
Chapter 2

Sets and Numbers

Topics :

1. Sets

2. Operations on sets

3. The integers and division

Almost all mathematical objects (even numbers !) can be defined in terms of sets. In

any mathematical study, one considers a set or sets of certain objects; sets of numbers

are quite common. The theory that results from the intuitive definition of a set – the

so-called naive set theory – leads to paradoxes (i.e., logical inconsistencies). These

logical inconsistencies can be avoided by building the axiomatic set theory. However,

all the sets considered in this course can be treated consistently from the “naive”

point of view.
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2.1 Sets

We think of a set as a collection of objects; these objects are called the elements

(or members) of the set. We DO NOT attempt to define the words collection

or object (and hence the term set), but we assume that if we have a set

S, then there is some “rule” that determines whether a given object x is a

member of S. We say that a set is completely determined by its elements.

Note : Membership in a set is an all-or-nothing situation. We cannot have a set S

and an object x that belongs only partially to S. A given object is either a member

of a set or it is not.

If A is a set and x is an object that belongs to A, we write x ∈ A. If x

is not an element of A, then we write x /∈ A.

Note : It is important to know that a set itself may also be an element of some

other set. Mathematics is full of examples of sets of sets. A line, for instance, is a

set of points; the set of all lines in the plane is a natural example of a set of sets (of

points).

A basic relation between sets is that of containment (or subsethood).

2.1.1 Definition. Let A and B be sets. We say that A is a subset of

B, written A ⊆ B, provided every element of A is also an element of B.

Simbolically:

A ⊆ B ⇐⇒ ∀x, if x ∈ A then x ∈ B.

The phrases “A is contained in B” and “B contains A” are alternative ways

of saying that “A is a subset of B”.

Note : (1) We see that A ⊆ B if and only if the quantification

∀x (x ∈ A→ x ∈ B)

is TRUE.
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(2) It follows from the definition of a subset that a set A is not a subset of a set

B, written A 6⊆ B, if and only if there is at least one element of A that is not an

element of B. Simbolically :

A 6⊆ B ⇐⇒ ∃x such that x ∈ A and x 6∈ B.

(3) When we wish to emphasize that a set A is a subset of B but that A 6= B, we

write A ⊂ B and say that A is a proper subset of B.

2.1.2 Definition. Let A and B be sets. We say that the sets A and B

are equal, written A = B, provided every element of A is in B and every

element of B is in A. Symbolically :

A = B ⇐⇒ A ⊆ B and B ⊆ A.

Note : (1) Two sets are equal if and only if they have the same elements. More

formally, A = B if and only if the quantification

∀x (x ∈ A↔ x ∈ B)

is TRUE.

(2) To know that a set A equals a set B, we must know that A ⊆ B and we must

also know that B ⊆ A.

There are several ways to describe sets.

(i) One way is to list all the elements of the set, when it is possible. We use

a notation where all elements of the set are listed between braces.

2.1.3 Example. The set V of all vowels in the English alphabet can be

written as

V = {a, e, i, o, u}.

2.1.4 Example. The sets {a, b, c}, {a, c, b} and {a, a, b, c} are equal, since

they have exactly the same elements, namely the symbols a, b and c.
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Note : It does not matter in what order we list the objects nor does it matter if

we repeat an object. All that matters is what objects are members of the set and

what objects are not.

The unique set that has no members is called the empty set, and is

denoted by the symbol ∅.

Note : The symbol ∅ is not the same as the Greek letter phi : φ or Φ.

Observe that

∅ ∈ {∅} and ∅ ⊆ {∅}, but ∅ /∈ ∅ .

It is important to distinguish clearly between the concepts of set membership

(∈ ) and set containment (⊆ ). The notation x ∈ A means that x is an

element (member) of A. The notation A ⊆ B means that every element of

A is an element of B. Thus ∅ ⊆ {1, 2, 3} is TRUE, but ∅ ∈ {1, 2, 3} is FALSE.

Note : The difference between ∈ and ⊆ is analogous to the difference between

x and {x}. The symbol x refers to some object (a number or whatever), and the

notation {x} means the set whose one and only one element is the object x. It is

always correct to write x ∈ {x}, but it is incorrect to write x = {x} or x ⊆ {x}.

Uppercase letters are usually used to denote sets. We have special symbols to

denote sets of numbers :

N denotes the set of natural numbers {0, 1, 2, 3, . . . } ;

Z denotes the set of integers ;

Q denotes the set of rational numbers ;

R denotes the set of real numbers.

We will occasionally use the notation Z+ to denote the set of positive integers

{1, 2, 3, . . . }. A natural number may be referred to as a non-negative integer.

We have

Z+ ⊆ N ⊆ Z ⊆ Q ⊆ R .

There are two popular ways of thinking about the set R of real numbers :
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• as a geometric object, with its points as positions on a straight line –

the real line;

• as an algebraic object, with its elements as numbers (expressed as dec-

imal expansions, where if a number is irrational we think of longer and

longer decimal expansions approximating it more and more closely) –

the real number system.

Each of these intuitive ideas can be made precise (and actually lead to ways

of constructing the real numbers from the rational numbers).

Note : (1) Although sets are usually used to group together elements with com-

mon properties, there is nothing that prevents a set from having seemingly unrelated

elements. For instance, {α, Paris, Mike, 102} is the set containing the elements α,

Paris, Mike, and 102.

(2) Sometimes the brace notation is used to describe a set without listing all its

elements: some elements are listed, and then ellipses ( . . . ) are used when the general

pattern of the elements is obvious. For instance, the set of positive integers less than

102 can be denoted by {1, 2, 3, . . . , 102}.

(ii) Whenever we are given a set S, we can use set-builder notation to

describe a subset of S. The form of this notation is

{ dummy variable ∈ S | conditions }.

This is the set of all objects drawn from the set S and subject to the conditions

specified. For example, we could write

A = {n ∈ N |n is prime and n < 15}

which would be read “A equals the set of all n belonging to N such that

n is prime and n is less than 15”. Thus {n ∈ N |n is prime and n < 15}
describes the set {2, 3, 5, 7, 11, 13}.

Note : In set-builder notation {x ∈ S | . . . } is always read “The set of all x

belonging to S such that . . . ”.
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We have notation for certain special subsets of R. We agree as usual that

among real numbers

a < b means “ a is (strictly) less than b ” or “ b− a is positive”

a ≤ b means “ a is less than or equal to b ” or “ b− a is non-negative”.

Note that for any a ∈ R, a ≤ a. Then we define the intervals :

[a, b] : = {x ∈ R | a ≤ x ≤ b} ;

(a, b) : = {x ∈ R | a ≤ x < b} ;

(a, b] : = {x ∈ R | a < x ≤ b} ;

(a, b) : = {x ∈ R | a < x < b}.

When b < a, the definitions imply that all these sets equal ∅; if a = b, then

[a, b] = {a} = {b} and the rest are empty. By convention, the half-unbounded

intervals are written similarly : if a, b ∈ R, then

[a,∞) : = {x ∈ R | a ≤ x} ;

(−∞, b] : = {x ∈ R |x ≤ b} ;

(a,∞) : = {x ∈ R | a < x} ;

(−∞, b) : = {x ∈ R |x < b}

by definition, without thereby allowing the symbols −∞ or ∞ as “numbers”.

2.1.5 Example. Let a, b ∈ R such that 0 < a ≤ b. Then

a ≤
√
ab ≤ a+ b

2
≤ b

with equality if and only if a = b.

Solution : Let 0 < a ≤ b. We have to prove three inequalities :

(1)
√
ab− a =

√
a
(√

b−
√
a
)
≥ 0 ⇒ a ≤

√
ab .

(2) a+b
2 −
√
ab = 1

2

(
a+ b− 2

√
a ·
√
b
)

= 1
2

(√
a−
√
b
)2
≥ 0 ⇒

√
ab ≤ a+b

2 ·

(3) b− a+b
2 = 1

2(b− a) ≥ 0 ⇒ a+b
2 ≤ b.
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The expressions
√
ab and a+b

2 are called the geometric mean and the

arithmetic mean (of the positive real numbers a and b ), respectively.

Note : Inequality (2) has an interesting geometrical interpretation : Among all

rectangles with prescribed perimeter, the square is the one with largest area (if a+b =

p, then ab ≤
(
p
2

)2
).

2.1.6 Example. Let a, b ∈ R such that a + b ≥ 0. Then the following

inequality holds (
a+ b

2

)3

≤ a3 + b3

2

with equality if and only if a = ± b.

Solution : We have

a3 + b3

2
−
(
a+ b

2

)3

=
1

8

[
4(a3 + b3)− (a+ b)3

]
=

1

8

(
4a3 + 4b3 − a3 − b3 − 3a2b− 3ab2

)
=

3

8

(
a3 − a2b+ b3 − ab2

)
=

3

8
(a2 − b2)(a− b)

=
3

8
(a− b)2(a+ b) ≥ 0

and hence (
a+ b

2

)3

≤ a3 + b3

2
·

Clearly, we have equality if and only if a−b = 0 or a+b = 0; that is, a = ± b.

(iii) Sets can also be represented graphically using Venn diagrams. In

Venn diagrams the universal set U , which contains all the objects under

consideration, is represented by a rectangle. Inside this rectangle, circles or

other geometrical figures are used to represent sets. Sometimes points are used

to represent the particular elements of a set.
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Venn diagram with three sets

Sets are used extensively in counting problems, and for such applications

we need to discuss the “size” of sets.

2.1.7 Definition. Let S be a set. If there are exactly n distinct elements

in S, where n is a natural number, we say that S is a finite set and that

n is the cardinality of S. The cardinality of S is denoted by |S|.

2.1.8 Example. Let S be the set of letters in the English alphabet. Then

|S| = 26.

2.1.9 Example. Since the empty set has no elements, it follows that |∅| =
0.

2.1.10 Definition. A set is said to be infinite if it is not finite.

2.1.11 Example. The set Z+ of positive integers is infinite.

2.2 Operations on sets

Just as statements can be combined with logical connectives to produce new

(compound) statements, and numbers can be added and multiplied to obtain

new numbers, there are various operations we perform on sets. The most



C.C. Remsing 35

basic set operations are union and intersection. Other operations are differ-

ence, Cartesian product, and symmetric difference; the latter is defined in the

exercises.

It is safe to assume that all the sets under consideration are subsets of a

fixed (large) universal set U . Thus, for any set A,

∅ ⊆ A ⊆ U .

2.2.1 Definition. Let A and B be sets. The union of A and B, de-

noted by A ∪ B, is the set of all objects that belong either to A or to B, or

to both.

In set-builder notation,

A ∪B : = {x |x ∈ A or x ∈ B}.

2.2.2 Example. What is the union of the sets A = {1, 2, 5} and B =

{1, 2, 4}?

Solution : The union is A ∪B = {1, 2, 4, 5}.

2.2.3 Definition. Let A and B be sets. The intersection of A and B,

denoted by A ∩B, is the set of all objects that belong to both A and B.

In set-builder notation,

A ∩B : = {x |x ∈ A and x ∈ B}.

2.2.4 Example. What is the intersection of the sets A = {1, 2, 5} and

B = {1, 2, 4} ?

Solution : The intersection is A ∩B = {1, 2}.

2.2.5 Definition. Let A and B be sets. The difference of A and B,

denoted by A \B, is the set of all objects belonging to A, but not to B. The

diference of A and B is also called the complement of B relative to A.
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The complement of B relative to the universal set U , denoted by Bc, is called

the complement of B.

In set-builder notation,

A \B : = {x |x ∈ A and x /∈ B}.

It followes that

∅c = U and Uc = ∅.

Also, observe that (for any sets A and B)

A \B = A ∩Bc.

2.2.6 Example. What is the difference of the sets A = {1, 2, 5} and B =

{1, 2, 4}?

Solution : The difference is A \ B = {5}. This is different from the

difference B \A, which is {4}.

We list now some important set identities. In this, A, B, and C are subsets

of a universal set U .

(1) A ∩ U = A (identity) ;

(2) A ∪ ∅ = A (identity) ;

(3) A ∩ ∅ = ∅ (domination) ;

(4) A ∪ U = U (domination) ;

(5) (Ac)c = A (complementation) ;

(6) A ∩A = A (idempotency) ;

(7) A ∪A = A (idempotency) ;

(8) A ∩B = B ∩A (commutativity) ;

(9) A ∪B = B ∪A (commutativity) ;

(10) A ∩ (B ∩ C) = (A ∩B) ∩ C (associativity) ;
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(11) A ∪ (B ∪ C) = (A ∪B) ∪ C (associativity) ;

(12) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) (distributivity) ;

(13) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) (distributivity) ;

(14) (A ∩B)c = Ac ∪Bc (De Morgan’s law) ;

(15) (A ∪B)c = Ac ∩Bc (De Morgan’s law).

Note : There is a similarity between these set identities and the logical equivalences

discussed in section 1.2. In fact, the set identities given can be proved directly from

the corresponding logical equivalences.

2.2.7 Example. Prove that for any sets A and B

(A ∪B)c = Ac ∩Bc.

Solution : We have

x ∈ (A∪B)c ⇐⇒ x /∈ A∪B ⇐⇒ ¬(x ∈ A∪B) ⇐⇒ ¬(x ∈ A∨x ∈ B) ⇐⇒

¬(x ∈ A)∧¬(x ∈ B) ⇐⇒ x /∈ A∧x /∈ B ⇐⇒ x ∈ Ac ∧x ∈ Bc ⇐⇒ x ∈ Ac∩Bc.

Once a certain number of set properties have been established, new prop-

erties can be derived from them algebraically.

2.2.8 Example. For all sets A,B, and C,

(A ∪B) \ (C \A) = A ∪ (B \ C).

Solution : We have

(A ∪B) \ (C \A) = (A ∪B) ∩ (C \A)c

= (A ∪B) ∩ (C ∩Ac)c

= (A ∪B) ∩ ((Ac)c ∪ Cc)

= (A ∪B) ∩ (A ∪ Cc)

= A ∪ (B ∩ Cc)

= A ∪ (B \ C).
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Set identities can also be proved using membership tables: we consider

each combination of sets that an element can belong to and verify that elements

in the same combinations of sets belong to both the sets in the identity; to

indicate that an element is in an a set, the symbol 1 is used, whereas to indicate

that an element is not in a set, the symbol 0 is used. (Note the similarity

between the membership tables and truth tables; this is no coincidence !)

2.2.9 Example. Use a membership table to show that (for all sets A,B,

and C)

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).

Solution : The membership table is given below (it has eight rows).

A B C B ∩ C A ∪ (B ∩ C) A ∪B A ∪ C (A ∪B) ∩ (A ∪ C)

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 0 1 0 1 1 1 1

1 0 0 0 1 1 1 1

0 1 1 1 1 1 1 1

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 0 0 0 0 0

It follows that the identity is valid.

Since the union and intersection of sets are associative operations, the sets

A∪B ∪C and A∩B ∩C are well defined. We note that A∪B ∪C contains

those objects that belong to at least one of the sets A,B, and C, and that

A ∩B ∩ C contains those objects that belong to all of A,B, and C.

We can extend the union and intersection to n sets.

2.2.10 Definition. Let A1, A2, . . . , An be a collection of sets. The union

of A1,
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A2, . . . , An, denoted by A1 ∪ A2 ∪ · · · ∪ An, is the set that contains those

elements that are members of at least one set in the collection.

In set-builder notation,

A1 ∪A2 ∪ · · · ∪An =

n⋃
i=1

Ai : = {x | ∃i such that x ∈ Ai} .

2.2.11 Definition. Let A1, A2, . . . , An be a collection of sets. The in-

tersection of A1, A2, . . . , An, denoted by A1 ∩ A2 ∩ · · · ∩ An, is the set that

contains those elements that are members of all sets in the collection.

In set-builder notation,

A1 ∩A2 ∩ · · · ∩An =
n⋂
i=1

Ai : = {x | ∀i, x ∈ Ai} .

2.2.12 Example. Let Ai = {i, i+ 1, i+ 2, . . . }, i ∈ {1, 2, . . . , n}. Then

n⋃
i=1

Ai = {1, 2, 3, . . . } and
n⋂
i=1

Ai = {n, n+ 1, n+ 2, . . . }.

2.2.13 Definition. Let A and B be sets. The Cartesian product of

A and B, denoted by A×B, is the set of all ordered pairs (a, b), where a ∈ A
and b ∈ B.

In set-builder notation,

A×B : = {(a, b) | a ∈ A and b ∈ B}.

2.2.14 Example. What is the Cartesian product of the sets A = {1, 2, 3}
and B = {α, β} ?

Solution : The Cartesian product is

A×B = {(1, α), (1, β), (2, α), (2, β), (3, α), (3, β)}.



40 MAT 102 - Discrete Mathematics

Note : (1) The Cartesian products A × B and B × A are not equal, unless

A = ∅ or B = ∅ (so that A×B = ∅ ) or unless A = B.

(2) Since

(a, b) ∈ A×B ⇐⇒ a ∈ A and b ∈ B

we can use the Cartesian product set to describe the set of outcomes of performing one

operation and then another. For example, an object has to be coloured by choosing

one of the colours from the set C = {c1, c2, c3} and then numbered by choosing one

of the numbers from the set N = {n1, n2} then the set of all possible objects which

result is represented by the set

C ×N = {(ci, nj) | i ∈ {1, 2, 3}, j ∈ {1, 2}}.

The Cartesian product can easily be extended to n sets.

2.2.15 Definition. Let A1, A2, . . . , An be sets. The Cartesian product

of A1, A2, . . . , An, denoted by A1 × A2 × · · · × An, is the set of all ordered

n-tuples (a1, a2, . . . , an), where ai belongs to Ai for i ∈ {1, 2, . . . , n}.

In set-builder notation,

A1 ×A2 × · · · ×An =
n∏
i=1

Ai : = {(a1, a2, . . . , an) | ∀i, ai ∈ Ai} .

We write

A2 : = A×A

and, in general,

An : = A×A× · · · ×A︸ ︷︷ ︸
n factors

.

2.2.16 Definition. Let S be a set. The power set of S, denoted by 2S

(or P(S)), is the set of all subsets of S.

In set-builder notation,

2S : = {A |A ⊆ S}.
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2.2.17 Example. What is the power set of S = {1, 2, 3} ?

Solution : 2S = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}} .

2.3 The integers and division

The set of all integers is denoted by Z. The mathematical theory of integers

and their properties is called number theory (or sometimes, on traditional

grounds, arithmetic).

Any two integers a, b ∈ Z can be added and multiplied : their sum a+ b

and their product ab are well-defined integers. Addition and multiplication of

integers are governed by certain laws. The most basic ones are the following :

a+ b = b+ a; ab = ba;

a+ (b+ c) = (a+ b) + c; a(bc) = (ab)c;

a(b+ c) = ab+ ac.

Note : These fundamental arithmetic laws are very simple, and may seem obvious.

But they might not be applicable to entities other than integers. However, these laws

resemble some (but not all !) properties (laws) regarding logical propositions (w.r.t.

disjuction and conjuction) or sets (w.r.t. union and intersection). For example,

the addition of integers does not distributes w.r.t. the multiplication : in general,

a+ bc 6= (a+ b)(a+ c).

The notion of divisibility is the central concept of number theory. Based

on this concept, many important ideas (with far reaching applications) can be

developed.

Divisibility

When one integer is devided by a second (nonzero) integer, the quotient

may or may not be an integer. For example, 16 ÷ 4 is an integer, whereas

15÷ 4 is not.

We make the following definition.
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2.3.1 Definition. If a, b ∈ Z and b 6= 0, we say that a is divisible by b,

denoted a
... b, provided there is an integer k such that a = bk. Simbolically,

a
... b ⇐⇒ a = bk for some k ∈ Z.

Alternatively, we say that

• a is a multiple of b;

• b is a divisor of a;

• b is a factor of a;

• b divides a.

The (alternative) notation b | a is read “b divides a”.

2.3.2 Example.

(a) Is 40 divisible by 8 ?

(b) Does 5 divide 120 ?

(c) Is 48 a multiple of −16 ?

(d) Does 7 | (−7) ?

Solution : (a) Yes, 40 = 8·5. (b) Yes, 120 = 5·24. (c) Yes, 48 = 16·(−3).

(d) Yes, −7 = 7 · (−1).

2.3.3 Example. If m is a nonzero integer, does m divide 0 ?

Solution : Yes, because 0 = m · 0.

Note : We may express the fact that m is a nonzero integer, by writing m ∈ Z∗ :

= Z \ {0}.

2.3.4 Example. Which integers divide 1 ?

Solution : The only divisors of 1 are 1 and −1.

The following result is easy to prove.
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2.3.5 Proposition. Let a, b, c ∈ Z. Then

1. If a
... c and b

... c, then (a+ b)
... c.

2. If a
... b, then ac

... b.

3. If a
... b and b

... c, then a
... c.

Every positive integer greater than 1 is divisible by at least two integers,

since a positive integer is divisible by 1 and by itself. Integers that have

exactly two (different) positive integer factors are called prime.

2.3.6 Definition. A positive integer p > 1 is called prime if the only

positive factors of p are 1 and p. A positive integer that is greater than 1

and is not prime is called composite.

2.3.7 Example. The first few prime numbers are :

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, · · ·

They become progresively more sparse and are rather irregularly distributed.

Note : Attempts have been made to find simple arithmetical formulas that yield

only primes, even though they may not give all of them. Pierre de Fermat (1601-

1665) made the fameous conjecture that all numbers of the form

F (n) = 22
n

+ 1

are prime. Indeed, for n = 1, 2, 3, 4 we obtain

F (1) = 22 + 1 = 5

F (2) = 22
2

+ 1 = 17

F (3) = 22
3

+ 1 = 257

F (4) = 22
4

+ 1 = 65 537

all prime numbers. But in 1732 Leonhard Euler (1707-1783) discovered the

factorization 22
5

+ 1 = 641 · 6 700 417; hence F (5) is not prime.
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Another remarkable and simple expression which produces many primes is

f(n) = n2 − n+ 41.

For n = 1, 2, 3, · · · , 40, f(n) is a prime number; but for n = 41, we have f(n) = 412,

which is no longer a prime number.

On the whole, it has been a futile task to seek expressions of a simple type which

produce only prime numbers. Even less promising is the attempt to find an algebraic

formula which shall yield all the prime numbers.

Is the set of all such numbers infinite, or is there a largest prime number

? The answer was known to Euclid and a proof (that the set of all prime

numbers is infinite) will be given now. Only one additional fact is required.

2.3.8 Lemma. For any integer a and prime number p, if p | a, then p 6
| (a+ 1).

Proof : Suppose not. Suppose there exists an integer a and a prime number

p such that

p | a and p | (a+ 1).

Then, by definition of divisibility, there exist integers k and ` so that

a = pk and a+ 1 = p`.

It follows that

1 = (a+ 1)− a = pk − p` = p(k − `)

and so (since k − ` is an integer) p | 1. But the only divisors of 1 are 1

and −1. But p is prime, hence p > 1. This is a contradiction. (Hence the

supposition is FALSE, and the proposition is TRUE.) 2

Note : An implication p→ q can be proved by showing that if p is TRUE, then

q must also be TRUE. (This shows that the combination p TRUE and q FALSE never

occurs.) A proof of this kind is called a direct proof.
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Suppose that a contradiction can be deduced by assuming that q is not TRUE :

the proposition p ∧ ¬q → C is TRUE. We can see that

p→ q ⇐⇒ (p ∧ ¬q → C) .

It follows that if p is TRUE, then q must also be TRUE. An argument of this type

(for proving the implication p→ q ) is called a proof by contradiction.

2.3.9 Theorem. The set of all prime numbers is infinite.

Proof : Suppose not. Suppose the set of all prime numbers is finite. (We

must deduce a contradiction.) Then all the prime numbers can be listed, say,

in ascending order :

p1 = 2, p2 = 3, p3 = 5, · · · , pn.

Consider the integer

n = p1 · p2 · p3 · · · pn + 1.

Then n > 1 and so n is divisible by some prime number p : p |n. Also, since

p is prime, p must equal one of the prime numbers p1, p2, · · · , pn. Thus

p | (p1 · p2 · p3 · · · pn).

Then, by Lemma 2.3.8, p 6 | (p1 · p2 · p3 · · · pn + 1). So p 6 |n. This is a

contradiction. (Hence the supposition is FALSE, and the theorem is TRUE.)

2

The prime numbers are the building blocks of positive integers, as the

following result shows. This result (also referred to as the Unique Factorization

Theorem) says that any positive integer n > 1 is either a prime number or

can be written as a product of prime numbers in a way that is unique except,

perhaps, for the order of the factors.

2.3.10 Theorem. (The Fundamental Theorem of Arithmetic) Every

positive integer n > 1 can be written uniquely as a product of prime numbers,

where the prime factors are written in order of increasing size.
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Thus, for n > 1, there exist unique prime numbers p1 < p2 < · · · < pk

and unique positive integers α1, α2 · · · , αk such that

n = pα1
1 · p

α2
2 · p

α3
3 · · · p

αk
k .

2.3.11 Example. Find the prime factorizations of the numbers 100, 999,

and 2005.

Solution : We have

100 = 2 · 50

= 2 · 2 · 25

= 22 · 52.

999 = 9 · 111

= 32 · 3 · 37

= 33 · 37.

2005 = 5 · 401.

Note : It is often important to know whether a given positive integer is prime. It

can be shown that a positive integer is a prime number if it is not divisible by any

prime number less than or equal to its square root. For example, the number 401 is

prime because it is not divisible by any of the prime numbers 2,3,5,7,11,13,17 or 19.

An important corollary of the Fundamental Theorem of Arithmetic

is the following :

2.3.12 Proposition. If a, b, p are positive integers and p is prime such

that p | ab, then either p | a or p | b.

Solution : If p were a factor of neither a nor b, then then the product of

the prime factorizations of a and b would yield a prime factorization of the

integer ab not containing p. On the other hand, since p is assumed to be a

factor of ab, there exists an integer k such that ab = pk. Hence the product

of p by a prime factorization of k would yield a prime factorization of the
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integer ab containing p, contrary to the fact that the prime factorization of

ab is unique. 2

2.3.13 Example. If one has verified the fact that 13 is a divisor of 2 652,

and the fact that 2 652 = 6 · 442, one may conclude that 13 is a divisor of

442.

On the other hand, 6 is a factor of 240, and 240 = 15 · 16, but 6 is not

a factor of either 15 or 16.

(This shows that the assumption that p is a prime number is an essential

one.)

In order to find all the divisors (or factors) of any (positive integer) a we

need only its prime decomposition

a = pα1
1 · p

α2
2 · · · p

αn
n .

All the divisors of a are the numbers

b = pβ11 · p
β2
2 · · · p

βn
n

where the β’s are any integers satisfying the inequalities

0 ≤ β1 ≤ α1, 0 ≤ β2 ≤ α2, · · · , 0 ≤ βn ≤ αn.

It follows that the number of all different divisors of a (including the divisors

1 and a ) is given by the product

(α1 + 1)(α2 + 1) · · · (αn + 1).

2.3.14 Example. The positive integer 144 = 24 ·32 has 5·3 = 15 divisors.

They are

1, 2, 4, 8, 16, 3, 6, 12, 24, 48, 9, 18, 36, 72, 144.
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GCDs and LCMs

An integer may or may not be divisible by another. However, when an inte-

ger is divided by a positive integer, there always is a quotient and a remainder.

The following result holds.

2.3.15 Theorem. (The Quotient-Remainder Theorem) Given any in-

teger a and positive integer d, there are unique integers q and r such that

a = d · q + r and 0 ≤ r < d.

In the equality above, d is called the divisor, a is called the dividend,

q is called the quotient, and r is called the remainder.

2.3.16 Example. What are the quotient and the remainder when 82 is

divided by 11 ?

Solution : We have

82 = 11 · 7 + 5.

Hence the quotient (when 82 is divided by 11) is 7 and the remainder is 5.

2.3.17 Example. What are the quotient and the remainder when −43 is

divided by 8 ?

Solution : We have

−43 = 8 · (−6) + 5.

Hence the quotient (when −43 is divided by 8) is −6 and the remainder is

5. (Note that the remainder cannot be negative.)

2.3.18 Definition. Let a and b be two nonzero integers. The largest

integer d such that d | a and d | b is called the greatest common divisor

of a and b.
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The greatest common divisor of a and b is denoted by GCD (a, b).

The GCD of two nonzero integers always exists because the set of common

divisors of these integers is finite. One way to find the GCD of two integers

is to find all the positive common divisors of both integers and then take the

largest divisor.

2.3.19 Example. Find the greatest common divisor of 48 and 64.

Solution : The positive common divisors of 48 and 64 are

1, 2, 4, 8, and 16.

Hence GCD (48, 64) = 16.

2.3.20 Example. What is the GCD of 16 and 81 ?

Solution : The integers 16 and 81 have no positive common divisors other

than 1, so that GCD (16, 81) = 1.

Note : Two integers who have no common positive divisors other than 1 are said

to be relatively prime. Clearly, any two prime numbers are relatively prime.

Another way to find the GCD of two integers is to use the prime factoriza-

tions of these integers. Suppose that the prime factorizations of the nonzero

integers a and b are :

a = pα1
1 · p

α2
1 · · · p

αn
n and b = pβ11 · p

β2
2 · · · p

βn
n

where each exponent is a nonnegative integer and where all prime factors

occuring in the prime factorization of either a or b are included in both

factorizations, with zero exponents if necessary. Then GCD (a, b) is given by

GCD (a, b) = p
min(α1,β1)
1 · pmin(α2,β2)

2 · · · pmin(αn,βn)
n

where min(r, s) represents the minimum of the two numbers r and s.



50 MAT 102 - Discrete Mathematics

2.3.21 Example. Find the GCD of 200 and 360.

Solution : The prime factorizations of 200 and 360 are

200 = 8 · 25

= 23 · 52,

360 = 4 · 9 · 10

= 23 · 32 · 5.

Hence

GCD (200, 360) = 2min(3,3) · 3min(0,2) · 5min(2,1) = 23 · 30 · 51 = 40.

Prime factorizations can also be used to find the least commun multiple of

two integers.

2.3.22 Definition. Let a and b be two positive integers. The smallest

positive integer m such that m
... a and m

... b is called the least common

multiple of a and b.

The least common multiple of a and b is denoted by LCM (a, b).

The LCM of two integers always exists because the set of integers divisible

by both a and b is nonempty, and every nonempty set of positive integers

has a least element. Suppose that the prime factorizations of a and b are as

before. Then LCM (a, b) is given by

LCM (a, b) = p
max(α1,β1)
1 · pmax(α2,β2)

2 · · · pmax(αn,βn)
n

where max(r, s) represents the maximum of the two numbers r and s.

2.3.23 Example. What is the least common multiple of a = 22 ·34 ·5 and

b = 2 · 32 · 72 ?

Solution : We have

LCM (a, b) = 2max(2,1) · 3max(4,2) · 5max(1,0) · 7max(0,2) = 22 · 34 · 5 · 72.
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There is an interesting relationship between the GCD and the LCM of two

integers.

2.3.24 Proposition. Let a and b be positive integers. Then

a · b = GCD (a, b) · LCM (a, b).

The Euclidean algorithm

The method for computing the GCD of two integers, using the prime fac-

torization, is very inefficient. (The reason is that finding prime factorizations

is a time-consuming process.) More efficient methods exist. The following

algorithm, called the Euclidean algorithm, has been known since ancient

times. It is based on the following facts :

• If r is a positive integer, then GCD (r, 0) = r.

• If a, b, q, r are integers such that a = b · q + r, then GCD (a, b) =

GCD (b, r).

The Euclid algorithm can be described as follows :

1. Let a and b be integers with a > b ≥ 0.

2. To find the GCD of a and b, first check whether b = 0. If it is, then

GCD (a, b) = a. If it isn’t, then put r0 = a and r1 = b, and then apply

successively the Quotient-Remainder Theorem :

r0 = r1q1 + r2 (0 ≤ r2 < r1)

r1 = r2q2 + r3 (0 ≤ r3 < r2)

...

rn−2 = rn−1qn−1 + rn (0 ≤ rn < rn−1)

rn−1 = rnqn.

Eventually a remainder of zero occurs in this sequence of successive di-

visions (since a sequence of remainders a = r0 > r1 > r2 > · · · ≥ 0

cannot contain more than a terms).
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3. It follows that

GCD (a, b) = GCD (r0, r1)

= GCD (r1, r2)

...

= GCD (rn, 0)

= rn.

Hence the GCD (a, b) is the last nonzero remainder in the sequence of

divisions.

Note : It is always the case that the number of steps required in the Euclidean

algorithm is at most five times the number of digits in the small number.

2.3.25 Example. Calculate the GCD of 330 and 156 using the Euclidean

algorithm.

Solution : We have

330 = 156 · 2 + 18

156 = 18 · 8 + 12

18 = 12 · 1 + 6

12 = 6 · 1 + 0.

Hence

GCD (330, 156) = 6.

An extremely important property of GCD (a, b) can be derived from the

Euclidean algorithm.

2.3.26 Proposition. If a and b are positive integers, then there exist

integers k and ` such that

GCD (a, b) = ka+ `b.
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Solution : As before, consider the sequence of successive divisions :

r0 = r1q1 + r2

r1 = r2q2 + r3

...

rn−2 = rn−1qn−1 + rn

rn−1 = rnqn.

From the first equation

r2 = a− q1b

so that r2 can be written in the form k1a + `1b (in this case k1 = 1 and

`1 = −q1).

From the next equation,

r3 = b− q2r2

= b− q2(k1a+ `1b)

= (−q2k1)a+ (1− q2`1)b

= k2a+ `2b.

Clearly this process can be repeated through the successive remainders r4, r5, · · ·
until we arrive at the representation

rn = ka+ `b

as was to be proved. 2

2.3.27 Example. Express GCD (61, 24) as a linear combination of 61 and

24 (i.e. in the form k · 61 + ` · 24).
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Solution : We have

61 = 2 · 24 + 13

24 = 1 · 13 + 11

13 = 1 · 11 + 2

11 = 5 · 2 + 1

2 = 2 · 1 + 0.

We have, from the first of these equations,

13 = 61− 2 · 24,

from the second,

11 = 24− 13 = 24− (61− 2 · 24) = −61 + 3 · 24,

from the third,

2 = 13− 11 = (61− 2 · 24)− (−61 + 3 · 24) = 2 · 61− 5 · 24,

and from the fourth,

1 = (−61 + 3 · 24)− 5 · (2 · 61− 5 · 24) = −11 · 61 + 28 · 24.

Note : The fact that d = GCD (a, b) can always be written in the form

d = k · a+ ` · b

may be used to prove the Fundamental Theorem of Arithmetic.

2.4 Exercises

Exercise 16 TRUE or FALSE ?

(a) ∅ = {∅}.

(b) 4 ∈ {4}.
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(c) {4} ⊆ {{4}}.

(d) ∅ ∈ {4}.

(e) ∅ ⊆ {4}.

(f) [2, 4] ⊆ N.

(g) {2, 3, 4} ⊆ Z.

(h) 1
2 ∈ {0, 1}.

Exercise 17 Let a, b, c ∈ R. Prove that

a2 + b2 + c2 ≥ ab+ bc+ ca

with equality if and only if a = b = c.

Exercise 18 Let a, b, a1, a2, b1, b2 ∈ R. Prove that :

(a) (Mean inequalities) If 0 < a ≤ b, then

a ≤ 2
1
a + 1

b

≤
√
ab ≤ a+ b

2
≤
√
a2 + b2

2
≤ b

with equality if and only if a = b.

(b) (Cauchy-Schwarz inequality)

(a1b1 + a2b2)2 ≤ (a21 + a22)(b21 + b22)

with equality if and only if a1 = rb1 and a2 = rb2 (r ∈ R).

(c) (Chebyshev inequality) If a1 ≤ a2 and b1 ≤ b2, then

(a1 + a2)(b1 + b2) ≤ 2(a1b1 + a2b2)

with equality if and only if a1 = a2 and b1 = b2.

Note : (1) The expressions 2
1
a+

1
b

and
√

a2+b2

2 are called the harmonic mean

and the quadratic mean (of the positive real numbers a and b ), respectively.

(2) All these inequalities (given here for the case n = 2) can be generalized.

Exercise 19 Find conditions on sets A and B to make each of the following propo-

sitions TRUE.
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(a) A ∪B = A.

(b) A ∩B = B.

(c) A ∪B = A ∩B.

(d) A \B = ∅.

(e) A \B = A.

(f) A \B = B.

(g) A \B = B \A.

Exercise 20 Can you conclude that A = B if A,B and C are sets such that

(a) A ∪ C = B ∪ C ?

(b) A ∩ C = B ∩ C ?

(c) A ∪ C = B ∪ C and A ∩ C = B ∩ C ?

Exercise 21 The symmetric difference of A and B, denoted by A M B, is the

set containing those elements in either A or B, but not in both A and B; that is,

A M B : = (A ∪B) \ (A ∩B).

(a) Find the symmetric difference of {1, 2, 3} and {2, 3, 4}.

(b) Show that

i. A M B = (A \B) ∪ (B \A).

ii. A M A = ∅.

iii. A M ∅ = A.

iv. A M B = B M A.

v. (A M B) M C = A M (B M C)

(c) What can you say about the sets A and B if A M B = A ?

Exercise 22 TRUE or FALSE ?

(a) If A,B are finite sets, then | A×B |=| A | · | B |.

(b) If A,B are finite sets, then | A \B |=| A | − | B |.

(c) If A,B are finite sets, then | A ∪B |=| A | + | B |.

(d) If A,B are finite sets, then | 2A |= 2|A|.
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(e) If A,B are sets, and (5, 6) /∈ A×B, then 5 /∈ A and 6 /∈ B.

(f) If A,B are sets, and 5 /∈ A, then (5, 6) /∈ A×B.

(g) If A,B are sets, and (A×B) ∩ (B ×A) 6= ∅, then A ∩B 6= ∅.

(h) If A,B are sets, and A ∩B 6= ∅, then (A×B) ∩ (B ×A) 6= ∅.

If the statement is FALSE, give a counterexample.

Exercise 23 Let A,B, and C be sets. Show that :

(a) (A \B) ∩ (A ∩B) = ∅.

(b) A \ (B ∪ C) = (A \B) ∩ (A \ C).

(c) A \ (B ∩ C) = (A \B) ∪ (A \ C).

(d) A \ (B \ C) = (A \B) ∪ (A ∩ C).

(e) (A \B) \ C = (A \ C) \ (B \ C).

Exercise 24 Prove the following statements.

(a) If a is a nonzero integer, then

1 | a and a | 0.

(b) If a, b, and c are integers such that a | b, then a | bc.

(c) If a, b, and c are integers such that a | b and b | c, then a | c.

(d) If a, b, c, and d are integers such that a | c and b | d, then ab | cd.

(e) If a, b, and c are integers such that ac | bc, then a | b.

Exercise 25 Are the following integers prime ?

(a) 93.

(b) 101.

(c) 301.

(d) 1001.

Exercise 26 In each of the following cases, what are the quotient and remainder ?

(a) 19 is divided by 7.
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(b) −101 is divided by 11.

(c) 1001 is divided by 13.

(d) 0 is divided by 23.

(e) −1 is divided by 5.

Exercise 27 Find the prime factorization of each of the following.

(a) 39.

(b) 81.

(c) 101.

(d) 289.

(e) 899.

Exercise 28 Use the Euclidean algorithm to find

(a) GCD (12, 18).

(b) GCD (111, 201).

(c) GCD (1001, 1331).

(d) GCD (123, 4321).

Exercise 29 Express the GCD of each of the following pairs of integers as a linear

combination of these integers.

(a) 10, 11.

(b) 21, 44.

(c) 36, 48.

(d) 34, 55.

(e) 117, 213.

(f) 0, 223.

Exercise 30 TRUE or FALSE ?

(a) If a and b are integers such that a
... b and b

... a, then a = b.

(b) If a, b, and c are positive integers such that a | bc, then a | c.
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(c) The integers which leave a remainder 1 when divided by 2 and also leave

a remainder 1 when divided by 3 are those and only those of the form

6k + 1, where k ∈ Z.


