
Chapter 4

Mathematical Induction

Topics :

1. Sequences of numbers

2. Summations

3. Mathematical induction

One of the tasks of mathematics is to discover and characterize patterns, such as those

associated with processes that are repeated. The main mathematical structure used

to study repeated processes is the sequences. An important mathematical tool used

to verify conjectures about patterns is mathematical induction.
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4.1 Sequences of numbers

Sequences are used to represent ordered collections, finite or infinite, of ele-

ments. To say that a collection of objects is ordered means that the collection

has an identified first element, second element, third element, and so on. For

the sake of simplicity, we may assume that the objects involved are all num-

bers. (Here, by number is meant any real number; that is, an element of the

set R.) A formal definition is given below.

4.1.1 Definition. A sequence (of numbers) is a real-valued function whose

domain is an infinite subset of N (usually either the set N or Z+).

Let a : N ⊆ N → R, n 7→ a(n) be a sequence. It is customary to use the

notation (an)n∈N (or (an)n≥n0 or, simply, (an) ) to denote such a sequence,

where an is called the nth term of the sequence.

4.1.2 Example. The terms of the sequence (an)n≥1, where an = 3+(−1)n

are

3 + (−1)1, 3 + (−1)2, 3 + (−1)3, 3 + (−1)4, . . . ;

that is,

2, 4, 2, 4, . . . .

4.1.3 Example. The terms of the sequence
(

2n
n+1

)
n≥1

are

2 · 1
1 + 1

,
2 · 2
2 + 1

,
2 · 3
1 + 3

,
2 · 4
1 + 4

, · · · ;

that is,

1,
4

3
,

3

2
,

8

5
, · · · · .

Sometimes the terms of a sequence are generated by some rule that does

not explicitly identify the nth term of the sequence. In such cases, you may be

required to discover a pattern in the sequence and to describe the nth term.
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4.1.4 Example. Find a sequence (an)n∈N whose first five terms are

1

1
,

2

3
,

4

5
,

8

7
,

16

9
, · · ·

Solution : First, note that the numerators are successive powers of 2, and

the denominators form the sequence of positive odd integers. By comparing

an with n, we have the following pattern

20

1
,

21

3
,

22

5
,

23

7
,

24

9
, · · · , 2n

2n+ 1
, · · ·

4.1.5 Example. Determine the nth term for a sequence whose first five

terms are

−2

1
,

8

2
, −26

6
,

80

24
, −242

120
, · · ·

Solution : Note that the numerators are 1 less than 3n. Hence, we can

reason that the numerators are given by the rule 3n − 1. Factoring the de-

nominators produces

1 = 1

2 = 1 · 2

6 = 1 · 2 · 3

24 = 1 · 2 · 3 · 4

120 = 1 · 2 · 3 · 4 · 5 .

This suggests that the denominators are represented by n!. Finally, because

the signs alternate, we can write the nth term as

an = (−1)n
(

3n − 1

n!

)
.

Finite sequences

An ordered collection of finitely many objects is usually referred to as a list

(of terms) or a string (of symbols). We write lists (strings) by starting with

an open paranthesis, followed by the elements of the list (string) separated by
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commas, and finishing with a close parenthesis. For example, (1, ∅,Z) is a list

whose first term is number 1, whose second term is the empty set, and whose

third term is the set of integers.

Note : The order in which elements appear in a list (string) is significant. The

string (a, b, c) is not the same as the string (b, c, a). Elements in a (list) string might

be repeated.

The number of elements in a list (string) is called its length. For example,

the string (1, 0, 1, 0) is a string of length four (or a 4-string). Another term

used for strings is tuple.

Note : The string s = (s1, s2, . . . , sn) is also denoted simply by s1s2 · · · sn. Strings

constructed only with the symbols 0 and 1 are called bit strings. For example,

00, 01, 10, 11 are (all the) bit strings of length two. Bit strings are widely used in

discrete mathematics as well as in computer science.

It is clear that lists (strings or tuples) are in fact finite sequences of objects.

The formal definition is given below.

4.1.6 Definition. For each positive integer n, the set [n] : = {1, 2, 3, . . . n}
is called an initial segment of Z+. A finite sequence is a function whose

domain is an initial segment of Z+.

4.2 Summations

Consider a sequence (of numbers) (an)n∈N. In order to express the sum of the

terms

ap, ap+1, ap+2, . . . , aq (p ≤ q)

it is often convenient to use the summation notation; we write

q∑
i=p

ai
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to represent

ap + ap+1 + ap+2 + · · ·+ aq.

Note : The variable i is called the index of summation, and the choice of the

letter i is arbitrary; thus, for instance,

q∑
i=p

ai =

q∑
j=p

aj =

q∑
k=p

ak.

The uppercase Greek letter sigma ( Σ ) is used to denote summation.

Here, the index of summation runs through all integers starting with the

lower limit p and ending with the upper limit q. (There are q − p + 1

terms in the summation.)

4.2.1 Example. Find the value of the sum

S1 =
4∑
i=0

(−2)i.

Solution : We have

S1 =
4∑
i=0

(−2)i = (−2)0 + (−2)1 + (−2)2 + (−2)3 + (−2)4

= 1 + (−2) + 4 + (−8) + 16

= 11.

4.2.2 Example. Compute the sum

S2 =

4∑
j=0

(2j + 1)2.

Solution : We have

S2 =

4∑
j=0

(2j + 1)2 = 12 + 32 + 52 + 72 + 92

= 1 + 9 + 25 + 49 + 81

= 165.
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4.2.3 Example. Evaluate the following double sum

3∑
i=1

4∑
j=1

ij.

Solution : We have

3∑
i=1

4∑
j=1

ij =
3∑
i=1

(i+ 2i+ 3i+ 4i)

=
3∑
i=1

10i

= 10 + 20 + 30

= 60.

Some useful identities (formulas)

4.2.4 Example. Find explicit formulas for the sums

S(k)
n =

n∑
i=1

ik for k = 1, 2.

Solution : We calculate first

S(1)
n =

n∑
i=1

i = 1 + 2 + · · ·+ n.

We write the sum in two ways

S(1)
n = 1 + 2 + · · ·+ (n− 1) + n

S(1)
n = n+ (n− 1) + · · ·+ 2 + 1.

On adding, we see that each pair of numbers in the same column yields the

sum n+ 1 and since there are n columns in all, it follows that

2S(1)
n = n(n+ 1),

and hence

S(1)
n =

n(n+ 1)

2
·
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We have obtained the formula (the sum of the first n natural numbers) :

1 + 2 + · · ·+ n =
n(n+ 1)

2
·

Next, we calculate

S(2)
n =

n∑
i=1

i2 = 12 + 22 + · · ·+ n2.

Consider the identity

(i+ 1)3 = i3 + 3i2 + 3i+ 1.

By making i = n, n− 1, n− 2, . . . , 2, 1 we get

(n+ 1)3 = n3 + 3n2 + 3n+ 1

n3 = (n− 1)3 + 3(n− 1)2 + 3(n− 1) + 1

(n− 1)3 = (n− 2)3 + 3(n− 2)2 + 3(n− 2) + 1

...

33 = 23 + 3 · 22 + 3 · 2 + 1

23 = 13 + 3 · 12 + 3 · 1 + 1.

Adding up, we have

(n+ 1)3 + S(3)
n − 1 = S(3)

n + 3S(2)
n + 3S(1)

n + n

or

3S(2)
n = (n+ 1)3 − (n+ 1)− 3n(n+ 1)

2

and hence

S(2)
n =

(n+ 1)
[
2(n+ 1)2 − 2− 3n

]
6

=
(n+ 1)(2n2 + n)

6

=
n(n+ 1)(2n+ 1)

6
·
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We have obtained the formula (the sum of the first n squares) :

12 + 22 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
·

Note : Similarly, using the identity

(i+ 1)4 = i4 + 4i3 + 6i2 + 4i+ 1 ,

we can derive an explicit formula for S
(3)
n ; that is, the formula (the sum of the first

n cubes) :

13 + 23 + · · ·+ n3 =
n2(n+ 1)2

4
·

4.2.5 Example. Find an explicit formula for

A = a+ (a+ r) + (a+ 2r) + · · ·+ (a+ nr) =

n∑
i=0

(a+ ir)

(the sum of the first n + 1 terms of a arithmetic progression with initial

term a and ratio r ).

Solution : We have

A =

n∑
i=0

(a+ ir)

=

n∑
i=0

a+ r

n∑
i=0

i

= (n+ 1)a+ r
n(n+ 1)

2

=
(n+ 1)(2a+ rn)

2

=
n+ 1

2
[a+ (a+ rn)] .

Thus

a+ (a+ r) + (a+ 2r) + · · ·+ (a+ nr) =
n+ 1

2
[a+ (a+ rn)] .
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4.2.6 Example. Find an explicit formula for

G = a+ ar + ar2 + · · ·+ arn =
n∑
i=0

ari, r 6= 1

(the sum of the first n + 1 terms of a geometric progression with initial

term a and ratio r ).

Solution : We have

rG = r
n∑
i=0

ari

=
n∑
i=0

ari+1

=

n+1∑
k=1

ark

=

n∑
k=0

ark + (arn+1 − a)

= G+ (arn+1 − a).

Thus

rG = G+ (arn+1 − a) ,

and by solving for G we get

a+ ar + ar2 + · · ·+ arn =
a(rn+1 − 1)

r − 1
, r 6= 1.

4.3 Mathematical induction

Mathematical induction is an important proof technique that can be used to

prove statements of the form ∀n P (n), where the universe of discourse (of

the predicate P (n) ) is the set of natural numbers. It is based on a principle,

called the principle of mathematical induction.
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Principle of Mathematical Induction : Let S be a subset of N such

that

• 0 ∈ S ;

• for all n, if n ∈ S then n+ 1 ∈ S.

Then S = N.

To visualize the idea of mathematical induction, imagine a collection of

dominoes positioned one behind the other in such a way that if any given

domino falls backward, it makes the one behind him fall backward also. Then

imagine that the first domino falls backward. What happens ? . . . They all

fall down !

Note : Strictly speaking, the validity of the principle of mathematical induction

is an axiom. This is why it is referred to as the principle of mathematical induction

rather than as a theorem.

Let P (n) be a predicate whose universe of discourse is N, and let S be

the truth set of P (n), that is S : = {n ∈ N |P (n) is true}. Based on the

principle of mathematical induction, a proof by mathematical induction

that P (n) is true for every natural number n (that is, S = N ) consists of

two steps :

1. Basis step. The property P (0) is shown to be true.

2. Inductive step. The implication P (n)→ P (n+ 1) is shown to be true

for every n ∈ N.

When we complete both steps of a proof by mathematical induction, we have

proved that P (n) is true for all natural numbers n; that is, we have shown

that the proposition ∀n P (n) is true.

Note : (1) This proof technique is based on the tautology

P (0) ∧ ∀n (P (n)→ P (n+ 1))→ ∀n P (n).
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(2) To prove the implication P (n)→ P (n+ 1) is true for every n ∈ N, we need to

show that P (n + 1) cannot be false when P (n) is true ; this can be accomplished

by assuming that P (n) is true and showing that under this premise P (n+ 1) must

also be true.

(3) The principle of mathematical induction is equally valid if, instead of starting

with 0, we (1) start with a given natural number a, (2) show that a ∈ S, and (3)

show that, if a ∈ S and n ≥ a, then n+ 1 ∈ S. When we do this we will know that

every natural number greater than or equal to a belongs to the set S.

4.3.1 Example. Use mathematical induction to prove that

1 + 2 + · · ·+ n =
n(n+ 1)

2

for each positive integer n.

Solution : Let P (n) be the predicate

“ 1 + 2 + · · ·+ n =
n(n+ 1)

2
”·

We shall prove by induction that the proposition ∀n P (n) is true.

BASIS STEP : P (1) is true, since 1 = 1(1+1)
2 ·

INDUCTIVE STEP : Assume that P (n) is true. That is, assume that

1 + 2 + · · ·+ n =
n(n+ 1)

2
·

Under this assumption, we must show that P (n+ 1) is true, namely, that

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
·

Adding n+ 1 to both sides of the equality in P (n), it follows that

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ n+ 1

= (n+ 1)
(n

2
+ 1
)

=
(n+ 1)(n+ 2)

2
·
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The last equality shows that P (n+ 1) is true.

This completes the proof by induction.

4.3.2 Example. Use mathematical induction to prove that, for each nat-

ural number n ≥ 5, n2 < 2n.

Solution : Let P (n) denote the predicate “n2 < 2n ”, where the universe

of discourse is the set {n ∈ N |n ≥ 5}. We shall prove by induction that the

proposition ∀n P (n) is true.

BASIS STEP : P (5) is true, since 52 < 25.

INDUCTIVE STEP : Assume that P (n) is true. That is, assume that

n2 < 2n .

Under this assumption, we want to show that

(n+ 1)2 < 2n+1.

Now

(n+ 1)2 = n2 + 2n+ 1 and 2n+1 = 2 · 2n

so we want to show that

n2 + 2n+ 1 < 2 · 2n.

Since n2 < 2n, 2n2 < 2 · 2n. Hence, it is sufficient to show that

n2 + 2n+ 1 < 2n2.

But this inequality is equivalent to

1 < n(n− 2)

which is obviously true, since n ≥ 5. This completes the proof by induction.
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4.3.3 Example. Prove by induction that, for each positive integer n, 7n−
3n is divisible by 4.

Solution : Let P (n) denote the predicate “ 7n − 3n is divisible by 4 ”,

where the universe of discourse is the set of positive integers. We shall prove

by induction that the proposition ∀n P (n) is true.

BASIS STEP : P (1) is true, since 7− 3 is divisible by 4.

INDUCTIVE STEP : We assume that

7n − 3n is divisible by 4

and want to show that

7n+1 − 3n+1 is divisible by 4.

We write

7n+1 − 3n+1 = 7 · 7n − 3 · 3n

= 7 · 7n − 7 · 3n + 7 · 3n − 3 · 3n

= 7(7n − 3n) + 4 · 3n.

Since 7(7n−3n) and 4 ·3n are divisible by 4 (why ?), 7n+1−3n+1 is divisible

by 4. This completes the proof by induction.

4.3.4 Example. Define a sequence (an)n≥1 as follows :

a1 = 2 and an = 5an−1 for all n ≥ 1.

1. Write the first four terms of the sequence.

2. Use mathematical induction to show that the terms of the sequence

satisfy the formula

an = 2 · 5n−1 for all n ≥ 1.
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Solution : We have

a1 = 2

a2 = 5a1 = 5 · 2 = 10

a3 = 5a2 = 5 · 10 = 50

a4 = 5a3 = 5 · 50 = 250.

Let P (n) denote the predicate “ an = 2·5n−1 ”, where the universe of discourse

is the set of positive integers. We shall prove by induction that the proposition

∀n P (n) is true.

BASIS STEP : P (1) is true, since a1 = 2 · 50 = 2.

INDUCTIVE STEP : We assume that

an = 2 · 5n−1.

Under this assumption, we must show that

an+1 = 2 · 5n.

We write

an+1 = 5an

= 5 · (2 · 5n−1)

= 2 · (5 · 5n−1)

= 2 · 5n.

This is what was to be shown. Since we have proved the basis and inductive

steps, we conclude the formula holds for all terms of the sequence.
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4.3.5 Example. Observe that

1 = 1,

1− 4 = −(1 + 2),

1− 4 + 9 = 1 + 2 + 3,

1− 4 + 9− 16 = −(1 + 2 + 3 + 4),

1− 4 + 9− 16 + 25 = 1 + 2 + 3 + 4 + 5.

Guess a general formula and prove it by induction.

Solution : General formula is

1− 4 + 9− 16 + · · ·+ (−1)n−1n2 = (−1)n−1(1 + 2 + · · ·+ n)

(in expanded form) or

n∑
i=1

(−1)i−1i2 = (−1)n−1

(
n∑
i=1

i

)
(in closed form). We shall prove (by mathematical induction) that this formula

is true for all positive integers n.

BASIS STEP : The formula is true for n = 1 : 1 = (−1)0 · 1.

INDUCTIVE STEP : Assume that the formula is true for some n ; that is,

assume that

1− 4 + 9− 16 + · · ·+ (−1)n−1n2 = (−1)n−1(1 + 2 + · · ·+ n).

We write

1− 4 + · · ·+ (−1)n(n+ 1)2 =
(
1− 4 + · · ·+ (−1)n−1n2

)
+ (−1)n(n+ 1)2

= (−1)n−1(1 + 2 + · · ·+ n) + (−1)n(n+ 1)2

= (−1)n−1n(n+ 1)

2
+ (−1)n(n+ 1)2

= (−1)n
n+ 1

2
[−n+ 2(n+ 1)]

= (−1)n
(n+ 1)(n+ 2)

2
= (−1)n (1 + 2 + · · ·+ n+ (n+ 1)) .
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The last equality shows that the formula is true for n+ 1. This completes the

proof and we are done.

Second principle of mathematical induction

There is another form of mathematical induction that is often used in

proofs. It is based on what is called the second principle of mathematical

induction.

Second Principle of Mathematical Induction : Let S be a subset

of N such that

• 0 ∈ S ;

• ∀n, if {0, 1, . . . , n} ⊆ S then n+ 1 ∈ S.

Then S = N.

The corresponding proof by mathematical induction (of the proposition

∀n P (n) ) consists of

1. Basis step. The proposition P (0) is shown to be true.

2. Inductive step. It is shown that the implication P (0) ∧ P (1) ∧ · · · ∧
P (n)→ P (n+ 1) is true for every natural number n.

Note : (1) To prove that the implication

P (0) ∧ P (1) ∧ · · · ∧ P (n)→ P (n+ 1)

is true for every n ∈ N, we need to show that P (n + 1) cannot be false when

P (0), P (1), . . . , P (n) are all true; this can be accomplished by assuming that

P (0), P (1), . . . , P (n) are true and showing that under these premises P (n+1) must

also be true.

(2) Just as with the principle of mathematical induction, the second principle of

mathematical induction is equally valid if, instead of starting with 0, we (1) start with
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a given a, (2) show that a ∈ S, and (3) show that, if n ≥ a and {a, a+1, . . . , n} ⊆ S,

then n + 1 ∈ S. Again, when we do this, we will know that every natural number

greater than or equal to a belongs to the set S.

4.3.6 Example. Prove by induction that, if n ∈ N and n ≥ 4, then n

can be written as a sum of numbers each of which is a 2 or a 5.

Solution : Let P (n) be the predicate “n can be written as a sum of 2s

and 5s”, where the universe of discourse is the set {n ∈ N |n ≥ 4}. We shall

prove by induction that the proposition ∀n P (n) is true.

BASIS STEP : P (4) is true, since 4 = 2 + 2.

INDUCTIVE STEP : Assume that n ≥ 4 and 4, 5, . . . , n can all be written

as a sum of 2s and 5s. Then n− 1 can be written as a sum of 2s and 5s; that

is,

n− 1 = a1 + a2 + · · ·+ ap, ai ∈ {2, 5}.

So,

n+ 1 = a1 + a2 + · · ·+ ap + 2

and, therefore, n + 1 can be written as a sum of 2s and 5s. This completes

the proof by induction.

4.3.7 Example. Define a sequence (bn)n≥1 as follows :

b1 = 0, b2 = 2 and bn = 3 · bbk/2c + 2 for all n ≥ 3.

1. Write the first seven terms of the sequence.

2. Use mathematical induction to show that bn is even for all n ≥ 1.
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Solution : We have

b1 = 0

b2 = 2

b3 = 3 · bb3/2c + 2 = 3 · b1 + 2 = 3 · 0 + 2 = 2

b4 = 3 · bb4/2c + 2 = 3 · b2 + 2 = 3 · 2 + 2 = 8

b5 = 3 · bb5/2c + 2 = 3 · b2 + 2 = 3 · 2 + 2 = 8

b6 = 3 · bb6/2c + 2 = 3 · b3 + 2 = 3 · 2 + 2 = 8

b6 = 3 · bb7/2c + 2 = 3 · b3 + 2 = 3 · 2 + 2 = 8.

Let P (n) be the property (predicate) “ bn is even”. We shall use mathematical

induction (based on the second principle) to show that this property holds for

all positive integers (i.e. the proposition ∀nP (n) is true).

BASIS STEP : The property holds for n = 1 : b1 = 0 is even.

INDUCTIVE STEP : Assume that the property holds for all 1 ≤ k ≤ n. We

need to show that the property then holds for n+ 1.

The number bb(n+1)/2c is even by assumption (inductive hypothesis), since

1 ≤
⌊
n+ 1

2

⌋
≤ n.

Thus 3 · bb(n+1)/2c is even (because odd · even = even ), and hence 3 ·
bb(n+1)/2c+ 2 is even (because even+ even = even ). Consequently, bn+1 –

which equals bb(n+1)/2c + 2 – is even, as was to be shown.

We conclude that the statement is true.

We now ask a natural question : “What is the relationship between the second

principle of mathematical induction and the principle of mathematical induc-

tion ?” It is clear that the second principle of mathematical induction logically

implies the principle of mathematical induction. Indeed, if we are allowed to

assume that {0, 1, . . . , n} ⊆ S, then we are surely allowed to assume that

n ∈ S.
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In fact, it is also true that the principle of mathematical induction logically

implies the second principle. So, the two principles of mathematical induction

are logically equivalent.

Note : There is nothing wrong with guessing in mathematics, and presumably

most mathematical results are first arrived at intuitively and only later established

by proofs as theorems. There is a natural temptation, however, to make a plausible

guess and then allow that guess to stand unproved.

4.4 Exercises

Exercise 46 Find the value of each of the following sums :

(a)

10∑
i=0

3 · 2i.

(b)

10∑
i=0

2 · (−3)i.

(c)

10∑
i=0

(3i − 2i).

(d)

10∑
i=0

(2 · 3i + 3 · 2i).

(e)

3∑
i=1

4∑
j=1

(2i+ 3j).

Exercise 47 Use the formula for the sum of the first n natural numbers and/or

the formula for the sum of a geometric sequence to find the following sums :

(a) 3 + 4 + 5 + · · ·+ 1 000.

(b) 5 + 10 + 15 + · · ·+ 300.

(c) 2 + 3 + · · ·+ (k − 1).

(d) 1 + 2 + 22 + · · ·+ 225.

(e) 3 + 32 + 33 + · · ·+ 3n.

(f) 1 + 1
2 + 1

22 + · · ·+ 1
2n .

(g) 1− 2 + 22 − 23 + · · ·+ (−1)n2n.



C.C. Remsing 113

Exercise 48

(a) Let (an)n≥1 be a sequence (of numbers). Verify that

n∑
k=1

(ak − ak+1) = a1 − an+1.

(b) Use identity
1

k(k + 1)
=

1

k
− 1

k + 1

and part (a) to compute the sum

n∑
k=1

1

k(k + 1)
·

(c) Use identity

1

k(k + 1)(k + 2)
=

1

2

1

k
− 1

k + 1
+

1

2

1

k + 2

to compute the sum
n∑
k=1

1

k(k + 1)(k + 2)
·

(d) Evaluate the sum
n∑
k=1

k

(k + 1)!
·

Exercise 49 Prove by induction that (for each positive integer n)

(a) 5 + 7 + 9 + · · ·+ (2n+ 3) = n(n+ 4).

(b) 12 + 22 + 32 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6
·

(c) 13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
·

(d) 1 · 2 + 2 · 3 + · · ·+ n · (n+ 1) =
n(n+ 1)(n+ 2)

3
·

(e)
1

1 · 3
+

1

3 · 5
+ · · ·+ 1

(2n− 1) · (2n+ 1)
=

n

2n+ 1
·

Exercise 50 Prove by induction that

(a) n3 + 1 ≥ n2 + n , n ∈ N.

(b) n ! > 2n , n ≥ 4.
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(c) 1 +
1

4
+

1

9
+ · · ·+ 1

n2
< 2− 1

n
, n ≥ 2.

(d) 1√
1

+ 1√
2

+ · · ·+ 1√
n
>
√
n , n ≥ 2.

Exercise 51 Prove by induction that (for n ≥ 1 )

(a) n(n+ 5) is divisible by 2.

(b) n3 − n is divisible by 6.

(c) 4n − 1 is divisible by 3.

(d) 22n−1 + 32n−1 is divisible by 5.

(e) n(n+ 1)(n+ 2) is divisible by 6.

Exercise 52 A sequence (an)n≥0 is defined by

a0 = 3 and an = a2n−1 for all n ≥ 1.

Show that an = 32
n

for all n ≥ 0.

Exercise 53 A sequence (bn)n≥1 is defined by

b1 = 1 and bn =
√

3bn−1 + 1 for all n ≥ 2.

Show that bn <
7
2 for all n ≥ 1.

Exercise 54 A sequence (cn)n≥1 is defined by

c1 = 1 and cn = 2 · cbn/2c for all n ≥ 2.

Show that cn ≤ n for all n ≥ 1.

Exercise 55 A sequence (dn)n≥0 is defined by

d0 = 12, d1 = 29 and dn = 5dn−1 − 6dn−2 for all n ≥ 2.

Show that dn = 5 · 3n + 7 · 2n for all n ≥ 0.

Exercise 56 Find the following sums :

(a) 3 + 6 + 9 + · · ·+ 3n.

(b) 1 + 3 + 5 + · · ·+ (2n− 1).
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(c) 1
1·2 + 1

2·3 + 1
3·4 + · · ·+ 1

n(n+1) ·

(d) 1 + 5 + 9 + 13 + · · · to n terms.

(e) 4 · 7 + 7 · 10 + 10 · 13 + · · · to n terms.

Use mathematical induction to verify your answers.

Exercise 57 Prove that :

(a) Every positive integer other than 1 is either a prime number or the prod-

uct of prime numbers.

(b) Every natural number n ≥ 14 can be written as a sum of numbers, each

of which is a 3 or an 8.

Exercise 58 Prove that :

(a) For each odd natural number n ≥ 3,(
1 +

1

2

)(
1− 1

3

)(
1 +

1

4

)
· · ·
(

1 +
(−1)n

n

)
= 1.

(b) For each even natural number,(
1− 1

2

)(
1 +

1

3

)(
1− 1

4

)
· · ·
(

1− (−1)n

n

)
=

1

2
·

Exercise 59 Let a > −1. Prove by induction that

(1 + a)n ≥ 1 + na

for every n ∈ N.

Exercise 60 Let a, b ≥ 0. Prove by induction that(
a+ b

2

)n
≤ an + bn

2

for every n ∈ N.


