
Chapter 8

Determinants

Topics :

1. Determinants

2. Properties of determinants

3. Applications

Determinants are useful in further development of matrix theory and its applications.

Throughout the 19th century determinants were considered the ultimate tool in linear

algebra; recently, determinants have gone somewhat out of fashion. Nevertheless, it

is still important to understand what a determinant is and to learn a few of its

fundamental properties.
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8.1 Determinants

In section 7.3 we found a criterion for the invertibility of a 2× 2 matrix :

the matrix A =

[
a b

c d

]
is invertible if (and only if) ad− bc 6= 0.

8.1.1 Definition. The number ad− bc is called the determinant of the

matrix A.

There are several common notations for determinants :

det (A) = det

[
a b

c d

]
=

∣∣∣∣∣a b

c d

∣∣∣∣∣ = ad− bc.

Note : The determinant is actually a function that associates with each square

matrix (of order 2 ) the number det (A).

If the matrix A is invertible, then its inverse can be expressed in terms of

the determinant :

A−1 =
1

ad− bc

[
d −b
−c a

]
=

1

det (A)

[
d −b
−c a

]
·

It is natural to ask whether the concept of a determinant can be generalized

to square matrices of arbitrary size. Can we assign a number det (A) to any

square matrix A (expressed in terms of the entries of A ), such that A is

invertible if (and only if) det (A) ?

The determinant of a 3× 3 matrix

Let

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


be a 3 × 3 matrix. The following formula for the determinant of A may be

obtained (by means of geometric considerations or otherwise) :
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det (A) = a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13.

Since the formula for the determinant of a 3 × 3 matrix is rather long,

we may wonder how we can memorize it. Here is a convenient rule (stated by

Pierre F. Sarrus (1798-1861)) :

Sarrus’ Rule : To find the determinant of a 3 × 3 matrix A, write the

first rows of A under A. Then multiply the entries along the six diagonals

thus formed.

a11 a12 a13

a21 a22 a23

a31 a32 a33

− a11 a12 a13 +

− a21 a22 a23 +

− +

Add or subtract these diagonal products as shown in the diagram.

det (A) = a11a22a33 + a21a32a13 + a31a12a23

−a13a22a31 − a23a32a11 − a33a12a21.

8.1.2 Example. Find

det


1 2 3

4 5 6

7 8 10

 .
Solution : We have

det (A) = 1 · 5 · 10 + 4 · 8 · 3 + 2 · 6 · 7− 3 · 5 · 7− 6 · 8 · 1− 10 · 2 · 4 = −3 .

This matrix is invertible.

8.1.3 Example. Find the determinant of the upper triangular matrix

A =


a b c

0 d e

0 0 f

 .
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Solution : We find that det (A) = adf because all other contributions in

Sarrus’ formula are zero.

Note : The determinant of an upper (or lower) triangular 3 × 3 matrix is the

product of its diagonal entries.

The determinant of an n× n matrix

We may be tempted to define the determinant of an n× n matrix by gener-

alizing Sarrus’ rule. For a 4× 4 matrix, a näıve generalization of Sarrus’ rule

produces the expression :

a11a22a33a44+· · ·+a14a21a32a41−a14a23a32a41−· · ·−a13a22a31a44 (8 terms).

For example, for the invertible matrix
1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


the expression given by a “generalization” of Sarrus’ rule is 0. This shows

that we cannot define the determinant by generalizing Sarrus’ rule in this way

: recall that the determinant of an invertible matrix must be nonzero.

We have a look for a more subtle structure in the formula

det (A) = a11a22a33 + a21a32a13 + a31a12a23

−a13a22a31 − a23a32a11 − a33a12a21

for the determinant of a 3 × 3 matrix. Note that each of the six terms in

this expression is a product of three factors involving exactly one entry from

each row and column of the matrix. For lack of a better word, we call such

a choice of a number in each row and column of a square matrix a pattern

in the matrix. Observe that each pattern corresponds to a permutation on
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3 elements. For example, the diagonal pattern – were we choose all diagonal

entries aii – corresponds to the identity

[
1 2 3

1 2 3

]
. Clearly, there are 3 ! = 6

such patterns.

When we compute the determinant of a 3× 3 matrix, the product associ-

ated with a pattern (and hence a permutation) is added if the permutation is

even and is substracted if the permutation is odd. Using this observation as a

guide, we now define the determinant of a general n× n matrix.

8.1.4 Definition. For an n × n matrix A = [aij ], the determinant of

A is defined to be the number

det (A) : =
∑
α∈Sn

sgn (α) a1α(1)a2α(2) · · · anα(n).

Note : The determinant of a non-square matrix is not defined.

8.1.5 Example. When A is a 2 × 2 matrix, there are 2 ! = 2 patterns

(permutations on 2 elements), namely (in cycle notation) ι = (1)(2) and

(1, 2). So det (A) contains two terms :

sgn (ι) a11a22 and sgn ((1, 2)) a12a21.

Since sgn (ι) = +1 and sgn ((1, 2)) = −1, we obtain the familiar formula

det (A) =

∣∣∣∣∣a11 a12

a21 a22

∣∣∣∣∣ = a11a22 − a12a21.

8.1.6 Example. Find det (A) for

A =



2 0 0 0 0

0 3 0 0 0

0 0 5 0 0

0 0 0 7 0

0 0 0 0 9


.
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Solution : The diagonal pattern makes the contribution 2 · 3 · 5 · 7 · 9 =

1 890. All other patterns contain at least one zero and will therefore make no

contribution toward the determinant. We can conclude that

det (A) = 2 · 3 · 5 · 7 · 9 = 1 890.

Note : More generally, the determinant of a diagonal matrix is the product of the

diagonal entries of the matrix.

8.1.7 Example. Evaluate

det



1 2 3 4 5

0 2 3 4 5

0 0 3 4 5

0 0 0 4 5

0 0 0 0 5


.

Solution : Note that the matrix is upper triangular. The diagonal pattern

makes the contribution 1·2·3·4·5 = 120. Any pattern other than the diagonal

pattern contains at least one entry below the diagonal, and the contribution

the pattern makes to the determinant is therefore 0. We conclude that

det (A) = 1 · 2 · 3 · 4 · 5 = 120.

We can easily generalize this result :

8.1.8 Proposition. The determinant of an (upper or lower) triangular

matrix is the product of the diagonal entries of the matrix.

8.2 Properties of determinants

The main goal of this section is to show that a square matrix of any size is

invertible if (and only if) its determinant is nonzero. As we work toward this

goal, we will discuss a number of other properties of the determinant that are

of interest in their own right.
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Determinant of the transpose

8.2.1 Example. Let

A =



1 2 3 4 5

6 7 8 9 8

7 6 5 4 3

2 1 2 3 4

5 6 7 8 9


.

Express det (AT ) in terms of det (A). You need not compute det (A).

Solution : For each pattern in A we can consider the corresponding (trans-

posed) pattern in AT . The two patterns (in A and AT ) - viewed as permu-

tations on 5 elements – are inverse to each other. But a permutation and its

inverse have the same signature, and thus the two patterns make the same

contributions to the respective determinants. Since these observations apply

to all patterns of A, we can conclude that det (AT ) = det (A).

Since we have not used any special properties of the matrix A in example

above, we can state more generally :

Property 1 : If AT is the transpose of the matrix A, then det (AT ) =

det (A).

Note : Any property of the determinant expressed in terms of rows holds for the

columns as well, and vice versa.

Linearity properties of the determinant

8.2.2 Example. Consider the matrix

B =


1 x1 + y1 4

2 x2 + y2 5

3 x3 + y3 6

 .
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Express det (B) in terms of

det


1 x1 4

2 x2 5

3 x3 6

 and det


1 y1 4

2 y2 5

3 y3 6

 .
Solution : We have

det (B) = 3(x1 + y1)− 6(x2 + y2) + 3(x3 + y3)

= (3x1 − 6x2 + 3x3) + (3y1 − 6y2 + 3y3)

= det


1 x1 4

2 x2 5

3 x3 6

+ det


1 y1 4

2 y2 5

3 y3 6

 .
8.2.3 Example. Consider the matrix

B =


1 kx 4

2 ky 5

3 kz 6

 .
Express det (B) in terms of

det


1 x 4

2 y 5

3 z 6

 .
Solution : We have

det (B) = 3kx− 6ky + 3kz

= k(3x− 6y + 3z)

= k · det


1 x 4

2 y 5

3 z 6

 .
Note : The mapping 

x

y

z

 7→ det


1 x 4

2 y 5

3 z 6
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(satisfying the above two properties) is said to be linear (see section 10.1).

We can generalize :

Property 2 : Suppose that the matrices A1, A2, and B are identical, ex-

cept for their jth column, and that the jth column of B is the sum of the

jth columns of A1 and A2. Then

det (B) = det (A1) + det (A2).

This result also holds if rows are involved instead of columns.

Property 3 : Suppose that the matrices A and B are identical, except for

their jth column, and that the jth column of B is k times the jth column

of A. Then

det (B) = k · det (A).

This result also holds if rows are involved instead of columns.

Elementary row operations and determinants

Suppose we have to find the determinant of a 20× 20 matrix. Since there

are 20 ! ≈ 2·1018 patterns in this matrix, we would have to perform more than

1019 multiplications to compute the determinant using Definition 8.1.4.

Even if a computer performed 1 billion multiplications a second, it would still

take over 1 000 years to carry out these computations. Clearly, we have to

look for more efficient ways to compute the determinant.

So far, we have found Gaussian elimination (reduction) to be a powerful

tool for solving numerical problems in linear algebra. If we could understand

what happens to the determinant of a matrix as we row-reduce it, we could

use Gaussian elimination to compute determinants as well.

We have to understand what happens to the determinant of a matrix as

we perform the three elementary row operations : (a) swapping two rows, (b)

multiplying a row by a scalar, and (c) adding a multiple of a row to another

row.
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One can prove the following results.

Property 4 : If B is obtained from A by a row swap, then

det (B) = −det (A).

Property 5 : If B is obtained from A by multiplying a row of A by a

scalar k, then

det (B) = k · det (A).

Property 6 : If B is obtained from A by adding a multiple of a row of

A to another row, then

det (B) = det (A).

Note : Analogous results hold for elementary column operations.

8.2.4 Example. If a matrix A has two equal rows, what can we say about

det (A) ?

Solution : Swap the two equal rows and call the resulting matrix B. Since

we have swapped two equal rows, we have B = A. Now

det (A) = det (B) = −det (A)

so that

det (A) = 0.

Now that we understand how elementary row operations affect determi-

nants, we can describe the relationship between the determinant of a matrix

A and that of its reduced row echelon form rref (A).

Suppose that in the course of the row-reduction we swap rows s times and

divide various rows by scalars k1, k2, . . . , kr. Then

det (rref (A)) = (−1)s
1

k1k2 · · · kr
det (A)

or

det (A) = (−1)sk1k2 · · · kr det (rref (A)) .
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Let us examine the cases when A is invertible and when it is not.

If A is invertible, then rref (A) = In, so that det (rref (A)) = 1, and

det (A) = (−1)sk1k2 · · · kr.

Observe that this quantity is not 0 because all the scalars ki are different

from 0.

If A is not invertible, then rref (A) is an upper triangular matrix with

some zeros on the diagonal, so that det (rref (A)) = 0 and det (A) = 0. We

have established the following fundamental result :

8.2.5 Proposition. A square matrix A is invertible if and only if det (A) 6=
0.

If A is invertible, the discussion above also produces a convenient method

to compute the determinant :

Algorithm : Consider an invertible matrix. Suppose you swap rows s

times as you row-reduce A and you divide various rows by the scalars k1, k2, . . . , kr.

Then

det (A) = (−1)sk1k2 · · · kr .

Note : Here, it is not necessary to reduce A all the way to rref (A). It suffices to

bring A into upper triangular form with 1′s on the diagonal.

8.2.6 Example. Evaluate ∣∣∣∣∣∣∣∣∣∣∣

0 2 4 6

1 1 2 1

1 1 2 −1

1 1 1 2

∣∣∣∣∣∣∣∣∣∣∣
.
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Solution : We have∣∣∣∣∣∣∣∣∣∣∣

0 2 4 6

1 1 2 1

1 1 2 −1

1 1 1 2

∣∣∣∣∣∣∣∣∣∣∣
= −

∣∣∣∣∣∣∣∣∣∣∣

1 1 2 1

0 2 4 6

1 1 2 −1

1 1 1 2

∣∣∣∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣∣∣∣∣

1 1 2 1

0 1 2 3

1 1 2 −1

1 1 1 2

∣∣∣∣∣∣∣∣∣∣∣
= −2

∣∣∣∣∣∣∣∣∣∣∣

1 1 2 1

0 1 2 3

0 0 0 −2

0 0 −1 1

∣∣∣∣∣∣∣∣∣∣∣
= 2

∣∣∣∣∣∣∣∣∣∣∣

1 1 2 1

0 1 2 3

0 0 −1 1

0 0 0 −2

∣∣∣∣∣∣∣∣∣∣∣
= 2(−1)(−2)

∣∣∣∣∣∣∣∣∣∣∣

1 1 2 1

0 1 2 3

0 0 1 −1

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
= 4 .

We made two swaps and performed row divisions by 2, −1, −2, so that

det (A) = (−1)2 · 2 · (−1) · (−2) = 4.

The determinant of a product

Consider two n×n matrices A and B. What is the relationship between

det (A) and det (B) ?

First suppose that A is invertible. On can show that

rref [A AB] = [In B] .

Suppose we swap rows s times and divide rows by k1, k2, . . . kr as we perform

the elimination.

Considering the left and right “halves” of the matrices separately, we con-

clude that

det (A) = (−1)sk1k2 · · · kr det (In) = (−1)sk1k2 · · · kr

and

det (AB) = (−1)sk1k2 · · · kr det (B) = det (A) · det (B) .

Therefore, det (AB) = det (A) · det (B) when A is invertible. If A is not

invertible, then neither is AB, so that det (AB) = det (A) · det (B) = 0.
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We have obtained the following result :

Property 7 : If A and B are square matrices, then

det (AB) = det (A) · det (B).

8.2.7 Example. If A is an invertible n×n matrix, what is the relationship

between det (A) and det (A−1) ?

Solution : By definition of the inverse matrix, we have

AA−1 = In .

By taking the determinant of both sides, we find that

det (AA−1) = det (A) · det (A−1) = det (In) = 1.

Note : If A is an invertible matrix, then

det (A−1) =
1

det (A)
·

8.2.8 Example. If S is an invertible n × n matrix, and A an arbitrary

n× n matrix, what is the relationship between det (A) and det (S−1AS) ?

Solution : We have

det (S−1AS) = det (S−1) · det (A) · det (S)

= (det (S))−1 · det (A) · det (S)

= det (A).

Thus, det (S−1AS) = det (A).

Laplace expansion

Recall the formula

det (A) = a11a22a33 +a12a23a31 +a13a21a32−a13a22a31−a11a23a32−a12a21a33
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for the determinat of a 3× 3 matrix. Collecting the two terms involving a11

and then those involving a21 and a31, we can write :

det (A) = a11(a22a33 − a32a23) +

a21(a32a13 − a12a33) +

a31(a12a23 − a22a13).

Let us analyze the structure of this formula more closely. The terms (a22a33−
a32a23), (a32a13 − a12a33), and (a12a23 − a22a13) can be thought of as the

determinants of submatrices of A, as follows. The expression a22a33− a32a23

is the determinant of the matrix we get when we omit the first row and thew

first column of A ; likewise for the other summands.

To state these observations more succintly, we introduce some terminology.

8.2.9 Definition. Let A = [aij ] be an n × n matrix. The (i, j) minor

of A is the determinant Mij of the (n− 1)× (n− 1) submatrix that remains

after deleting the ith row and the jth column of A. The (i, j) cofactor Aij

of A is defined to be

Aij : = (−1)i+jMij .

8.2.10 Example. Let

A =


5 −2 −3

4 0 1

3 −1 2

 .
Then

A11 = M11 =

∣∣∣∣∣ 0 1

−1 2

∣∣∣∣∣ , A12 = −M12 = −

∣∣∣∣∣ 4 1

3 2

∣∣∣∣∣ , A13 = M13 =

∣∣∣∣∣ 4 0

3 −1

∣∣∣∣∣ ,
A21 = −M21 = −

∣∣∣∣∣ −2 −3

−1 2

∣∣∣∣∣ , A22 = M22 =

∣∣∣∣∣ 5 −3

3 2

∣∣∣∣∣ , A23 = −M23 = −

∣∣∣∣∣ 5 −2

3 −1

∣∣∣∣∣ ,
A31 = M31 =

∣∣∣∣∣ −2 −3

0 1

∣∣∣∣∣ , A32 = −M32 = −

∣∣∣∣∣ 5 −3

4 1

∣∣∣∣∣ , A33 = M33 =

∣∣∣∣∣ 5 −2

4 0

∣∣∣∣∣ .
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We can now represent the determinant of a 3×3 matrix more succinctly :

det (A) = a11A11 + a21A21 + a31A31.

This representation of the determinant is called the Laplace expansion of

det (A) down the first column (named after the French mathematician

Pierre-Simon Laplace (1749-1827)).

Likewise, we can expand along the first row (since det (AT ) = det (A) ) :

det (A) = a11A11 + a12A12 + a13A13.

In fact, we can expand along any row or down any column (we can verify

this directly, or argue in terms of row and column swap).

Laplace expansion : The determinant det (A) = |aij | of an n×n matrix

A = [aij ] can be computed by Laplace expansion along any row or down any

column.

Expansion along the ith row :

det (A) = ai1Ai1 + ai2Ai2 + · · ·+ ainAin .

Expansion down the jth column :

det (A) = a1jA1j + a2jA2j + · · ·+ anjAnj .

8.2.11 Example. If

A =


5 −2 −3

4 0 1

3 −1 2


then

det (A) = a11A11 + a12A12 + a13A13

= (5)

∣∣∣∣∣ 0 1

−1 2

∣∣∣∣∣− (−2)

∣∣∣∣∣ 4 1

3 2

∣∣∣∣∣+ (−3)

∣∣∣∣∣ 4 0

3 −1

∣∣∣∣∣
= (5)(1) + (2)(5)− (3)(−4)

= 27.
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8.2.12 Example. To evaluate the determinant of

A =


7 6 0

9 −3 2

4 5 0


we expand along the third column because it has only a single nonzero entry.

Thus

det (A) = −(2)

∣∣∣∣∣ 7 6

4 5

∣∣∣∣∣ = (−2)(35− 24) = −22.

Note : Computing the determinant using Laplace expansion is a bit more efficient

than using the definition of the determinant, but is a lot less efficient than Gaussian

elimination.

8.3 Applications

Cramer’s rule

Suppose that we need to solve the linear system

Ax = b

where

A =
[
aij

]
, x =


x1

x2

...

xn

 and b =


b1

b2
...

bn

 .
We assume that the coefficient matrix A is invertible, so we know in advance

that a unique solution x exists. The question is how to write x explicitly in

terms of the coefficients aij and the constants bi. In the following discussion

we think of x as a fixed (though as yet unknown) column vector.

If we denote by a1, a2, . . . , an the column vectors of the matrix A, then

A =
[
a1 a2 . . . an

]
.
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The column vector b is expressed in terms of the entries x1, x2, . . . , xn of the

solution vector x and the columns vectors of A by

b =
n∑
j=1

xjaj .

The trick for finding the ith unknown xi is to compute the determinant of

the matrix

[
a1 . . . b . . . an

]
=


a11 . . . b1 . . . a1n

a21 . . . b2 . . . a2n

...
...

...

an1 . . . bn . . . ann


that we obtain by replacing the ith column ai of A with the column vector

b. We find that

det
[
a1 . . . b . . . an

]
= det

[
a1 . . .

∑n
j=1 xjaj . . . an

]
=

n∑
j=1

det
[
a1 . . . xjaj . . . an

]
=

n∑
j=1

xj det
[
a1 . . . aj . . . an

]
= xi det

[
a1 . . . ai . . . an

]
= xi det (A).

We get the desired simple formula for xi after we divide each side by det (A) 6=
0. Thus, we have obtained the following result :

Cramer’s Rule : Consider the n× n linear system

Ax = b

with

A =
[
a1 . . . ai . . . an

]
.
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If det (A) 6= 0, then the ith entry of the unique solution (vector) x is given

by

xi =
det

[
a1 . . . b . . . an

]
det (A)

=
1

det (A)

∣∣∣∣∣∣∣∣∣∣∣

a11 . . . b1 . . . a1n

a21 . . . b2 . . . a2n

...
...

...

an1 . . . bn . . . ann

∣∣∣∣∣∣∣∣∣∣∣
where in the last expression the constant vector b replaces the ith column

vector ai of A.

Note : This result is due to the Swiss mathematician Gabriel Cramer (1704-

1752).

8.3.1 Example. Use Cramer’s rule to solve the system :
x1 + 4x2 + 5x3 = 2

4x1 + 2x2 + 5x3 = 3

−3x1 + 3x2 − x3 = 1.

Solution : We find that

det (A) =

∣∣∣∣∣∣∣∣
1 4 5

4 2 5

−3 3 −1

∣∣∣∣∣∣∣∣ = 29

and then

x1 =
1

29

∣∣∣∣∣∣∣∣
2 4 5

3 2 5

1 3 −1

∣∣∣∣∣∣∣∣ =
33

29
, x2 =

1

29

∣∣∣∣∣∣∣∣
1 2 5

4 3 5

−3 1 −1

∣∣∣∣∣∣∣∣ =
35

29

and x3 =
1

29

∣∣∣∣∣∣∣∣
1 4 2

4 2 3

−3 3 1

∣∣∣∣∣∣∣∣ = −23

29
·
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The adjoint formula for the inverse matrix

We now use Cramer’s rule to develop an explicit formula for the inverse

A−1 of the invertible matrix A. First we need to rewrite Cramer’s rule more

concisely. We have

xi =
1

det (A)
(b1A1i + b2A2i + · · ·+ bnAni) , i = 1, 2, . . . , n

because the cofactor of bk is simply the (k, i)-cofactor Aki of A, and so

x =


x1

x2

...

xn

 =
1

det (A)


b1A11 + b2A21 + · · ·+ bnAn1

b1A12 + b2A22 + · · ·+ bnAn2

...

b1A1n + b2A2n + · · ·+ bnAnn



=
1

det (A)


A11 A21 . . . An1

A12 A22 . . . An2

...
...

...

A1n A2n . . . Ann




b1

b2
...

bn


=

1

det (A)

[
Aij

]T
b.

Note : The transpose of the cofactor matrix of A is called the adjoint matrix

of A and is denoted by

adj (A) : =
[
Aij

]T
.

With the aid of this notation, Cramer’s rule can be written in the especially

simple form

x =
1

det (A)
adj (A) b.

The fact that the formula above gives the unique solution x
(
= A−1b

)
of

Ax = b implies

A−1b =
1

det (A)
adj (A) b

and thus

A−1 =
1

det (A)
adj (A).
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Therefore, we have proved the following result :

8.3.2 Proposition. (The adjoint formula for the inverse matrix)

The inverse of the invertible matrix A is given by the formula

A−1 =
1

det (A)
adj (A)

where adj (A) is the adjoint matrix of A.

8.3.3 Example. Apply the adjoint formula to find the inverse of the matrix

A =


1 4 5

4 2 5

−3 3 −1

 .
Solution : First we calculate the cofactors of A :

A11 = +

∣∣∣∣∣ 2 5

3 −1

∣∣∣∣∣ = −17, A12 = −

∣∣∣∣∣ 4 5

−3 −1

∣∣∣∣∣ = −11, A13 = +

∣∣∣∣∣ 4 2

−3 3

∣∣∣∣∣ = 18,

A21 = −

∣∣∣∣∣ 4 5

3 −1

∣∣∣∣∣ = 19, A22 = +

∣∣∣∣∣ 1 5

−3 −1

∣∣∣∣∣ = 14, A23 = −

∣∣∣∣∣ 1 4

−3 3

∣∣∣∣∣ = −15,

A31 = +

∣∣∣∣∣ 4 5

2 5

∣∣∣∣∣ = 10, A32 = −

∣∣∣∣∣ 1 5

4 5

∣∣∣∣∣ = 15, A33 = +

∣∣∣∣∣ 1 4

4 2

∣∣∣∣∣ = −14.

Thus the cofactor matrix of A is

[Aij ] =


−17 −11 18

19 14 −15

10 15 −14

 .
We next interchange rows and columns to obtain the adjoint matrix

adj (A) =


−17 19 10

−11 14 15

18 −15 −14

 .
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Finally, we divide by det (A) = 29 to get te inverse matrix

A−1 =
1

29


−17 19 10

−11 14 15

18 −15 −14

 .
Note : Just like Cramer’s rule, the adjoint formula for the inverse matrix is com-

putationally inefficient and is therefore of more theoretical than practical importance.

The Gaussian elimination should always be used to find inverses of 4× 4 and larger

matrices.

8.4 Exercises

Exercise 106 Use the determinant to find out which matrices are invertible.

(a)

[
7 6

9 8

]
.

(b)

[
3 2

6 4

]
.

(c)


a b c

0 b c

0 0 c

.

(d)


1 2 3

4 5 6

7 8 9

.

(e)


1 2 3

4 5 6

7 8 7

.

Exercise 107 Find all (real) numbers λ such that the matrix A − λIn is not

invertible.

(a)

[
1 3

0 3

]
.

(b)

[
4 2

2 7

]
.
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(c)


1 0 0

1 2 0

1 2 3

.

(d)


0 0 1

0 0 1

1 1 1

.

(e)


0 1 0

0 0 1

0 8 −2

.

Exercise 108 For which choices of α ∈ R is the matrix A invertible ?

(a)


cosα 1 − sinα

0 2 0

sinα 3 cosα

.

(b)


1 1 α

1 α α

α α α

.

Exercise 109 Use (i) Gaussian elimination and/or (ii) Laplace expansion to eval-

uate the following determinants.

(a)

∣∣∣∣∣∣∣∣
4 0 6

5 0 8

7 −4 −9

∣∣∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣∣∣
0 0 3

4 0 0

0 5 0

∣∣∣∣∣∣∣∣.

(c)

∣∣∣∣∣∣∣∣
2 1 0

1 2 1

0 1 2

∣∣∣∣∣∣∣∣.

(d)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0

2 0 5 0

3 6 9 8

4 0 10 7

∣∣∣∣∣∣∣∣∣∣
.
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(e)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1 0 0

2 0 0 0 0

0 0 0 3 0

0 0 0 0 4

0 5 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(f)

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 0 11 −5 0

−2 4 13 6 5

0 0 5 0 0

7 6 −9 17 7

0 0 8 2 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Exercise 110 Evaluate each given determinant after first simplifying the compu-

tation by adding an appropriate multiple of some row or column to another.

(a)

∣∣∣∣∣∣∣∣
1 1 1

2 2 2

3 3 3

∣∣∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣∣∣
2 3 4

−2 −3 1

3 2 7

∣∣∣∣∣∣∣∣.

(c)

∣∣∣∣∣∣∣∣
3 −2 5

0 5 17

6 −4 12

∣∣∣∣∣∣∣∣.

(d)

∣∣∣∣∣∣∣∣∣∣
1 2 3 4

0 5 6 7

0 0 8 9

2 4 6 9

∣∣∣∣∣∣∣∣∣∣
.

(e)

∣∣∣∣∣∣∣∣∣∣
2 0 0 −3

0 1 11 12

0 0 5 13

−4 0 0 7

∣∣∣∣∣∣∣∣∣∣
.

Exercise 111 Show that det (A) = 0 without direct evaluation of the determinant.
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(a) A =


1 1 1

1
a

1
b

1
c

bc ca ab

.

(b) A =


1 1 1

a b c

b+ c c+ a a+ b

.

Exercise 112 Evaluate the determinants :

(a)

∣∣∣∣∣∣∣∣
3 4 3

3 2 1

−3 2 4

∣∣∣∣∣∣∣∣.

(b)

∣∣∣∣∣∣∣∣
3 2 −3

0 3 2

2 3 −5

∣∣∣∣∣∣∣∣.

(c)

∣∣∣∣∣∣∣∣
−2 5 4

5 3 1

1 4 5

∣∣∣∣∣∣∣∣.

(d)

∣∣∣∣∣∣∣∣∣∣
1 0 0 3

0 1 −2 0

−2 3 −2 3

0 −3 3 3

∣∣∣∣∣∣∣∣∣∣
.

(e)

∣∣∣∣∣∣∣∣∣∣
1 −1 1 −1

1 −1 3 2

4 2 1 3

3 3 1 4

∣∣∣∣∣∣∣∣∣∣
.

(f)

∣∣∣∣∣∣∣∣∣∣
3 1 −2 1

1 1 −3 2

2 0 2 3

3 3 1 −3

∣∣∣∣∣∣∣∣∣∣
.

Exercise 113 Let A be an n× n matrix.

(a) If det (A) = 3, what is det (ATA) ?

(b) If A is invertible, what can you say about the sign of det (ATA) ?
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Exercise 114 If A is a matrix such that A2 = A, show that det (A) = 0 or

det (A) = 1.

Exercise 115 Prove or disprove.

(a) If the matrix A is orthogonal, then det (A) = ±1.

(b) If the 3× 3 matrix A is skew symmetric, then det (A) = 0.

(c) If An = O for some positive integer n, then det (A) = 0.

Exercise 116 Use Cramer’s rule to solve each of the following linear systems.

(a)

{
ax − by= 1

bx + ay= 0
;

(b)


x1 − 2x2 + 2x3 = 3

3x1 + x3 =−1

x1 − x2 + 2x3 = 2

;

(c)


x1 + 4x2 + 2x3 = 3

4x1 + 2x2 + x3 = 1

2x1 − 2x2 − 5x3 =−3

;

(d)


2x1 + 3x2 − 5x3 = 1

3x2 + 2x3 =−1

3x1 + 2x2 − 3x3 = 1

Exercise 117 Use Cramer’s rule to solve for x and y in terms of u and v :

(a) u = 5x+ 8y and v = 3x+ 5y.

(b) u = x cos θ − y sin θ and v = x sin θ + y cos θ.

Exercise 118 Consider the 2× 2 matrices

A =

[
a b

c d

]
and B =

[
x

y

]

where x and y denote the row vectors of B. Then the product AB can be written

in the form

AB =

[
ax+ by

cx+ dy

]
.
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Use this expression and the properties of the determinants to show that

det (AB) = (ad− bc)

∣∣∣∣∣xy
∣∣∣∣∣ = det (A) · det (B).

Exercise 119 Use the adjoint formula to find the inverse A−1 of each matrix A

given below.

(a)


−2 2 −4

3 0 1

1 −2 2

.

(b)


3 5 2

−2 3 −4

−5 0 −5

.

(c)


1 a b

0 1 c

0 0 1

.

Exercise 120 TRUE or FALSE ?

(a) If A is an n× n matrix, then det (2A) = 2 · det (A).

(b) Suppose that A and B are n× n matrices, and A is invertible. Then

det (ABA−1) = det (B).

(c) If A is an n× n matrix, then

det (AAT ) = detATA.

(d) If all entries of a square matrix A are zeros and ones, then det (A) is

1, 0, or −1.

(e) If A and B are n× n matrices, then

det (A+B) = det (A) + det (B).

(f) If all diagonal entries of a square matrix A are odd integers, and all other

entries are even, then A is invertible.


