
Chapter 9

Vectors, Lines, and Planes

Topics :

1. Vectors in the plane

2. Vectors in space

3. Lines and planes

A vector is usually defined as a “quantity having magnitude and direction”, such as

the velocity vector of an object moving through space. It is helpful to represent a

vector as an “arrow” attached to a point of space. Vectors can be added to one another

and can also be multiplied by real numbers (often called scalars in this context). They

provide a source of ideas for studying more abstract mathematical subjects, like linear

algebra or modern geometry.
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9.1 Vectors in the plane

Consider the plane Π of “elementary (read : high school) plane geometry”.

We draw a pair of perpendicular lines intersecting at a point O, called the

origin. One of the lines, the x-axis, is usually taken in a “horizontal” posi-

tion. The other line, the y-axis, is then taken in a “vertical” position. The

x- and y-axes together are called coordinate axes and they form a Carte-

sian coordinate system on Π. We now choose a point on the x-axis to

the right of O and a point on the y-axis above O to fix the units of length

and positive directions on the coordinate axes. Frequently, these points are

chosen so that they are both equidistant from O. With each point P in the

plane we associate an ordered pair (x, y) of real numbers, its coordinates.

Conversely, we can associate a point in the plane with each ordered pair of real

numbers. Point P with coordinates (x, y) is denoted by P (x, y) or, simply,

by (x, y). Thus, the plane Π, equipped with a Cartesian coordinate system,

may be identified with the set R2 of all pairs of real numbers.

Throughout, the set R2 will be referred to as the Euclidean 2-space or,

simply, the plane.

Note : A point in the Euclidean 2-space is an ordered pair (x, y) of real numbers,

and the distance between points (x1, y1) and (x2, y2) is given by

√
(x2 − x1)2 + (y2 − y1)2.

We are now going to introduce the concept of (geometric) vector.

Note : One can think of a vector as an instruction to move; the instruction makes

sense wherever you are (in the plane), even if it may be rather difficult to carry out.

Not every instruction to move is a vector; for an instruction to be a vector, it must

specify movement through the same distance and in the same direction for every point.

We make the following definition.
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9.1.1 Definition. A vector (in the plane) is a 2× 1 matrix

~v =

[
x

y

]
where x and y are real numbers, called the components of ~v.

With every vector ~v we can associate a directed line segment, with the initial

point the origin and the terminal point P (x, y). The directed line segment

from O to P is denoted by
−→
OP ; O is called the tail and P the head.
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x

y

O

P (x, y)

Directed line segment :
−→
OP .

Note : A directed line segment has a direction, indicated by an arrow pointing

from O to P . The magnitude of a directed line segment is its length. Thus, a

directed line segment can be used to describe force, velocity, and acceleration.

Conversely, with every directed line segment
−→
OP , with tail O(0, 0) and head

P (x, y), we can associate the vector

~v =

[
x

y

]
.

9.1.2 Definition. Two vectors

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]
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are said to be equal if u1 = v1 and u2 = v2. That is, two vectors are equal

if their respective components are equal.

Frequently, in applications it is necessary to represent a vector ~v by a line

segment
−→
PQ located at some point P (x, y) (not the origin). In this case, if

~v =

[
v1

v2

]
, then Q has coordinates (x+ v1, y + v2).

9.1.3 Example. Consider the points P (3, 2), Q(5, 5), R(−3, 1) and S(−1, 4).

The vectors (represented by)
−→
PQ and

−→
RS are equal, since they have their

respective components equal. We write

−→
PQ=

[
2

3

]
=
−→
RS .
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Equal vectors :
−→
PQ=

−→
RS (=

−→
OT ).

With every vector

~v =

[
x

y

]
we can also associate the unique point P (x, y); conversely, with every point

P (x, y) we associate the unique vector

~v =

[
x

y

]
.
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This association is carried out by means of the directed line segment
−→
OP ,

located at the origin. The directed line segment
−→
OP is one representation of

a vector, sometimes denoted by ~rP and called the position vector of the

point P .

Note : The plane may be viewed both as the set of all points or the set of all

vectors (in the plane).

Vector addition and scalar multiplication

9.1.4 Definition. The sum of two vectors

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]

is the vector

~u+ ~v : =

[
u1 + v1

u2 + v2

]
.

We can interpret vector addition geometrically as follows. We take a represen-

tative of ~u, say
−→
PQ, and then a representative of ~v starting from the terminal

point of ~u, say
−→
QR. The sum ~u + ~v is then the vector (represented by the

directed line segment)
−→
PR. Thus

~u+ ~v =
−→
PQ +

−→
QR=

−→
PR .
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~u+ ~v
~u

~v

Sum of two vectors : ~u+ ~v.
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We can also describe ~u+~v as the diagonal of the parallelogram defined by ~u

and ~v. This description of vector addition is sometimes called the parallelo-

gram rule.
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~u+ ~v
~u

~v

The parallelogram rule of vector addition.

9.1.5 Definition. If

~u =

[
u1

u2

]
is a vector and λ is a real number (scalar), then the scalar multiple of ~u

by λ is the vector

λ~u : =

[
λu1

λu2

]
.
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2~u~u

−~u

Scalar multiples of a vector : 2~u and −~u.
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The vector [
0

0

]

is called the zero vector and is denoted by ~0. If ~u is a vector, it follows that

~u+~0 = ~u.

We can also show that

~u+ (−1)~u = ~0 ,

and we write (−1)~u as −~u and call it the opposite of ~u. Moreover, we write

~u+ (−1)~v as ~u− ~v and call it the difference between ~u and ~v.

Note : While vector addition gives one diagonal of a parallelogram, vector sub-

traction gives the other diagonal.














�

�
�
�
�
�
�
�
�
��>

�

~v~u

~u− ~v

Difference between two vectors.

The following proposition summarizes the algebraic properties of vector

addition and scalar multiplication of vectors.

9.1.6 Proposition. If ~u, ~v and ~w are vectors in R2 and r and s are

scalars, then :

(1) ~u+ ~v = ~v + ~u.
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(2) ~u+ (~v + ~w) = (~u+ ~v) + ~w.

(3) ~u+~0 = ~0 + ~u = ~u.

(4) ~u+ (−~u) = (−~u) + ~u = ~0.

(5) r(~u+ ~v) = r~u+ r~v.

(6) (r + s)~u = r~u+ s~u.

(7) r(s~u) = (rs)~u.

(8) 1~u = ~u.

Note : The properties listed above may be summarize by saying that R2 is a

vector space (over the field of real numbers).

Magnitude and distance

9.1.7 Definition. The length (or the magnitude) of the vector

~v =

[
a

b

]

is defined to be the distance from the point (a, b) to the origin ; that is,

‖~v‖ : =
√
a2 + b2 .

9.1.8 Example. The length of the vector

~v =

[
3

−4

]

is

‖~v‖ =
√

32 + (−4)2 = 5.

9.1.9 Proposition. If ~u and ~v are vectors, and r is a real number, then

:

(1) ‖~u‖ ≥ 0 ; ‖~u‖ = 0 if and only if ~u = 0.
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(2) ‖r~u‖ = |r| ‖~u‖.

(3) ‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ (the triangle inequality).

Proof : Exercise.

If

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]
are vectors in R2, then the distance between ~u and ~v is defined as ‖~u−~v‖.
Thus

‖~u− ~v‖ =
√

(u1 − v1)2 + (u2 − v2)2.

Note : This equation also gives the distance between the points (u1, u2) and

(v1, v2).

9.1.10 Example. Compute the distance between the vectors

~u =

[
−1

5

]
and ~v =

[
3

2

]
.

Solution : The distance between ~u and ~v is

‖~u− ~v‖ =
√

(−1− 3)2 + (5− 2)2 =
√

42 + 32 = 5.

Dot product and angle

9.1.11 Definition. Let

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]

be vectors in R2. The dot product of ~u and ~v is defined as the number

~u • ~v : = u1v1 + u2v2.

Note : The dot product is also called the standard inner product on R2.
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9.1.12 Example. If

~u =

[
2

3

]
and ~v =

[
4

−2

]

then

~u • ~v = (2)(4) + (3)(−2) = 2.

Note : (1) We can write the dot product of ~u and ~v in terms of matrix multi-

plication as ~uT~v, where we have ignored the brackets around the 1× 1 matrix ~uT~v.

(2) If ~v is a vector in R2, then

‖~v‖ =
√
~v • ~v.

Let us now consider the problem of determining the angle θ, 0 ≤ θ ≤ π,

between two nonzero vectors in R2. Let

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]

be two vectors in R2.
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~v~u

~u− ~v

�θ

The angle between two vectors.

Using the law of cosines, we have

‖~v − ~u‖2 = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos θ.
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Hence

cos θ =
‖~u‖2 + ‖~v‖2 − ‖~v − ~u‖2

2‖~u‖‖~v‖

=
(u2

1 + u2
2) + (v2

1 + v2
2)− (v1 − u1)2 − (v2 − u2)2

2‖~u‖‖~v‖

=
u1v1 + u2v2

‖~u‖‖~v‖

=
~u • ~v
‖~u‖‖~v‖

·

That is,

cos θ =
~u • ~v
‖~u‖‖~v‖

·

Note : The zero vector in R2 has no specific direction. The law of cosines expres-

sion above is true, for any angle θ, if ~v 6= ~0 and ~u = ~0. Thus, the zero vector can be

assigned any direction.

9.1.13 Example. The angle θ between the vectors

~u =

[
1

0

]
and ~v =

[
−1

1

]

is determined by

cos θ =
(1)(−1) + (0)(1)√

12 + 02
√

(−1)2 + 12
= − 1√

2
·

Since 0 ≤ θ ≤ π, it follows that θ = 3π
4 ·

9.1.14 Definition. Two (nonzero) vectors ~u and ~v are

• collinear (or parallel) provided θ = 0 or θ = π.

• orthogonal (or perpendicular) provided θ = π
2 .
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t -�

-

Collinear (or parallel) vectors.

~u

~v

-

6

Orthogonal vectors : ~u ⊥ ~v.

Note : (1) We regard the zero vector as both collinear with and orthogonal to

every vector.

(2) If ~v 6= ~0, then vectors ~u and ~v are collinear ⇐⇒ ~u = r ~v for some r ∈ R.

(See Exercise 23 (b))

(3) Vectors ~u and ~v are orthogonal ⇐⇒ ~u • ~v = 0.

9.1.15 Example. The vectors

~u =

[
2

−4

]
and ~v =

[
4

2

]
are orthogonal, since

~u • ~v = (2)(4) + (−4)(2) = 0.
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Each of the properties of the dot product listed below is easy to establish.

9.1.16 Proposition. If ~u, ~v, and ~w are vectors in R2, and r is a real

number, then :

(1) ~u • ~u ≥ 0 ; ~u • ~u = 0 if and only if ~u = ~0.

(2) ~v • ~u = ~u • ~v.

(3) (~u+ ~v) • ~w = ~u • ~w + ~v • ~w.

(4) (r~u) • ~v = r(~u • ~v).

Proof : Exercise.

A unit vector in R2 is a vector whose length is 1. If ~v is a nonzero

vector, then the vector
1

‖~v‖
~v

is a unit vector (in the direction of ~v).

There are two unit vectors in R2 that are of special importance. These are

~i : =

[
1

0

]
and ~j : =

[
0

1

]
,

the unit vectors along the positive x- and y-axes. Observe that ~ı and ~ are

orthogonal.

-
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x

y

~i

~j

O

The standard unit vectors : ~i and ~j.
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Note : Every vector in R2 can be written (uniquely) as a linear combination of

the vectors ~i and ~j ; that is,

~v =

[
v1

v2

]
= v1

[
1

0

]
+ v2

[
0

1

]
= v1

~i+ v2
~j.

-
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y
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6

v1
~i

v2
~j

~v

O

Linear combination of two vectors : ~v = v1~i+ v2~j.

9.2 Vectors in space

The foregoing discussion of vectors in the plane can be generalized to vectors

in space, as follows.

Consider the (three-dimensional) space Σ of “elementary (read : high

school) solid geometry”. We first fix a Cartesian coordinate system by

choosing a point, called the origin, and three lines, called the coordinate

axes, each passing through origin, so that each line is perpendicular to the

other two. These lines are individually called the x-, y-, and z-axes. On

each of these axes we choose a point fixing the units of length and positive

directions on the coordinate axes. Frequently, these points are chosen so that

they are both equidistant from the origin O. With each point P in space

we associate an ordered triple (x, y, z) of real numbers, its coordinates.

Conversely, we can associate a point in space with each ordered triple of real
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numbers. Point P with coordinates (x, y, z) is denoted by P (x, y, z) or,

simply, by (x, y, z). Thus, the space Σ, equipped with a Cartesian coordinate

system, may be identified with the set R3 of all triples of real numbers.

Throughout this section, the set R3 will be referred to as the Euclidean

3-space or, simply, the space.

Note : A point in the Euclidean 3-space is an ordered triple (x, y, z) of real

numbers, and the distance between points (x1, y1, z1) and (x2, y2, z2) is given by

√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2.

We now introduce the concept of vector in space.

9.2.1 Definition. A vector (in space) is a 3× 1 matrix

~v =


x

y

z


where x, y, and z are real numbers, called the components of ~v.

With every vector ~v we can associate a directed line segment, with the initial

point the origin and the terminal point P (x, y, z). The directed line segment

from O to P is denoted by
−→
OP ; O is called the tail and P the head.

Conversely, with every directed line segment
−→
OP , with tail O(0, 0, 0) and

head P (x, y, z), we can associate the vector

~v =


x

y

z

 .
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y

z

x

O

P (x, y, z)

Directed line segment :
−→
OP .

9.2.2 Definition. Two vectors

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


are said to be equal if u1 = v1 , u2 = v2, and u3 = v3. That is, two vectors

are equal if their respective components are equal.

Frequently, in applications it is necessary to represent a vector ~v by a line

segment
−→
PQ located at some point P (x, y, z) (not the origin). In this case,

if

~v =


v1

v2

v3

 , then Q has coordinates (x+ v1, y + v2, z + v3).

9.2.3 Example. Consider the points P (3, 2, 1), Q(5, 5, 0), R(−3, 1, 4) and

S(−1, 4, 3). The vectors (represented by)
−→
PQ and

−→
RS are equal, since they

have their respective components equal. We write

−→
PQ=


2

3

−1

 =
−→
RS .
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With every vector

~v =


x

y

z


we can also associate the unique point P (x, y, z); conversely, with every point

P (x, y, z) we associate the unique vector

~v =


x

y

z

 .
This association is carried out by means of the directed line segment

−→
OP ,

located at the origin. The directed line segment
−→
OP is one representation of

a vector, sometimes denoted by ~rP and called the position vector of the

point P .

Note : The space may be viewed both as the set of all points or the set of all

vectors (in space).

Vector addition and scalar multiplication

9.2.4 Definition. The sum of two vectors

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


is the vector

~u+ ~v : =


u1 + v1

u2 + v2

u3 + v3

 .
The parallelogram rule, as a description (geometric interpretation) of vector

addition remains valid.



248 MAT 102 - Discrete Mathematics

9.2.5 Definition. If

~u =


u1

u2

u3


is a vector and λ is a real number (scalar), then the scalar multiple of ~u

by λ is the vector

λ~u : =


λu1

λu2

λu3

 .
The vector 

0

0

0


is called the zero vector and is denoted by ~0. If ~u is a vector, it follows that

~u+~0 = ~u.

Again, we can show that

~u+ (−1)~u = ~0

and we write (−1)~u as −~u and call it the opposite of ~u. We write ~u+(−1)~v

as ~u− ~v and call it the difference between ~u and ~v.

Note : While vector addition gives one diagonal of a parallelogram, vector sub-

traction gives the other diagonal.

The following proposition summarizes the algebraic properties of vector

addition and scalar multiplication of vectors.

9.2.6 Proposition. If ~u, ~v and ~w are vectors in R3 and r and s are

scalars, then :

(1) ~u+ ~v = ~v + ~u.

(2) ~u+ (~v + ~w) = (~u+ ~v) + ~w.
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(3) ~u+~0 = ~0 + ~u = ~u.

(4) ~u+ (−~u) = (−~u) + ~u = ~0.

(5) r(~u+ ~v) = r~u+ r~v.

(6) (r + s)~u = r~u+ s~u.

(7) r(s~u) = (rs)~u.

(8) 1~u = ~u.

Note : The properties listed above may be summarize by saying that R3 is a

vector space (over the field of real numbers).

Magnitude and distance

9.2.7 Definition. The length (or the magnitude) of the vector

~v =


a

b

c


is defined to be the distance from the point (a, b, c) to the origin ; that is,

‖~v‖ : =
√
a2 + b2 + c2.

9.2.8 Example. The length of the vector

~v =


3

−4

0


is

‖~v‖ =
√

32 + (−4)2 + 02 = 5.

9.2.9 Proposition. If ~u and ~v are vectors, and r is a real number, then

:

(1) ‖~u‖ ≥ 0 ; ‖~u‖ = 0 if and only if ~u = 0.



250 MAT 102 - Discrete Mathematics

(2) ‖r~u‖ = |r| ‖~u‖.

(3) ‖~u+ ~v‖ ≤ ‖~u‖+ ‖~v‖ (the triangle inequality).

Proof : Exercise.

If

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


are vectors in R3, then the distance between ~u and ~v is defined as ‖~u−~v‖ .

Thus

‖~u− ~v‖ =
√

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2.

Note : This equation also gives the distance between the points (u1, u2, u3) and

(v1, v2, v3).

9.2.10 Example. Compute the distance between the vectors

~u =


−1

5

−4

 and ~v =


3

2

−4

 .
Solution : The distance between ~u and ~v is

‖~u− ~v‖ =
√

(−1− 3)2 + (5− 2)2 + (−4 + 4)2 =
√

42 + 32 + 02 = 5.

Dot product and angle

9.2.11 Definition. Let

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


be vectors in R3. The dot product of ~u and ~v is defined as the number

~u • ~v : = u1v1 + u2v2 + u3v3.
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Note : The dot product is also called the standard inner product on R3.

9.2.12 Example. If

~u =


2

3

−1

 and ~v =


4

−2

2


then

~u • ~v = (2)(4) + (3)(−2) + (−1)(2) = 0.

Note : (1) We can write the dot product of ~u and ~v in terms of matrix multi-

plication as ~uT~v, where we have ignored the brackets around the 1× 1 matrix ~uT~v.

(2) If ~v is a vector in R3, then

‖~v‖ =
√
~v • ~v.

Let us now consider the problem of determining the angle θ, 0 ≤ θ ≤ π,

between two nonzero vectors in R3. Let

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


be two vectors in R3. Using the law of cosines, we have

‖~v − ~u‖2 = ‖~u‖2 + ‖~v‖2 − 2‖~u‖‖~v‖ cos θ .

Hence

cos θ =
‖~u‖2 + ‖~v‖2 − ‖~v − ~u‖2

2‖~u‖‖~v‖

=
(u2

1 + u2
2 + u2

3) + (v2
1 + v2

2 + v2
3)− (v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

2‖~u‖‖~v‖

=
u1v1 + u2v2 + u3v3

‖~u‖‖~v‖

=
~u • ~v
‖~u‖‖~v‖

·
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That is,

cos θ =
~u • ~v
‖~u‖‖~v‖

·

Note : The zero vector in R2 has no specific direction. The law of cosines expres-

sion above is true, for any angle θ, if ~v 6= ~0 and ~u = ~0. Thus, the zero vector can be

assigned any direction.

9.2.13 Example. The angle θ between the vectors

~u =


1

1

0

 and ~v =


0

1

1


is determined by

cos θ =
(1)(0) + (1)(1) + (0)(1)√
12 + 12 + 02

√
02 + 12 + 12

=
1

2
·

Since 0 ≤ θ ≤ π, it follows that θ = π
3 .

9.2.14 Definition. Two (nonzero) vectors ~u and ~v are

• collinear (or parallel) provided θ = 0 or θ = π.

• orthogonal (or perpendicular) provided θ = π
2 .

Note : (1) We regard the zero vector as both collinear with and orthogonal to

every vector.

(2) If ~v 6= ~0, then vectors ~u and ~v are collinear ⇐⇒ ~u = r ~v for some r ∈ R.

(See Exercise 23 (b))

(3) Vectors ~u and ~v are orthogonal ⇐⇒ ~u • ~v = 0.

9.2.15 Proposition. If ~u, ~v, and ~w are vectors in R2, and r is a real

number, then :

(1) ~u • ~u ≥ 0 ; ~u • ~u = 0 if and only if ~u = ~0.
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(2) ~v • ~u = ~u • ~v.

(3) (~u+ ~v) • ~w = ~u • ~w + ~v • ~w.

(4) (r~u) • ~v) = r(~u • ~v).

Proof : Exercise.

A unit vector in R3 is a vector whose length is 1. If ~v is a nonzero

vector, then the vector

1

‖~v‖
~v

is a unit vector (in the direction of ~v).

There are three unit vectors in R3 that are of special importance. These are

~i : =


1

0

0

 , ~j : =


0

1

0

 , ~k : =


0

0

1


the unit vectors along the positive x-, y-, and z-axes. Observe that ~i, ~j, and

~k are mutually orthogonal.
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6

~j

~k

~i

The standard unit vectors : ~i, ~j, and ~k.
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Note : Every vector in R3 can be written (uniquely) as a linear combination of

the vectors ~i, ~j, and ~k ; that is,

~v =


v1

v2

v3

 = v1


1

0

0

+ v2


0

1

0

+ v3


0

0

1

 = v1
~i+ v2

~j + v3
~k .

-

6
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�
�

�
�	

�
�
�
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��

-

6

�
��	

y

z

x

O

v2
~j

v3
~k ~v

v1
~i

Linear combination of three vectors : ~v = v1~i+ v2~j + v3~k.

Cross product

9.2.16 Definition. Let

~u =


u1

u2

u3

 and ~v =


v1

v2

v3


be vectors in R3. The cross product of ~u and ~v is defined to be the vector

~u× ~v : =


u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

 = (u2v3 − u3v2)~i+ (u3v1 − u1v3)~j + (u1v2 − u2v1)~k .

The cross product is also called the vector product.
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9.2.17 Example. Let ~u = 2~i+~j + 2~k and ~v = 3~i−~j − 3~k. Then

~u× ~v = −~i+ 12~j − 5~k.

Note : (1) The cross product ~u× ~v is orthogonal to both ~u and ~v.

(2) A common way of remembering the definition of the cross product ~u × ~v is to

observe that it results from a formal expansion along the first row in the determinant

~u× ~v =

∣∣∣∣∣∣∣∣
~i ~j ~k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣∣ .
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~v~u

~u× ~v

The cross product of two vectors : ~u× ~v.

9.2.18 Proposition. If ~u, ~v, and ~w are vectors in R3, and r is a real

number, then :

(1) ~u× ~v = −~v × ~u.

(2) ~u× (~v + ~w) = ~u× ~v + ~u× ~w.

(3) (~u+ ~v)× ~w = ~u× ~w + ~v × ~w.

(4) r(~u× ~v) = (r~u)× ~v = ~u× (r~v).

Proof : Exercise.
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One can show that (tedious computation)

‖~u× ~v‖2 = ‖~u‖2‖~v‖2 − (~u • ~v)2.

Recall that

~u • ~v = ‖~u‖ ‖~v‖ cos θ

where θ is the angle between ~u and ~v. Hence,

‖~u×~v‖2 = ‖~u‖2 ‖~v‖2−‖~u‖2 ‖~v‖2 cos2 θ = ‖~u‖2‖~v‖2(1−cos2 θ) = ‖~u‖2 ‖~v‖2 sin2 θ.

Taking square roots, we obtain

‖~u× ~v‖ = ‖~u‖ ‖~v‖ sin θ.

Observe that we do not have to write | sin θ|, since sin θ is nonnegative for

0 ≤ θ ≤ π.

Note : Vectors ~u and ~v (in R3 ) are collinear ⇐⇒ ~u× ~v = ~0.

Applications : area and volume

We now consider several applications of cross product.

A (Area of a Triangle) Consider a triangle with vertices P1, P2 and P3.

The area of this triangle is 1
2bh, where b is the base and h is the height. If

we take the segment between P1 and P2 to be the base and denote
−→
P1P2 by

the vector ~u, then

b = ‖~u‖.

Letting
−→
P1P3= ~v, we find that the height h is given by

h = ‖~v‖ sin θ

θ being the angle betweeen ~u and ~v.
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~u

h~v

P1 P2

P3

�θ

Area of a triangle : 1
2‖~u× ~v‖.

Hence, the area At of the triangle is

At = 1
2‖~u‖ ‖~v‖ sin θ = 1

2‖~u× ~v‖.

9.2.19 Example. Find the area of the triangle with vertices

P1(2, 2, 4), P2(−1, 0, 5), and P3(3, 4, 3) .

Solution : We have

~u =
−→
P1P2= −3~i− 2~j + ~k and ~v =

−→
P1P3=~i+ 2~j − ~k.

Then

At =
1

2
‖(−3~i− 2~j + ~k)× (~i+ 2~j − ~k)‖ =

1

2
‖ − 2~j − 4~k‖ =

√
5.

B (Area of a Parallelogram) The area Ap of the parallelogram with adjacent

sides ~u and ~v is 2At, so

Ap = ‖~u× ~v‖.
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~v

P1 P2

P3 P ′1

Area of a parallelogram : ‖~u× ~v‖.

C (Volume of a Parallelepiped) Consider the parallelepiped with a vertex at

the origin and edges ~u, ~v, and ~w. Then the volume V of the parallelepiped

is the product of the area of the face containing ~v and ~w and the distance h

from this face to the face parallel to it.
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�
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~v

~w

~u
~v × ~w

Volume of a parallelepiped : |~u • (~v × ~w)|.

Now

h = ‖~u‖ cos θ

where θ is the angle between ~u and ~v× ~w, and the area of the face determined

by ~v and ~w is ‖~v × ~w‖. Hence,

V = ‖~v × ~w‖ ‖~u‖ | cos θ| = |~u • (~v × ~w)|.
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Note : The volume of the parallelepiped determined by the vectors ~u, ~v, and ~w,

can be expressed as follows

volume = ±

∣∣∣∣∣∣∣∣
u1 u2 u3

v1 v2 v3

w1 w2 w3

∣∣∣∣∣∣∣∣ .
9.2.20 Example. Find the volume of the parallelepiped with a vertex at

the origin and edges

~u =~i− 2~j + 3~k, ~v =~i+ 3~j + ~k, and ~w = 2~i+~j + 2~k.

Solution : We have

~v × ~w = 5~i− 5~k.

Hence, ~u • (~v × ~w) = −10, and thus the volume V is given by

V = |~u • (~v × ~w)| = | − 10| = 10.

Alternatively, we have

volume = ±

∣∣∣∣∣∣∣∣
1 −2 3

1 3 1

2 1 2

∣∣∣∣∣∣∣∣ = ±(−10) = 10.

9.3 Lines and planes

Lines

In elementary geometry a straight line in space is determined by any two

points that lie on it. Here, we take the alternative approach that a straight

line in space is determined by a single point P0 on it and a vector ~v that

determines the direction of the line.

9.3.1 Definition. By the straight line L that passes through the point

P0(x0, y0, z0) and is parallel to the (nonzero) vector ~v = a~i+ b~j+ c~k is meant
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the set of all points P (x, y, z) in R3 such that the vector
−→
P0P= ~r − ~r0 is

collinear to ~v. (Here, ~r and ~r0 stand for the position vectors of the points

P and P0, respectively.)
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Vector equation of a line : ~r = ~r0 + t~v.

Thus, the point P lies on L if and only if

~r − ~r0 = t~v , for some scalar t ;

that is, if and only if

~r = ~r0 + t~v , t ∈ R.

Note : We can visualize the point P as moving along the straight line L, with

~r0 + t~v being its location at “time” t.

The equation

~r = ~r0 + t~v , t ∈ R

is a vector equation of the line L.

By equating components of the vectors in this equation, we get the scalar

equations 
x = x0 + at

y = y0 + bt

z = z0 + ct.
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These are parametric equations (with parameter t ) of the line L.

Alternatively, one can write the equations

x− x0

a
=
y − y0

b
=
z − z0

c
·

These are called symmetric equations of the line L.

9.3.2 Example. Write parametric equations of the line L that passes

through the points P1(1, 2, 2) and P2(3,−1, 3).

Solution : The direction of the line L is given by the vector ~v =
−→
P1P2=

2~i − 3~j + ~k. With P1 as the fixed point, we get the following parametric

equations

x = 1 + 2t , y = 2− 3t , z = 2 + t.

Note : If we take P2 as the fixed point and −2~v = −4~i+ 6~j− 2~k as the direction

vector, then we get different parametric equations

x = 3− 4t , y = −1 + 6t , z = 3− 2t.

Thus, the parametric equations of a line are not unique.

9.3.3 Example. Determine whether the lines

~r =


1

1

2

+ t


3

2

1

 and
x− 1

2
=
y − 2

3
=
z − 3

4

intersect.

Solution : We write parametric equations for the first line; that is,

x = 1 + 3t , y = 1 + 2t , z = 2 + t.

Now we determine whether there exists t ∈ R such that

1 + 3t− 1

2
=

1 + 1t− 2

3
=

2 + t− 3

4
·
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The linear system  6t = 4t− 2

12t = 2t− 2

is clearly inconsistent (Why ?), and thus the given lines do not intersect.

9.3.4 Example. Find the shortest distance between the point P (3,−1, 4)

and the line given by

x = −2 + 3t , y = −2t , z = 1 + 4t.

Solution : First, we shall find a formula for the distance from a point P

to a line L.

Let ~u be the direction vector for L and A a point on the line. Let δ be

the distance from P to the given line L.

tA
~u

P

δ

�
�
�
�
��

-
�θ

The shortest distance between a point and a line : ‖
−→
AP×~u‖
‖~u‖ ·

Then

δ = ‖
−→
AP ‖ sin θ ,

where θ is the angle between ~u and
−→
AP . We have

‖~u‖ ‖
−→
AP ‖ sin θ = ‖~u×

−→
AP ‖ = ‖

−→
AP ×~u‖.
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Consequently,

δ = ‖
−→
AP ‖ sin θ =

‖
−→
AP ×~u‖
‖~u‖

·

In our case, we have ~u =


3

−2

4

 and to find a point on L, let t = 0 and

obtain A(−2, 0, 1). Thus

−→
AP=


5

−1

3

 and
−→
AP ×~u =

∣∣∣∣∣∣∣∣
~i ~j ~k

5 −1 3

3 −2 4

∣∣∣∣∣∣∣∣ = 2~i− 11~j − 7~k =


2

−11

−7

 .
Finally, we can find the distance to be

δ =
‖
−→
AP ×~u‖
‖~u‖

=

√
174√
29

=
√

6 .

Note : In the xy-plane, parametric equations of a line L take the form x = x0 + at

y = y0 + bt.

Alternatively, one can write
x− x0
a

=
y − y0
b

or

y = y0 +
b

a
(x− x0)

or even

y = mx+ n

where m is the slope of the line and n is the y-intercept. Furthermore, we observe

that this “familiar” equation can be rewritten as

Ax+By + C = 0.

It is not difficult to show that the graph of such an equation, where A,B,C ∈ R

(with A and B not all zero) is a straight line (in the plane) with slope m = −A
B ·
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9.3.5 Example. Show that the lines

(L) ax+ by + c = 0 and (M) dx+ ey + f = 0

are parallel if and only if ae = bd and are perpendicular if and only if ad+be =

0.

Solution : The direction vectors of L and M are

~u =

[
−b
a

]
and ~v =

[
−e
d

]
,

respectively. Then

L ‖ M ⇐⇒ ~u1 = λ~u2 ⇐⇒ ~u1×~u2 = ~0 ⇐⇒ (ae−bd)~k = ~0 ⇐⇒ ae = bd ;

L ⊥ M ⇐⇒ ~u1 • ~u2 = 0 ⇐⇒ ad+ be = 0.

In particular, the lines

y = m1x+ n1 and y = m2x+ n2

are parallel if and only if m1 = m2 and are perpendicular if and only if

m1m2 + 1 = 0.

Planes

A plane in space is determined by any point that lies on it and any line

through that point orthogonal to the plane. Alternatively, a plane in space is

determined by a single point P0 on it and a vector ~n that is orthogonal to the

plane.

9.3.6 Definition. By the plane α through the point P0(x0, y0, z0) with

normal vector ~n = a~i+ b~j + c~k is meant the set of all points P (x, y, z) in

R3 such that the vectors
−→
P0P= ~r− ~r0 and ~n are orthogonal. (Again, ~r and

~r0 stand for the position vectors of the points P and P0, respectively.)
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Vector equation of a plan : ~n • (~r − ~r0) = 0.

Thus, the point P lies on α if and only if

~n • (~r − ~r0) = 0 .

This is a vector equation of the plane α.

By substituting the components of the vectors involved in this equation,

we get the scalar equation

a(x− x0) + b(y − y0) + c(z − z0) = 0.

This is a point-normal equation (or standard equation) of the plane α.

Note : The equation above can be rewritten as

ax+ by + cz + d = 0.

It is not difficult to show that the graph of such an equation, where a, b, c, d ∈ R

(with a, b, and c not all zero) is a plane with normal ~n = a~i+ b~j + c~k.

9.3.7 Example. Find an equation of the plane passing through the point

(3, 4,−3) and perpendicular to the vector ~v = 5~i− 2~j + 4~k.

Solution : We obtain an equation of the plane as

5(x− 3)− 2(y − 4) + 4(z + 3) = 0.
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9.3.8 Example. Find an equation of the plane passing through points

P1(2,−2, 1), P2(−1, 0, 3), and P3(5,−3, 4).

Solution : The (noncollinear) vectors
−→
P1P2= −3~i + 2~j + 3~k and

−→
P1P3=

3~i−~j + 3~k lie in the plane, since the points P1, P2, and P3 lie in the plane.

The vector

~v =
−→
P1P2 ×

−→
P1P3= 8~i+ 15~j − 3~k

is then perpendicular to both
−→
P1P2 and

−→
P1P3, and is thus a normal to the

plane. Using the vector ~v and the point P1(2,−2, 1), we obtain

8(x− 2) + 15(y + 2)− 3(z − 1) = 0

as an equation of the plane.

Note : The general equation for a plane passing through three noncollinear points

Pi(xi, yi, zi),

i = 1, 2, 3 may be written in the form :∣∣∣∣∣∣∣∣∣∣
x y z 1

x1 y1 z1 1

x2 y2 z2 1

x3 y3 z3 1

∣∣∣∣∣∣∣∣∣∣
= 0

or, equivalently, ∣∣∣∣∣∣∣∣
x− x1 y − y1 z − z1

x2 − x1 y2 − y1 z2 − z1

x3 − x1 y3 − y1 z3 − z1

∣∣∣∣∣∣∣∣ = 0.

9.3.9 Example. Find parametric equations of the line of intersection of

the planes

(π1) 2x+ 3y − 2z + 4 = 0 and (π2) x− y + 2z + 3 = 0 .

Solution : Solving the linear system consisting of the equations of π1 and

π2, we obtain (verify !)

x = −13

5
− 4

5
t , y =

2

5
+

6

5
t , z = t

as parametric equations of the line L of intersection of the planes.
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The line of intersection of two plans : L = π1 ∩ π2.

Note : (1) The line in the xy-plane, described by the (general) equation

ax+ by + d = 0

may be viewed as the intersection of the planes

ax+ by + cz + d = 0 and z = 0.

(2) The equations

x = y = 0

define a line (the z-axis). Alternative ways of describing the same line are, for instance

:

(1) ~r = t~k, t ∈ R ; (2) x = 0, y = 0, z = t ; t ∈ R ; (3)
x

0
=
y

0
=
z

1
·

9.3.10 Example. Find a formula for the shortest distance d between two

skew lines L1 and L2.

Solution : The lines are skew if they are not parallel and do not intersect.

Choose points P1, Q1 on L1 and P2, Q2 on L2 ; so, the direction vectors

for the lines L1 and L2 are

~v1 =
−→
P1Q1 and ~v2 =

−→
P2Q2 ,

respectively.
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The shortest distance between two skew lines : |(~v1×~v2)•
−→
P1P2|

‖~v1×~v2‖ .

Then ~v1 × ~v2 is orthogonal to both ~v1 and ~v2 and hence a unit vector ~n

orthogonal to both ~v1 and ~v2 is

~n =
1

‖~v1 × ~v2‖
(~v1 × ~v2) .

Let us consider planes through P1 and P2, respectively, each having normal

vector ~n. These planes are parallel and contain L1 and L2, respectively. The

distance d between the planes is measured along a line parallel to the common

normal ~n. It follows that d is the shortest distance between L1 and L2. So

d = |~n•
−→
P1P2 | =

|(~v1 × ~v2)•
−→
P1P2 |

‖~v1 × ~v2‖

where ~v1 =
−→
P1Q1 and ~v2 =

−→
P2Q2 are the direction vectors for the lines L1

and L2, respectively.

9.4 Exercises

Exercise 121

(a) Sketch a directed line segment representing each of the following vectors :

(1) ~u =

[
−2

3

]
; (2) ~v =

[
−2

−2

]
; (3) ~w =

[
0

−3

]
.
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(b) Determine the head of the vector

~u =

[
−2

5

]

whose tail is (−3, 2). Make a sketch.

(c) Determine the tail of the vector

~v =

[
2

6

]

whose head is (1, 2). Make a sketch.

Exercise 122 For what values of a and b are the vectors[
a− b

2

]
and

[
4

a+ b

]
equal ?

Exercise 123 Compute ~u+ ~v, ~u− ~v, 3~u− 2~v, ‖ − 2~u‖, ‖~u+ ~v‖ for

~u =

[
1

−1

]
and ~v =

[
0

2

]
.

Exercise 124 Prove that the vectors

~u =

[
u1

u2

]
and ~v =

[
v1

v2

]

are collinear if and only if ∣∣∣∣∣ u1 v1

u2 v2

∣∣∣∣∣ = 0.

Exercise 125 Use the dot product to find the angle between the vectors ~u and ~v.

(a) ~u =

[
1

1

]
, ~v =

[
0

−2

]
;

(b) ~u =

[
2

2

]
, ~v =

[
−3

−3

]
.

Exercise 126

(a) Find r so that the vector ~v =~i+ r~j is orthogonal to ~w = 2~i−~j .
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(b) Find k so that the vectors k~i+ 4~j and 2~i+ 5~j are collinear.

Exercise 127 Use the fact that | cos θ| ≤ 1 for all θ to show that the Cauchy-

Schwarz inequality

|~u • ~v| ≤ ‖~u‖ ‖~v‖

holds for all vectors ~u and ~v in R2 (or R3).

Exercise 128 Use the dot product to find the angle between ~u and ~v.

(a) ~u =


−1

0

2

 and ~v =


3

4

−5

;

(b) ~u = 2~i+~j + 2~k and ~v = 3~i−~j − 3~k .

Exercise 129 Compute

~v × ~w , ~u× (~v × ~w) , (~u • ~w)~v − (~u • ~v)~w , (~u× ~v) • ~w , ~u • (~v × ~w)

for

~u =~i+~j + ~k , ~v = ~j − ~k , and ~w = w1
~i+ w2

~j + w3
~k.

Exercise 130 Use the cross product to find a nonzero vector ~c orthogonal to both

of ~a and ~b.

(a) ~a =


3

2

1

 , ~b =


4

1

3

 ; (b) ~a =


2

−1

3

 , ~b =


5

1

−1

 .
Exercise 131 Find :

(a) the angles of the triangle with vertices

A(1, 1, 1) , B(3,−2, 3) , and C(3, 4, 6).

(b) the area of the triangle with vertices

P1(1,−2, 3), P2(−3, 1, 4), and P3(0, 4, 3).

(c) the area of the triangle with vertices P1, P2, and P3, where

−→
P1P2= 2~i+ 3~j − ~k and

−→
P1P3=~i+ 2~j + 2~k.
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(d) the area of the parallelogram with adjacent sides

~u =~i+ 3~j − 2~k and ~v = 3~i−~j − ~k.

(e) the volume of the parallelepiped with the vertex at the origin and edges

~u = 2~i−~j , ~v =~i− 2~j − 2~k and ~w = 3~i−~j + ~k.

Exercise 132 Establish the triangle inequality

‖~u+ ~v‖ ≤ ||~u‖+ ‖~v‖

(for all ~u and ~v in R3 ) by first squaring both sides and then using the Cauchy-

Schwarz inequality (see Exercise 137).

Exercise 133 Find the vector equation and parametric equations for the line pass-

ing through the points (2, 1, 8) and (4, 4, 12).

Exercise 134 Show that the line through the points (2,−1,−5) and (8, 8, 7) is

parallel to the line through the points (4, 2,−6) and (8, 8, 2).

Exercise 135 Find the equation of the line through the point (0, 2,−1) which is

parallel to the line

x = 1 + 2t , y = 3t , z = 5− 7t.

Exercise 136 Find the equation of the plane through the points

A(1, 0,−3) , B(0,−2,−4) , and C(4, 1, 6).

Exercise 137 Find the equation of the plane which passes through the point (6, 5,−2)

and is parallel to the plane x+ y − z = 5.

Exercise 138 Find the equation of the plane which is perpendicular to the line

segment joining the points (−3, 2, 1) and (9, 4, 3), and which passes through the

midpoint of the line segment.

Exercise 139 Find the point of intersection of the planes

(π1) x+ 2y − z = 6 , (π2) 2x− y + 3z + 13 = 0 , (π3) 3x− 2y + 3z = −16.
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Exercise 140 Find the equation of the plane passing through the point (−3, 2,−4)

and the line of intersection of the planes

(α) 3x+ y − 5z + 7 = 0 and (β) x− 2y + 4z = 3.

Exercise 141 Find the shortest distance between the lines

(L1) ~r =


2

1

0

+ t


2

0

−1

 and (L2) ~r =


1

2

4

+ s


0

−1

1

 .
Exercise 142 Find the point of intersection of the lines

(L1) ~r =


1

0

1

+ t


0

−2

0

 and (L2) ~r =


−1

1

2

+ s


2

0

−1

 .
Exercise 143 Find the line of intersection of the planes

(α) x+ y − z = 2 and (β) (2~i− ~k) • ~r = 2.

Exercise 144 Find the line which passes through the origin and intersects the plane

x+ y + 2z = 6

orthogonally.

Exercise 145

(a) Find the distance from the point (0, 2, 4) to the plane

x+ 2y + 2z = 3.

(b) Show that the distance from the point P0(x0, y0, z0) to the plane with

equation ax+ by + cz + d = 0 is

δ =
|ax0 + by0 + cz0 + d|√

a2 + b2 + c2
·

(c) Use the formula above to show that the distance between the two parallel

planes

(α) ax+ by + cz = d and (β) ax+ by + cz = e

is

δ =
|d− e|√

a2 + b2 + c2
·


