Chapter 9

Vectors, Lines, and Planes

Topics :

1. Vectors in the plane

2. Vectors in space
3. Lines and Planes

Abstract

A vector is usually defined as a "quantity having magnitude and direction", such as the velocity vector of an object moving through space. It is helpful to represent a vector as an "arrow" attached to a point of space. Vectors can be added to one another and can also be multiplied by real numbers (often called scalars in this context). They provide a source of ideas for studying more abstract mathematical subjects, like linear algebra or modern geometry.

Copyright © Claudiu C. Remsing, 2005.
All rights reserved.

9.1 Vectors in the plane

Consider the plane Π of "elementary (read : high school) plane geometry". We draw a pair of perpendicular lines intersecting at a point O, called the origin. One of the lines, the x-axis, is usually taken in a "horizontal" position. The other line, the y-axis, is then taken in a "vertical" position. The x - and y-axes together are called coordinate axes and they form a Cartesian coordinate system on Π. We now choose a point on the x-axis to the right of O and a point on the y-axis above O to fix the units of length and positive directions on the coordinate axes. Frequently, these points are chosen so that they are both equidistant from O. With each point P in the plane we associate an ordered pair (x, y) of real numbers, its coordinates. Conversely, we can associate a point in the plane with each ordered pair of real numbers. Point P with coordinates (x, y) is denoted by $P(x, y)$ or, simply, by (x, y). Thus, the plane Π, equipped with a Cartesian coordinate system, may be identified with the set \mathbb{R}^{2} of all pairs of real numbers.

Throughout, the set \mathbb{R}^{2} will be referred to as the Euclidean 2-space or, simply, the plane.

Note : A point in the Euclidean 2-space is an ordered pair (x, y) of real numbers, and the distance between points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is given by

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

We are now going to introduce the concept of (geometric) vector.
Note: One can think of a vector as an instruction to move; the instruction makes sense wherever you are (in the plane), even if it may be rather difficult to carry out. Not every instruction to move is a vector; for an instruction to be a vector, it must specify movement through the same distance and in the same direction for every point.

We make the following definition.
9.1.1 Definition. A vector (in the plane) is a 2×1 matrix

$$
\vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where x and y are real numbers, called the components of \vec{v}.
With every vector \vec{v} we can associate a directed line segment, with the initial point the origin and the terminal point $P(x, y)$. The directed line segment from O to P is denoted by $\overrightarrow{O P} ; O$ is called the tail and P the head.
y

Directed line segment : $\overrightarrow{O P}$.

Note : A directed line segment has a direction, indicated by an arrow pointing from O to P. The magnitude of a directed line segment is its length. Thus, a directed line segment can be used to describe force, velocity, and acceleration.

Conversely, with every directed line segment $\overrightarrow{O P}$, with tail $O(0,0)$ and head $P(x, y)$, we can associate the vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

9.1.2 Definition. Two vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

are said to be equal if $u_{1}=v_{1}$ and $u_{2}=v_{2}$. That is, two vectors are equal if their respective components are equal.

Frequently, in applications it is necessary to represent a vector \vec{v} by a line segment $\overrightarrow{P Q}$ located at some point $P(x, y)$ (not the origin). In this case, if

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right], \quad \text { then } Q \text { has coordinates }\left(x+v_{1}, y+v_{2}\right) .
$$

9.1.3 Example. Consider the points $P(3,2), Q(5,5), R(-3,1)$ and $S(-1,4)$. The vectors (represented by) $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ are equal, since they have their respective components equal. We write

$$
\overrightarrow{P Q}=\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\overrightarrow{R S}
$$

Equal vectors : $\overrightarrow{P Q}=\overrightarrow{R S}(=\overrightarrow{O T})$.

With every vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

we can also associate the unique point $P(x, y)$; conversely, with every point $P(x, y)$ we associate the unique vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y
\end{array}\right] .
$$

This association is carried out by means of the directed line segment $\overrightarrow{O P}$, located at the origin. The directed line segment $\overrightarrow{O P}$ is one representation of a vector, sometimes denoted by \vec{r}_{P} and called the position vector of the point P.

Note : The plane may be viewed both as the set of all points or the set of all vectors (in the plane).

Vector addition and scalar multiplication

9.1.4 Definition. The sum of two vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

is the vector

$$
\vec{u}+\vec{v}:=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right] .
$$

We can interpret vector addition geometrically as follows. We take a representative of \vec{u}, say $\overrightarrow{P Q}$, and then a representative of \vec{v} starting from the terminal point of \vec{u}, say $\overrightarrow{Q R}$. The sum $\vec{u}+\vec{v}$ is then the vector (represented by the directed line segment) $\overrightarrow{P R}$. Thus

$$
\vec{u}+\vec{v}=\overrightarrow{P Q}+\overrightarrow{Q R}=\overrightarrow{P R}
$$

$$
\text { Sum of two vectors : } \vec{u}+\vec{v} \text {. }
$$

We can also describe $\vec{u}+\vec{v}$ as the diagonal of the parallelogram defined by \vec{u} and \vec{v}. This description of vector addition is sometimes called the parallelogram rule.

The parallelogram rule of vector addition.
9.1.5 Definition. If

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]
$$

is a vector and λ is a real number (scalar), then the scalar multiple of \vec{u} by λ is the vector

$$
\lambda \vec{u}:=\left[\begin{array}{l}
\lambda u_{1} \\
\lambda u_{2}
\end{array}\right] .
$$

Scalar multiples of a vector : $2 \vec{u}$ and $-\vec{u}$.

The vector

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

is called the zero vector and is denoted by $\overrightarrow{0}$. If \vec{u} is a vector, it follows that

$$
\vec{u}+\overrightarrow{0}=\vec{u} .
$$

We can also show that

$$
\vec{u}+(-1) \vec{u}=\overrightarrow{0},
$$

and we write $(-1) \vec{u}$ as $-\vec{u}$ and call it the opposite of \vec{u}. Moreover, we write $\vec{u}+(-1) \vec{v}$ as $\vec{u}-\vec{v}$ and call it the difference between \vec{u} and \vec{v}.

Note : While vector addition gives one diagonal of a parallelogram, vector subtraction gives the other diagonal.

Difference between two vectors.

The following proposition summarizes the algebraic properties of vector addition and scalar multiplication of vectors.
9.1.6 PROPOSITION. If \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^{2} and r and s are scalars, then :

$$
\text { (1) } \vec{u}+\vec{v}=\vec{v}+\vec{u} \text {. }
$$

(2) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$.
(3) $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$.
(4) $\vec{u}+(-\vec{u})=(-\vec{u})+\vec{u}=\overrightarrow{0}$.
(5) $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$.
(6) $(r+s) \vec{u}=r \vec{u}+s \vec{u}$.
(7) $\quad r(s \vec{u})=(r s) \vec{u}$.
(8) $1 \vec{u}=\vec{u}$.

Note : The properties listed above may be summarize by saying that \mathbb{R}^{2} is a vector space (over the field of real numbers).

Magnitude and distance

9.1.7 Definition. The length (or the magnitude) of the vector

$$
\vec{v}=\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

is defined to be the distance from the point (a, b) to the origin ; that is,

$$
\|\vec{v}\|:=\sqrt{a^{2}+b^{2}}
$$

9.1.8 Example. The length of the vector

$$
\vec{v}=\left[\begin{array}{r}
3 \\
-4
\end{array}\right]
$$

is

$$
\|\vec{v}\|=\sqrt{3^{2}+(-4)^{2}}=5
$$

9.1.9 Proposition. If \vec{u} and \vec{v} are vectors, and r is a real number, then

$$
\text { (1) } \quad\|\vec{u}\| \geq 0 ; \quad\|\vec{u}\|=0 \quad \text { if and only if } \quad \vec{u}=0
$$

(2) $\quad\|r \vec{u}\|=|r|\|\vec{u}\|$.
(3) $\quad\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| \quad$ (the triangle inequality).

Proof: Exercise.

If

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

are vectors in \mathbb{R}^{2}, then the distance between \vec{u} and \vec{v} is defined as $\|\vec{u}-\vec{v}\|$. Thus

$$
\|\vec{u}-\vec{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}} .
$$

Note : This equation also gives the distance between the points (u_{1}, u_{2}) and $\left(v_{1}, v_{2}\right)$.
9.1.10 Example. Compute the distance between the vectors

$$
\vec{u}=\left[\begin{array}{r}
-1 \\
5
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
3 \\
2
\end{array}\right] .
$$

Solution : The distance between \vec{u} and \vec{v} is

$$
\|\vec{u}-\vec{v}\|=\sqrt{(-1-3)^{2}+(5-2)^{2}}=\sqrt{4^{2}+3^{2}}=5 .
$$

Dot product and angle

9.1.11 Definition. Let

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

be vectors in \mathbb{R}^{2}. The dot product of \vec{u} and \vec{v} is defined as the number

$$
\vec{u} \bullet \vec{v}:=u_{1} v_{1}+u_{2} v_{2}
$$

Note : The dot product is also called the standard inner product on \mathbb{R}^{2}.
9.1.12 Example. If

$$
\vec{u}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{r}
4 \\
-2
\end{array}\right]
$$

then

$$
\vec{u} \bullet \vec{v}=(2)(4)+(3)(-2)=2 .
$$

Note : (1) We can write the dot product of \vec{u} and \vec{v} in terms of matrix multiplication as $\vec{u}^{T} \vec{v}$, where we have ignored the brackets around the 1×1 matrix $\vec{u}^{T} \vec{v}$.
(2) If \vec{v} is a vector in \mathbb{R}^{2}, then

$$
\|\vec{v}\|=\sqrt{\vec{v} \bullet \vec{v}}
$$

Let us now consider the problem of determining the angle $\theta, 0 \leq \theta \leq \pi$, between two nonzero vectors in \mathbb{R}^{2}. Let

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2}
\end{array}\right]
$$

be two vectors in \mathbb{R}^{2}.

The angle between two vectors.

Using the law of cosines, we have

$$
\|\vec{v}-\vec{u}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

Hence

$$
\begin{aligned}
\cos \theta & =\frac{\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-\|\vec{v}-\vec{u}\|^{2}}{2\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{\left(u_{1}^{2}+u_{2}^{2}\right)+\left(v_{1}^{2}+v_{2}^{2}\right)-\left(v_{1}-u_{1}\right)^{2}-\left(v_{2}-u_{2}\right)^{2}}{2\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{u_{1} v_{1}+u_{2} v_{2}}{\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|} .
\end{aligned}
$$

That is,

$$
\cos \theta=\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
$$

Note: The zero vector in \mathbb{R}^{2} has no specific direction. The law of cosines expression above is true, for any angle θ, if $\vec{v} \neq \overrightarrow{0}$ and $\vec{u}=\overrightarrow{0}$. Thus, the zero vector can be assigned any direction.
9.1.13 Example. The angle θ between the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{r}
-1 \\
1
\end{array}\right]
$$

is determined by

$$
\cos \theta=\frac{(1)(-1)+(0)(1)}{\sqrt{1^{2}+0^{2}} \sqrt{(-1)^{2}+1^{2}}}=-\frac{1}{\sqrt{2}} .
$$

Since $0 \leq \theta \leq \pi$, it follows that $\theta=\frac{3 \pi}{4}$.
9.1.14 Definition. Two (nonzero) vectors \vec{u} and \vec{v} are

- collinear (or parallel) provided $\theta=0$ or $\theta=\pi$.
- orthogonal (or perpendicular) provided $\theta=\frac{\pi}{2}$.

Collinear (or parallel) vectors.

Orthogonal vectors : $\vec{u} \perp \vec{v}$.

Note : (1) We regard the zero vector as both collinear with and orthogonal to every vector.
(2) If $\vec{v} \neq \overrightarrow{0}$, then vectors \vec{u} and \vec{v} are collinear $\Longleftrightarrow \vec{u}=r \vec{v}$ for some $r \in \mathbb{R}$. (See Exercise 23 (b))
(3) Vectors \vec{u} and \vec{v} are orthogonal $\Longleftrightarrow \vec{u} \bullet \vec{v}=0$.
9.1.15 Example. The vectors

$$
\vec{u}=\left[\begin{array}{r}
2 \\
-4
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
4 \\
2
\end{array}\right]
$$

are orthogonal, since

$$
\vec{u} \bullet \vec{v}=(2)(4)+(-4)(2)=0 .
$$

Each of the properties of the dot product listed below is easy to establish.
9.1.16 Proposition. If \vec{u}, \vec{v}, and \vec{w} are vectors in \mathbb{R}^{2}, and r is a real number, then :
(1) $\vec{u} \bullet \vec{u} \geq 0 ; \quad \vec{u} \bullet \vec{u}=0 \quad$ if and only if $\vec{u}=\overrightarrow{0}$.
(2) $\vec{v} \bullet \vec{u}=\vec{u} \bullet \vec{v}$.
(3) $(\vec{u}+\vec{v}) \bullet \vec{w}=\vec{u} \bullet \vec{w}+\vec{v} \bullet \vec{w}$.
(4) $(r \vec{u}) \bullet \vec{v}=r(\vec{u} \bullet \vec{v})$.

Proof : Exercise.
A unit vector in \mathbb{R}^{2} is a vector whose length is 1 . If \vec{v} is a nonzero vector, then the vector

$$
\frac{1}{\|\vec{v}\|} \vec{v}
$$

is a unit vector (in the direction of \vec{v}).
There are two unit vectors in \mathbb{R}^{2} that are of special importance. These are

$$
\vec{i}:=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{j}:=\left[\begin{array}{l}
0 \\
1
\end{array}\right],
$$

the unit vectors along the positive x - and y-axes. Observe that $\vec{\imath}$ and $\vec{\jmath}$ are orthogonal.

The standard unit vectors: \vec{i} and \vec{j}.

Note : Every vector in \mathbb{R}^{2} can be written (uniquely) as a linear combination of the vectors \vec{i} and \vec{j}; that is,

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=v_{1} \vec{i}+v_{2} \vec{j} .
$$

Linear combination of two vectors: $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}$.

9.2 Vectors in space

The foregoing discussion of vectors in the plane can be generalized to vectors in space, as follows.

Consider the (three-dimensional) space Σ of "elementary (read : high school) solid geometry". We first fix a Cartesian coordinate system by choosing a point, called the origin, and three lines, called the coordinate axes, each passing through origin, so that each line is perpendicular to the other two. These lines are individually called the $x-, y$-, and z-axes. On each of these axes we choose a point fixing the units of length and positive directions on the coordinate axes. Frequently, these points are chosen so that they are both equidistant from the origin O. With each point P in space we associate an ordered triple (x, y, z) of real numbers, its coordinates. Conversely, we can associate a point in space with each ordered triple of real
numbers. Point P with coordinates (x, y, z) is denoted by $P(x, y, z)$ or, simply, by (x, y, z). Thus, the space Σ, equipped with a Cartesian coordinate system, may be identified with the set \mathbb{R}^{3} of all triples of real numbers.

Throughout this section, the set \mathbb{R}^{3} will be referred to as the Euclidean 3-space or, simply, the space.

Note : A point in the Euclidean 3 -space is an ordered triple (x, y, z) of real numbers, and the distance between points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by

$$
\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}} .
$$

We now introduce the concept of vector in space.
9.2.1 Definition. A vector (in space) is a 3×1 matrix

$$
\vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

where x, y, and z are real numbers, called the components of \vec{v}.

With every vector \vec{v} we can associate a directed line segment, with the initial point the origin and the terminal point $P(x, y, z)$. The directed line segment from O to P is denoted by $\overrightarrow{O P} ; O$ is called the tail and P the head. Conversely, with every directed line segment $\overrightarrow{O P}$, with tail $O(0,0,0)$ and head $P(x, y, z)$, we can associate the vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

Directed line segment : $\overrightarrow{O P}$.
9.2.2 Definition. Two vectors

$$
\vec{u}=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

are said to be equal if $u_{1}=v_{1}, u_{2}=v_{2}$, and $u_{3}=v_{3}$. That is, two vectors are equal if their respective components are equal.

Frequently, in applications it is necessary to represent a vector \vec{v} by a line segment $\overrightarrow{P Q}$ located at some point $P(x, y, z)$ (not the origin). In this case, if

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right], \quad \text { then } Q \text { has coordinates }\left(x+v_{1}, y+v_{2}, z+v_{3}\right) .
$$

9.2.3 Example. Consider the points $P(3,2,1), Q(5,5,0), R(-3,1,4)$ and $S(-1,4,3)$. The vectors (represented by) $\overrightarrow{P Q}$ and $\overrightarrow{R S}$ are equal, since they have their respective components equal. We write

$$
\overrightarrow{P Q}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right]=\overrightarrow{R S} .
$$

With every vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

we can also associate the unique point $P(x, y, z)$; conversely, with every point $P(x, y, z)$ we associate the unique vector

$$
\vec{v}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] .
$$

This association is carried out by means of the directed line segment $\overrightarrow{O P}$, located at the origin. The directed line segment $\overrightarrow{O P}$ is one representation of a vector, sometimes denoted by \vec{r}_{P} and called the position vector of the point P.

Note : The space may be viewed both as the set of all points or the set of all vectors (in space).

Vector addition and scalar multiplication

9.2.4 Definition. The sum of two vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

is the vector

$$
\vec{u}+\vec{v}:=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2} \\
u_{3}+v_{3}
\end{array}\right] .
$$

The parallelogram rule, as a description (geometric interpretation) of vector addition remains valid.
9.2.5 Definition. If

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right]
$$

is a vector and λ is a real number (scalar), then the scalar multiple of \vec{u} by λ is the vector

$$
\lambda \vec{u}:=\left[\begin{array}{l}
\lambda u_{1} \\
\lambda u_{2} \\
\lambda u_{3}
\end{array}\right]
$$

The vector

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

is called the zero vector and is denoted by $\overrightarrow{0}$. If \vec{u} is a vector, it follows that

$$
\vec{u}+\overrightarrow{0}=\vec{u} .
$$

Again, we can show that

$$
\vec{u}+(-1) \vec{u}=\overrightarrow{0}
$$

and we write $(-1) \vec{u}$ as $-\vec{u}$ and call it the opposite of \vec{u}. We write $\vec{u}+(-1) \vec{v}$ as $\vec{u}-\vec{v}$ and call it the difference between \vec{u} and \vec{v}.

Note : While vector addition gives one diagonal of a parallelogram, vector subtraction gives the other diagonal.

The following proposition summarizes the algebraic properties of vector addition and scalar multiplication of vectors.
9.2.6 Proposition. If \vec{u}, \vec{v} and \vec{w} are vectors in \mathbb{R}^{3} and r and s are scalars, then :
(1) $\vec{u}+\vec{v}=\vec{v}+\vec{u}$.
(2) $\vec{u}+(\vec{v}+\vec{w})=(\vec{u}+\vec{v})+\vec{w}$.
(3) $\vec{u}+\overrightarrow{0}=\overrightarrow{0}+\vec{u}=\vec{u}$.
(4) $\vec{u}+(-\vec{u})=(-\vec{u})+\vec{u}=\overrightarrow{0}$.
(5) $r(\vec{u}+\vec{v})=r \vec{u}+r \vec{v}$.
(6) $(r+s) \vec{u}=r \vec{u}+s \vec{u}$.
(7) $r(s \vec{u})=(r s) \vec{u}$.
(8) $1 \vec{u}=\vec{u}$.

Note : The properties listed above may be summarize by saying that \mathbb{R}^{3} is a vector space (over the field of real numbers).

Magnitude and distance

9.2.7 Definition. The length (or the magnitude) of the vector

$$
\vec{v}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]
$$

is defined to be the distance from the point (a, b, c) to the origin ; that is,

$$
\|\vec{v}\|:=\sqrt{a^{2}+b^{2}+c^{2}} .
$$

9.2.8 Example. The length of the vector

$$
\vec{v}=\left[\begin{array}{r}
3 \\
-4 \\
0
\end{array}\right]
$$

is

$$
\|\vec{v}\|=\sqrt{3^{2}+(-4)^{2}+0^{2}}=5 .
$$

9.2.9 Proposition. If \vec{u} and \vec{v} are vectors, and r is a real number, then
(1) $\|\vec{u}\| \geq 0 ; \quad\|\vec{u}\|=0$ if and only if $\vec{u}=0$.
(2) $\quad\|r \vec{u}\|=|r|\|\vec{u}\|$.
(3) $\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\| \quad$ (the triangle inequality).

Proof: Exercise.

If

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

are vectors in \mathbb{R}^{3}, then the distance between \vec{u} and \vec{v} is defined as $\|\vec{u}-\vec{v}\|$. Thus

$$
\|\vec{u}-\vec{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\left(u_{3}-v_{3}\right)^{2}} .
$$

Note: This equation also gives the distance between the points (u_{1}, u_{2}, u_{3}) and $\left(v_{1}, v_{2}, v_{3}\right)$.
9.2.10 Example. Compute the distance between the vectors

$$
\vec{u}=\left[\begin{array}{r}
-1 \\
5 \\
-4
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{r}
3 \\
2 \\
-4
\end{array}\right] .
$$

Solution : The distance between \vec{u} and \vec{v} is

$$
\|\vec{u}-\vec{v}\|=\sqrt{(-1-3)^{2}+(5-2)^{2}+(-4+4)^{2}}=\sqrt{4^{2}+3^{2}+0^{2}}=5 .
$$

Dot product and angle

9.2.11 Definition. Let

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

be vectors in \mathbb{R}^{3}. The dot product of \vec{u} and \vec{v} is defined as the number

$$
\vec{u} \bullet \vec{v}:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} .
$$

NOTE : The dot product is also called the standard inner product on \mathbb{R}^{3}.
9.2.12 Example. If

$$
\vec{u}=\left[\begin{array}{r}
2 \\
3 \\
-1
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{r}
4 \\
-2 \\
2
\end{array}\right]
$$

then

$$
\vec{u} \bullet \vec{v}=(2)(4)+(3)(-2)+(-1)(2)=0 .
$$

Note : (1) We can write the dot product of \vec{u} and \vec{v} in terms of matrix multiplication as $\vec{u}^{T} \vec{v}$, where we have ignored the brackets around the 1×1 matrix $\vec{u}^{T} \vec{v}$. (2) If \vec{v} is a vector in \mathbb{R}^{3}, then

$$
\|\vec{v}\|=\sqrt{\vec{v} \bullet \vec{v}} .
$$

Let us now consider the problem of determining the angle $\theta, 0 \leq \theta \leq \pi$, between two nonzero vectors in \mathbb{R}^{3}. Let

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

be two vectors in \mathbb{R}^{3}. Using the law of cosines, we have

$$
\|\vec{v}-\vec{u}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta .
$$

Hence

$$
\begin{aligned}
\cos \theta & =\frac{\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-\|\vec{v}-\vec{u}\|^{2}}{2\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{\left(u_{1}^{2}+u_{2}^{2}+u_{3}^{2}\right)+\left(v_{1}^{2}+v_{2}^{2}+v_{3}^{2}\right)-\left(v_{1}-u_{1}\right)^{2}+\left(v_{2}-u_{2}\right)^{2}+\left(v_{3}-u_{3}\right)^{2}}{2\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}}{\|\vec{u}\|\|\vec{v}\|} \\
& =\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
\end{aligned}
$$

That is,

$$
\cos \theta=\frac{\vec{u} \bullet \vec{v}}{\|\vec{u}\|\|\vec{v}\|}
$$

Note : The zero vector in \mathbb{R}^{2} has no specific direction. The law of cosines expression above is true, for any angle θ, if $\vec{v} \neq \overrightarrow{0}$ and $\vec{u}=\overrightarrow{0}$. Thus, the zero vector can be assigned any direction.
9.2.13 Example. The angle θ between the vectors

$$
\vec{u}=\left[\begin{array}{c}
1 \\
1 \\
0
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
0 \\
1 \\
1
\end{array}\right]
$$

is determined by

$$
\cos \theta=\frac{(1)(0)+(1)(1)+(0)(1)}{\sqrt{1^{2}+1^{2}+0^{2}} \sqrt{0^{2}+1^{2}+1^{2}}}=\frac{1}{2}
$$

Since $0 \leq \theta \leq \pi$, it follows that $\theta=\frac{\pi}{3}$.
9.2.14 Definition. Two (nonzero) vectors \vec{u} and \vec{v} are

- collinear (or parallel) provided $\theta=0$ or $\theta=\pi$.
- orthogonal (or perpendicular) provided $\theta=\frac{\pi}{2}$.

Note : (1) We regard the zero vector as both collinear with and orthogonal to every vector.
(2) If $\vec{v} \neq \overrightarrow{0}$, then vectors \vec{u} and \vec{v} are collinear $\Longleftrightarrow \vec{u}=r \vec{v}$ for some $r \in \mathbb{R}$. (See Exercise 23 (b))
(3) Vectors \vec{u} and \vec{v} are orthogonal $\Longleftrightarrow \vec{u} \bullet \vec{v}=0$.
9.2.15 Proposition. If \vec{u}, \vec{v}, and \vec{w} are vectors in \mathbb{R}^{2}, and r is a real number, then :

$$
\text { (1) } \vec{u} \bullet \vec{u} \geq 0 ; \quad \vec{u} \bullet \vec{u}=0 \quad \text { if and only if } \quad \vec{u}=\overrightarrow{0} .
$$

(2) $\vec{v} \bullet \vec{u}=\vec{u} \bullet \vec{v}$.
(3) $(\vec{u}+\vec{v}) \bullet \vec{w}=\vec{u} \bullet \vec{w}+\vec{v} \bullet \vec{w}$.
(4) $(r \vec{u}) \bullet \vec{v})=r(\vec{u} \bullet \vec{v})$.

Proof : Exercise.

A unit vector in \mathbb{R}^{3} is a vector whose length is 1 . If \vec{v} is a nonzero vector, then the vector

$$
\frac{1}{\|\vec{v}\|} \vec{v}
$$

is a unit vector (in the direction of \vec{v}).
There are three unit vectors in \mathbb{R}^{3} that are of special importance. These are

$$
\vec{i}:=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad \vec{j}:=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \vec{k}:=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

the unit vectors along the positive x-, y-, and z-axes. Observe that \vec{i}, \vec{j}, and \vec{k} are mutually orthogonal.

The standard unit vectors : \vec{i}, \vec{j}, and \vec{k}.

Note : Every vector in \mathbb{R}^{3} can be written (uniquely) as a linear combination of the vectors \vec{i}, \vec{j}, and \vec{k}; that is,

$$
\vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]=v_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]+v_{2}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+v_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}
$$

Linear combination of three vectors : $\vec{v}=v_{1} \vec{i}+v_{2} \vec{j}+v_{3} \vec{k}$.

Cross product

9.2.16 Definition. Let

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right]
$$

be vectors in \mathbb{R}^{3}. The cross product of \vec{u} and \vec{v} is defined to be the vector

$$
\vec{u} \times \vec{v}:=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]=\left(u_{2} v_{3}-u_{3} v_{2}\right) \vec{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \vec{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \vec{k}
$$

The cross product is also called the vector product.
9.2.17 ExAmple. Let $\vec{u}=2 \vec{i}+\vec{j}+2 \vec{k}$ and $\vec{v}=3 \vec{i}-\vec{j}-3 \vec{k}$. Then

$$
\vec{u} \times \vec{v}=-\vec{i}+12 \vec{j}-5 \vec{k} .
$$

Note : (1) The cross product $\vec{u} \times \vec{v}$ is orthogonal to both \vec{u} and \vec{v}.
(2) A common way of remembering the definition of the cross product $\vec{u} \times \vec{v}$ is to observe that it results from a formal expansion along the first row in the determinant

$$
\vec{u} \times \vec{v}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| .
$$

The cross product of two vectors : $\vec{u} \times \vec{v}$.
9.2.18 PROPOSITION. If \vec{u}, \vec{v}, and \vec{w} are vectors in \mathbb{R}^{3}, and r is a real number, then :
(1) $\vec{u} \times \vec{v}=-\vec{v} \times \vec{u}$.
(2) $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$.
(3) $(\vec{u}+\vec{v}) \times \vec{w}=\vec{u} \times \vec{w}+\vec{v} \times \vec{w}$.
(4) $r(\vec{u} \times \vec{v})=(r \vec{u}) \times \vec{v}=\vec{u} \times(r \vec{v})$.

Proof : Exercise.

One can show that (tedious computation)

$$
\|\vec{u} \times \vec{v}\|^{2}=\|\vec{u}\|^{2}\|\vec{v}\|^{2}-(\vec{u} \bullet \vec{v})^{2} .
$$

Recall that

$$
\vec{u} \bullet \vec{v}=\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

where θ is the angle between \vec{u} and \vec{v}. Hence,
$\|\vec{u} \times \vec{v}\|^{2}=\|\vec{u}\|^{2}\|\vec{v}\|^{2}-\|\vec{u}\|^{2}\|\vec{v}\|^{2} \cos ^{2} \theta=\|\vec{u}\|^{2}\|\vec{v}\|^{2}\left(1-\cos ^{2} \theta\right)=\|\vec{u}\|^{2}\|\vec{v}\|^{2} \sin ^{2} \theta$.
Taking square roots, we obtain

$$
\|\vec{u} \times \vec{v}\|=\|\vec{u}\|\|\vec{v}\| \sin \theta .
$$

Observe that we do not have to write $|\sin \theta|$, $\operatorname{since} \sin \theta$ is nonnegative for $0 \leq \theta \leq \pi$.

Note : Vectors \vec{u} and \vec{v} (in \mathbb{R}^{3}) are collinear $\Longleftrightarrow \vec{u} \times \vec{v}=\overrightarrow{0}$.

Applications : area and volume

We now consider several applications of cross product.
A (Area of a Triangle) Consider a triangle with vertices P_{1}, P_{2} and P_{3}. The area of this triangle is $\frac{1}{2} b h$, where b is the base and h is the height. If we take the segment between P_{1} and P_{2} to be the base and denote $\overrightarrow{P_{1} P_{2}}$ by the vector \vec{u}, then

$$
b=\|\vec{u}\| .
$$

Letting $\overrightarrow{P_{1} P_{3}}=\vec{v}$, we find that the height h is given by

$$
h=\|\vec{v}\| \sin \theta
$$

θ being the angle betweeen \vec{u} and \vec{v}.

Area of a triangle : $\frac{1}{2}\|\vec{u} \times \vec{v}\|$.

Hence, the area A_{t} of the triangle is

$$
A_{t}=\frac{1}{2}\|\vec{u}\|\|\vec{v}\| \sin \theta=\frac{1}{2}\|\vec{u} \times \vec{v}\| .
$$

9.2.19 EXAMPLE. Find the area of the triangle with vertices

$$
P_{1}(2,2,4), \quad P_{2}(-1,0,5), \quad \text { and } \quad P_{3}(3,4,3)
$$

Solution : We have

$$
\vec{u}={\overrightarrow{P_{1} P}}_{2}=-3 \vec{i}-2 \vec{j}+\vec{k} \quad \text { and } \quad \vec{v}={\overrightarrow{P_{1}}}_{3}=\vec{i}+2 \vec{j}-\vec{k} .
$$

Then

$$
A_{t}=\frac{1}{2}\|(-3 \vec{i}-2 \vec{j}+\vec{k}) \times(\vec{i}+2 \vec{j}-\vec{k})\|=\frac{1}{2}\|-2 \vec{j}-4 \vec{k}\|=\sqrt{5}
$$

B (Area of a Parallelogram) The area A_{p} of the parallelogram with adjacent sides \vec{u} and \vec{v} is $2 A_{t}$, so

$$
A_{p}=\|\vec{u} \times \vec{v}\| \text {. }
$$

Area of a parallelogram : $\|\vec{u} \times \vec{v}\|$.

C (Volume of a Parallelepiped) Consider the parallelepiped with a vertex at the origin and edges \vec{u}, \vec{v}, and \vec{w}. Then the volume V of the parallelepiped is the product of the area of the face containing \vec{v} and \vec{w} and the distance h from this face to the face parallel to it.

Volume of a parallelepiped : $|\vec{u} \bullet(\vec{v} \times \vec{w})|$.

Now

$$
h=\|\vec{u}\| \cos \theta
$$

where θ is the angle between \vec{u} and $\vec{v} \times \vec{w}$, and the area of the face determined by \vec{v} and \vec{w} is $\|\vec{v} \times \vec{w}\|$. Hence,

$$
V=\|\vec{v} \times \vec{w}\|\|\vec{u}\||\cos \theta|=|\vec{u} \bullet(\vec{v} \times \vec{w})|
$$

Note : The volume of the parallelepiped determined by the vectors \vec{u}, \vec{v}, and \vec{w}, can be expressed as follows

$$
\text { volume }= \pm\left|\begin{array}{lll}
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3} \\
w_{1} & w_{2} & w_{3}
\end{array}\right|
$$

9.2.20 Example. Find the volume of the parallelepiped with a vertex at the origin and edges

$$
\vec{u}=\vec{i}-2 \vec{j}+3 \vec{k}, \quad \vec{v}=\vec{i}+3 \vec{j}+\vec{k}, \quad \text { and } \quad \vec{w}=2 \vec{i}+\vec{j}+2 \vec{k} .
$$

Solution : We have

$$
\vec{v} \times \vec{w}=5 \vec{i}-5 \vec{k} .
$$

Hence, $\vec{u} \bullet(\vec{v} \times \vec{w})=-10$, and thus the volume V is given by

$$
V=|\vec{u} \bullet(\vec{v} \times \vec{w})|=|-10|=10 .
$$

Alternatively, we have

$$
\text { volume }= \pm\left|\begin{array}{ccc}
1 & -2 & 3 \\
1 & 3 & 1 \\
2 & 1 & 2
\end{array}\right|= \pm(-10)=10
$$

9.3 Lines and planes

Lines

In elementary geometry a straight line in space is determined by any two points that lie on it. Here, we take the alternative approach that a straight line in space is determined by a single point P_{0} on it and a vector \vec{v} that determines the direction of the line.
9.3.1 Definition. By the straight line \mathcal{L} that passes through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and is parallel to the (nonzero) vector $\vec{v}=a \vec{i}+b \vec{j}+c \vec{k}$ is meant
the set of all points $P(x, y, z)$ in \mathbb{R}^{3} such that the vector $\overrightarrow{P_{0} P}=\vec{r}-\vec{r}_{0}$ is collinear to \vec{v}. (Here, \vec{r} and \vec{r}_{0} stand for the position vectors of the points P and P_{0}, respectively.)

Vector equation of a line : $\vec{r}=\vec{r}_{0}+t \vec{v}$.
Thus, the point P lies on \mathcal{L} if and only if

$$
\vec{r}-\vec{r}_{0}=t \vec{v}, \quad \text { for some scalar } t
$$

that is, if and only if

$$
\vec{r}=\vec{r}_{0}+t \vec{v}, \quad t \in \mathbb{R}
$$

Note : We can visualize the point P as moving along the straight line \mathcal{L}, with $\vec{r}_{0}+t \vec{v}$ being its location at "time" t.

The equation

$$
\vec{r}=\vec{r}_{0}+t \vec{v}, \quad t \in \mathbb{R}
$$

is a vector equation of the line \mathcal{L}.
By equating components of the vectors in this equation, we get the scalar equations

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

These are parametric equations (with parameter t) of the line \mathcal{L}.
Alternatively, one can write the equations

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c} .
$$

These are called symmetric equations of the line \mathcal{L}.
9.3.2 Example. Write parametric equations of the line \mathcal{L} that passes through the points $P_{1}(1,2,2)$ and $P_{2}(3,-1,3)$.
Solution : The direction of the line \mathcal{L} is given by the vector $\vec{v}=\overrightarrow{P_{1} P_{2}}=$ $2 \vec{i}-3 \vec{j}+\vec{k}$. With P_{1} as the fixed point, we get the following parametric equations

$$
x=1+2 t, \quad y=2-3 t, \quad z=2+t .
$$

Note: If we take P_{2} as the fixed point and $-2 \vec{v}=-4 \vec{i}+6 \vec{j}-2 \vec{k}$ as the direction vector, then we get different parametric equations

$$
x=3-4 t, \quad y=-1+6 t, \quad z=3-2 t .
$$

Thus, the parametric equations of a line are not unique.
9.3.3 Example. Determine whether the lines

$$
\vec{r}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]+t\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \quad \text { and } \quad \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}
$$

intersect.
Solution : We write parametric equations for the first line; that is,

$$
x=1+3 t, \quad y=1+2 t, \quad z=2+t .
$$

Now we determine whether there exists $t \in \mathbb{R}$ such that

$$
\frac{1+3 t-1}{2}=\frac{1+1 t-2}{3}=\frac{2+t-3}{4} .
$$

The linear system

$$
\left\{\begin{aligned}
6 t & =4 t-2 \\
12 t & =2 t-2
\end{aligned}\right.
$$

is clearly inconsistent (Why ?), and thus the given lines do not intersect.
9.3.4 Example. Find the shortest distance between the point $P(3,-1,4)$ and the line given by

$$
x=-2+3 t, \quad y=-2 t, \quad z=1+4 t .
$$

Solution : First, we shall find a formula for the distance from a point P to a line \mathcal{L}.

Let \vec{u} be the direction vector for \mathcal{L} and A a point on the line. Let δ be the distance from P to the given line \mathcal{L}.

The shortest distance between a point and a line: $\frac{\|\vec{A} \times \times \vec{u}\|}{\|\vec{u}\|}$.
Then

$$
\delta=\|\overrightarrow{A P}\| \sin \theta
$$

where θ is the angle between \vec{u} and $\overrightarrow{A P}$. We have

$$
\|\vec{u}\|\|\overrightarrow{A P}\| \sin \theta=\|\vec{u} \times \overrightarrow{A P}\|=\|\overrightarrow{A P} \times \vec{u}\| .
$$

Consequently,

$$
\delta=\|\overrightarrow{A P}\| \sin \theta=\frac{\|\overrightarrow{A P} \times \vec{u}\|}{\|\vec{u}\|}
$$

In our case, we have $\vec{u}=\left[\begin{array}{r}3 \\ -2 \\ 4\end{array}\right]$ and to find a point on \mathcal{L}, let $t=0$ and obtain $A(-2,0,1)$. Thus

$$
\overrightarrow{A P}=\left[\begin{array}{r}
5 \\
-1 \\
3
\end{array}\right] \quad \text { and } \quad \overrightarrow{A P} \times \vec{u}=\left|\begin{array}{ccc}
\vec{i} & \vec{j} & \vec{k} \\
5 & -1 & 3 \\
3 & -2 & 4
\end{array}\right|=2 \vec{i}-11 \vec{j}-7 \vec{k}=\left[\begin{array}{r}
2 \\
-11 \\
-7
\end{array}\right] .
$$

Finally, we can find the distance to be

$$
\delta=\frac{\|\overrightarrow{A P} \times \vec{u}\|}{\|\vec{u}\|}=\frac{\sqrt{174}}{\sqrt{29}}=\sqrt{6} .
$$

Note : In the $x y$-plane, parametric equations of a line \mathcal{L} take the form

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t
\end{array}\right.
$$

Alternatively, one can write

$$
\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}
$$

or

$$
y=y_{0}+\frac{b}{a}\left(x-x_{0}\right)
$$

or even

$$
y=m x+n
$$

where m is the slope of the line and n is the y-intercept. Furthermore, we observe that this "familiar" equation can be rewritten as

$$
A x+B y+C=0
$$

It is not difficult to show that the graph of such an equation, where $A, B, C \in \mathbb{R}$ (with A and B not all zero) is a straight line (in the plane) with slope $m=-\frac{A}{B}$.
9.3.5 Example. Show that the lines

$$
(\mathcal{L}) \quad a x+b y+c=0 \quad \text { and } \quad(\mathcal{M}) \quad d x+e y+f=0
$$

are parallel if and only if $a e=b d$ and are perpendicular if and only if $a d+b e=$ 0 .

Solution : The direction vectors of \mathcal{L} and \mathcal{M} are

$$
\vec{u}=\left[\begin{array}{r}
-b \\
a
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{r}
-e \\
d
\end{array}\right],
$$

respectively. Then
$\mathcal{L} \| \mathcal{M} \Longleftrightarrow \vec{u}_{1}=\lambda \vec{u}_{2} \Longleftrightarrow \vec{u}_{1} \times \vec{u}_{2}=\overrightarrow{0} \Longleftrightarrow(a e-b d) \vec{k}=\overrightarrow{0} \Longleftrightarrow a e=b d ;$

$$
\mathcal{L} \perp \mathcal{M} \Longleftrightarrow \vec{u}_{1} \bullet \vec{u}_{2}=0 \Longleftrightarrow a d+b e=0
$$

In particular, the lines

$$
y=m_{1} x+n_{1} \quad \text { and } \quad y=m_{2} x+n_{2}
$$

are parallel if and only if $m_{1}=m_{2}$ and are perpendicular if and only if $m_{1} m_{2}+1=0$.

Planes

A plane in space is determined by any point that lies on it and any line through that point orthogonal to the plane. Alternatively, a plane in space is determined by a single point P_{0} on it and a vector \vec{n} that is orthogonal to the plane.
9.3.6 Definition. By the plane α through the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ with normal vector $\vec{n}=a \vec{i}+b \vec{j}+c \vec{k}$ is meant the set of all points $P(x, y, z)$ in \mathbb{R}^{3} such that the vectors $\overrightarrow{P_{0} P}=\vec{r}-\vec{r}_{0}$ and \vec{n} are orthogonal. (Again, \vec{r} and \vec{r}_{0} stand for the position vectors of the points P and P_{0}, respectively.)

$$
\text { Vector equation of a plan : } \vec{n} \bullet\left(\vec{r}-\vec{r}_{0}\right)=0 \text {. }
$$

Thus, the point P lies on α if and only if

$$
\vec{n} \bullet\left(\vec{r}-\vec{r}_{0}\right)=0
$$

This is a vector equation of the plane α.
By substituting the components of the vectors involved in this equation, we get the scalar equation

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

This is a point-normal equation (or standard equation) of the plane α.
Note : The equation above can be rewritten as

$$
a x+b y+c z+d=0
$$

It is not difficult to show that the graph of such an equation, where $a, b, c, d \in \mathbb{R}$ (with a, b, and c not all zero) is a plane with normal $\vec{n}=a \vec{i}+b \vec{j}+c \vec{k}$.
9.3.7 Example. Find an equation of the plane passing through the point $(3,4,-3)$ and perpendicular to the vector $\vec{v}=5 \vec{i}-2 \vec{j}+4 \vec{k}$.

Solution : We obtain an equation of the plane as

$$
5(x-3)-2(y-4)+4(z+3)=0 .
$$

9.3.8 Example. Find an equation of the plane passing through points $P_{1}(2,-2,1), P_{2}(-1,0,3)$, and $P_{3}(5,-3,4)$.
SOLUTION : The (noncollinear) vectors ${\overrightarrow{P_{1} P}}_{2}=-3 \vec{i}+2 \vec{j}+3 \vec{k}$ and ${\overrightarrow{P_{1} P_{3}}}_{3}=$ $3 \vec{i}-\vec{j}+3 \vec{k}$ lie in the plane, since the points P_{1}, P_{2}, and P_{3} lie in the plane. The vector

$$
\vec{v}=\overrightarrow{P_{1} P_{2}} \times \overrightarrow{P_{1} P_{3}}=8 \vec{i}+15 \vec{j}-3 \vec{k}
$$

is then perpendicular to both $\overrightarrow{P_{1} P_{2}}$ and $\overrightarrow{P_{1} P_{3}}$, and is thus a normal to the plane. Using the vector \vec{v} and the point $P_{1}(2,-2,1)$, we obtain

$$
8(x-2)+15(y+2)-3(z-1)=0
$$

as an equation of the plane.
Note : The general equation for a plane passing through three noncollinear points $P_{i}\left(x_{i}, y_{i}, z_{i}\right)$,
$i=1,2,3$ may be written in the form :

$$
\left|\begin{array}{cccc}
x & y & z & 1 \\
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1 \\
x_{3} & y_{3} & z_{3} & 1
\end{array}\right|=0
$$

or, equivalently,

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

9.3.9 Example. Find parametric equations of the line of intersection of the planes

$$
\left(\pi_{1}\right) \quad 2 x+3 y-2 z+4=0 \quad \text { and } \quad\left(\pi_{2}\right) \quad x-y+2 z+3=0 .
$$

Solution : Solving the linear system consisting of the equations of π_{1} and π_{2}, we obtain (verify !)

$$
x=-\frac{13}{5}-\frac{4}{5} t, \quad y=\frac{2}{5}+\frac{6}{5} t, \quad z=t
$$

as parametric equations of the line \mathcal{L} of intersection of the planes.

The line of intersection of two plans : $\mathcal{L}=\pi_{1} \cap \pi_{2}$.

Note : (1) The line in the $x y$-plane, described by the (general) equation

$$
a x+b y+d=0
$$

may be viewed as the intersection of the planes

$$
a x+b y+c z+d=0 \quad \text { and } \quad z=0 .
$$

(2) The equations

$$
x=y=0
$$

define a line (the z-axis). Alternative ways of describing the same line are, for instance :
(1) $\vec{r}=t \vec{k}, t \in \mathbb{R}$;
(2) $x=0, y=0, z=t ; \quad t \in \mathbb{R}$;
(3) $\frac{x}{0}=\frac{y}{0}=\frac{z}{1}$.
9.3.10 Example. Find a formula for the shortest distance d between two skew lines \mathcal{L}_{1} and \mathcal{L}_{2}.

Solution : The lines are skew if they are not parallel and do not intersect. Choose points P_{1}, Q_{1} on \mathcal{L}_{1} and P_{2}, Q_{2} on $\mathcal{L}_{2} ;$ so, the direction vectors for the lines \mathcal{L}_{1} and \mathcal{L}_{2} are

$$
\vec{v}_{1}={\overrightarrow{P_{1} Q}}_{1} \quad \text { and } \quad \vec{v}_{2}={\overrightarrow{P_{2}}}_{2}
$$

respectively.

The shortest distance between two skew lines : $\frac{\mid\left(\vec{v}_{1} \times \vec{v}_{2} \bullet \bullet \overrightarrow{P_{1}} \vec{P}_{2} \mid\right.}{\left\|\vec{v}_{1} \times \vec{v}_{2}\right\|}$.
Then $\vec{v}_{1} \times \vec{v}_{2}$ is orthogonal to both \vec{v}_{1} and \vec{v}_{2} and hence a unit vector \vec{n} orthogonal to both \vec{v}_{1} and \vec{v}_{2} is

$$
\vec{n}=\frac{1}{\left\|\vec{v}_{1} \times \vec{v}_{2}\right\|}\left(\vec{v}_{1} \times \vec{v}_{2}\right) .
$$

Let us consider planes through P_{1} and P_{2}, respectively, each having normal vector \vec{n}. These planes are parallel and contain \mathcal{L}_{1} and \mathcal{L}_{2}, respectively. The distance d between the planes is measured along a line parallel to the common normal \vec{n}. It follows that d is the shortest distance between \mathcal{L}_{1} and \mathcal{L}_{2}. So

$$
d=\left|\vec{n} \bullet{\overrightarrow{P_{1} P}}_{2}\right|=\frac{\left|\left(\vec{v}_{1} \times \vec{v}_{2}\right) \bullet \vec{P}_{1} P_{2}\right|}{\left\|\vec{v}_{1} \times \vec{v}_{2}\right\|}
$$

where $\vec{v}_{1}=\overrightarrow{P_{1} Q_{1}}$ and $\vec{v}_{2}={\overrightarrow{P_{2} Q}}_{2}$ are the direction vectors for the lines \mathcal{L}_{1} and \mathcal{L}_{2}, respectively.

9.4 Exercises

Exercise 121

(a) Sketch a directed line segment representing each of the following vectors:

$$
\text { (1) } \quad \vec{u}=\left[\begin{array}{r}
-2 \\
3
\end{array}\right] ; \quad \text { (2) } \quad \vec{v}=\left[\begin{array}{r}
-2 \\
-2
\end{array}\right] ; \quad \text { (3) } \quad \vec{w}=\left[\begin{array}{r}
0 \\
-3
\end{array}\right] .
$$

(b) Determine the head of the vector

$$
\vec{u}=\left[\begin{array}{r}
-2 \\
5
\end{array}\right]
$$

whose tail is $(-3,2)$. Make a sketch.
(c) Determine the tail of the vector

$$
\vec{v}=\left[\begin{array}{l}
2 \\
6
\end{array}\right]
$$

whose head is $(1,2)$. Make a sketch.

Exercise 122 For what values of a and b are the vectors

$$
\left[\begin{array}{c}
a-b \\
2
\end{array}\right] \text { and }\left[\begin{array}{c}
4 \\
a+b
\end{array}\right] \quad \text { equal ? }
$$

Exercise 123 Compute $\vec{u}+\vec{v}, \vec{u}-\vec{v}, 3 \vec{u}-2 \vec{v},\|-2 \vec{u}\|,\|\vec{u}+\vec{v}\|$ for

$$
\vec{u}=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
0 \\
2
\end{array}\right] .
$$

Exercise 124 Prove that the vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] \quad \text { and } \quad \vec{v}=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]
$$

are collinear if and only if

$$
\left|\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2}
\end{array}\right|=0 .
$$

Exercise 125 Use the dot product to find the angle between the vectors \vec{u} and \vec{v}.
(a) $\vec{u}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \quad \vec{v}=\left[\begin{array}{r}0 \\ -2\end{array}\right]$;
(b) $\vec{u}=\left[\begin{array}{l}2 \\ 2\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}-3 \\ -3\end{array}\right]$.

Exercise 126

(a) Find r so that the vector $\vec{v}=\vec{i}+r \vec{j}$ is orthogonal to $\vec{w}=2 \vec{i}-\vec{j}$.
(b) Find k so that the vectors $k \vec{i}+4 \vec{j}$ and $2 \vec{i}+5 \vec{j}$ are collinear.

Exercise 127 Use the fact that $|\cos \theta| \leq 1$ for all θ to show that the CauchySchwarz inequality

$$
|\vec{u} \bullet \vec{v}| \leq\|\vec{u}\|\|\vec{v}\|
$$

holds for all vectors \vec{u} and \vec{v} in \mathbb{R}^{2} (or \mathbb{R}^{3}).
Exercise 128 Use the dot product to find the angle between \vec{u} and \vec{v}.
(a) $\vec{u}=\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right] \quad$ and $\vec{v}=\left[\begin{array}{r}3 \\ 4 \\ -5\end{array}\right]$;
(b) $\vec{u}=2 \vec{i}+\vec{j}+2 \vec{k}$ and $\vec{v}=3 \vec{i}-\vec{j}-3 \vec{k}$.

Exercise 129 Compute

$$
\vec{v} \times \vec{w}, \quad \vec{u} \times(\vec{v} \times \vec{w}), \quad(\vec{u} \bullet \vec{w}) \vec{v}-(\vec{u} \bullet \vec{v}) \vec{w}, \quad(\vec{u} \times \vec{v}) \bullet \vec{w}, \quad \vec{u} \bullet(\vec{v} \times \vec{w})
$$

for

$$
\vec{u}=\vec{i}+\vec{j}+\vec{k}, \quad \vec{v}=\vec{j}-\vec{k}, \quad \text { and } \quad \vec{w}=w_{1} \vec{i}+w_{2} \vec{j}+w_{3} \vec{k} .
$$

Exercise 130 Use the cross product to find a nonzero vector \vec{c} orthogonal to both of \vec{a} and \vec{b}.
(a) $\quad \vec{a}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], \quad \vec{b}=\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right] ; \quad(b) \quad \vec{a}=\left[\begin{array}{r}2 \\ -1 \\ 3\end{array}\right], \quad \vec{b}=\left[\begin{array}{r}5 \\ 1 \\ -1\end{array}\right]$.

Exercise 131 Find :

(a) the angles of the triangle with vertices

$$
A(1,1,1), \quad B(3,-2,3), \quad \text { and } \quad C(3,4,6)
$$

(b) the area of the triangle with vertices

$$
P_{1}(1,-2,3), P_{2}(-3,1,4), \quad \text { and } \quad P_{3}(0,4,3)
$$

(c) the area of the triangle with vertices P_{1}, P_{2}, and P_{3}, where

$$
\overrightarrow{P_{1} P_{2}}=2 \vec{i}+3 \vec{j}-\vec{k} \quad \text { and } \quad \overrightarrow{P_{1} P_{3}}=\vec{i}+2 \vec{j}+2 \vec{k}
$$

(d) the area of the parallelogram with adjacent sides

$$
\vec{u}=\vec{i}+3 \vec{j}-2 \vec{k} \quad \text { and } \quad \vec{v}=3 \vec{i}-\vec{j}-\vec{k}
$$

(e) the volume of the parallelepiped with the vertex at the origin and edges

$$
\vec{u}=2 \vec{i}-\vec{j}, \quad \vec{v}=\vec{i}-2 \vec{j}-2 \vec{k} \quad \text { and } \quad \vec{w}=3 \vec{i}-\vec{j}+\vec{k} .
$$

Exercise 132 Establish the triangle inequality

$$
\|\vec{u}+\vec{v}\| \leq\|\vec{u}\|+\|\vec{v}\|
$$

(for all \vec{u} and \vec{v} in \mathbb{R}^{3}) by first squaring both sides and then using the CauchySchwarz inequality (see Exercise 137).

Exercise 133 Find the vector equation and parametric equations for the line passing through the points $(2,1,8)$ and $(4,4,12)$.

Exercise 134 Show that the line through the points $(2,-1,-5)$ and $(8,8,7)$ is parallel to the line through the points $(4,2,-6)$ and $(8,8,2)$.

Exercise 135 Find the equation of the line through the point $(0,2,-1)$ which is parallel to the line

$$
x=1+2 t, \quad y=3 t, \quad z=5-7 t .
$$

Exercise 136 Find the equation of the plane through the points

$$
A(1,0,-3), \quad B(0,-2,-4), \quad \text { and } \quad C(4,1,6) .
$$

Exercise 137 Find the equation of the plane which passes through the point $(6,5,-2)$ and is parallel to the plane $x+y-z=5$.

Exercise 138 Find the equation of the plane which is perpendicular to the line segment joining the points $(-3,2,1)$ and $(9,4,3)$, and which passes through the midpoint of the line segment.

Exercise 139 Find the point of intersection of the planes

$$
\left(\pi_{1}\right) \quad x+2 y-z=6, \quad\left(\pi_{2}\right) \quad 2 x-y+3 z+13=0, \quad\left(\pi_{3}\right) \quad 3 x-2 y+3 z=-16 .
$$

Exercise 140 Find the equation of the plane passing through the point $(-3,2,-4)$ and the line of intersection of the planes

$$
\text { (} \alpha \text {) } 3 x+y-5 z+7=0 \quad \text { and } \quad(\beta) \quad x-2 y+4 z=3 .
$$

Exercise 141 Find the shortest distance between the lines

$$
\left(\mathcal{L}_{1}\right) \quad \vec{r}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{r}
2 \\
0 \\
-1
\end{array}\right] \quad \text { and } \quad\left(\mathcal{L}_{2}\right) \quad \vec{r}=\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right]+s\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .
$$

Exercise 142 Find the point of intersection of the lines

$$
\left(\mathcal{L}_{1}\right) \quad \vec{r}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+t\left[\begin{array}{r}
0 \\
-2 \\
0
\end{array}\right] \quad \text { and } \quad\left(\mathcal{L}_{2}\right) \quad \vec{r}=\left[\begin{array}{r}
-1 \\
1 \\
2
\end{array}\right]+s\left[\begin{array}{r}
2 \\
0 \\
-1
\end{array}\right] .
$$

Exercise 143 Find the line of intersection of the planes
(a) $x+y-z=2$ and
(β) $(2 \vec{i}-\vec{k}) \bullet \vec{r}=2$.

Exercise 144 Find the line which passes through the origin and intersects the plane

$$
x+y+2 z=6
$$

orthogonally.

Exercise 145

(a) Find the distance from the point $(0,2,4)$ to the plane

$$
x+2 y+2 z=3 .
$$

(b) Show that the distance from the point $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ to the plane with equation $a x+b y+c z+d=0$ is

$$
\delta=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}} .
$$

(c) Use the formula above to show that the distance between the two parallel planes

$$
\text { (} \alpha \text {) } \quad a x+b y+c z=d \quad \text { and } \quad(\beta) \quad a x+b y+c z=e
$$

is

$$
\delta=\frac{|d-e|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

