
Chapter 10

Complex Numbers

Topics :

1. Number systems

2. Algebraic operations on complex numbers

3. De Moivre’s formula

4. Applications

Beginning with the natural numbers such as 0, 1 and 2, we proceed to the integers,

then to the rational numbers, then to the real numbers, and then to the complex

numbers. Each stage is motivated by our desire to be able to solve a certain kind

of equation. Real numbers were understood remarkably well by the ancient Greeks.

Complex numbers were used freely many years before they could be treated rigorously;

that was how the word “imaginary” acquired its technical meaning.
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10.1 Number systems

The first numbers that we consider in arithmetic are the natural numbers,

forming a sequence that begins with 0 and never ends. On the set of natural

numbers

N : = {0, 1, 2, 3, . . . }

the operations of addition and multiplication can be defined, and we shall call

the triple (N,+, ·) the natural number system.

The problem of solving such an equation as

x+ 2 = 1

motivates the discovery of the integers, which include not only the natural

numbers (the “non-negative integers”) but also the negative integers. The

sequence of integers, which has neither beginning nor end, is conveniently rep-

resented by points evenly spaced along a straight line (which we may think of

as the x-axis of ordinary analytic geometry). In this representation, addition

and subtraction appear as translations : the transformation x 7→ x+ a shifts

each point through a spaces to the right if a is positive, and through −a
spaces to the left if a is negative; that is, the operation of adding a is the

translation that transforms 0 into a.

The set of integers

Z : = {. . . ,−2,−1, 0, 1, 2, . . . }

is considered together with operations of addition and multiplication, and we

shall call the triple (Z,+, ·) the system of integers.

Note : These new operations on Z are not the same as the ones on N, but they are

defined such that when the integers are just natural numbers, the operations reduce

to the operations of the natural numbers system. Clearly,

N ⊆ Z
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and anything that can be done with natural numbers, can be done with integers. In

this sense, the system of integers extends the natural number system.

The problem of solving such an equation as

2x = 1

motivates the discovery of the rational numbers r = m
n , where m is an

integer and n is a natural number ; these include not only the integers m = m
1 ,

but also fractions such as 1
2 and −4

3 .

Note : We usually write each fraction in its “lowest terms”, so that the numerator

and the denominator have no common factor.

The rational numbers cannot be written down successively in their natural

order, because between any two of them there is another, and consequently

and infinity of others. The corresponding points are dense on the x-axis, and

at first sight seem to cover it completely. Multiplication and division appear

as dilations : the transformation x 7→ rx is the dilation of ratio r and center

O, where O is the origin; that is, multiplication by r is the dilation of center

O that transforms 1 into r. Of course, r may be either positive or negative.

In particular, multiplication by −1 is the half-turn about O.

The set of rational numbers

Q : =
{m
n
|m,n ∈ Z, n 6= 0

}
is considered together with operations of addition and multiplication, and we

shall call the triple (Q,+, ·) the system of rational numbers.

Note : Again, the operations on Q are denoted by the same symbols as the ones

on Z and N and the system of rational numbers extends the system of integers in

the same sense as before. So we have

N ⊆ Z ⊆ Q.

The problem of solving such an equation as

x2 = 2
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motivates the discovery of the real numbers, which include not only the

rational numbers but also the irrational numbers (such as
√

2 and π ), which

cannot be expressed as fractions. Roughly speaking, rational numbers have

a decimal representation that terminates in zeros or which has a repeating

block of digits. The set R of real numbers is taken to be the set of all decimal

expansions. Geometrically, this means that the number line has now become

a continuum. [A real number may be defined to be the limit of a convergent

sequence of rational numbers, or (more precisely) the set of all sequences

“equivalent” (in a specified sense) to a given sequence; for example, the real

number π is the limit of the sequence

3, 3.1, 3.14, 3.141, 3.1415, . . . ]

Note : The operations of addition and multiplication on Q can also be extended

to the larger set R and we shall call the triple (R,+, ·) the real number system.

We have

N ⊆ Z ⊆ Q ⊆ R

with the operations of addition and multiplication being extended all the way up,

retaining the symbols + and · as we go.

The problem of solving such an equation as

x2 + 1 = 0

motivates the discovery of the complex numbers, which include not only

the real numbers but also such “imaginary” numbers as the the square root of

−1.

Complex numbers

Since the real numbers occupy the whole x-axis, it is natural to try to

represent the complex numbers by all points (or vectors) in the (x, y)-plane

(called the complex plane); that is, to define them as ordered pairs of real

numbers with suitable rules for their addition and multiplication.
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In the complex plane (also called the Argand diagram), points are added

like the corresponding vectors from the origin O :

(x, y) + (a, b) : = (x+ a, y + b). (10.1)

In other words, to add (a, b) we apply the translation that takes (0, 0) to

(a, b).

Multiplication by an integer still appears as a dilation; for instance,

2(x, y) = (x, y) + (x, y) = (2x, 2y).

In particular, multiplication by −1 is the half-turn about O. What, then, is

multiplication by the “square root of −1 ” ? This must be a transformation

whose “square” is the half-turn about O. The obvious answer is a quater-turn

(or rotation through an angle of 90◦ ) about O.

Then multiplication by an arbitrary complex number should be a trans-

formation which leaves O invariant and includes both dilations and rotations

as special cases. The obvious transformation of this kind is a rotation-dilation

(the product of a rotation and a dilation about O ). It turns out that the rule

for multiplication is

(a, b) · (x, y) : =

[
a −b
b a

][
x

y

]
= (ax− by, bx+ ay). (10.2)

Note : We shall use juxtaposition (a, b)(x, y) to denote (a, b) · (x, y), just as we

often do with real numbers.

The set of complex numbers is denoted by C and we shall call the triple

(C,+, ·) the complex number system.

The mapping

ϕ : R→ C , x 7→ (x, 0)

is a one-to-one mapping that “preserves” addition and multiplication ; that

is,

ϕ(x+ y) = ϕ(x) + ϕ(y) and ϕ(xy) = ϕ(x)ϕ(y)
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for all x, y ∈ R. It follows that ϕ(R) ⊆ C is a faithful copy of the (number

system) R. We therefore identify R with ϕ(R) ⊆ C and write x for (x, 0).

Note : We shall allow ourselves to think of R as a subset of C, and shall call mem-

bers of ϕ(R) “real”. In other words, via this identification, C becomes a (number

system) extension of R and thus we have

N ⊆ Z ⊆ Q ⊆ R ⊆ C.

Introducing the special symbol

i : = (0, 1) ∈ C

we have

i2 = (0, 1)(0, 1) = (−1, 0) = −1.

The number i is often called the imaginary unit of C.

10.1.1 Example. Find

i3, i4, i5, i23, and i2000.

Solution : We have

i3 = i2i = −i,

i4 = i3i = −i2 = 1,

i5 = i4i = i,

i23 = (i4)5i3 = −i,

i2000 = (i4)500 = 1.

Every complex number z = (x, y) ∈ C admits a unique representation

z = (x, y) = (x, 0) + (0, y) = x+ y(0, 1) = x+ yi = x+ iy;

that is

z = x+ iy
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with x, y ∈ R. This is the usual way to write complex numbers and will be

called the normal form. The real numbers x and y are called the real part

and the imaginary part of z, respectively, and we write

x = Re (z) and y = Im (z).

A complex number of the form iy (with x = 0 ) is called imaginary.
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Complex numbers as points (in the plane).
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(x+ iy) + (a+ ib) = (x+ a) + i(y + b)
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which may be thought of as ordinary addition and multiplication, treating the symbol
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The sum of two complex numbers.

10.1.2 Example. Consider a nonzero complex number z. What is the

geometric relationship between z and iz in the complex plane ?

Solution : If z = a+ ib, then iz = −b+ ia. We obtain the vector

[
−b
a

]

(representing iz ) by rotating the vector

[
a

b

]
(representing z ) through an

angle of 90◦ in the counterclockwise direction.

10.1.3 Example. If z = 3 + 4i and w = 1 + i, find

Im (z + 2w2).

Solution : We have

z + 2w2 = 3 + 4i+ 2(1 + i)2 = 3 + 4i+ 4i = 3 + 8i

and hence

Im (z + 2w2) = 8.

10.2 Algebraic operations on complex numbers

For a complex number z = x+ iy we define

−z : = −x− iy (the opposite of z)

and (for z 6= 0)

z−1 : =
1

x2 + y2
(x− iy). (the inverse of z).
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The opposite of a complex number : −z.

If z1, z2 are two complex numbers, we write z1 − z2 instead of z1 + (−z2)

and z1
z2

instead of z1z
−1
2 (for z2 6= 0), just as we did with real numbers.

10.2.1 Example. Find the inverse of 2 + i.

Solution : We have

(2 + i)−1 =
1

5
(2− i).

We see that

(2 + i)(2 + i)−1 =
1

5
(2 + i)(2− i) =

5

5
= 1.

10.2.2 Example. Write

E =

(
1 + 2i

2 + i

)3

in the normal form.

Solution : We have

E =
[
(1 + 2i)(2 + i)−1

]3
=

(
1

5
(1 + 2i)(2− i)

)3

=

(
1

5
(4− 3i)

)3

=
1

125
(−44+117i) ·

The following proposition summarizes the algebraic properties of the ad-

dition and multiplication of complex numbers.

10.2.3 Proposition. If z, z1, z2, z3 ∈ C, then :
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(1) z1 + z2 = z2 + z1.

(2) z1 + (z2 + z3) = (z1 + z2) + z3.

(3) z + 0 = 0 + z = z.

(4) z + (−z) = (−z) + z = 0.

(5) z1 · z2 = z2 · z1.

(6) z1 · (z2 · z3) = (z1 · z2) · z3.

(7) z · 1 = 1 · z = z.

(8) z · z−1 = z−1 · z = 1 (z 6= 0).

(9) z1 · (z2 + z3) = z1 · z2 + z1 · z3.

Proof : Exercise.

Note : The properties listed above may be summarized by saying that the complex

number system (C,+, ·) is a (commutative) field .

For a complex number z = x+ iy we define

z̄ : = x− iy (the conjugate of z).

Geometrically, the conjugate z̄ is the reflection of z in the x-axis (the so-

called real axis).
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10.2.4 Proposition. If z, z1, z2 ∈ C, then :

(1) z1 + z2 = z̄2 + z̄1.

(2) z1 − z2 = z̄1 − z̄2.

(3) z1 · z2 = z̄1 · z̄2.

(4) z = z.

(5)

(
z1

z2

)
=
z̄1

z̄2
.

(6) Re (z) = 1
2(z + z̄).

(7) Im (z) = 1
2i(z − z̄).

(8) z ∈ R ⇐⇒ z = z̄.

(9) z ∈ iR ⇐⇒ z = −z̄.

Proof : Exercise.

If z = x+ iy ∈ C, then the real number

|z| : =
√
x2 + y2

is called the modulus (or absolute value) of z. In other words, |z| is

nothing but the distance from the origin to the point (x, y) ; alternatively, |z|

is the length of the (geometric) vector

[
x

y

]
.
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The modulus of a complex number : |z|.
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Note : If z1 = x1 + iy1 and z2 = x2 + iy2, then |z1 − z2| is the distance between

the points (x1, y1) and (x2, y2).

10.2.5 Proposition. If z, z1, z2 ∈ C, then :

(1) |z| ≥ 0, and |z| = 0 ⇐⇒ z = 0.

(2) z · z̄ = |z|2.

(3) |z1 · z2| = |z1||z2|.

(4) |z| = | − z| = |z̄|.

(5)

∣∣∣∣z1

z2

∣∣∣∣ =
|z1|
|z2|

(z2 6= 0).

(6) Re (z) ≤ |Re (z)| ≤ |z|.

(7) Im (z) ≤ |Im (z)| ≤ |z|.

(8) | |z1| − |z2| | ≤ |z1 − z2|.

Proof : Exercise.

10.2.6 Example. Let z, w ∈ C. Then

|z + w| ≤ |z|+ |w|.

(This result is known as the triangle inequality).

Solution : We have

|z + w|2 = (z + w) · (z + w)

= (z + w) · (z̄ + w̄)

= z · z̄ + z · w̄ + z̄ · w + w · w̄

= |z|2 + z · w̄ + z̄ · w + |w|2

= |z|2 + 2Re (z · w̄) + |w|2

≤ |z|2 + 2|z · w̄|+ |w|2

= |z|2 + 2|z| |w̄|+ |w|2

= |z|2 + 2|z| |w|+ |w|2

= (|z|+ |w|)2.
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The result now follows.

10.3 De Moivre’s formula

Sometimes it is useful to describe a complex number in polar coordinates.

If z = x+ iy ∈ C \ {0}, then we can write

z = x+ iy =
√
x2 + y2

(
x√

x2 + y2
+ i

y√
x2 + y2

)

= |z|
(

Re (z)

|z|
+ i

Im (z)

|z|

)
= r(cos θ + i sin θ)

where r = |z| and θ is an angle such that

cos θ =
x

r
and sin θ =

y

r
·

Note : The existence of θ is assured since
(
x
r

)2
+
(
y
r

)2
= 1 and, in fact, there

are many such θ. Geometrically, r is the distance (in the complex plane) between

the origin and the point z, and θ measures the angle between the real axis and the

vector z.

Any real number θ such that z = |z|(cos θ + i sin θ) is said to be an

argument of z. We denote by Arg z the set of all arguments of z ; that is,

Arg z : =

{
θ ∈ R | cos θ =

Re (z)

|z|
and sin θ =

Im (z)

|z|

}
.

The number arg z ∈ Arg z such that −π < arg z ≤ π is caled the principal

argument of z. We have

Arg z = {arg z + 2kπ | k ∈ Z}.

Note : Our normalization of θ to the interval (−π, π] was arbitrary; in general,

any half-open interval of length 2π is suitable.
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The representation

z = r(cos θ + i sin θ)

is called the polar form of the complex number z. The real numbers r = |z|
and θ = arg z are the polar coordinates of z.

-
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The polar form of a complex number : r(cos θ + i sin θ).

10.3.1 Example. Find the modulus and the (principal) argument of z =

−2 + 2i.

Solution : We have

r = |z| =
√

(−2)2 + 22 =
√

8 = 2
√

2 .

Representing z in the complex plane, we see that 3π
4 is an argument of z (in

fact, its principal argument).

10.3.2 Example. Determine Arg (−1) and Arg (1− i).

Solution : We have

Arg (−1) =

{
θ | cos θ =

−1

1
and sin θ =

0

1

}
= {θ | cos θ = −1 and sin θ = 0}

= {π + 2kπ | k ∈ Z}
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and

Arg (1− i) =

{
θ | cos θ =

1√
2

and sin θ = − 1√
2

}
=

{
−π

4
+ 2kπ | k ∈ Z

}
.

10.3.3 Example. Let z ∈ C \ {0}. Then

Arg z̄ = Arg (z−1).

Solution : Let z = r(cos θ + i sin θ), where θ = arg z ; then z̄ = r(cos θ −
i sin θ) = r(cos(−θ) + i sin(−θ)) and hence

Arg z̄ = {−θ + 2kπ | k ∈ Z}.

On the other hand,

z−1 =
z̄

|z|2

=
r(cos(−θ) + i sin(−θ))

r2

=
1

r
(cos(−θ) + i sin(−θ))

and so

Arg (z−1) = {−θ + 2kπ | k ∈ Z}.

10.3.4 Example. Write the complex numbers −3, i, and −1 + i in the

polar form.

Solution : We have

−3 = 3(cosπ + i sinπ),

i = cos
π

2
+ i sin

π

2
,

−1 + i =
√

2

(
cos

3π

4
+ i sin

3π

4

)
.

The most important property of the polar form is given in the proposition

below. It will allow us to have a very good geometric interpretation for the

product of two complex numbers.
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10.3.5 Proposition. Let z = cosα+i sinα and w = cosβ+i sinβ. Then

zw = cos(α+ β) + i sin(α+ β).

Solution : We have

zw = (cosα+ i sinα)(cosβ + i sinβ)

= cosα cosβ − sinα sinβ + i(sinα cosβ + sinβ cosα)

= cos(α+ β) + i sin(α+ β).

We observe that the modulus of zw is 1, and α+ β is an argument of zw.2

In general, if z = r(cosα+ i sinβ) and w = s(cosβ + i sinβ), then

zw = rs(cos(α+ β) + i sin(α+ β)).

From this we see that when we multiply two complex numbers, we multiply the

moduli and we add the arguments. Thus

|zw| = |z| |w| and Arg (zw) = Arg z + Arg w.
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zw = |z||w|ei(α+β)

O

The product of two complex numbers.
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10.3.6 Example. Describe the transformation T : C → C , z 7→ (3 +

4i)z geometrically.

Solution : We have

|T (z)| = |3 + 4i| |z| = 5|z|

Arg (T (z)) = Arg (3 + 4i) + Arg z = arctan

(
4

3

)
+ Arg z ≈ 53◦ + Arg z .

The transformation T is a rotation-dilation in the complex plane.

If z ∈ C and n ∈ N, we define the power zn by

zn : = z · z · · · z︸ ︷︷ ︸
n factors

.

We put z0 : = 1 and for a negative integer m = −n with n ∈ N, we define

zm = z−n : =
(
z−1
)n

.

The following result is due to Abraham de Moivre (1667-1754).

10.3.7 Theorem. (De Moivre’s Formula) For θ ∈ R and n ∈ Z

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).

Proof : We first use induction to prove that the result holds for all n ∈ N.

If n = 0, then

(cos θ + i sin θ)n = (cos θ + i sin θ)0 = 1 = cos 0 + i sin 0 = cos(nθ) + i sin(nθ) .

Assume that the formula is true for some n ∈ N ; then

(cos θ + i sin θ)n+1 = (cos θ + i sin θ)(cos θ + i sin θ)n

= (cos θ + i sin θ)(cos nθ + i sin nθ)

= cos θ cos nθ − sin θ sin nθ + i(cos θ sin nθ + sin θ cos nθ)

= cos (n+ 1)θ + i sin (n+ 1)θ.
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It follows that the formula is true for all n ∈ N.

If n is a negative integer, let n = −m with m ∈ N. Then

(cos θ + i sin θ)n = (cos θ + i sin θ)−m

=

(
1

cos θ + i sin θ

)m
= (cos(−θ) + i sin(−θ))m

= cos(−mθ) + i sin(−mθ)

= cos nθ + i sin nθ.

2

It is easy matter to check that the rules of exponents extend to complex

numbers. Namely :

10.3.8 Proposition. Let z, w ∈ C and m,n ∈ N. Then :

(1) (zw)n = znwn.

(2) zmn = (zm)n.

(3) zm zn = zm+n.

(4) zm

zn = zm−n.

Proof : Exercise.

10.3.9 Example. Evaluate the following expression

E = (1 + i)10 + (1− i)10.

Solution : We have (for n ∈ N ) :

E(n) = (1 + i)n + (1− i)n

=
[√

2
(

cos
π

4
+ i sin

π

4

)]n
+
[√

2
(

cos(−π
4

) + i sin(−π
4

)
)]n

= 2
n
2

(
cos

nπ

4
+ i sin

nπ

4

)
+ 2

n
2

(
cos

nπ

4
− i sin

nπ

4

)
= 2 · 2

n
2 cos

nπ

4
= 2

n
2

+1 cos
nπ

4
·
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In particular, for n = 10, we get :

E = E(10) = (1 + i)10 + (1− i)10 = 26 cos
5π

2
= 0.

10.4 Applications

A (Complex-valued functions) A complex-valued function t 7→ z = f(t)

is a function from R to C : the input t is real, and the output z is complex.

10.4.1 Example. Here are two examples of complex-valued functions :

z = t+ it2 and z = cos t+ i sin t.

For each t, the output z can be represented as a point in the complex plane.

As we let t vary, we trace out a trajectory in the complex plane (a parabola

and a circle, respectively).

Consider the complex-valued function

f : R→ C , f(t) : = cos t+ i sin t.

This function has remarkable properties. For instance,

(1) f(t) · f(s) = f(t+ s).

(2) d
dtf(t) = i f(t).

(3) f(0) = 1.

It can be shown that there exists a unique complex-valued function that satisfies

conditions (2) and (3); this function also satisfies condition (1).

Note : The exponential function

exp : R→ R , t 7→ exp(t) : = eat (a ∈ R)

has the properties :

d

dt
exp(t) = a exp(t) and exp(0) = 1.
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This motivates us to write

Euler’s formula : For any real number θ

eiθ : = cos θ + i sin θ.

Note: It has been known since the 18th century that the exponential function and

the trigonometric functions are related. This remarkable relationship was discovered

by Leonhard Euler (1707-1783). The case θ = π leads to the intriguing formula

eiπ + 1 = 0; this has been called the most beautiful formula in all mathematics.

Euler’s formula can be used to write the polar form of a complex number

more succintly :

z = r(cos θ + i sin θ) = reiθ.

This representation is known as the exponential form of the complex number

z.

10.4.2 Proposition. If z = reiθ ∈ C, then :

zn = rneinθ , n ∈ Z.

In particular, z−1 = 1
re
−iθ and hence z = re−iθ.

Proof : Exercise.

10.4.3 Example. Write z = i in exponential form.

Solution : We have r = 1 and θ = arg z = π
2 · Hence

z = ei
π
2 .

10.4.4 Example. Write z = 2 eiπ in normal form.

Solution : Here we are given r = 2 and θ = arg z = π. Hence

z = 2(cosπ + i sinπ) = 2(−1 + i0) = −2.
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10.4.5 Example. Find the real and imaginary parts of (1 + 2i) e−it.

Solution : Let z(t) = (1 + 2i) e−it. Then

z(t) = (1 + 2i)(cos t+ i sin t) = (cos t+ 2 sin t) + i(2 cos t− sin t).

Hence

Re (z(t)) = cos t+ 2 sin t

Im (z(t)) = 2 cos t− sin t.

If θ ∈ R, then

eiθ = cos θ + i sin θ

e−iθ = cos θ − i sin θ.

Adding these and dividing by 2, we obtain :

cos θ =
eiθ + e−iθ

2
·

Subtracting these and dividing by 2i, we obtain :

sin θ =
eiθ − e−iθ

2i
·

Thus the familiar trigonometric functions can be expressed in terms of

complex-valued functions. This finds application in a number of situations.

10.4.6 Example. Express cos 4θ in terms of sines and cosines of θ.

Solution : We have

cos 4θ = Re (ei4θ)

= Re (cos θ + i sin θ)4

= Re
(
cos4 θ + 4 cos3 θ(i sin θ) + 6 cos2 θ(i sin θ)2 + 4 cos θ(i sin θ)3 + (i sin θ)4

)
= Re

(
(cos4 θ − 6 cos2 θ sin2 θ + sin4 θ) + i(4 cos3 θ sin θ − 4 cos θ sin3 θ)

)
= cos4 θ − 6 cos2 θ sin2 θ + sin4 θ.
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10.4.7 Example. Express sin5 θ in terms of sines and cosines of multiples

of θ.

Solution : We have

sin5 θ =

(
eiθ − e−iθ

2i

)5

=
1

(2i)5

(
ei5θ − 5ei4θe−iθ + 10ei3θe−i2θ − 10e2θe−i3θ + 5eiθe−i4θ − e−i5θ

)
=

1

32i

(
(ei5θ − e−i5θ)− 5(ei3θ − e−i3θ) + 10(eiθ − e−iθ)

)
=

1

16
(sin 5θ − 5 sin 3θ + 10 sin θ).

10.4.8 Example. Evaluate the sum

S =
n−1∑
k=0

sin kθ .

Solution : The trick is to write each sin kθ as Im (eikθ) and note that the

sum is a geometric series with ratio eiθ. We have

S =
n−1∑
k=0

sin kθ = Im
(

1 + eiθ + ei2θ + · · ·+ ei(n−1)θ
)
.

If the ratio eiθ is 1, then the sum is simply n. We therefore assume that
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eiθ 6= 1. Thus

S =

n−1∑
k=0

sin kθ = Im

(
1− einθ

1− eiθ

)

= Im

(
1− einθ

1− eiθ
· e
−i θ

2

e−i
θ
2

)

= Im

(
ei(n−

1
2

)θ − e−i
θ
2

ei
θ
2 − e−i

θ
2

)

= Im

(
ei(n−

1
2

)θ − e−i
θ
2

2i sin θ
2

)

= Im

(
−ie

i(n− 1
2

)θ − e−i
θ
2

2 sin θ
2

)

=
cos θ2 − cos(n− 1

2)θ

2 sin θ
2

=
sin nθ

2 sin (n−1)θ
2

sin θ
2

·

Since eiθ 6= 1, we know that sin θ
2 6= 0 and so calculations above are mean-

ingful.

B (Solutions of equations)

Equations of the form xn = w

Equations of the form

xn = w

where w is a fixed complex number, can be solved by writing x and w in

polar (or exponential) form. If we let x = r(cos θ + i sin θ) = reiθ, then we

obtain equations for r and θ which we can then solve.

10.4.9 Example. Solve

x2 = −d2 , d > 0.
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Solution : We write

x = r(cos θ + i sin θ) and − d2 = d2(cosπ + i sinπ) .

Then we have (using de Moivre’s formula)

r2(cos 2θ + i sin 2θ) = d2(cosπ + i sinπ).

We obtain

r2 = d2 and 2θ = π + 2kπ , k ∈ Z

and hence

r = d and θ =
π

2
+ kπ , k ∈ Z.

The set of solutions is{
d(cos θ + i sin θ) | θ =

π

2
+ kπ , k ∈ Z

}
=

{
d(cos

π

2
+ i sin

π

2
), d(cos

3π

2
+ i sin

3π

2
)

}
= {di, −di}.

10.4.10 Example. Solve

x4 = −1.

Solution : We write

x = reiθ and − 1 = eiπ.

Then we have

r4ei4θ = eiπ

and hence

r4 = 1 and 4θ = π + 2kπ , k ∈ Z.

We get

r = 1 and θ =
π

4
+ k

π

2
, k ∈ Z.
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The solution are (for k = 0, 1, 2, 3 ) :

x0 = ei
π
4 =

1√
2

(1 + i) ;

x1 = ei
3π
4 =

1√
2

(−1 + i) ;

x2 = ei
5π
4 =

1√
2

(−1− i) ;

x3 = ei
7π
4 =

1√
2

(1− i).

For k ≥ 4 we get only repeats of these four roots.

Note : The roots are complex-conjugate pairs.

10.4.11 Example. Find all the solutions (roots) of

xn = 1 , n ∈ N.

Solution : We write

x = reiθ and 1 = ei0

and thus

xn = rneinθ = ei0.

It follows that

rn = 1 and nθ = 2kπ , k ∈ Z.

Hence

r = 1 and θ =
2kπ

n
, k = 0, 1, 2, . . . , n− 1.

[For k ≥ n we get only repeats of these n roots.]

The solution are

xk = cos
2kπ

n
+ i sin

2kπ

n
, k = 0, 1, 2, . . . , n− 1.

Note : The roots are either real (for instance x0 = 1 ) or in complex-conjugate

pairs.
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-

6

x

iy

tt
tt

x0 = ei
π
4

x3 = ei
7π
4

x1 = ei
3π
4

x2 = ei
5π
4

O

The roots of the equation x4 = −1.

Quadratic equations

If a, b, and c are real numbers, then the quadratic equation

ax2 + bx+ c = 0

has real solutions given by

x1,2 =
−b ±

√
b2 − 4ac

2a

if ∆ : = b2 − 4ac ≥ 0. However, if ∆ < 0 the solutions are complex.

Let −∆ : = d2 , d > 0. We complete the square to obtain

a

[(
x+

b

2a

)2

+
4ac− b2

4a2

]
= 0

which leads to (
x+

b

2a

)2

= − d2

4a2
·

Thus

x+
b

2a
= ± i d

2a

and hence

x1,2 =
−b ± i

√
4ac− b2

2a
·
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Note : (1) If a, b, c ∈ R, the roots of the polynomial of degree 2 p(x) = ax2 +

bx+ c are either real or a complex-conjugate pair.

(2) The formula above remains valid if the coefficients a, b, c are complex numbers:

we can still employ the method of the square to find the roots.

Polynomial equations of degree n

Let pn(x) be a polynomial of degree n (with complex coefficients). Then,

after multiplying through by the reciprocal of the coefficient of xn, we may

assume that pn(x) has the form

pn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0.

Polynomials whose highest power has coefficient 1 are called monic.

Perhaps the most remarkable property of the complex numbers is expressed

in the fundamental theorem of algebra, first demonstrated by Carl F. Gauss

(1777-1855).

10.4.12 Theorem. (Fundamental Theorem of Algebra) Every poly-

nomial with complex coefficients has at least one (complex) root.

Suppose that x = w is a root of pn(x). This means that

pn(w) = wn + an−1w
n−1 + · · ·+ a1w + a0 = 0.

If pn(x) is divided by x− w, we obtain the identity

pn(x)

x− w
= qn−1(x) +

R

x− w

where R is a constant and qn−1(x) is a polynomial of degree n− 1. Hence,

pn(x) = (x− w)qn−1(x) +R.

But this is an identity in x, so that by setting x = w, we see that R = 0

if and only if pn(w) = 0; that is, if and only if w is a root of pn(x). By
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repeated use of this result, we obtain that every polynomial of degree n with

complex coefficients has precisely n roots (if they are properly counted with

their multiplicities). We can restate this result as follows :

10.4.13 Proposition. Any polynomial of degree n

pn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with complex coefficients can be written as a product of linear factors

pn(x) = (x− w1)(x− w2) · · · (x− wn)

for some complex numbers w1, w2, . . . , wn. The numbers (roots) wi need not

be distinct.

A common situation arising particularly often in applications is the case

in which all the coefficients of the polynomial pn(x) are real. The following

result is easy to prove.

10.4.14 Proposition. Let pn(x) be a polynomial with real coefficients. If

w = a+ ib , b 6= 0 is a root of pn(x) then so is its conjugate w = a− ib.

Proof : Exercise.

From these two results (Proposition 12.4.13 and Proposition 12.4.14)

we obtain

10.4.15 Proposition. Any polynomial of degree n

pn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with real coefficients can be written as a product of linear and irreducible

quadratic factors

pn(x) = (x− r1)(x− r2) · · · (x− rk)(x2 + α1x+ β1) · · · (x2 + αlx+ βl)

for some real numbers r1, r2, . . . , rk, α1, β1, . . . , αl, βl. The numbers

(roots) ri as well as the numbers αj , βj need not be distinct.
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10.4.16 Example. Find the roots of p(x) = x4 − 1 and factor this poly-

nomial.

Solution : Since x4 − 1 is a difference of two squares, we have

p(x) = x4−1 = (x2−1)(x2+1) = (x−1)(x+1)(x2+1) = (x−1)(x+1)(x−i)(x+i).

Thus the roots are

x1 = 1, x2 = −1, x3 = i, x4 = −i.

10.4.17 Example. Find a (monic) polynomial of degree 3 whose roots

are 0, 1, 2.

Solution : Since (x− 0), (x− 1) and (x− 2) must be factors of any such

polynomial, we have

p3(x) = x(x− 1)(x− 2) = x3 − 3x2 + 2x.

10.4.18 Example. Find a (monic) polynomial of lowest degree with real

coefficients having the roots 1, 1 and 1− i.

Solution : Because the roots of a polynomial with real coefficients come in

complex-conjugate pairs, the fact that 1− i is a root implies that 1+ i is also

a root. Hence,

(x− (1− i))(x− (1 + i)) = x2 − 2x+ 2

is a factor of p(x). Likewise, (x− 1)2 ia also a factor. Therefore,

p(x) = (x2 − 2x+ 2)(x− 1)2 = x4 − 4x3 + 7x2 − 6x+ 2

has the required roots. No lower degree polynomial could have four roots, so

this is the monic polynomial of least degree with these roots.

10.4.19 Example. Solve the equation

x3 + 3x− 4 = 0.
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Solution : Let p(x) = x3 + 3x − 4. We first try, by inspection, to find a

real root of p(x). We spot p(1) = 0 and this means that (x− 1) is a factor.

Dividing (x− 1) into p(x) we obtain

p(x) = (x− 1)(x2 + x− 4).

Thus p(x) is a product of a linear and an irreducible quadratic factor. The

solutions of the equation p(x) = 0 are (the roots of p(x) ) :

1 and − 1

2
± i

√
3

2
·

10.5 Exercises

Exercise 146 Find

i17, i23, i467.

Exercise 147 If z = 3 + 4i and w = 1 + i, find :

(a) z + w.

(b) z2.

(c) i w.

(d) (z − 3w)100.

(e) Re (z + 2ω2).

(f) Im (z − w).

Exercise 148 Find z, Re (z), Im (z) and |z| if

(a) z = 7, (b) z = −2i, (c) z = (3 + 5i)2, (d) z =
2 + 3i

4− 5i
·

Exercise 149 Show that the points (complex numbers) z1, z2, z3 are collinear if

and only if
z2 − z1
z3 − z1

∈ R.

Exercise 150 Prove that if z, w ∈ C, then

|z + w|2 + |z − w|2 = 2(|z|2 + |w|2).

This is known as the parallelogram law. Justify the name.
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Exercise 151 Prove that for z ∈ C

(1− z)(1 + z + z2 + · · ·+ zn−1) = 1− zn

and hence deduce that (for z 6= 1 ) :

n−1∑
k=0

zk =
1− zn

1− z
·

Exercise 152 Write in the polar (and exponential) form :

(a) 1 +
√

3 i.

(b) −1− i.

(c) −5 + 5i.

(d)

(
1 +
√

3 i

1−
√

3 i

)10

.

Exercise 153 Let z = x+ iy ∈ C and define

ez : = ex(cos y + i sin y).

Show that (for z, w ∈ C and n ∈ N) :

(a) ez+w = ez · ew.

(b) enz = (ez)n.

(c) |ez| = ex.

(d) ez = ez.

(e) ez = ew ⇐⇒ z = w + 2kπ, k ∈ Z.

Solve the equation

ez = 1 + i.

Exercise 154 Evaluate

e−i, 2i and
√
i.

Exercise 155 Show that :

(a) sin 5θ = 5 cos4 θ sin θ − 10 cos2 θ sin3 θ + sin5 θ.

(b) cos 5θ = 16 cos5 θ − 20 cos3 θ + 5 cos θ.
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Exercise 156 Show that :

(a) sin4 θ = 3
8 −

1
2 cos 2θ + 1

8 cos 4θ.

(b) cos4 θ = 3
8 + 1

2 cos 2θ + 1
8 cos 4θ.

Exercise 157 Prove that

n−1∑
k=0

cos kθ =
sin nθ

2 cos (n−1)θ
2

sin θ
2

·

Determine the values of θ for which this is valid and sum the (finite) series for these

values of θ.

Exercise 158 Evaluate the following sums :

C =

n−1∑
k=0

2k cos kθ and S =

n−1∑
k=0

2k sin kθ.

Exercise 159 Solve the following equations and then represent the roots as points

in the complex plane.

(a) 5x2 + 2x+ 10 = 0.

(b) x2 + (2i− 3)x+ 5− i = 0.

(c) x5 = 1.

(d) x2 = i.

(e) x3 = −1 + i.

(f) x6 +
√

2x3 + 1 = 0.

(g) x10 + 6ix5 − 12 = 0.

(h) x5 − 2x4 − x3 + 6x− 4 = 0.

Exercise 160 Consider a polynomial of degree n

pn(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0

with complex coefficients, and let w1, w2, . . . , wn denote its roots. Show that :

(a) w1 + w2 + · · ·+ wn = −an−1.

(b) w1 · w2 · · ·wn = (−1)na0.


