right]
$$

(a) Find the inverse A^{-1}.
(b) Show that your answer in (a) is correct without repeating the same calculation.
(c) Use A^{-1} to solve the linear system :

$$
\begin{aligned}
x+2 y+3 z & =0 \\
4 y+5 z & =-3 \\
6 z & =6 .
\end{aligned}
$$

Class test, August 2001
104. Let

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
2 & -5 & 4
\end{array}\right] \quad \text { and } \quad I_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Find all values $\lambda \in \mathbb{R}$ such that the matrix $A-\lambda I_{3}$ is not invertible.
105. Evaluate the determinant :

$$
\left|\begin{array}{cccc}
0 & -1 & 7 & 8 \\
1 & 0 & -1 & 9 \\
2 & 3 & 0 & -1 \\
4 & 5 & 6 & 0
\end{array}\right|
$$

106. Consider the matrices

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & -4 & -4
\end{array}\right] \quad \text { and } \quad E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

(a) Calculate $A^{2}, 2 E-A$, $\operatorname{det}(A)$, and $\operatorname{det}(2 E-A)$.
(b) Is matrix A invertible ? Explain.
(c) Is matrix $2 E-A$ invertible? Explain.
(d) Find the inverse matrix $(2 E-A)^{-1}$.

Exam, November 2001
107. Give the definition of the determinant of an $n \times n$ matrix and then evaluate the determinants

$$
\left|\begin{array}{lll}
a & b & c \\
b & c & a \\
c & a & b
\end{array}\right| \text { and }\left|\begin{array}{cccc}
a & b & 0 & 0 \\
c & d & 0 & 0 \\
0 & 0 & a & b \\
0 & 0 & c & d
\end{array}\right| .
$$

108. Consider the matrices

$$
A=\left[\begin{array}{lll}
0 & 1 & 6 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right], \quad B=\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right], \quad \text { and } \quad C=\left[\begin{array}{lll}
1 & 1 & 2
\end{array}\right] .
$$

(a) Compute the matrices $A^{2}, A^{3}, C B$, and $A+B C$.
(b) Find the inverse $(A+B C)^{-1}$.
(c) Show that your answer in (b) is correct without repeating the same calculation.
(d) Let

$$
E(t):=I+t A+\frac{t^{2}}{2} A^{2} \quad(t \in \mathbb{R})
$$

where I is the identity matrix. Determine (by direct computation) whether the following equality holds for every $t, s \in \mathbb{R}$

$$
E(t+s)=E(t) E(s)
$$

Class test, May 2003
109. Show (by direct computation) that

$$
\left|\begin{array}{llll}
x & y & z & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right|=x+y+z+1
$$

Give a geometric interpretation.
Exam, June 2003
110. Consider the matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 2
\end{array}\right], \quad B=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \text { and } \quad C=[-17-1] .
$$

(a) Find $A^{2}, A+B C$, and $C B$.
(b) Explain the notation A^{T} (read: " A transpose"), and then compute the matrix $A A^{T}-A^{T} A$.
(c) Is matrix A invertible ? If so, find its inverse A^{-1}.

Class test, May 2004

111. Use Gaussian elimination and Laplace expansion to evaluate - in two different ways - the determinant

$$
\left|\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & -1 & 0 \\
2 & 4 & 0 & -1 \\
3 & 5 & 6 & 0
\end{array}\right|
$$

112. Explain what is meant by saying that two (square) matrices commute, and then find all 2×2 matrices X which commute with $\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$.

Exam, June 2004
113. Use Gaussian elimination and Laplace expansion to evaluate - in two different ways - the determinant

$$
\left|\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 0 & 5 & 0 \\
3 & 7 & 8 & 9 \\
4 & 0 & 10 & 6
\end{array}\right| .
$$

Exam, June 2004
114.
(a) Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 3 & 2 \\
3 & 0 & 1
\end{array}\right] .
$$

(b) Use the matrix A^{-1} to solve (for X) the equation

$$
A X=\left[\begin{array}{l}
3 \\
1 \\
2
\end{array}\right]
$$

(The unknown X is a 3×1 matrix.)
(c) Use Cramer's rule to solve the linear system

$$
\begin{aligned}
x+2 y & =3 \\
3 y+2 z & =1 \\
3 x+z & =2 .
\end{aligned}
$$

115. Consider the matrices

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] .
$$

(a) Calculate

$$
I+A^{2}, \quad(I+A)^{2}, \quad I+A^{-1} \quad \text { and } \quad(I+A)^{-1}
$$

(b) Determine the inverse of the matrix

$$
\left[\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

116. Consider the matrices

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \quad \text { and } \quad B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] .
$$

Calculate
(a) $A^{-1}+B^{-1}$.
(b) $(A+B)^{-1}$.
(c) $A B+B A$.
(d) $A^{2}+B^{2}$.
(e) $(A+B)^{2}$.
117. Calculate the determinant

$$
\left|\begin{array}{cccc}
0 & -1 & 2 & 3 \\
1 & 0 & -4 & 0 \\
-2 & 4 & 0 & -5 \\
-3 & 0 & 5 & 0
\end{array}\right| .
$$

118. Evaluate the determinant

$$
\left|\begin{array}{cccc}
0 & -1 & \alpha & 2 \\
1 & 0 & -1 & 0 \\
-\alpha & 1 & 0 & -1 \\
-2 & 0 & 1 & 0
\end{array}\right| .
$$

119. Let $a, b \in \mathbb{R}$ such that $a+b \neq 0$. Use Cramer's rule to solve for x, y, and z (in terms of a and b)

$$
\begin{aligned}
& a x+b y=1 \\
& a y+b z=1 \\
& a z+b x=1 .
\end{aligned}
$$

Exam, November 2001

120. Let $u, v \in \mathbb{R} \backslash\{1\}$ such that $u \neq v$. Use Cramer's rule to solve for x, y, and z (in terms of u and v)

$$
\begin{aligned}
x+u y+v z & =1 \\
y+u z+v x & =-1 \\
z+u x+v y & =0 .
\end{aligned}
$$

121. Use Cramer's rule to solve for x, y, and z (in terms of u, v, and w)

$$
\begin{aligned}
-x+y+z & =u \\
x-y+z & =v \\
x+y-z & =w
\end{aligned}
$$

Class test, May 2003
122. Let $\theta \in \mathbb{R}$. Use Cramer's rule to solve for x, y, and z (in terms of u, v, and w)

$$
\begin{aligned}
x & =u \\
(\cos \theta) y-(\sin \theta) z & =v \\
(\sin \theta)+(\cos \theta) z & =w
\end{aligned}
$$

Exam, June 2004
123. Let $u, v, w \in \mathbb{R}$ such that $u v w \neq-1$. Use Cramer's rule to solve for x, y, and z (in terms of u, v, and $w)$

$$
\begin{aligned}
x+u y & =1 \\
y+v z & =0 \\
z+w x & =0
\end{aligned}
$$

Exam, November 2004

124. Let $a, b, c \in \mathbb{R}$ such that $a b c \neq-1$. Use Cramer's rule to solve for x, y, and z (in terms of a, b, and c)

$$
\begin{aligned}
x+b y & =c \\
y+c z & =a \\
z+a x & =b
\end{aligned}
$$

125. TRUE or FALSE ?
(a) The matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right]$ is invertible.
(b) The vectors $\left[\begin{array}{c}4 \\ -6 \\ -10\end{array}\right]$ and $\left[\begin{array}{c}-6 \\ 9 \\ 15\end{array}\right]$ are collinear.
(c) The equations

$$
\vec{r}=\left[\begin{array}{c}
7 \\
2 \\
-3
\end{array}\right]+t\left[\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right] \quad \text { and } \quad \frac{x-1}{-6}=\frac{y}{-2}=\frac{z+1}{2}
$$

represent the same line.
126. Consider the vectors

$$
\vec{u}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
-6 \\
0 \\
3
\end{array}\right] .
$$

(a) Use the dot product to find the angle between \vec{u} and \vec{v}.
(b) Use the cross product to find a vector \vec{w} orthogonal to both \vec{u} and \vec{v} and such that $\|\vec{w}\|=3$.
127. TRUE or FALSE ?
(a) The points $A=(1,2,-1), B=(4,2,0), C=(-2,-2,-2)$ are collinear.
(b) The lines $x=1+2 t, y=2 t, z=1-t$ and $\frac{x+1}{2}=\frac{y+2}{2}=\frac{z}{1}$ are parallel.
(c) The distance from the point $(1,-1,1)$ to the plane $x+y+z=3$ is $\frac{\sqrt{3}}{3}$.

Exam, June 1999
128. Consider the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right] .
$$

(a) Use the dot product to find the angle between \vec{u} and \vec{v}.
(b) Compute the area of the triangle determined by \vec{u} and \vec{v}.
(c) Find all values of $k \in \mathbb{R}$ such that the vectors $k \vec{u}+(1-k) \vec{v}$ and $\left[\begin{array}{l}3 \\ 1 \\ 1\end{array}\right]$ are collinear.

Exam, June 2000
129. Consider the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

(a) Calculate

$$
\vec{v}-2 \vec{u}, \quad(\vec{v}+\vec{u}) \bullet(\vec{v}-\vec{u}), \quad \text { and } \quad\|\vec{u}\|+\|\vec{v}\|-\|\vec{u}+\vec{v}\| .
$$

(b) Find the angle between \vec{u} and \vec{v}.
130. TRUE or FALSE ? Justify your answers.
(a) The points $A(1,1), B(-5,4)$ and $C(7,-2)$ are collinear.
(b) The vectors $\vec{u}=\left[\begin{array}{c}1 \\ \alpha \\ -1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}3 \\ 1 \\ \alpha\end{array}\right]$ are orthogonal for some value of α.
(c) Given the points $P(2,1), Q(3,4)$ and $R(1,3)$, the area of the parallelogram $\square O P Q R$ is 5 .

Exam, November 2004

131. Consider the planes

$$
\text { (} \alpha \text {) } \quad x-2 y-z=0 \quad \text { and } \quad(\beta) \quad 2 x-y+3 z=5 .
$$

(a) Find parametric equations of the line \mathcal{L} of intersection of these planes.
(b) Write symmetric equations for the line through the point $P(1,1,-2)$ and parallel to the line \mathcal{L}.
(c) Find the equation of the plane through the point $P(1,1,-2)$ and perpendicular to the line \mathcal{L}.

Class test, October 2001
132. Consider the points

$$
A(2,0,0), \quad B(1,1,0), \quad \text { and } \quad C(0,0,3) .
$$

(a) Find (the components of) the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(b) Determine the angle (in degrees) between the vectors $\overrightarrow{A B}$ and $\overrightarrow{A C}$.
(c) Compute the area of the triangle $\triangle A B C$.

Class test, October 2001
133. Consider the points

$$
A(-1,0), \quad B(3,0), \quad \text { and } \quad C(0,2) .
$$

(a) Find (the coordinates of) the point D such that the quadrilateral $\square A B D C$ is a parallelogram.
(b) Find (the components of) the vectors $\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{A C}$.
(c) Compute and compare

$$
(\overrightarrow{A B}+\overrightarrow{B C}) \bullet \overrightarrow{A C} \quad \text { and } \quad\|\overrightarrow{A C}\|^{2}
$$

Explain.
(d) Determine the angle (in degrees) between the vectors $\overrightarrow{B C}$ and $\overrightarrow{A D}$.

Exam, November 2001

134. Consider the points

$$
A(-2,0), \quad B(1,0), \quad \text { and } \quad C(-1,3) .
$$

(a) Find (the coordinates of) the point M such that

$$
\frac{1}{2}(\overrightarrow{A B}+\overrightarrow{A C})=\overrightarrow{A M}
$$

(b) Find (the components of) the vectors $\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{A C}$.
(c) Compute

$$
(\overrightarrow{A B}+\overrightarrow{B C})+\overrightarrow{C A}
$$

and then explain the result obtained.
(d) Determine the angle (in degrees) between the vectors $\overrightarrow{A B}$ and $\overrightarrow{C A}$.
135. Consider the point $P(1,0,2)$ and the vectors

$$
\vec{u}=\vec{i}-\vec{j} \quad \text { and } \quad \vec{v}=3 \vec{i}+\vec{k} .
$$

(a) Determine the angle (in degrees) between the vectors \vec{u} and \vec{v}.
(b) Write parametric equations for the line \mathcal{L} through P with direction \vec{u}.
(c) Write the equation of the plane π through P with normal direction \vec{v}.
(d) Find the distance from the origin to the line \mathcal{L}.

Class test, May 2003
136. Consider the points

$$
A(-1,0), \quad B(3,0), \quad \text { and } \quad C(0,2)
$$

(a) Find (the coordinates of) the point D such that the quadrilateral $\square A B D C$ is a parallelogram.
(b) Find (the components of) the vectors $\overrightarrow{A B}, \overrightarrow{A C}-\overrightarrow{A B}, \overrightarrow{B C}$, and $\overrightarrow{A D}$.
(c) Determine the angle (in degrees) between the vectors $\overrightarrow{B C}$ and $\overrightarrow{A D}$.
137. Consider the point $P(1,-1,1)$, the line \mathcal{L} with equations

$$
\frac{x-1}{1}=\frac{y-2}{1}=\frac{z}{-2}
$$

and the plane π with equation

$$
x+y+z-3=0
$$

(a) Write parametric equations for the line \mathcal{L}.
(b) Find equations for
i. the plane through P and parallel to π;
ii. the plane through P and the line \mathcal{L}.
(c) Determine the angle between these two planes.
(d) Compute the distance from the point P to
i. the line \mathcal{L};
ii. the plane π.

Exam, June 2003
138. TRUE or FALSE ? Justify your answers.
(a) The points $P(-1,2,3), Q(0,1,3)$, and $R(-4,5,3)$ are collinear.
(b) The angle between the vectors $\vec{u}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ and $\vec{v}=\left[\begin{array}{l}-4 \\ -2\end{array}\right]$ is 180°.
(c) Given the points $A(0,2), B(-1,0)$, and $C(3,-1)$, the area of the triangle $\triangle A B C$ is 9.

Exam, June 2004
139. Consider the points $A(1,-1,0)$ and $B(2,0,3)$, and the plane π with equation

$$
x+y-2 z+8=0
$$

(a) Write parametric equations for the line \mathcal{L} determined by the points A and B.
(b) Find the point P of intersection of the line \mathcal{L} with the given plane π.
(c) Determine the (orhogonal) projection B^{\prime} of the point B onto the plane π. (Hint : The point B^{\prime} is the intersection of a certain line through B with the given plane.)
(d) Write symmetric equations for the line \mathcal{L}^{\prime} determined by the points P and B^{\prime}.

Exam, June 2004
140. Consider the points $A(1,1,-3)$ and $B(1,-1,5)$, and the plane π with equation

$$
y-4 z+4=0
$$

(a) Write

- parametric equations
- symmetric equations
for the line \mathcal{L} determined by the points A and B.
(b) Find the unique point L of intersection of line \mathcal{L} with plane π.
(c) Calculate the distance between L and the midpoint M of the segment $\overline{A B}$.
(d) Determine whether the point $P(4,0,1)$ lies on the plane π.
(e) Determine the distance from P to the line \mathcal{L}. (Hint : You may use the formula

$$
\delta=\frac{\|\overrightarrow{A P} \times \overrightarrow{A B}\|}{\|\overrightarrow{A B}\|}
$$

for the distance from point P to line $\overleftrightarrow{A B}$.)

Exam, November 2004
141.
(a) If $z=2+i$ and $w=1+3 i$, find :
i. $3 z+\bar{w}$;
ii. $(1+i) z+w^{2}$;
iii. $\arg (z \cdot w)$;
iv. $|z-2 w|$;
v. $\operatorname{Re}\left[(z-1)^{10}+(\bar{z}-1)^{10}\right]$;
vi. $\operatorname{Im}\left(\frac{w+\bar{w}}{2 i}\right)$.
(b) Solve the equation (for $z \in \mathbb{C}$)

$$
z^{6}=1
$$

and represent the roots as points in the complex plane.
142. Let $w=\sqrt{3}+i$.
(a) Compute w^{2}, \bar{w}, w^{-1}, and $|w|$.
(b) Write w in polar (and exponential) form.
(c) Solve the equation (for $z \in \mathbb{C}$)

$$
z^{3}=w
$$

and represent the roots as points in the complex plane.

Class test, November 2001

143. Let $w=-1-i$.
(a) Compute w^{2}, \bar{w}, w^{-1}, and $|w|$.
(b) Write w in polar (and exponential) form.
(c) Solve the equation (for $z \in \mathbb{C}$)

$$
z^{3}=-1
$$

and represent the roots as points in the complex plane.

Supp Exam, February 2002

144. Let $w=\sqrt{3}-i$.
(a) Compute w^{2}, \bar{w}, and w^{-1}.
(b) Write w in exponential form and then compute

$$
w^{6}+\bar{w}^{6}
$$

(c) Solve the equation (for $z \in \mathbb{C}$)

$$
z^{6}-2 \sqrt{3} z^{3}+4=0
$$

145. Considert the complex number $w=\sqrt{3}-i$.
(a) Compute $\bar{w},|w|$, and w^{-1}.
(b) Write w in polar form.
(c) Evaluate the expression

$$
E=w^{18}+\bar{w}^{18}
$$

(Hint : You may use De Moivre's formula.)

Exam, June 2004
146. Solve the equation (for $z \in \mathbb{C}$)

$$
z^{4}-i=0
$$

and represent the roots as points in the complex plane. (Hint : Write the roots in exponential form.)

Exam, June 2004
147.
(a) Write $\left(\frac{1+i \sqrt{3}}{1-i \sqrt{3}}\right)^{1999}$ in the form $a+i b$.
(b) Show how $\sin \theta$ can be written in terms of the complex exponential function and use this to obtain $\sin ^{4} \theta$ in terms of cosines of multiples of θ.
(c) Find all solutions of

$$
z^{5}+1=0
$$

in the form $a+i b$ and show them on a diagram.
148. Show that

$$
\sin 5 \theta=5 \cos ^{4} \theta \cdot \sin \theta-10 \cos ^{2} \theta \cdot \sin ^{3} \theta+\sin ^{5} \theta
$$

149.

(a) Let $w=3-i$. Plot $w,-w, \bar{w}$ and $-\bar{w}$ in the complex plane.
i. What shape is outlined ?
ii. What is $|w|$?
(b) Sketch (in the complex plane) the sets of complex numbers z satisfying, respectively, the conditions :
i. $|z+i|=1$.
ii. $|z-i|=|z|$.
150. Given that $-2+3 i$ is a root of the equation

$$
z^{4}+4 z^{3}+9 z^{2}-16 z-52=0
$$

find all the other roots of this equation.

Bibliography

[Br97] O. Bretscher - Linear Algebra with Applications, Prentice-Hall, 1997.
[CR96] R. Courant and H. Robbins - What is Mathematics ? An Elementary Approach to Ideas and Methods (Second Edition), Oxford University Press, 1996.
[EP88] C.H. Edwards, Jr. and D.E. Penney - Elementary Linear Algebra, Prentice-Hall, 1988.
[Ep95] S.S. Epp - Discrete Mathematics (Second Edition), Brooks/Cole, 1995.
[Ko91] B. Kolman - Elementary Linear Algebra, Prentice-Hall, 1991.
[La86] S. LANG - Introduction to Linear Algebra, Springer-Verlag, 1986.
[Ro95] K.H. Rosen - Discrete Mathematics and its Applications (Third Edition), McGraw-Hill, 1995.
[Sc00] E.R. Scheinerman - Mathematics. A Discrete Introduction, Brooks/Cole, 2000.

